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ABSTRACT

INTELLIGENT COORDINATION OF MULTIPLE SYSTEMS WITH NEURAL
NETWORKS

by
Xianzhong Cui

Chairperson: Kang G. Shin

Many control applications require cooperation of two or more independently de-
signed, separately located, but mutually affecting, subsystems. In addition to the
proper functioning of each subsystem, their effective coordination is very important
in order to achieve the desired performance. This has led to the development of new
multiple-system coordinators and the evaluation of their performance in real-time
implementation. Two coordination schemes have been proposed: a knowledge-based
coordinator (KBC) and a neural network-based coordinator (NNBC). Either of them
functions as a high-level coordinator in a hierarchical system. In such a hierarchical
structure, the detailed structure and/or parameters of low-level subsystems need not
be known to the coordinator, so that each subsystem can be designed separately.
The basic idea of the KBC is to estimate the effects of commands to low—level sub-
systems using a predictor and to modify them by searching a knowledge base in order
to achieve the desired performance. A general-purpose predictor has been designed
for MIMO (multiple-input, multiple-output) systems using neural networks (NNs).

By introducing the predictor, the knowledge base for multiple-system coordination

Xii



is greatly simplified, and each command is evaluated before its execqtion.

The basic structure of the NNBC is a multilayer perceptron. NNs are usually
trained by using the output errors at its OUTPUT layer. However, when an NN is
used to control a plant directly, these errors are unknown, since the desired control
actions are unknown. This implies that the conventional back propagation training
algorithm cannot be applied to control problems directly. A simple training algorithm
has been developed which enables the NNBC to be trained by using the output
errors of the controlled plant, thus enhancing the NN’s ability to handle control
applications.

The effects of computing time delay on the stability and performance of controlled
systems have been carefully studied both for general robot control systems and for
the proposed coordinators. For the qualitative analysis of the computing time delay,
a generic criterion is derived in terms of system stability. For quantitative analy-
sis, upper bounds of computing time delay on system stability and performance are
derived for a robot control system. These upper bounds can be used as extra con-
straints on controller design and selection of CPUs used to implement the control
algorithm.

The coordination of two robots holding an object, the coordination of multiple
robots to avoid collision, and the control of a nonlinear thermo—process are investi-
gated to test the capability of the proposed schemes. Because the internal structure
and parameters of the low-level subsystems are not affected by using either the KBC
or the NNBC, some commercially—designed servo controllers can be coordinated to

accomplish more sophisticated tasks than originally intended.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Purpose

Many control applications require cooperation of two or more independently de-
signed, separately located, but mutually affecting, subsystems. Examples of these
applications are the coordinated control of multiple robots holding a single object,
coordination of multiple robots working in a common workspace to avoid collision,
coordinated control of a main steam temperature and a reheater steam temperature
in a thermal power plant, and coordination of multiple generating units for econom-
ical load distribution in an electric power system. The coordination problem forms
a hierarchical structure in which the internal structure and parameters of low-level
subsystems should not be affected by adding a high-level coordinator. In addition to
the proper functioning of each subsystem, effective coordination of all subsystems is
very important in order to achieve the desired performance. Multiple-system coor-
dination can in general be stated as a constrained optimization problem. However,
solving the coordination problem is very difficult due mainly to the lack of a precise
system model and/or dynamic parameters, as well as the lack of efficient tools for
system analysis, design, and real-time computation of optimal solutions. Therefore,

new methods for design and analysis are needed to achieve the closed-loop coordi-



nation of multiple systems. The goals of this research are to develop practical and
general design methods for multiple-system coordination with a hierarchical struc-
ture, and to evaluate the performance of their real-time implementation.

Although some basic principles in coordinating multiple systems were developed
in early &0s [LMOB82], most related publications addressed only conceptual inter-
pretation, and very few of them dealt with actual applications. In recent years,
certain special coordination problems have drawn considerable attention. One of
the challenging topics is coordinated control of multiple robots. Assuming complete
knowledge about robot dynamics, most published results are specially designed for
the purpose of coordinating multiple robots. However, most of them are not based
on a hierarchical structure and are usually not suitable for coordinating two robots
which are built with independently-designed, commercial servo controllers.

In this dissertation, we focus on the coordinated control of several physically
distributed systems. Generally, there are four levels of hierarchy in a coordination
system, as shown in Fig. 1.1. The highest level is the monitoring and interface level,
which provides man-machine interface, goal setting, and decision making. The next
level is the planning and supervision level in which the commands to conduct some
general, descriptive tasks are transformed to a specified command sequence while
satisfying a set of constraints. The third level is called the coordination level and
is designed to modify the commands from the higher level, so that the command
sequence becomes executable without violating the constraints under environmental
changes. The lowest level is the servo control level. In this level, each subsystem is
equipped with a servo controller which is designed separately from and independently
of others. The servo controllers are distributed physically and coupled whenever they

need to perform cooperative tasks. These subsystems are said to be loosely—coupled if
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Figure 1.1: Conceptual structure of a hierarchical coordinated control system.

the internal structﬁre and parameters of the subsystems do not affect each other, but
must satisfy some common external constraints. For example, multiple robots work
in a common workspace and are coordinated to avoid collision. Otherwise, these
subsystems are tightly-coupled. For example, multiple robots hold a single object
rigidly. Obviously, tightly—coupled subsystems are more difficult to coordinate than
loosely—coupled ones.

In a hierarchical structure, the higher the level is, the more intelligence it has
for decision making, but the less precision of knowledge it knows about lower levels.
Each level should be independent of the others in the sense that the internal structure
and parameters will not be affected by adding other levels. Based on these principles,
two different schemes for multiple system coordination have been developed in this
dissertation by using the techniques of intelligent control and neural networks (NNs).

In the first scheme, a knowledge-based coordinator is designed by combining the



techniques of intelligent control and neural networks. From the viewpoint of a high
level, in order not to interfere in the internal structure/parameters of the low level,
the only control action to take is to issue a sequence of appropriate commands to
low-level subsystems. Qur basic idea is to estimate the effects of these commands
using a predictor and then modify the commands through a search in a knowledge
base in order to achieve the desired performance. In the second scheme, an NN-
based coordinator is developed. One of the main properties of neural networks for
control applications is that they can be used to approximate any continuous mapping.
Therefore, a multiple-system can be coordinated directly using neural networks,
provided we can train such a neural network to learn the relationship between the
corresponding responses of the low-level subsystems and the appropriate high-level
coordination commands. Because the internal structure and parameters of the lower
levels are not affected by using either of the proposed methods, it is possible that
some commercially—designed servo controllers could be coordinated to perform more
sophisticated tasks than originally intended.

To implement the proposed methods on digital computers, all computations must
be finished in real-time. Hence, our research aiso deals with the real-time computa-
tion of coordination commands. Traditionally, the performance of a control system
is evaluated by such criteria as stability, rise time, maximum overshoot, and so on.
In addition to these, for a real-time control system, the most important issue is
timeliness and reliability. A controller computer implements the control algorithms
by executing a sequence of instructions. Unlike analog control systems, the reliabil-
ity of a digital control system depends not only on the MTBF (mean time between
failures) of the controller hardware and software, but also on the delay in executing

control algorithms on the controller computer. The execution time, or the computing



time delay, for a control algorithm is defined as the period from its trigger to the
generation of a corresponding control command. It is an extra time delay introducéd
into the feedback loop in a controlled system. Because of the existence of condi-
tional branches, resource sharing delays, and processing exceptions, the computing
time delay for a given control algorithm is usually a continuous, random variable
which is smaller than the sampling interval. This extra time delay cannot be treated
as a constant @ priori and added into controller design. Thus, it is very important
to analyze the effects of computing time delay on control system performance when
control algorithms are implemented on digital computers. This is especially true for

the control/coordination systems with heuristic search and/or symbolic reasoning,.

1.2 Overview of the Research

Following an extensive survey of multiple-system coordination, intelligent con-
trol, and neural networks in Chapter 2, we propose a hierarchical knowledge-based
controller for a single system in Chapter 3. As a starting point in developing
a knowledge-based coordinator, we investigate the function and structure of the
knowledge-based controller. A knowledge base is designed for which the knowledge
acquisition and representation are analyzed. The inference process will conduct a
goal-oriented search in the knowledge base. Since a knowledge-based system may
not be described mathematically, one should pay special attention to the stability
issue. Therefore, the overall system stability is pr;ved: Solution existence and error
bounds are also analyzed. The good performance of the knowledge-based controller
is verified via simulations for both linear and nonlinear systems.

The design of a general-purpose predictor is discussed in Chapter 4. By “general-

purpose”, we mean that a predictor is suitable for MIMO (multiple-input multiple-



output) systems with linear, nonlinear, time-invariant, and/or time-varying prop-
erties. Neural networks ére used to design such a predictor. The following aspects
are investigated: capability of neural networks for approximate prediction, basic
structure of the neural network as a predictor, tracking a time-varying system, er-
ror analysis, and a training algorithm for an NN with vector inputs and outputs.
The NN-based predictor is tested extensively via simulation for the MIMO systems
mentioned above.

Chapter 5 presents the design procedures of the knowledge-based coordinator
(KBC). The KBC combines the results discussed in Chapters 3 and 4, and forms
a high-level coordinator in a hierarchical structure. The basic idea is to estimate
the effects of the coordination commands to subsystems using a predictor and to
modify these commands through a search in a knowledge base in order to achieve
the desired performance. The problem of multiple-system coordination is stated
formally, and some basic principles of multiple-system coordination are reviewed.
The proposed scheme and the assumptions are described in detail. To show how
to apply the proposed KBC to actual problems, the coordinated control for both
tightly—coupled and loosely—coupled multiple systems is studied. In this chapter,
the coordinated control of two 2-link robots holding a single object is presented as
an example of the tightly-coupled multiple-system. The purpose is to reduce the
internal force exerted on the object by modifying the reference input of each robot
using the KBC. Adding the KBC does not impose any constraints on the design
of the robots’ servo controllers. In other words, the robots’ dynamic properties are
figured in the coordination without affecting the internal structure and parameters
of each robot’s control system.

For loosely—coupled systems, the coordinated control of multiple robots working



in a common workspace to avoid collision is analyzed in Chapter 6. It is assumed
that both the desired path and trajectory of each robot are specified by teaching
separately and without considering collision avoidance. A robot is designated as
the master or a slave. The master will follow its desired trajectory, and the desired
trajectories and/or paths of the slaves will be modified by the KBC to avoid collision.
Both cylindrical robots and revolute robots are considered.

The second scheme for multiple-system coordination is presented in Chapter 7
in which neural networks are used for direct control and coordination. One of the °
key problems in designing such a controller (coordinator) is to develop an efficient
training algorithm. NNs are usually trained by using the output errors of the network,
instead of using the output errors of the controlled plant. However, when an NN is
used to control a plant directly, the output errors of the network are unknown, since
the desired control actions are unknown. This implies that the conventi;)nal back
propagation training algorithm cannot be applied to control problems directly. In
this chapter, a simple training algorithm is developed for a class of nonlinear systems,
and this enables the NN to be trained by the output errors of the controlled plant.
Both an NN-based controller and an NN-based coordinator have been designed and
tested via simulation. The NN-based controller was tested on a thermo—process and
shown to perform well in the presence of long system time delay, nonlinearity of
dead zone and saturation, and process noise. The NN-based coordinator was tested
on the same example for the KBC — two 2-link robots holding an object — and
achieved even better results than that in Chapter 5.

Chapter 8 investigates the issues of performance evaluation for real-time control
systems. We analyze the effects of computing time delay on the performance of

both general real-time digital control systems and the proposed coordinators. For



a given fixed sampling interval, the effects of computing time delay are classified
into delay problem and loss problem. The performance measures in the presence of
computing time delay are reviewed, and then the effects of the both delay and loss
problems are analyzed in detail. Some common misunderstandings of the effects of
computing time delay are also clarified. For the qualitative analysis of the computing
time delay, a generic criterion is derived in terms of system stability. For quantitative
analysis, upper bounds of computing time delay on system stability and performance
are derived for a robot control system. These upper bounds can be used as extra
constraints on controller design and selection of CPUs to implement the control
algorithm.

Finally, Chapter 9 summarizes the main contributions of this research and con-

cludes the dissertation.



CHAPTER II

LITERATURE SURVEY

This research covers three subjects: multiple-system coordination, intelligent

control, and neural networks.

2.1 Survey of Multiple-System Coordination

Early work on the basic theory of multiple-system coordination was summarized
in [LMO82] and focused on large scale systems. Some conceptual principles were
proposed including hierarchical system structures, goal coordination, model coor-
dination, and interaction balance principle. Dynamic programming, mathematical
programming, and other methods were also discussed as mathematical tools used for
solving the coordination problem. However, most of the work in [LMO82] addressed
only conceptual interpretation, but little has been said on applications. [Ozg89]
surveyed and briefly analyzed existing approaches to decentralized and distributed
control design for large scale systems including system and controller structures,
intelligent control approaches, and implementation problems.

In recent years, research on coordinated control has focused on some specific
applications, such as multiple-robot coordination. Though most designs of multiple-

robot coordination are not in a hierarchical form, recent research in “multiple robots



10

holding a single object” is briefly reviewed below as an example of application—

oriented work.

2.1.1 Multiple-Robot Coordination

When two or more robotic manipulators hold a single object, many problems
occur due mainly to redundancy. If the object is assumed to be rigid and there is no
relative motion between the end-effectors and the object, then they form a closed
chain. In this closed chain, each end-effector with six DOF's (degrees of freedom) can
exert six components of forces and moments on the object. However, the resulting
motion of the object has only six components. Therefore, we have to control 12
variables (for the case of two manipulators) to get a result of six variables. In other
words, due to kinematic constraints of the closed chain, some DOFs are lost. The
number of these lost DOFs equals the number of DOFs gained to control internal
forces of the closed chain [KL88], that is, the force/torque exerted on these DOFs
will not cause any motion of the object, but will generate internal forces.! Detailed
dynamic equations of the closed chain are given in [KL88], [Nak88], [ZL88|, and
[TBY88]. These internal forces must be controlled. Since load distribution to each
joint is not unique due to redundancy, the joint torque needed to eliminate the
internal forces are not unique either. Moreover, two manipulators may have different
maximum loading capability due to different configurations, implying that the best
load sharing may not necessarily be an equal share. The purpose of coordination
is to control the internal forces while distributing the load and tracking a desired
trajectory.

The load sharing problem can be stated as a constrained optimization problem.

1Henceforth, the term “force” will be used to mean force and torque, and the “position” means
position and orientation, except as noted elsewhere.
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[KL88] tried to separate the DOFs that contributed to the motion of object and that
caused internal forces. Then master/slavé scheme can be interpreted as a special
case where the master controls the motion of the object while the slave controls in-
ternal forces exerted on the object. Load distribution was achieved by minimizing
a quadratic function of joint torque and forces exerted on the object.' The work in
[LZ88] a;nd [Z188] dealt mainly with the load distribution problefn for a master/slave
scheme. They derived the optimization problem from the dynamic equation of each
robot and the object obtained 2n + 6 linear scalar equations with 2(n 4 6) unknowns
for joint torque and forces exerted on the object, where n is the number of DOF's of
each robot. Associating these equations with constraints such as joint torque limits,
the problem can be solved by some known optimization algorithms, like nonlinear
programming. Hsu presented a hierarchical structure dealing with part-matching
tasks with multiple robots [Hsu89]. The load sharing problem was solved by mini-
mizing the weighted norm of the force applied to the object. The difficulty of these
optimization methods lies in their real-time implerﬁentation.

Because two manipulators must grasp the object firmly, a small position error may
cause a large force error. System design should, therefore, emphasize the coordination
of interaction among the manipulators and the object. Zheng ei al. analyzed the
constrained relation between two manipulators, that is, given the position, velocity,
acceleration and joint torque of the leader, how can those of the follower be solved
[ZL85]. The generalized joint torque of the leader and follower can be computed, and
used for coordinated control of the two manipulators. A nonlinear feedback control
scheme was proposed in [TBY86], [TBY87] and [TBY88]. By applying nonlinear
feedback, the dynamic equations of a two—robot system was linearized and decoupled.

Yun discussed the case where two manipulators hold a single object and move it
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along a surface while exerting a certain amount of contact force [Yun89]. Here
nonlinear feedback was designed to linearize and decouple the nonlinear system, and
a controller was designed based on the linearized system.

Adaptive control is also developed for coordination, for example [Ser88], [Koi85],
[WKD89] and [MB89]. In [Ser88], a task-related Cartesian frame is set for both
manipulators, so that the desired trajectory and force for each manipulator may be
expressed relative to this common frame and coordination is achieved when the de-
sired trajectory is generated. Then each manipulator acts as though it were carrying
out commands alone in the Cartesian frame. In other words, the controllers work
independently and the coupling effects between the two manipulators through the
load are treated as disturbances which are then rejected by the adaptive property
of a linear adaptive controller [Ser87]. Finally, the virtual forces in Cartesian space
are transformed into joint space by a Jacobian matrix. A scheme using self-tuning
control was proposed in [Koi85] in which each manipulator was represented by an
ARMAX model. The system output vector included the position, orientation, linear
and angular velocity of the end-effector, and the control inputs were joint torque.
The self~tuning algorithm was used to minimize a certain cost function.

To eliminate the interactive force exerted on the object, [Pit88] designed a load-
sharing controller. It is equivalent to adding two force feedback inputs to the com-
puted torque algorithm so as to compensate for the force caused by the load and
interaction between two manipulators. This algorithm was originally developed for
motion control of a single robot with an unknown load. However, when it is ap-
plied to the coordinated control of two manipulators, note that not only the load is
changed but also that the motion is constrained. This mode is different from that

of one manipulator. Thus, it may not perform as well as in the case of a single ma-
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nipulator. [Hay86], [Uch87] and [UD88] extended the hybrid position/force control
algorithm, which is well-known for single robot compliant control, to multiple-robot
coordination. In [KY88], the master/slave and hybrid position/force schemes were
compared, and they concluded that the hybrid control is preferable. [AS88] extended
the work of kinematic resolved-rate control to multiple-robot coordination. A force
feedback loop was closed around the kinematic controller for each manipulator. Each
robot was force-monitored to prevent it from imposing excessive stress on the object.
Load distribution was handled by minimizing a quadratic cost function concerning
the forces in task space.

The work in [K'T88] is based on an unstructured model of y; = G;(e;) + S:(fi),
where v; is the end—effector position in a global coordinate frame, e; the input
trajectory vector and f; the external force measured in the sdme frame. G; and
S; are L, stable, linear mappings bll:t their internal structures are not specified.
Controllers are designed suéh that one controls the position and the other controls

the force.

2.1.2 Comments

Recently, the National Science Foundation sponsored a Workshop on Coordina-
tion of Multiple Robot Manipulators: Planning, Control, and Applications [KB88].
One of the recommendations for future research is dynamical modeling and control
systems in CMM (coordinated multiple manipulators) for which some important
topics are modeling and simultaneous force/position control, parallel algorithms for
control of CMM, and adaptive control of CMM.

Many coordinated control schemes have been proposed. However, it was found

that almost all of them attempted to solve the problem by improving the performance
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of the servo control systems. This may not always work well because of the tracking
error, especially for an imperfect trajectory generated by teaching. Currently, most
commercially—-designed robots are position—controlled or position—force controlled,
and usually adopt PID (proportional, integration and derivative) controllers. This
kind of control systems may not be suitable for those applications which require
cooperation of multipie robots. Is it possible to coordinate two industrial robots with
only a high-level coordinator without affecting the internal structure and parameters
of low-level controllers by adding the coordinator? Answering this question is the

major part of the proposed research.

2.2 Survey of Intelligent Control

Since the first IEEE International Symposium on Intelligent Control (IC) in 1985,
numerous papers have been published in this field. For a history of IC and its
classification criteria, see survey papers [JS88], [Eld88], [APW88], [Mey87], [Sar88],
and [GP89]. In what follows, only recent relevant works are briefly reviewed.

The major tools used for IC are the techniques developed in Al (artificial intelli-
gence) — especié,lly expert systems (rule-based systems, knowledge—based systems),
and fuzzy set theory. Generally, the knowledge representation and reasoning meth-
ods established in Al are useful for making high—level decisions. This seems to be
the reason why most control applications of Al have emphasized the development of
computer—aided control system design packages, supervisory process operations, pro-
duction planning, and so on. At the servo control level, an expert system seems un-
suitable because of its difficulty in real-time computation. However, since knowledge
from human experts can be easily represented by a set of production rules, applica-

tion of IC in the servo control level has established two major branches. An expert
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Figure 2.1: Basic structures of intelligent control.

system can be combined with a conventional controller and used for controller tuning,
fault diagnosis, and control system restructuring. This scheme intends to extend the
range of conventional control algorithms by encoding general control knowledge and
heuristic searches. Such schemes will henceforth be referred to as parameter-adaptive
IC or ezpert control and are shown in Fig. 2.1 (a). The other schemes attempt to
simulate human cognitive ability, which may require deep knowledge acquired from
the plant dynamics and/or operation experiences. A set of production rules may be
used to represent a qualitative model of a plant and to associate control operations
with different situations. In this case, fuzzy set theory is often used for information
extraction on which qualitative reasoning is based. This scheme is presented in Fig.
2.1 (b) and will henceforth be called performance-adaptive IC or fuzzy control or

qualitative control.
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2.2.1 Parameter—Adaptive Intelligent Control

[ABL8S8], [KBVBS8S8] and [Lit90] presented typical structures of parameter—adap-
tive IC. In [ABLS88], an IC is designed to tune a PID controller. Six different features
are monitored: overshoot, rise time, settling time, peak height ratio, average value
of the first two local minima and maxima, and the number of local maxima detected
before settling down. Two sets of production rules are established on the measure-
ment of these features. One is called alarm rules which will be fired when instability
is identified. The other rules will be fired to re-tune the PID parameters. An algo-
rithm, called the membership-based tuning algorithm, is used to quantify this tuning
process. Another expert tuner of the PI controller is presented in [PJM87]. Its main
objectives are wind-up protection of the I part and tuning of the PI gains. The
transient response of a closed-loop system is characterized into nine categories in-
cluding too-low—monotone, too-low-oscillatory, and so on. Moreover, the open-loop
response is described by eight categories and the nonlinearity with eight categories.
Similar to [ABL88], stability is monitored by the knowledge base.

Under the category of parameter—adaptive IC, an expert system can also be used
to form a supervisory control system. [NKR89] designed a controller bank which
consisted of a multiple-model adaptive controller and a model reference adaptive
controller. An expert system is used to make a decision on which controller should
be used. In [MW90], a rule-based system is developed to compensate for the dead-
zone nonlinearity in a position—control system. As a supervisor, the rule-based
system chooses control algorithms from the controller bank according to operating
conditions. Employing the concept of blackboard, [Whi89] proposed the framework
of a knowledge-based system with hierarchical structure. The global blackboard and

two control modules form the top level and direct the operation of whole system. In
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the second level, various tasks are executed, including fault diagnosis and controller
tuning; The bottom level is implemented with a programmable logic controller which

controls the process.

2.2.2 Performance—Adaptive Intelligent Control

Performance-adaptive IC is designed to replace the conventional controller. With
qualitative reasoning in the controller, it must be integrated into the plant contain-
ing quantitative measurement and control signals. A typical design is to apply fuzzy
set theory. First, the measurement of system output is fuzzified through a mem-
bership function so that qualitative reasoning can be conducted in the controller.
Then the output of the controller is defuzzified into the actual control signal of an
actuator. Knowledge is represented by a set of production rules. However, a fuzzy
controller is usually implemented by look-up tables, to achieve high computational
efficiency and to avoid unnecessary inference processes. Summaries of fuzzy control
schemes are presented in [GP89] and [Lee90]. With a brief overview of the theory of
fuzzy logic and rule-based control, [Ber88] described the major differences between
the construction of fuzzy, rule-based controllers and conventional designs. [LL89]
compared the performance of a fuzzy controller for servomotors with both the PID
controller and the MRAC (model reference adaptive control) in terms of steady-state
error, settling time and response time. Ekcept for the basic structure of fuzzy control
mentioned above, alternative designs have also been proposed. For example, [KV89)
introduced a reference model into the design of a fuzzy logic controller for a linear
system. [AW90] discussed the basic concepts of qualitative modeling and reasoning
in process control. It was pointed out that a controller using a pure qualitative

model of a process is inefficient in practice. To improve the performance of control
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systems, the qualitative model should be combined with process-related qualitative
knowledge.

Under the category of performance-adaptive IC, the principle of learning control
can also be implemented [GJ88]. In control theory, a learning controller is a trial-
and-error mechanism that repeats a fixed procedure. [GJ88] replaced this fixed
procedure by a knowledge-based controller such that the intermediate output errors
are treated as knowledge. The error and error increment are quantified into eleven
intervals, such as negative-big, positive-low-middle, and so on. Based on this, an
11 x 11 table is formed corresponding to 121 rules. For control problems, control
actions can be learned from the process directly or designed according to a model
which is learned from the process [KKG88], [GW88]. In [KKG88], three expert
systems form the controller: the goal selector, the identifier, and the adapter. Each
learned model is valid within a subspace of parameters. The control rules are learned,
allowing the system to recognize the qualitative region to which the controlled plant
belongs at each time.

There are two important issues in designing fuzzy controllers: selection of a mem-
bership function and design of a knowledge base. Both of them depend on the
knowledge extracted from expérienced operators, on an understanding of the physi-
cal process of the plant, on the experimental results, and so on. [IS90] presented a
scheme for the optimal design of membership functions. [Bat89] designed a supervisor
to change the membership functions based on a certain performance index. There-
fore, different operation situations can be controlled with a self-tuning property by
switching the membership functions. Moreover, considering the fuzzy controller as
a nonlinear time-varying controller and the plant as a linear time-invariant system,

the stability of the closed-loop system was analyzed by using the circle criterion of
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nonlinear control theory. Production rules can be derived from an analytical model.
However, due to the approximation, simplicity and/or uncertainty of the model, the
resulting rules may not achieve the desired performance. On the other hand, the
rules from a human expert may lack the completeness to guarantee the optimality.
Keeping this problem in mind, [Isi87] derived rules from experiments and imple-
mented minimum time control in a mobile robot. In [LK87], two kinds of rules are
designed: training rules and machine rules. The training rules are represented by
a set of production rules which directly map the position and velocity errors of the
controlled plant to the linear motion of the control mechanism. The machine rules
are learned from the accumulated experience of control. The key problem is how to
generate the “IF” part of the rules and keep consistency with existing rules.
Another important problém in designing an IC is how to characterize system
peri'ormance. As discussed above, system output (or state) error and error increment,
and the quality of step response are commonly used to express system performance.
Besides these, [JD87] suggested to use the estimated, dominant pole locations of
a closed-locp system as the characteristics of system performance, even though no
knowledge base was built on it. [KBVB88] arranged output error and its derivative
in a phase plane, and the goal was to control the system reaching the origin of this
plane. The phase plane was divided into 48 areas and based on which the control

rules were designed.

2.2.3 Comments

For a successful design of IC, the following features are important: (1) What
are the characteristics used to express the performance of a system? (2) How is

qualitative knowledge extracted from quantitative sensor data? and how is the result
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of qualitative reasoning quantified into the quantitative control signal of actuators?
(3) How is the knowledge base designed? (4) How are the rules of learning from
experiences implemented? (5) How is system stability analyzed and guaranteed?
From the above review, we note that only few papers analyzed system stability. The
difficulty in applying conventional stability theory may come from the qualitative
description of the plant model and the qualitative reasoning about the control actions.

It is necessary to compare the schemes of intelligent control with conventional
control designs. [BCLM89] presented such a comparison, that is, fuzzy control was
compared with state feedback control via a cart—pole balancing problem. For a given
application, deciding which type of controllers should be used may depend on the
following criteria: design complexity, completeness, robustness, performance, and
modification of the controller. Berenji pointed out that fuzzy controllers may need
significant calibration efforts to adjust membership functions and modification of
the knowledge base may also require considerable effort. Another problem is how to
integrate an IC with existent conventional control systems. At present, numerous
IC designs have been proposed from servo control to the top level supervision. How-
ever, actual on-line implementations are scarce. One of the reasons is the lack of
integration between IC and conventional control systems [Arz89)]. [Arz90] discussed
different schemes for this purpose based on the application of G2 — a real-time
expert system tool.

It is suggested that IC could be used to complement the conventional designs
of process control, especially either as a backup to conventional controllers or as a
means of improving man-machine interface. Comparing with the controllers based
on fuzzy logic and rule base, controllers designed using neural networks are a new

type of IC and will be reviewed in the next section.
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2.3 Survey of Neural Networks

The potential of NNs for control applications lies in the following properties: (1)
they could be used to approximate any continuous mapping, (2) they can reach this
approximation through learning, and (3) parallel processing and fault tolerance are

easily achieved.

2.3.1 General Theory of Neural Networks for Control Applications

There are several survey papers which thoroughly reviewed the history and var-
ious applications of NNs. [Lip87] is such an earlier paper in which six important
NN structures are discussed: the Hopfield net, the Hamming net, the Carpen-
ter/Grossberg net, the single layer perceptron, the multilayer perceptron, and Koho-
nen’s self organizing feature maps. The first three are suitable for binary inputs while
the others are for continuous—valued inputs. They are also distinguished by training
with or without supervision. Recently, [Cam90] and [Mel89] presented more detailed
description of the major NN strucfures and algorithms, and provide a good starting
point to study neural networks. [Koh87] reviewed the history of neural modeling
and pointed out that it is natural to use NNs for all pattern recognition problems
and sensor-motor control problems. Moreover, a general theory and methodology
on the training of NNs is presented in [WMB89]. [Fra89] gave a chronological review
of the development of NNs in control applications and provided comparisons with
adaptive control techniques. [KH89] surveyed the application of NNs in robotics, and
concluded that NNs are suitable for task planning, path planning, and path control.

The most popular NN structures for applications are multilayer perceptron with
the BP (back propagation ) algorithm and the Hopfield net. Both are trained with

supervision, and multilayer perceptron seems more suitable for control applications
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because continuous-valued input could be applied. [Wer88] summarized a gener-
alized formulation of BP and discussed network architectures and applications. A
detailed version of the BP algorithm is presented in [RM86]. BP is now successfully
used for pattern classification, though the original development of BP placed more
stress on control [Wer89a]. The importance and application of NNs to control and
system identification are addressed in [Wer89a] and [Wer89b], and five dominant
architectures now in use for control are also discussed: supervisory control, inverse
dynamics control, control with BP through time, and two designs based on adaptive
critics and reinforcement learning,.

Applying NNs to process control has recently become widespread. Most appli-
cations adopt the multilayer perceptron with the BP algorithm, due mainly to the
property that a multilayer perceptron could be used as a universal approximation of
continuous functions. Moreover, its well-established network architecture and simple
training algorithm enforce its potential for control applications. [HN89] presented
a survey of the basic theory of BP covering architecture design, performance mea-
surement, function approximation capability, and learning. It is proved that any L.
function from [0,1]"* to R™ can be implemented to any desired degree of accuracy
with a three-layer? perceptron. [Cyb89] and [Bar89] proved and summarized some
approximation properties of NNs. It was shown that for any continuous function,
f*, on a compact subspace of d-dimensional Euclidean space, there exists a sequence
of network functions, f,, that converges uniformly fo f*. In general, they concluded
that perceptron with one hidden layer and an arbitrary continuous sigmoidal func-
tion can approximate continuous functions with arbitrary precision, if there are no

constraints on the number of nodes or the size of the weights. [SW89] reached the

2Within this dissertation, the term “n-layer” means that the network has n — 2 hidden layers.
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same conclusion and proved that the activation function in hidden nodes is not nec-
essarily a sigmoid but a general nonlinear function. Moreover, [Son90] corﬁpared the
representational capa,bilities of three-layer and four-layer perceptron and concluded
that nonlinear control systems can be stabilized using four layers but not, in general,
| using three layers.

All of the work mentioned above dealt with the existence of NNs for universal
approximation. Usually, the numbers of nodes in input and output layers are de-
termined according to the input/output patterns. Therefore, an important problem
is how to determine the number of hidden nodes required to approximate a given
function with desired accuracy. For a three-layer network, [Ara89] shown that if
the hidden nodes use binary values, J — 1 hidden nodes are the necessary and suf-
ficient condition to obtain an arbitrary mapping for given J input patterns. Arai
also concluded that to get an arbitrary mapping for continuous-valued inputs with
finite hidden nodes, more than three-layer networks must be taken into account.
[GWG89] proposed a method of estimating the number of hidden nodes required by
any three-layer perceptron performing binary mapping. [KH88] provided an analyt-
ical solution to the problem of choosing the number of hidden nodes and the best

learning gains.

2.3.2 Applications of Neural Networks to System Control

Most earlier papers on NN applications to system control are summarized in the
survey papers mentioned above. In what follows, only recent developments are re-
viewed. Generally, the control system architectures using NNs can also be classified
into two groups: performance-adaptive control and perameter—adaptive control. In

each group different networks and training algorithms could be adopted. Most pa-
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pers appear to have preferred performance-adaptive control to parameter-adaptive
control.

There is a type of NN controllers with a similar structure to MRAC, but the
reference model is used only to train an NN. In [GS88], a four-layer perceptron was
used as the controller, and the reference model was a human teacher. In [BKG89),
an unsupervised approach to nonlinear system control was proposed, and the input
signals of the NN were the output of a reference model, and the desired and actual
output of the system. It was shown that stability was maintained under the same
bounds as the guaranteed stability of linear controllers.

Another scheme in performance—adaptive control is training an NN to learn the
inverse of a system. Certainly, this requires that the system is invertible. [CP89],
[PSY88], [Els88], [ZPK89], [BB89], and [LGI89] are such examples. However, the
weights of the network need to be updated using the network’s output error which is
unknown when the NN is serially connected to a controlled plant. This implies that
the BP cannot be applied directly. In [CP89], the controlled system was treated as
an additional, unmodifiable layer, and the output error of the network was computed
from the system—-output error. In [PSY88], the system—output error was propagated
back through the plant using partial derivatives of the plant at an operating point.
Elsley [Els88] used a three-layer perceptron to learn the inverse Jacobian of a sys-
tem, letting each input activate four nodes at the NN’s INPUT layer, and each was
sensitive to some range of input values. Then the outputs of the four nodes at NN’s
OUTPUT layer were combined to form the control signal. The network was trained
with a correct inverse Jacobian. However, in practice, even if the system is invertible,
the inverse control scheme may be not acceptable. For example, if the system is in

‘non-minimum phase, then the resulting design is not internally stable. In [YG89],
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a context—sensitive network was designed to learn the inverse Jacobian matrix of
a PUMA 560 robot. The robot’s end-effector and joint velocities are related by
X = J(q)q, where J(q) is the Jacobian matrix, ¢ and X are the inputs of an NN,
and q is its output. For a six-DOF robot, there are 12 inputs and six outputs.
The basic idea was to partition the inputs into two sets for two networks. ¢ and X
were used as the inputs of a context network and a function network, respectively.
Then, the outputs of the context network were used to set up the weights of the
function network. In other words, the function network was programmed by the
context network. The training algorithm was the extension of the BP. The invert-
ibility of nonlinear systems was discussed in [Gu90], and a sufficient—input criterion
for designing an NN to learn a system’s inverse was established.

Asada used NNs for robot compliant motion control, where the compliance was
treated as a nonlinear mapping from a measured force to a motion correction [Asa90].
A three-layer perceptron was used to learn the mapping. As an example, the peg-
in-hole problem was presented. For this example, it is critical to recognize which
edge(s) of the hole the peg contacts. The NN must be able to detect and discrim-
inate individual contact. Since the original structure of multilayer perceptron is
suitable for a static mapping, two modified schemes were suggested in [YY90] using
a recurrent feedback loop with a time delay function. Moreover, the stability of a
system with NN controllers learning system inverse were analyzed using the Lya-
punov method. Miller proposed a learning control technique which is an extension
of CMAC (cerebellar model articulation controller), and the controller was tested on
a five-link robot [MHGK90]. Kraft et al. [KC89] compared an NN controller with
an MRAC and a self-tuning regulator. The NN controller had a similar structure

to CMAC. They concluded that NNs can solve some problems for which traditional
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adaptive controllers may not perform well.

An NN can also be made to learn some system properties, based on which a con-
troller is then designed. In [BM89], the output prediction of a system was computed
by a three-layer perceptron. Then, using the prediction, a controller was designed
to minimize a cost function. In [HA89], NNs were also used for model predictive
control, in which the NN was trained to simulate the dynamics of a plant. Fadali
et al. presented a scheme of bang—bang control for robotic manipulators, in which
a multilayer perceptron was used to learn the switching time [FAET90]. In [Pou89],
two types of NNs were proposed for control: forward NNs and recurrent multilayer
NNs. Training rules were designed using the same methods as those for nonlinear
adaptive control systems, such as Lyapunov’s stability theory. [NP90] used a mul-
tilayer perceptron with the BP algorithm for system identification. The NN was
trained to attain the same dynamic behavior as the controlled plant. Then a con-
troller was designed by using the NN’s outputs to cancel the nonlinear part of the
controlled plant and including the same terms of a reference model. [HF91] reported
a method of feedback linearization of the controlled plant using NNs. The NN’s role
is to directly approximate the Lie derivatives which form the state feedback control.
The NNs consist of two layers; the training algorithm is derived based on Lyapunov
stability type argument.

A typical structure of parameter—adaptive control with an NN was presented in
[GEK88]. An NN was used as an estimator to adjust the parameters of a servo
controller. As an example, a two-element, Cohen-Grossberg type NN was trained to
tune the parameters of a PD controller. In [Swi89], a PID controller was tuned by a
multilayer perceptron. In [JL90], a multilayer perceptron was used to estimate the

payload of a robot during high speed motion. The estimation problem was stated as
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a pattern-recognition problem based on trajectory tracking errors, and an adaptive

model-based controller was designed.

2.3.3 Comments

NNs can serve as either a controller or an observer. An NN may perform best as
a controller. However, during the training period, the system may lose robustness
due to the random initial weights of the NN. As an observer, the NN is used only for
system identification, but the problem of initial weights is usually not serious. Most
of the works cited above are in the form of indirect control, that is, the controller is
designed based on the results of system identification or parameter estimation which
is realized by NNs. On the other hand, when an NN is used to control a plant directly,
more difficulties arise due to the lack of a well-developed algorithm. Generally, an
NN is trained by minimizing its Qutput error. However, in the case of direct control,
the outputs of the NN are the control inputs of the plant. Therefore, the desired
outputs of the NN are unknown, since the desired control actions are unknown. This
implies that the output errors (training errors) of the NN is not available and the
standard BP algorithm cannot be used directly. With this in mind, a simple scheme
for direct control (coordination) for a class of nonlinear systems has been developed
in Chapter 7 of this dissertation.

Applications of NNs in control are far from being complete, though some papers
have been published and claimed success. Moreover, little work has been done to
compare NN approaches with traditional control designs. Obviously, more theoretical

analyses, case studies, and experiments are needed.



CHAPTER III

HIERARCHICAL KNOWLEDGE-BASED
CONTROLLER FOR A SINGLE SYSTEM

3.1 Introduction

Conventional control theory is based on mathematical models that describe the
dynamic behavior of controlled plants. These models usually consist of a set of linear
or nonlinear differential/difference equations, most of which are derived under some
forms of approximation and simplification. However, complexity, model uncertainty
and/or parameter uncertainty of the controlled plants often make the controllers very
complicated. On the other hand, human operators do not always handle a system
control problem with a detailed mathematical model, but rather with a qualitative
or symbolic description of the controlled plant. This fact calls for the need of IC
(intelligent control) for complex systems. In Chapter 2, we know that most related
IC designs can be referred to as parameter-adaptive or performance-adaptive IC.
The fundameﬁtal difference between these two lies in the goal of its knowledge base.
The typical structures of a parameter-adaptive IC and a performance-adaptive IC
are sketched in Fig. 2.1 (a) and (b), respectively. Though many IC schemes have
been proposed, it is difficult to compare them because of lack of theory and lack of

a universal performance criterion. As we pointed out in Chapter 2, for a successful

28
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design of IC, the following issues are important:

1. What are the characteristics used to express the performance of a system?

2. How is qualitative knowledge extracted from quantitative sensor data? and how
is the result of qualitative reasoning quantified into the quantitative control

signal of actuators?
3. How is the knowledge base designed?
4. How are the rules of learning from experience implemented?

5. How is system stability analyzed and guaranteed?

In contrast to the parameter-adaptive and performance-adaptive ICs, we propose
a new hierarchical knowledge-based controller in this chapter. The basic principles
of this controller will be described in Section 3.2. The characteristics of the low-
level subsystem and the modification of reference input are also presented in this
section. Section 3.3 is a detailed description of the knowledge-based controller,
which includes knowledge representation, existence of the solution, and inference
process. The stability of the knowledge—based controller is analyzed in Section 3.4.
In Section 3.5, the procedure for designing a predictor is discussed briefly, and a
detailed error analysis is introduced which gives the lower and upper bounds of the
trajectory tracking error. The simulation results of the knowledge-based controller
is also shown in that section with promising performance. This chapter concludes

with Section 3.6.

3.2 Design Principles and Characteristics

Basic Principles

A control system is evaluated by examining its response to typical, pre-planned
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trajectories, such as step, slope, parabola and/or sinusoidal signals. There are two
ways to improve the performance of the control system. One is to set the desired
trajectory as the system reference input and to redesign the internal structure of the
servo controller in order to track the reference input precisely. For a complex control
system, if this approach is used, the servo control level will become more compli-
cated, and the fine tuning of the controller parameters will be extremely tedious
(particularly for nonadaptive schemes). Moreover, there are some design trade-offs
to consider, such as the one between rise time and maximum overshoot. The other
way is to choose and adjust a reference input such that the controlled system tracks
the pre-planned trajectory. This forms a hierarchical structure, but requires little
change in the internal structure of the servo control level. This is exactly what a
hierarchical system is supposed to be; each level in the hierarchy is independent and
does not affect the internal structures of other levels.

In other words, in the high-level controller’s view, the low-level subsystem is
nothing but a mapping from the reference input to the system output. Therefore,
there are two ways to improve the performance of the subsystem. One is to modify
the map itself, that is, some parameters or even the structure of the servo controller.
This requires the high-level to know the detailed internal structure of the lower
level. The other way is to modify only the domain of the map (that is, the reference
input of the lower level) without requiring any detailed knowledge of the subsystem’s
structure. Considering the generality and the inexactness of the structure of the low-
level subsystem, we have adopted the latter approach. This also coincides with the
principle of increasing intelligence while decreasing precise knowledge of the lower
levels as we move up the levels of hierarchy.

It is assumed that the servo controller is designed independently of the high—
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Figure 3.1: Structure of the hierarchical knowledge-based controller.

level controller, and that its dynamic structure and parameters are unknown to the
high-level controller. Therefore, we shall design a knowledge-based controller (as a
high-level controller) which modifies only the reference input to the subsystem as
shown in Fig. 3.1, in which G(s) and C(s) are the controlled plant and a conventional
controller, respectively. As a result, the internal structure and/or parameters of the
(low-level) servo controller are not altered at all, thus imposing no constraints on the
servo control level. This will, in turn, enable commercially—désigned servo controllers
to perform more sophisticated tasks than originally intended.

Characteristics of the Subsystem and the Modification Process

To design a knowledge-based controller, one has to specify the input space of
the knowledge base, or choose a typical representation of the system’s dynamic char-
acteristics. The most commonly used components are output error and/or error
increment, and the standard figures of step response. However, to express system
characteristics more directly and to eliminate the undesirable effects of time delay,

we propose to use predicted system outputs from which suitable reference inputs
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are determined. It is assumed that the lower level of hierarchy is a well-designed,
closed-loop control system, and the system output prediction is available.

Now, the problem is how to modify the reference input in order to make the
system output track the desired trajectory. Using the system output prediction, the
desired performance can be achieved by iterative trial as is done in learning control.
Note that learning control is usually used for a repetitive trajectory and needs a
learning period during which an unacceptable output error could occur. By contrast,
this knowledge-based controller is designed for an arbitrary trajectory and has to
complete the iterative learning process in each sampling interval. The modification

process is to

1. give a reference input,
2. compute the predicted system output,

3. calculate the predicted tracking error by comparing the prediction and the

desired trajectory, and

4. modify the reference input based on this error.

Note that actions taken in a control system are in general irrecoverable; that is, each
reference input to the servo controller is the final decision at each sampling interval
and cannot be undone. However, combining prediction and modification allows us to
analyze the anticipated consequence of each reference input, thereby at least partially
solving the irrecoverable problem.

This modification procesé can be formalized as follows. Let y:(k) be the reference
input, ys(k) the desired trajectory, and §(k + d/k) the d-step ahead prediction of

the system output at time k, where the superscript 7 denotes the i-th iteration. The
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reference input y:(k) is modified by
(k) = y(k) + K5(k) €(k + d),
where €'(k + d)

Yy (k)

§'(k + d/k) — ya(k + d),

ya(k), i=0,1, ---.

K§(k) is the learning gain at time % during :-th iteration, and KJ(k) = 0. Then we
get
yit (k) = ya(k) + 3 K3(K) € (k + d).

J=0

Accurate tracking will be achieved by the iterative operation and the prediction,
and this iterative operation must be completed in each sampling interval. To make
the above modification feasible, the following conditions need to be met: (1) the
iterative operation converges fast, and (2) the output prediction of the system is
computable. Condition (1) is usually met because the lower level is a well-designed
control system, and yi(k) is near the optimal point. Condition (2) will be discussed
in the next chapter.

The low-level subsystem is equipped with some well-designed servo controllers,
and assumed to be linear. Then, following an argument similar to the one in [TY86],
we can prove that a learning gain K} (k) exists such that e'(k +d) — 0 as i — co.
Though such a K§(k) exists, due to lack of knowledge of the low-level subsystem, it
is not easy to calculate the gain accurately. Moreover, the parameters and/or model
uncertainties are not even considered, thus necessitating désign of a knowledge-based

controller.

3.3 Description of the Knowledge—Based Controller

Knowledge Representation
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Using the predictor, the subsystem performance is characterized by the predicted
tracking error and the current reference input. Therefore, the space of the pre-
dicted tracking error forms the input space of the knowledge base. The goal of the
knowledge-based controller is to implement the modification process discussed thus
far. It is not difficult to express this process by a set of production rules. The pos-
sible actions thet the knowledge-based controller can take include: increasing the
reference input, decreasing the reference input, and keeping the reference input un-
changed. The problem is how much to increase/decrease and how to determine the
bounds of the reference input. Because this scheme is based on the modification of
the reference input according to the resulting predicted output, the internal structure
and parameters of the low-level subsystem are not »aﬂ"ected. This property allows us
to consider the predicted tracking error, but not its derivative, as the system char-
acteristics so as to simplify designing of production rules. The basic modification
process can be represented by a decision tree as shown in Fig. 3.2.

The 7j-th node is represented by ([aj-, b;-], c;'-), where cj- ie the quantity added to
the reference input,

yit (k) = ya(k) + ¢,
and [aj-, b;] is the interval to be searched, and aj. < cj- < b; for all z, 5. By giving
the reference input yi(k), at any node ([a, b%], c}), the interval [a}, b}] will be split
L ity =

into two subintervals [a;t!, ;'] = [a}, ¢i] and [af}), bS] =

[ci, b:], which form
the two successor nodes of [ag, b;] During the i-th iteration and at ij-th node, let

el(k) denote the predicted tracking error resulting from y; (k):

ei(k) = €'(k + d) = §'(k + d/k) — ya(k + d).
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Figure 3.2: Decision tree

Then, cj- is computed as:

¢

b — (b —ai)K, if ei(k)<0
¢ =10, if ei(k)=0

». ai + (b — a})K, if ei(k)>0
and 0 < K < 1 is a weighting factor which determines the step size of the iterative
operation. a3 and b3 are the pre-designed lower and upper bounds of the reference
input modification, and usually ¢J = 0, that is, at the beginning, the reference input
is not modified.

Solution Existence and Inference Process

The basic forms of the production rules are follows.

IF €i(k) < 0 AND |ei(k)] > e,
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THEN increase ¢; AND compute y;t!(k) = y4(k) + ¢;.

IF ei(k) > 0 AND |ei(k)| > e,
THEN decrease ¢; AND compute y:*! (k) = ya(k) + ¢;.

IF |ei(k)| <€,

THEN set yit!(k) = y(k) AND stop the iterative operation.

€ > 0 is a pre-specified error tolerance. Because the amount of modification to the
reference input is bounded, or af < c;'- < B, for all ¢, j, there may be a case that
lei(k)| > € for all ¢;. To avoid this situation, the desired trajectory needs to be
carefully designed. For example, when the desired trajectory is a step function and
the system time delay is equal to two sampling intervals, at £ = 0 the continuous
system response cannot have a jump no matter how large the reference input is. A
reasonable choice of ¢ is another way to prevent this problem. This problem can be

monitored by adding, for example, the following rule into the knowledge base:

IF (|c; -] <6 OR |t —ad] <) AND |ei(k)| > €
THEN change a3 or b) automatically and continue the search, OR
ask the operator for an adjustment, OR
stop the iterative operation and choose c} with

the smallest e}(k) as the best output.

Suppose the weighting factor K is set too small or too large, then the search for
a proper c§ may take a very long time. This would not be acceptable if the required
computation cannot be completed within one sampling interval. The case of the
computation/search time exceeding one sampling interval is equivalent to having no

solution. This case is monitored by:
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IF the search time > Tz AND [ei(k)] > €
THEN stop the iterative operation AND
choose cj- with the smallest e;'-(k) as the best output, AND

modify the weighting coeflicient K,

where T),.; is & pre-selected maximum allowable search time.

Based on the structure of the decision tree, one can see that the simplest inference
process is similar to forward chaining, starting from the root node. However, it may
be learned after a period of operation that, for example, a positive augment cj- is
always needed. If such a fact is learned, the inference process can start from any
node with cj’ > 0 and go forward or backward, depending on the sign of the predicted
tracking error. Note that the backward search does not mean a reverse search, but
rather intends to find a suitable node from which a forward search can begin. As

soon as the forward search begins, the search process is not reversible.
3.4 Stability Proof

It may be easy to establish the stability of the low—level subsystem for a fixed
reference input, because it is a well-designed closed-loop control system. However,
this does not imply the stability of the whole system. See Fig. 3.3 for a block
diagram of the knowledge-based control system. Both system poles and zeros are
affected by the presence of the knowledge-based controller and the predictor. If the
transfer functions for all the blocks in Fig. 3.3 are given, we may be able to derive
the conditions for system stability. But this is not the case in reality: C(s) and G(s)
may not be known accurately, and the iterative learning with the prediction and
the knowledge-based controller do not form a simple feedback loop and cannot be

expressed as simple mathematical transfer functions.
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Figure 3.3: Block diagram of the knowledge-based control system.

If we suppose that the prediction gives the true system output, then let us consider
the knowledge-based controller and the closed—loop subsystem. (The assumption of
perfect output prediction is of course unrealistic and will be relaxed in our later
discussions.) The knowledge-based controller can be viewed as a map My : E —
YR, specified by all the production rules, where E C R is the space of predicted
tracking error and Yr C R the reference input space. The low-level closed-loop
subsystem is also a map, L : Ygr — E, which is specified by the desired dynamic
properties of the servo controller. Because L represents a well-designed controller
and a reference input, y:(k) € Y, exists at time & such that the trajectory tracking
error €'(k +d) = 0, it is reasonable to assume that L is a linear map. The properties
of the map M =L My : E — E depends mainly on the properties of the map M.
In fact, all the antecedents of production rules are established based on the output
prediction. If the predictor gives the true output, then the properties of the invariant
map M : E — E is determined solely by the knowledge base.

For system stability, all production rules in the knowledge base must form a
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contraction map. More formally, we have the following theorem.

Theorem 38.1: Suppose (1) the output prediction of the low-level subsystem is
computable and the predictor gives the true output, and (2) L : Yp — E of the
low-level closed-loop subsystem is a linear map. If the map My : E — Yp is given
by the decision tree, then the composite map M =L M, : E — E is a contraction
map.

Proof: The basic production rules can be represented in the form of

IF by the reference input y:(k), the predicted tracking error e}(k) < 0

THEN increase cj- to get cﬁll, c}:l_ll > cg,

IF by the reference input yi(k), the predicted tracking error e%(k) > 0

THEN decrease c; to get ¢!, ¢! < ¢,

where ej-(k) is the predicted tracking error resulting from the augment cj- at the j-
th node of the i-th level in the decision tree. These rules associate each predicted

tracking error with a specified value of ¢i. From a new augment cj' or ¢}, the

predicted tracking error e;t!(k) and ei}} (k) are then computed.

Since the decision tree is searched downward after finding a starting node in the

tree, we want to show that this search process has the following property:

d(ci*?, ¢itl) < d(cf?, ). (3.1)

j
foralle, j, k, I =0, 1, 2,---, and d( , ) is a metric on Yg. Referring to Fig. 3.2,
we get |
gt = at + (4 — ait)K = af + (¢ — af)K
i = b3 - (O — K =6 - (b - K

gt = o + (4 - oK = af + (¢ — a))K
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2 pit2 i+2 42 _ i i i+l
Cy1 = b1+1 - (bz+1 - a,+1)K =C; — (cj - C )K
i+2 o it2 42 i+2 i i+1 i
Gi2 = @2+ (bi3s — aii2)K = ¢; + (¢ — ;) K
42 7it2 i+2 2\ 1o 6 i i1
Cl43 = bz+3 - (bz+3 - a,+3)K = bj - (bj - Ck+1)K-

The metric defined on Yg is given by

d(ci™, &) = l6™ —cjl = 1(a — &)1 - K))|

d(citi, ©)

ek — ¢l = 1(j — 5)(A — K)]|

d(e*?, o) = [d* - | = |(a} — é)(1 - K)K| (3.2)
d(cf?, &) = [d? -] = |(ci — ai)(1 - K (3.3)
d(cith, 6th) = It —cith] = I(c} - B)(1 — K (3.4)
d(cifs, éth) = |2 — cifh] = (8 — )1 - K)K]. (3.5)

Suppose 0.5 < K < 1, then at node 2, from Eqgs. (3.2) and (3.3) we get
d(¢i*?, &) > d(dii, &)

Taking the larger of d(ci*?, cit!) and d(ci1?, cit') and comparing it with d(cj™, ci),
we get

d(cf"’z, cfc+1) < d(c}'fl, c;'-), (3.6)

because (1 — K)K < (1 — K). Similarly, at node 3, from Egs. (3.4) and (3.5) we get
d(citZ, city) > d(ciiZ, ¢itl). Taking the larger of d(cjf2, ¢it}) and d(gi2, i)

and comparing it with d(c}}}, ct), we get

d(c}ig, c}j;ll) < d(c}';;ll, cj-), (3.7)

because (1 — K)K < (1 — K). Both Egs. (3.6) and (3.7) show that Eq. (3.1) holds.

When 0 < K < 0.5, Eq. (3.1) can be proved similarly.
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Because L : Ygr — E is a linear map, the property of Eq. (8.1) in Yg is

preserved under the map L and has the form of
d1(6§+2, 6;;+1) < dl(e};'H, 6;), (38)

foralli, j, k, 1=0, 1, 2,--- and dy(, ) is a metricon E. By Eq. (3.8), M : E— E
is a contraction map, and the theorem is proved. O

At each node in the structure of the decision tree, the rules always keep the search
in the direction pointing to the node where the tracking error decreases. Because
the iterative learning process is performed at each node, this is equivalent to the
claim that the iterative learning process decreases the tracking error. As mentioned
in Section 3.3, the inference process is not reversible, and thus, it is impossible to
have an unstable system response.

3.5 Design of the Knowledge—Based Control System and
Simulation

Design of a Predictor

As stated earlier, the low—level subsystem is equipped with a servo controller, and
is assumed to have a linear response to the reference input. For such a linear system,
there are several algorithms available for designing a predictor. For convenience,
we have designed a self-tuning predictor in order to test the performance of the
knowledge-based controller only. The principle of the self-tuning predictor is briefly
stated below (see [KC81] or [CS88] for a detailed account). The low-level, closed-

loop subsystem is represented by an ARMAX model:

A(z7") y(k) = B(27") gk — do) + C(27") (k) (3.9)

where A(z7!) = 14a 27 '+ -+ +a, 27"
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B(z7!) = bo+byz 4 - +b, 27",

Ciz™") = 14zt + oo 4, 2™

dp is an index representing the time delay, y(k) and y,(k) are the output and the
reference input of the subsystem, respectively. £(k) is an uncorrelated random series
with zero mean representing the modeling error and process noise. Define the d-step

ahead prediction error as
eps(k+d) = y(k+d) — g(k + d/k). (3.10)

Substituting Eq. (3.10) into (3.9), and representing A(z71), B(27!) and C(27}) as

A, B and C for simplicity, we get
A e,(k) = B y,(k — do) — A §(k/k — d) + C £(k). (3.11)

Eq. (3.11) can be viewed as a new system, in which the input is the prediction
§(k/k—d), the output is the prediction error e,(k), y.(k—dp) is the measurable noise,
and £(k) is the unmeasurable noise. Define the cost function as J = E {e?,(k + d)}
and let

C=EA+z%F,

where Eq and F are polynomials of 27!, and deg(Ep) = d — 1, deg(F) = n — 1. By
minimizing J, We get the optimal predictor

Bz—do F

9k -+ d/k) = —— v (b +d) + 5 eol) (3.12)

This is the prediction during the first iteration, that is, §*(k + d/k) = §(k + d/k).

The prediction error corresponding to Eq. (3.12) is

ep(k +d) = Eo £(k + d). (3.13)
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All the parameters of the system and the predictor are unknown and estimated on—
line by an RLS (recursive least square) algorithm. §(k-+d/k) is then computed using
the estimated parameters.

In the knowledge-based controller, for each computed yi(k), the corresponding
output prediction §*(k + d/k) should be computed. Note that only 7°(k + d/k) is
computed by Eq. (3.12), while giving y%(k) = ya(k). The subsequent steps within

this iteration are computed as

Pkt =+ ap) A KL, =28 @1)
d

where it is assumed that y4(k) # 0, V £ > 0. This formula is based on the assump-
tion that the low-level, closed-loop subsystem has a linear response to its reference
input. For the case of ¢ > 1, using Eq. (3.14) instead of Eq. (3.12) not only simplifies
the computation, but also reduces the sensitivity of the iteration to some estimated
parameters. In Eq. (3.14), K!, is a gain factor. A servo controller is usually de-
signed such that the system has a unity gain with respect to its reference input; it
is reasonable to set K} = 1. However, §°(k + d/k) is computed with the error Eq.
(3.13); in case the prediction error increases after the iterative operation, the gain
factor would not necessarily be one for z > 1 so as to compensate for the prediction
€rror.

Error Analysis

Thus far, we have assumed that the predictor gives the true output, which is not
realistic. The effect of the prediction error on the tracking error is thus analyzed

below. The tracking error is defined as
e(k) = y(k) — ya(k). (3.15)

As a result of the i-th iteration, suppose the actual reference input becomes yi(k)
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and the d-step ahead prediction of the output is §*(k+d/k). §°(k+d/k) is computed
by the self-tuning predictor Eq. (3.12), and §*(k + d/k), ¢ > 1, is computed by Eq.
(3.14). When

€3k + d)| = 9°Ck + /) — yak + D) < & (3.16)

the iterative learning process is stopped, and the result is given as the actual reference
input yf(k) with the corresponding output prediction §f(k + d/k). Because the
iteratively computed prediction error is e;(k) = y(k) — §*(k/k — d), using Eq. (3.15)
we get

ex(k) — ei(k) = §(k/k — d) — ya(k). (3.17)

Eq. (3.16) can be used to convert Eq. (3.17) in the form |e;(k) — ef (k)| < €. Because

les(k)| — lef (k)| < |ec(k) — el (k)| and |ey(k) — el (k)| = |ef (k) — e:(k)|, we conclude
g (k)] = € < le(k)| < leg(R)| + . (3.18)

This formula gives the upper and lower bounds of the tracking error when the
knowledge-based controller is added. Specifically, it shows that the tracking error
cannot be much less than the iteratively computed prediction error.

Obviously, an inaccurate prediction may degrade the performance of the know-
ledge-based controller. It can be seen from Eq. (3.13) that the prediction error of
the self-tuning predictor is the moving average of a zero mean, uncorrelated random
series of order d—1. Based on this observation, the subsequent steps of the prediction
are iteratively computed by Eq. (3.14). To reduce the tracking error, a sophisticated
predictor needs to be designed as a part of the iterative operation. The other way is
to change the gain factor K?, in Eq. (3.14) in order to compensate for the predictiqn
error.

Simulation Results
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Figure 3.4: Output of a linear system without knowledge-based controller.

Sirmulations were carried out for two types of systems. First, we tested an open-—

loop linear system whose model is
y(k) = 0.45181 y(k — 1) + 0.47546 y(k — 2) — 0.04560 u(k —1) — 0.00404 u(k —2),

where y and u are the system output and control input, respectively. Using a propor-
tional controller with K, = 20.9, its closed-loop response is calculated and plotted
in Fig. 3.4. The RMS (root mean square) .:tracking error is RMSFE = 2.13420. By
adding the knowledge—based controller, the performance is improved as shown in
Fig. 3.5 with RMSE = 1.30151.

The second system we tested is a 2-link robot manipulator [AS86] — an open-

loop nonlinear system:

H(q) §+C(q, 9) ¢4+ Glg) =T, (3.19)

where q = [q1, ;)7 and T = [r1, 7|7 are the vectors of joint position and torque,
respectively. H(q) is the inertia matrix, C(q, ¢) ¢ represents the Coriolis and

centrifugal forces, and G(q) represents the gravitational force. Its configuration is
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Figure 3.5: Output of a linear system with knowledge—based controller.

shown in Fig. 3.6, and dynamic and kinematic parameters are presented in Table 3.1.

The detailed form of Eq. (3.19) is presented in the appendix of this dissertation. A

Length | Mass center | Mass | Moment of inertia
Link1| 1m 0.5 m 20 kg 0.8 kg m s?
Link2| 1m 0.5m  |:10 kg 0.2 kg m s?

Table 3.1: Kinematic and dynamic parameters of the simulated robot.

controller is designed with the computed torque algorithm [AS86]. The proportional

and derivative gains are K, = 986.96 and Kp

62.83, which correspond to { =

1.0 and w, = 10 w/s. The sampling interval is T, = 0.01sec. For simplicity, the

desired trajectory is specified in joint space. To achieve the desired performance, the

computed torque algorithm requires the accurate values of each term in Eq. (3.19).

If inaccurate values of the inertia matrix (denoted by H) are used in the computed

torque algorithm, the performance is degraded as shown in Fig. 3.7 with an RMS
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Figure 3.6: A 2-link robot manipulator.

tracking error RMSE = 0.29228. When the knowledge—based controller is added,
the performance is improved as shown in Fig. 3.8 with RMSFE = 0.09654. For
comparison, with accurate values of the inertia matrix H, the closed-loop response
of the first link are plotted in Fig. 3.9 and 3.10. The corresponding RMS tracking
errors are RMSFE = 0.23962 without the knowledge—based controller and RMSE =
0.04230 with it. One can see that performance is also improved. Moreover, the

simulation results of the second link are similar to those of the first link.
3.6 Summary

A knowledge-based controller has been proposed as a new architecture of IC
and analyzed in detail. Its basic principle is to modify the reference input of the
low-level subsystem in order to track a pre-designed trajectory accurately and to
leave the internal structure and/or parameters of the subsystem unaffected. With
the concept of iterative learning, the knowledge base is simple to design and the

stability of the overall system is guaranteed. By using a d-step ahead predictor,



48

the undesirable effect of system time delay is eliminated and each reference input is
analyzed in advance. This, in turn, solves the irrecoverable control problem. Now,
the immediate work is to extend this scheme to the problem of coordinating multiple

systems.
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Figure 3.7: The position of joint 1 using H without knowledge~based controller.
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Figure 3.8: The position of joint 1 using H with knowledge-based controller.
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Figure 3.9: The position of joint 1 using H without knowledge-based controller.
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Figure 3.10: The position of joint ! using H with knowledge-based controller.



CHAPTER IV

DESIGN OF A GENERAL-PURPOSE MIMO
PREDICTOR WITH NEURAL NETWORKS

4.1 Introduction

The multi-step predictor is an essential part in the knowledge-based controller
proposed in the previous chapter. In fact, there are numerous applications which
require predicting system output in real time. For example, load forecasting in
an electric power system is essential for an economical dispatch of electricity being
generated. Automatic tracking of a flying object is the first step for fire control. In
a power plant, prediction of the temperature and pressure at the outlet of a boiler
is very useful to operators, especially during the period of startup and shutdown.
Moreover, output prediction plays a vital role in predictive control. In this chapter,
a general-purpose predictor is developed, which is not only for the knowledge-based
controller but also for the applications mentioned above.

It is not difficult to design a predictor for linear SISO (single-input single-output)
systems. For example, a self-tuning predictor is designed to predict the Si-content of
pig iron for a blast—furnace [KC81]. However, it is a difficult task to design a multi-
step predictor for an MIMO system. This is especially true for those systems with

nonlinear, time-varying dynamics and/or long system time delays. The dynamic
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equation of such a system is in general very difficult to derive, since the dynamic
parameters are usually unknown, and/or even the internal structure of the system
dynamics is sometimes unknown. No general method is known to exist for the design
of a predictor for such systems.

Fortunately, NNs (neural networks) seem to shed light on solving this problem.
Weigend et al. presented a good example of using NNs for time series prediction in
which the NN was trained to predict the time serieses of the sunspot and a compu-
tational ecosystem [WHR90]. One of the major advantages of NNs is that they can
represent any specified mapping with a learned configuration. A multilayer percep-
tron with a sufficient number of nodes is able to approximate any continuous mapping
[Lip87, Bar89]. The output prediction of a system can be viewed as the mapping
from the system’s historical data and future inputs to future outputs, though it can-
not usually be represented in an analytical form. The main intent of this chapter is
to design a general-purpose MIMO predictor for a system using NNs.

One of the well-developed NNs is the multilayer perceptron with the back prop-
agation training algorithm developed by [Wer88] and [RM86]. However, most NN
applications are in the mode of train-first-and-then-operate; that is, the NN is
trained with a set of training data before putting it in operation. After the NN
becomes “well-trained”, the weights of the NN will no longer be changed. This
working mode is called the “training-operation” mode. For example, a multilayer
perceptron was used in [BM89] as an SISO predictor to predict the pH value of a
stirred tank reactor and this was then used as a basis for the design of a predictive
controller. The moving-window concept was adopted and the weights of the NN
would no longer be adjusted after the training period. The predictor proposed in

[WHR90] also worked in the training-operation mode. However, this mode may not
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be suitable for the control or prediction of some time-varying industrial processes. If
adjusting NN’s weights is viewed as a feedback from the NN’s output error, then this
feedback loop would be broken when the NN becomes “well-trained”. (Obviously,
this mode cannot be applied to time-varying systems.) To remedy this problem, an
NN should be updated, rather than trained, that is, the weights of the NN should be
adjusted on-line in order to keep track of the variation of a system. We call such a
working mode as the “updating” mode. Updating an NN is essential to the design of
an MIMO predictor for time-varying systems.

In the standard BP algorithm, the weights of the NN are adjusted by minimizing
the network’s output error. However, when an NN is used as a predictor, its output
error is unknown since the future outputs of the predicted system are not known.
We have designed a predictor which is updated only by using the historical data of
the predicted system and does not require the knowledge of the the dynamic param-
eters nor the structure of the predicted system. Weights of the NN are dynamically
adjusted to deal with the effects of nonlinear, time-varying properties, and/or long
system-time delays. Because the NN-based predictor will always work in a closed
loop, component failures in the NN will be learned and the NN will subsequently
be re-configured, and then system reliability is improved. Furthermore, the parallel
processing structure of the NN makes it suitable for high—dimensional systems.

To imitate an actual neuron, each node of an NN is usually designed to perform
only scalar operations. However, for an MIMO system, if each node can only handle
scalar operations, the size of NN may become too large to manage. We therefore
propose to equip each node of the NN with the ability of vector operations in order to
easily specify some known coupling relations within the predicted system and to get

an easier (thus more intuitive) form of the training algorithm. This vector structured
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Figure 4.1: Basic structure of a three-layer perceptron.

multilayer perceptron will form the backbone of the proposed MIMO predictor.
This chapter is organized as follows. In Section 4.2, the basic structure of the
NN-based predictor is described and the input—output mapping of an MIMO system
is analyzed. Section 4.3 focuses on the problem of tracking time-varying systems by
updating the NN. The scaling problem and error analysis of the NN-based predictor
are also addressed in Section 4.3. A multi-dimensional BP (back propagation) algo-
rithm is developed in Section 4.4; it is an extension of the scalar version presented in
[RM86]. Simulation results are presented in Section 4.5 for various systems: MIMO
linear, nonlinear, time—invariant, and time-varying. Finally, the main points of this

chapter are summarized in Section 4.6.

4.2 Basic Structure of an MIMO NN--Based Predictor

The standard structure of a three-layer perceptron is shown in Fig. 4.1. With the



%3]

®ess0ccecee

Figure 4.2: Basic structures of a neuron.

ability of learning from examples of a mathematical mapping, an NN can be trained
to attain the dynamic property of the mapping. Typically, a set of input-output
pairs {(u(k), y(k)) |y = G(u), k=0, 1, 2, ---} are used as training data, where G
is the input~output mapping. These training data are used to adjust the weights of
the NN which represents the input-output mapping. The BP algorithm attempts to
approximate a mapping in the sense of least mean squares [Lip87]. The computation
of an NN with the BP algorithm consists of two steps: computing the output of the
NN forward from the INPUT layer to the OUTPUT layer, and adjusting the weights
backward from the OUTPUT layer to the INPUT layer. The computation at each
node is shown in Fig. 4.2 with X; = f(zL: Wi; Xi + 6;), where X is the output of
node j, X; the input from node ¢, W;; ltzhfe weight on the arc from node ¢ to node
7, 0; the threshold at node j, and f(z) = !

= 1+exp(—z)
new output at the OUTPUT layer is ready and denoted by Xs;, then the output

is a sigmoid function. Once

error of the NN is computed as E = Xg, — Xoi, where Xg, is the desired output of
the NN. The weights of each layer are then modified according to the output error
Ey. In other words, this training process is driven by the output error of the NN. It

has been proved that a multilayer perceptron with two hidden layers and a sufficient
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number of hidden nodes can approximate any input-output mapping [Cyb89].
If the predicted system is causal, then the dynamic relationship between input

and output can be conceptually represented as
Y (k) = h(Y (k —3), Uk — j), ), (4.1)

where Y € R? is the output vector, U € R™ the input vector, k € Z the discrete time
index,and h : RPxR"xZ —» R?. Y(k—i),i=1, 2, --- is the historical data of
the system output. U(k—j3),5 =0, 1, 2, --- is the systerﬂ input at and before time
k. If the mapping, h, in Eq. (4.1) were known, the future output of the system could
be computed step by step by predicting the future inputs U(k +d), d=1, 2, ---.
However, it is usually very difficult to derive a closed—form expression for Eq. (4.1)
— even if such a closed~form existed. The d-step ahead prediction of Y can be

represented as

Y(k+d/k) = h(¥, U, k), (4.2)
where Y = [Y(k), Y(k—-1), ---, Y(k—1)]
I—J = [U(/ﬂ+31), Y U(k)v U(k - 1)’ Tt U(k'— 22)]

h,RP xR"xZ — R?,

where i, 7; and i, are positive integers. The parameters and/or structure of this
mapping are not known either. It is therefore practically impossible to design a
general-purpose predictor with mathematical synthesis alone, though a closed-form
expression for such an MIMO mapping may sometimes exist. So, we propose to
design an NN which will learn the mapping Eq. (4.2). A three-layer perceptron
is used for this purpose, where the inputs are Y and U, and the output is f’(k +

d/k), d=1, 2, ---. There are two major difficulties in implementing this scheme.
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The first problem is related to the training process. In the standard BP algorithm,
the NN should be trained by minimizing the NN’s output errors. For our case,
however, the desired values of the NN’s output are the system outputs, Y (k+d), d =
1, 2, ---. The network-output errors are then the system prediction errors which

are computed as

ep(k+d)=Y(k+d)—Y(k+d/k).

This implies that the network should be trained by using the system’s unknown
future outputs Y (k + d). A set of training data can be acquired beforehand, and
used to train the NN. After the NN is “well trained”, the NN will no longer modify
its weights and produce the output, while the inputs are present at the INPUT
nodes. For time-varying mappings, however, it is meaningless to say that an NN
is “well trained.” Moreover, as pointed out in the previous section, this training-
operation mode implies that the NN work in an open loop after the training, which
is not acceptable in a real-time control or prediction system. Therefore; our MIMO
predictor needs an NN that is updated on-line in order to keep track of a time-
~ varying mapping and to work always in a closed loop. More on this will be discussed
in the next section.

The second problem is how to efficiently and clearly represent the training algo-
rithm for an MIMO system. Note that Eq. (4.2) is an MIMO mapping. If each node
of the NN can only handle scalar operations, then we need a fully-connected multi-
layer mesh. Each node at the INPUT or OUTPUT layer of this mesh corresponds to
an element of the input or output vector of the mapping. By using the standard BP
algorithm, it is difficult to express some known coupling relations within the mapping
and obtain a set of succinct formulas for the training algorithm. Therefore, we need

an NN which can handle vector operations in order to reduce the total number of
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the nodes required. Such an NN will be discussed in Section 4.4.

4.3 Tracking a Time—Varying System and Error Analysis

4.3.1 Training Algorithm for the Updating Mode

Suppose the predicted system is an SISO system with output y(t) and its d-step
ahead prediction §j(¢+d/t) at time ¢ (¢ is the continuous-time index). Let X3(t) and
X2.(t) be respectively the actual output of the NN~based predictor and its desired

value at time ¢t. Then the network—output error is computed by
Ex(t) = Xg(t) — Xan(2).

In the standard BP algorithm, we must use this network—output error to train the
NN. However, when the NN is used as a predictor, the network’s output is the
prediction of the system output,! and the network-output error is the prediction

error:

Bi(t) = X&(t) — Xan(t) = y(t + d) — (¢ + d/2). (4.3)

Ej(t) is unavailable since the system’s future output y(t + d) is not available at time
t. Hence, we must use the system’s historical data to update the NN-based predictor
on-line in order to maintain the closed-loop operation by keeping track of a time-
varying system. To update the NN-based predictor, instead of using Eq. (4.3), we

propose to use a posterior prediction error:
Ex(t — d) = X5 (t — d) — Xoi(t — d) = y(t) — §(t/t — d).

This arrangement is equivalent to cascading the NN with delay elements, as shown

in Fig. 4.3. In what follows, a modified BP algorithm is derived to handle these

1In fact, the network’s output Xy is a scaled value of the system’s output prediction §. At this
stage, it is assumed that § is within the range of (0, 1). The scaling problem will be discussed later.
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Figure 4.3: Basic structures of the NN-based multi-step predictor.

delay elements. The formulas are given for SISO systems, which will be extended to

the MIMO case in the next section.

1. Compute the Output of the HIDDEN Layer, X;

The HIDDEN layer’s outputs are

1
1+ exp(=0y; — 64;)

N
where O;; = Z Wi Xi(t), J=1,2, -, Ny,

i=1

(15(t)

X; is the input at INPUT node ¢, W;; is the weight from INPUT node ¢ to HIDDEN
node j, and 6,; is the threshold at HIDDEN node j.
2. Compute the Output of the OUTPUT Layer, X,
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The outputs of the OUTPUT layer are

1
X = T (0 =)’ (4.4)

Ny
where ng = E lek le(t), k= 1: 27 Tty N2’

=1

Wi is the weight from HIDDEN node j to OUTPUT node &, and 8 is the threshold

at OUTPUT node k.
3. Update the Weights from the HIDDEN to OUTPUT Layer, Wi

We want to use the delayed data Xy(¢ — d) to update the network. The cost

function of the network is defined by

1 X
E(t) =3 Z (Ex(t — d))*

=1

Let the updated weights be W1r(t + At) = Wii(t) + AWy k. Using the gradient

l\:vlv—-

g: (Xa(t—d)~ Xas(t —d)) . (4.5)

algorithm, A
. _OE(t) _ OE(t) 30u
AWk o Wy~ 005 DWise (4.6)
From Eq. (4.4), we have
OE(t)  OE(t) 0Xyu(t)  OE(t) ~
00 ~ OXm(t) 00— 0Xy(r) () (1= Xu(1)), - and
00y 0 1 .
6W1jk - aI/Vljk (E Wllk Xll(t)) = le(t)
Then, we get
BE() _ 9E() N
Wy~ Xy (D) (1= Xar(B)) X0 (4.7)
Because
OB _ __OBE(t) 9Xu(t-d)
9 Xax(1) OXar(t —d)  0Xa(?)
_1__ 9 Q> ( yd 2\ 0Xa(t ~ d)
T2 90Xyt —d) (; (X2l(t —d) — Xyt — d)) ) X))

8 Xax(t — k)

= - (Xt - - Xult- )
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Let
Sue = (Xg(t — d) — Xoa(t — d)) Xae(t) (1 — Xai(t)), (4.8)

then Eq. (4.7) becomes

OXai(t — d)
DX (1)

0Xor(t — d)
0X2x(t)
d-step ahead prediction and Xyi(t — d) = §(¢/t — d) is the same value of §(t + d/t)

Now, the problem is how to compute . Because X5x(t) = §(t+d/t) is the

delayed by d, we conclude

Qf—\(,;—;(;t’:—(-t—)i) =1, Vit and d. (4.10)

JOE(t)
- mm@Ww
using the results of Eqs. (4.9) and (4.10), we get

In Eq. (4.6), we set AWy, = , m > 0 is a gain factor. Therefore,

W]jk(t -+ At) = W]jk(t) -+ AWIjk
Alek = M 51k le(t)7
where 0y is given by Eq. (4.8). This has the same form as the standard BP algorithm,

but the definition of the cost function in Eq. (4.5) is different. Similarly to the above

process, other formulas are listed below without any detailed account.

4. Update the Weights from the INPUT to HIDDEN Layer, W;;

Wi(t+ At) = Wi(t) +n 6 Xi(t),

N
where 5j = l: 51k W]jk] le(t) (l—le(t)), (411)
k=1

where 7 > 0 is a gain factor.

5. Update the Thresholds 0y and 6y;

Oar(t + At) = Oak(t) + mo b1k,

01;(t + At) = 01;(t) + e 6,
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where 719 > 0 and 7y > 0 are gain factors, and 6k, 0; are given by Eq. (4.8) and Eq.

(4.11), respectively.

4.3.2 Scaling Problem and Error Analysis

In the NN, the output of each node passes through a sigmoid function (Fig. 4.2)
which forces the output of each node to be within the range of (0, 1), and thus, the
inputs to the INPUT nodes also need to be scaled to this range. Suppose the output
of a predicted system is y(k) € (Ymin, Ymar) and a linear scaling formula is used,

then the scaled value of y(k) is given as

ya(k) = LB = Ymin (4.12)

Ymaz — Ymin
The output of the NN-based predictor is the scaled value of d-step ahead prediction

Xak(k) = §s(k + d/k). Then the unscaled values are

y(k)

§(k + d/k)

I

yS(k) (yma:c "' ymin) + Ymin (413)

i

gs(k + d/k) (ymaa: - ymin) + Ymin. (414)
From Egs. (4.13) and (4.14), we get the absolute prediction error

eP(k) = ?J(k‘) - g(k/k - d) = eps(k) (ymaz‘ - ymin)7 (415)

where e,.(k) = ys(k) — 9s(k/k —d) = X5 (k — d) — Xox(k — d)

is the absolute output error of the NN-based predictor.
The relative prediction error is defined as

K~ g(k/k —d)| _

Ymaz — Ymin

ep(k)

Ymaz — Ymin

Ae,(k) = Iy(

Similarly, the relative output error of the NN is defined as

b plbe-d) w10

Aeys(k) = 70
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Substituting the scaling formula Eq. (4.12) into Eq. (4.16), we get

Aepo(k) = y(k) = 9(k/k = d)| _ . (i), (4.17)

Ymaez — Ymin
From Eqgs. (4.15) and (4.17), we can observe that the unscaled absolute prediction
error may be much larger than the scaled one, but the unscaled relative prediction
error is the same as the scaled one. This indicates that the accuracy of the NN-
based predictor depends only on the accuracy of the NN’s approximation to the

actual mapping. Finally, ymee and ymin should be determined as
Ymaz = sup {y(k) | for all & >0}, ymin = inf {y(k) | for all k> 0},

such that the range of the scaled value approaches (0, 1) in order to excite the

network.

4.4 Multi-Dimensional Back Propagation Algorithm

Each node within a conventional NN is designed to handle only scalar operations,
and the number of the nodes or layers is increased to deal with a more complex I/0O
mapping. However, for a complex MIMO mapping like Eq. (4.2), the network size
may become too large to manage. Alternatively, one can equip each node of an NN
with the ability of vector operations, because this is easier to express some known
coupling relations and will result in a set of succinct formulas. So, all inputs and
outputs of this NN are vectors. Referring to Fig. 4.1, let X; € R", X,; € R™, and
X.r € RP be the output of the INPUT, HIDDEN and OUTPUT layer, respectively,
for1 <i< N, 1<j< Np,and 1l £k £ N, Extension of the BP algorithm to a
vector form is presented below.

1. Computing the output of the HIDDEN layer X,;
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The output of the HIDDEN layer is computed by

le = [wljla Tty wljm]T:' fj(o1j)
T
= ! y Tt = ’ (418)
1 + exp (0151 — b1;1) 1+ exp (~01jm — O1jm)
N
Olj = Z Wij Xz'a .7= 17 2, Tty Nh (419)
i=1

where W;; € R™*" is the weighting matrix from node ¢ of the INPUT layer to node
j of the HIDDEN layer, f, : R™ — R™ is defined as a sigmoid function of each
component of a vector, and Oy; = [01;1, - -+, 91]-,,1]T is the threshold vector at node
j of the HIDDEN layer.

2. Computing the output of the OUTPUT layer X,;

Similarly, the output of the OUTPUT layer is

sz = [$2k1, Y m?kp]T = fk(ozk)

1 1 T
= y T 3 (420)
1+ exp (—o2k1 — b211) 1 4 exp (—o2kp — Oakp)
Ny
Ozk = Z lek le’ k= 17 27 Ty N27 (421)

J=1
where Wy, € RP*™ is the weighting matrix from node j of the HIDDEN layer to

node k of the OUTPUT layer, f, : R? — RP? is defined as a sigmoid function of

each component of a vector, and Oy = [f2z1, -+ -, GZkP]T is the threshold vector at
node k of the OUTPUT layer. Note that if m = p =n, Wy; = diag [wi1, -+, Wanl;;
and Wy, = diag [win, - -, wlnn]jk, then the system is uncoupled.

3. Updating the Weights from the HIDDEN to OUTPUT Layer W,

T
Let the desired output of the network be X? = [a:gkl, e azgkp] , and let the
output error of node k be defined as E; = ka — X, and the cost function be

defined as
Ng 1 N2

S BT Bi=3 Y (X4 - Xa)T (X4 - Xu).  (4.22)

F
k=1 2 k=1

[NR
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We want to update Wy, and W;; by minimizing F and taking the form of
Wi(t + At) = lek(t) + AWy, (4.23)

W,‘j(t + At) = W,’j(t) + AW,’j, (4.24)

where t is the continuous time index.

By using the gradient algorithm, we should set

oE 1" 8E 1"
AWy x — = - T 2
where 830E,k ceR™ and T) = a?vif)j:k € RPX™XP ig a three dimensional tensor since

O.; € RP*! and Wy, € RPX™,

To compute ———113—, referring to Eq. (4.22), we get
aozk
0E  OE 90X 8 Xk
_ 2 (x4 _ X,,)T Xk 4.2
aozk a‘sz aozk ( 2k k) aozk ( 6)
From Eq. (4.20), we obtain
[ O0zar O0z2r ]
X P f (O ) 8021;1 302kp
2k k 2k
= = 4.2
004 004 (4:27)
akap L. am?kp
L 00211 aoka J
Because z L and O Zor (1 — 22rt), Eq. (4.27) be
= = . — s . . can
2kl 1T+ exp (—ozm — Bot) Do 2kl 2k! q
written in the form
0X, ,
£ = diag [z (1~ Tam), 5 Takp(l = Takp)] - (4.28)
aozk

Therefore, substituting Eq. (4.28) into (4.26) and using the notation &§,;, we get

. aE asz
802;; aozk

= (X4 — Xau)" diag[zaa(l — za), -+, Tarp(l — Takp)] € R,

611:

= (X% — Xa)" (4.29)
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To compute T, from Eq. (4.21), we have the I-th component of O, as oz =

Ny
> (W Xy 1=1, 2, ---, p, where (W), is the I-th row of Wy;. Then, the
i=1
I-th matrix of T, Ty = aavvozkl eR™? [|=1, 2, -+, p, has the form of
1jk
. 2T
0 B
Ooyni 3
Ty = = Wi Xa (4.30
0
~ — T T
0 0
= i T (("Vl)ljk Xu‘) = | (X -)T +~— at the [-th réw.
8(m)lgk H
0 0

OF
OW ;i

of the OUTPUT layer. Therefore, from Egs. (4.29) and (4.30), we get

T
In Eq. (4.25), we set AWy, = — [ ] where 7; > 0 is the gain factor

oE

Awljk =-—Mnm [30

Tl} = (6. Tl] . (4.31)

4. Updating the Weights from the INPUT to HIDDEN Layer W;;

According to the gradient algorithm, we should set

oE 17 0E 7
AW, —_ |—| = - , 4.32
% [3Wz'j] [5011' T] (4.32)
E 1xm —_ aolj mxnxm 3 : s :
where R and T = eR is a three dimensional tensor since

8013‘ ’ BW,'J'
01]' € R™*! and W,'j e Rm™xm,
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E
To compute _8____ we have

00,;’
0E O0E 0X,;
90,; ~ 9X.; 90,;’ (433)
using Eqgs. (4.19) and (4.18) leads to
0X,; O0Ff;(0y ,
601; - 3Jé1j i) = diag [z11(1 = z31), **+ 5 T1jm(l — Z1jm)] (4.34)
Because
Ny
JE _ OE 802k, (4.35)
0X,; b1 00 BX”'
substituting Eqs. (4.21), (4.29) into (4.35) leads to
OF _ & (5. 0 W ST
= 1 Xy = — 6.1) Wijk. .
9X. kzzl (= 6uk) 55— 5X §=: uk X ’;::1 (— 6.k) W (4.36)
Therefore, substituting Eqs. (4.34) and (4.36) into (4.33), and using the notation §;,
we get
E )
5 = -2 OF 0X (4.37)

T 90, 09X, 00,;

N2
= (Zélk lek) dzag [1171]'1(1 — ;1;1]-1)’ SRR wljm(l — mljm)] € RIXm.
k=1

To compute T , from Eq. (4.19), we have the I-th component of O,; as 015 =

N
> (W), Xi, =1, 2, -, m, where (W)),; is the I-th row of W;. Then, the [-th

=1

matrix of T, T) = Do eRY™, =1, 2, ---, m, has the form of
3W,-j
AT
0
601 il 8 N
T = —=| — W) . X 4.38
: A d (W), (;( Dai X (4.38)
0
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- =T T
0 0
= ——-—a———T- ((VVI) X,-) = (X-)T «— at the I-th row.
a(Wi);; N '
0 0
oE 17 . .
In Eq. (4.32), we set AW;; = — g Wl where > 0 is the gain factor of
ij
the HIDDEN layer. Therefore, from Eqs. (4.37) and (4.38), we conclude
OFE T T
AW == |55- T| =» [6T] . (4.39)

5. Updating the Thresholds of the OUTPUT layer Oy

We want to update the thresholds O and ©,; by
G)gk(t + At) = @gk(t) + AOy (4.40)

By the gradient algorithm, we should set

oE 1"
A@zk X — [86%] . (4.42)
Using Eqs. (4.22), (4.21) and (4.20), we get
OE  0F 0X. _ 3 : r 0 .
004, - X, 004 - (X2k X k) 00, (fk(osk)) (443)
= - (X,:,ik - sz)T dlag [J,"zk](l - 732k1), SN m?kp(l — $2kp)] .

O0F
902
thresholds at the OUTPUT layer. Therefore, from Eqgs. (4.43) and (4.29), we get

T
In Eq. (4.42), we set AOqy, = — 119 [ } , where 779 > 0 is the gain factor of the

ABy, =1 [6:4]" . (4.44)
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6. Updating the Thresholds of the HIDDEN layer O,;

Using the gradient algorithm, we should set

o "
oFE J0E 0X,; .
Because 36y; ~ BX,; 90y, using Eqs. (4.36), (4.19) and (4.18), we get
OF Nz o
N»
= - (Z .k lek) diag [$1j1(1 - -'Eljl)a T, wljm(l - $1jm)]-
k=1

OFE
004;
thresholds at the HIDDEN layer. Therefore, from Eqs. (4.46) and (4.37), we get

T
In Eq. (4.45), we set A©y; = — 1 [ ] , where ng > 0 is the gain factor of the

20y = o [6;]7 - (4.47)

To summarize what we have developed so far, the computation of the multi-

‘dimensional BP algorithm is listed as follows.

1. Compute the output of the HIDDEN layer X,; by Egs. (4.19) and (4.18).
2. Compute the output of the OUTPUT layer X, by Eqgs. (4.21) and (4.20).

3. Update the weights from the HIDDEN to OUTPUT layer Wy by Eqgs. (4.23),
(4.31), (4.29) and (4.30).

4. Update the weights from the INPUT to HIDDEN layer W;; by Eqs. (4.24),
(4.39), (4.37) and (4.38).

5. Update the thresholds of the OUTPUT layer ©Oq; by Eqgs. (4.40), (4.44) and
(4.29).

6. Update the thresholds of the HIDDEN layer ©1; by Eqgs. (4.41), (4.47) and

(4.37).
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Extending the BP algorithm to a vector form shifted the complexity from the
network level to the node level. Though the overall computation requirement is not
reduced, it results in a set of succinct formulas and is easier to specify the I/O nodes
of the NN for an MIMO mapping and to express some known coupling relations.
Moreover, if the NN is implemented in software and instructions of vector operations

are provided, then the programming is more efficient with this vector form of BP

algorithm.

4.5 Simulation Results

To test the capability of the proposed predictor, a series of simulation experiments
were conducted and the main results are summarized below. First, a two—input two-

output, linear, time-invariant system

B1(t) = 2a(t) +wa(t)
#a(t) = —5z1(t) — 3aa(t) + ua(t) (4.48)

yi(t) = 222:(t)+10, =1, 2,

is simulated with the sampling interval T; = 0.01 sec. The inputs u;(t) and uo(t) are

set as sinusoidal waves of frequency 10 Hz and magnitude 10.0. Let

Y(k) = [n(k), w2(B)]", U(k) = [ua(k), u2(k)]*, and

Y(k+d/k) = [1(k+d/k), Go(k+d/R))".

Then an NN-based predictor is designed with ten input nodes, five hidden nodes,

and five output nodes. The inputs of the network are

U(k), U(k—1), U(k-2), U(k-3), U(k—4), and
Y(k—-1), Y(k—2), Y(k-3), Y(k—4), Y(k-D5).
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Figure 4.4: y;(k) of the nonlinear, time-invariant system and its prediction error.

-, 5. The

Iy

The outputs are the d-step ahead predictions Y (k + d/k), d = 1,

network is trained with the actual system outputs Y (k + d). The training period is

4000 sample intervals, and the relative RMS prediction errors are tabulated in Table

4.1. The network is shown to be “well trained” after 4000 sample intervals.

Using the same structure of the NN-based predictor as above, the following non-

linear, time-invariant system is tested:

xa(t) + ()

() =

(4.49)

(1) + ml(t)) ~ 322(t) + ua(t)

2
1

-9 ('L

(1)

The inputs u,(¢) and ua(t) are set to be sinusoidal waves of frequency 10 Hz and

magnitude 10.0. The actual values of y1(k), y2(k) and their prediction errors are

plotted in Figs. 4.4 and 4.5, which have shown that the NN-based predictor works

well for the nonlinear, time—-invariant system.

(4.48) and (4.49) are time-invariant for which the “training — op-

Both Eqgs.
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Sample intervals

Relative RMS prediction errors of y; (%)

prediction steps

for statistics 1 2 3 4 5
0 - 500 20.61574 | 18.59294 | 15.80285 | 15.43578 | 17.34273
1000 - 1500 3.50542 | 2.99628 | 3.24761 | 4.43171 | 5.31734
2500 - 3000 3.08927 | 2.26003 | 2.52720 | 3.14259 | 3.43695
3500 - 4000 2.87110 | 1.75731 | 2.20443 | 2.60701 | 2.60416
4500 - 5000 2.68230 | 1.56914 | 2.17914 | 2.38665 | 2.06842

Relative RMS prediction errors of y2 (%)
prediction steps

1 2 3 4 5
0 - 500 17.47703 | 14.82588 | 14.74718 | 16.53000 | 18.53330
1000 - 1500 2.41279 | 2.68619 | 3.95526 | 5.09985 | 4.82806
2500 - 3000 1.86467 "| 1.95556 | 2.69478 | 3.20278 | 2.90345
3500 — 4000 1.53732 | 1.60446 | 2.21500 | 2.35390 | 2.12424
4500 - 5000 1.35910 | 1.60634 | 2.09154 | 1.88261 | 1.69240

Table 4.1: The relative RMS prediction errors of the linear system.
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eration” mode works well. However, this is not the case for time-varying systems.
To test such a system, we simulated a 2-link robotic manipulator, whose dynamic

equation is given as

H(g) 4+ C(q, q) g+ G(q) =T

T joint torque.

[7'1, 7'2]

[q1, g2)7 is the vector of joint positions, and 7

where q

this dissertation. It is a nonlinear, two—input two—output, time-varying system. The
joint torque, T, is set as sinusoidal waves of 10 Hz and magnitude 2.0 for 7y and 0.1

for 7. The sampling interval is chosen as T = 0.01 sec. With an initial configuration
as shown in Fig. 3.6, the joint positions vary under the effects of gravitational force

The detailed explanation of this system is given in Eq. (3.19) and the appendix of
and joint torque. The NN-based predictor has ten input nodes, five hidden nodes,

and five output nodes. The inputs of the network are

T(k —4), and

), T(k=3)

T(k
(I(A’ - 3.)’

T(k—-1),

q(k

1-(k),

q(k —5).

Q(k - 4)a

)’

~9
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The outputs are the d-step ahead prediction of the joint position ¢(k + d/k), d =
1, --+, 5. The simulation results are plotted in Figs. 4.6 and 4.7, for ¢;(k), ¢2(k) and
their prediction errors, respectively. The training period is 4000 sampling intervals.
After the training period, the prediction error increased dramatically as expected.
This shows that the “training — operation” mode does not work for time—varying
systems. |

So, we keep track of the variation of this time-varying system by using the up-
dating mode described in Section 4.3. The results are plotted in Figs. 4.8 and 4.9.
When compared with Figs. 4.6 and 4.7, only the predictor with the updating mode is
shown to work well. For this NN-based predictor, we evaluated the convergent pro-
cess of the system-output prediction and the convergent process of the NN’s weights.
When the NN’s weights are no longer changed, the NN becomes “well-trained”. The
simulation results have indicated that the system-output prediction converges to its
true value within 200 sampling intervals. However, the NN becomes “well-trained”
only after 3000 — 4000 sampling intervals. That is, the system-output prediction
converges much faster than the the well-training of an NN. This again supports the
idea that the NN-based predictor should be updated, but not trained. Certainly, for

a time-varying system, it is meaningless to say that an NN is “well-trained”.
4.6 Summary

The output prediction of a system can be represented as a mapping from its
historical data and future inputs to future outputs. Even if the parameters and/or
structure of the system dynamics were unknown, an NN can be designed to approxi-
mate this mapping. Using these facts, an MIMO NN-based predictor is proposed and

tested for various systems. The basic structure of the predictor is determined, and
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the following two major problems are solved. First, in order to track a time-varying
mapping, the concept that an NN should be updated, rather than trained, is intro-
duced and verified. By this concept and its corresponding algorithm, the proposed
predictor uses only the system’s historical data to adjust the weights of the NN. This
also makes the network always work in a closed loop so that the reliability of the
NN-based predictor is improved. Second, the BP algorithm is extended to a vector
form so that an NN can be used to represent an MIMO mapping more efficiently
and express some known coupling relations within the mapping more easily. This
requires the nodes of the network to be capable of vector operations. Furthermore,
the prediction error is analyzed and is shown to depend only on the network’s error
in approximating the actual mapping,.

The proposed NN-based predictor has been tested for MIMO linear, nonlinear,
time—invariant, and time-varying systems. All of them have shown promising results,
indicating the potential use of the proposed predictor for many industrial applica-

tions.



L% onBig

.
.

119 - uorjorpad sy1 pue (3)2h

.

1,, Y3IM SIO

Sururex

opowr  uorjerodo

(0es 10°0 x) ewn

0008 00S¥ 000y 0O0SE 000€ 00SZ 0002 0OS!}

00S 0

000!}

actual position

' 1 [
0o B N

-9_

and its prediction error

[0

AP i i

b

-t

(=]

(@+x)eb----

(/e2+y)ge

-
~
N,
A RN
~ “~
L by
et
oo
N
.
- e
xS
\.
RN
Sin
L ~n
'\\\
et
»e®
- .-
LY
o
\\\
)
) aart e
-
casasttt
L
T
L
L
o
- 3
-
= -
L
- 3
L
T Y 4 T

9"y o3I

ipoad syt pue (y)ib :

7,, [}M SIOLI® UOIFD

Sururel

‘opouwt  uorjerado

(-oes L0°0 X) ewn

0005 00Sy 000y 00SE€ 000€ 00S2 000Z 00§l

actual position and its prediction error

00§ ¢]

0001

P E O

[ 1 1

2] H N Q
P S i
aaaansayvett
By

~ %
n\\\‘
aassa et

™
\;‘\!-\&\\\s‘ 3
IS
Tettaaa
\\\‘
<
aauseav S asS
o
D
b . .
W
\\\l“".‘s\\
-,
A P

Wana
.,.sxyst*‘“‘\\\

RO

Shestsnanaa,.
R
cansuavas LAyt

TRanay 7
L

\!tsiistibu\.t\
AR XY
E\\§\~n~t\~\ .
PRRPETLAY
~\\_..um~.
~s.~.~.x~,~~“‘
(S
esarvarISAALANY
Ny'w
bl L L SRR
N
BN
*\.::v\\.\\t\“‘
N e
Cneaa

.
RPN LY,

ansasayILIIINY
Weda
Mevvanancan, ¥
o

N
arasasaases

\Q‘\th‘\
"Masang
\\\s\.,
ans
v\ttgis!‘\.l‘ ¢
A,
Mreanananag
g\\h\\t“‘ T
.\\‘\\‘ :
bRl T YL e
\..‘-.ag~u~\
Caransve®
“wen i
AR X T O -

CEETER R L -
werete
-~

AL LY PO

o

avsasaary

\Q\~~s\ —

LT NPy

\\\\a\' N

canaevaed

FPCTRX LA Dl

X

ShYtvainn e

RS
LY

AL DR Ry
\\Q\.‘\

q~s~\\\“"“~\

LR
A
'\‘!'\\ss\\‘

e ==
\\\\555“‘~‘1
X
eassnssrersennl
~
M

(+M)1b----

Oig+i) e

9L



0

6'% om3Lg

(-oes 10°0 x) sum

-opowr  Sutyepdn,, yjm s1o11o uworydipaxd syt pue (3)%h
000S 00St 000y 00S€ 000€ 00Sc 0002 00S!}

actual position and its prediction error , actual position and its prediction error

[ N e ) b
©@ o p PO M AP OO

8
9
14
2-
0
e
L4

» ®

yrasananveett
S
R

00S

RS A
\\;..\~\\

Sang

PO

RCTTLTNA L E

gy oIm3Lg
00§

AL YT

(S
s~..!‘*“'\‘

WSS
Naae

~
aravanest

0001
0001}

DAY

Sna
us\‘;“~‘.
-
IR

L AN

oo
AN
Taaan
““\ss-‘\

(@+M)ib----

o
staavsLadS TS
Y

pe (3)'

/
M
4
f

(S SR
\\\‘v\\“.~‘
g
Ui
asavsavIALAL AN -«
Ny
hhl T D
Nn,

saavzaaast

wrv
[ vingeg
Tetaag,

/,
I d
/
/
4
paid sy

nasstannansTey,
AN
Sevaan,

iR

:
U\

aae

iy

~“‘\~\\~s~\,
§

A

R

A
%

119 UOI)D

d
FEPTPRRY b

Naes
\ﬁ\\\“.‘

(oes 10’0 x) awn

000S 00SYy 000y 00SE€ OO00E 00SZ 0002 O00S!t

aassavSAASALY

A

“e
A

~ f
‘\~~\~~ss\.
\\gti\hshti\‘
XN\
\5\&;-‘\‘.‘

caa ek

1
L]
T
L
L]

.
canaans et

o
\5~s\\§\§\\~~.‘

'y
2

WAveeesaesty
ase
[N\

~\\xx-.;“\\‘ >

aast

(w/eg+y)ce

\;susv-~

(/g+A) e

\.\\\.,.\“‘.‘ :

A
eeenaanae
W

s L e

e

‘..““‘~‘sst\§\

1
»
C)
»
»
(3
A

DN
bl L CYN TR

anass
e
\\\s\\\s\‘\s\ 1

opowt  Suryepdn, [jim SI0

A
A

~
ALY
~

LR
[
'\‘\\sss\\‘

T Y T ¥ Y T 14



CHAPTER V

KNOWLEDGE-BASED COORDINATOR AND
ITS APPLICATION TO MULTIPLE ROBOTS

5.1 Introduction

Although some basic principles in coordinating multiple systems were developed
in early 80s [LMO82], most publications addressed only conceptual interpretation,
and very few dealt with actual applications. The main difficulty in coordinating
multiple systems comes from the lack of precise system models and parameters as well
as the lack of efficient tools for systelﬁ analysis, design, and real-time computation
of optimal solutions. New methods for analysis and design are thus required for the
closed—-loop coordination of multiple systems.

Since intelligent control does not depend only on mathematical analyses and ma-
nipulations, it is an attractive candidate for dealing with complex system control
problems. An intelligent controller achieves the desired performance by searching for
a goal in its knowledge base. In addition to the structures of performance-adaptive
and parameter-adaptive IC introduced in Chapter 2, we have proposed a knowledge-
based controller in hierarchical structure in Chapter 3. This knowledge-based con-
troller is a high-level controller, which attempts to modify only the reference input

to the low level. The low-level subsystem could be a servo control system, and its in-

78
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ternal structure and parameters are not affected by adding this high-level controller.
Output prediction was used to characterize system performance, and the knowledge
needed to control the system was then simply represented by a decision tree.
However, all the results reported in the literature were intended for single systems.
Most of the system characteristics surveyed in Section 2.2.2 may not be suitable for
coordinating multiple systems, because system performance may not be easily defined
and related to the measured data and control inputs. In fact, for a complex multiple-
system, even a human expert’s knowledge on how to coordinate it to achieve the
desired performance is limited and incomplete. So, it is difficult to design a complete
knowledge base for such a system. The addition of a coordinator (not necessarily
an intelligent one) leads to the problem of coordinating multiple systems to form a
hierarchical structure. Such an addition should not interfere in the internal structure
and parameters of low-level subsystems, making the structure of performance- or
parameter— adaptive intelligent controllers unsuitable for multiple-system coordina-
tion. The internal structure and/or parameters of low-level subsystems are usually
not known to the coordinator. Moreover, stability analysis becomes very impor-
tant, due mainly to the uncertain lo;»v—level structure and/or parameters, and to the
incomplete knowledge of the coordination and system characteristics. We should,

therefore, answer the following questions when designing an intelligent coordinator:

1. What are the strategy and the structure for coordinating multiple systems?
2. What are the characteristics of multiple-system performance?

3. What knowledge is necessary for coordination?

4. How should t.he knowledge be represented?

5. How can the qualitative knowledge be extracted from sensor data?
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6. How can the result of qualitative reasoning be changed into the quantitative

control signals of actuators?

7. How can system stability be analyzed and guaranteed?

A knowledge-based coordinator (KBC) for multiple systems is proposed in this
chapter by combining the techniques ‘of intelligent control and neural networks. The
KBC is a high-level coordinator within a hierarchical structure. Detailed structure
and/or parameters of low-level subsystems are not required by the KBC, thus al-
lowing individual subsystems to be designed independently. This implies that some
commercially-designed controllers can be coordinated to perform more sophisticated
tasks than originally intended. In Section 5.2, the problem of multiplé-—system co-
ordination is stated, and some basic principles of multiple-system coordination are
reviewed. The proposed scheme and the assumptions are described in Section 5.3.
Section 5.4 addresses the design of a KBC, including the knowledge representation,
system stability, and an MIMO NN-based predictor. An example is given in Section
5.5, in which a KBC is designed and tested via simulation for coordinating two 2-link

robots holding a single object. This chapter is summarized by Section 5.6.
5.2 Problem and Principles of Multiple—system Coordina-
tion
Fig. 5.1 describes two interacting systems, and this description can be easily
generalized to the case of more than two systems. The system dynamics are described
by
S1(Uy, Yy, Wi)=0 and So(Us, Ya, Wi) =0,
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U .y
e —————~
(v,)

(Y, )

Figure 5.1: Interaction of two systems.

whereU; e R, W, e R™,and Y; € RPi,fort =1, 2. Let p=py+p2, n =n1+ny

and m = my + mo. The constraints are expressed by

SO = {(U, Y, W) . Slz0, Sz=0},

T
where U = [U T U;r] € R" is the augmented control input vector,
T
Y = [Y{, Yﬂ € R? the augmented system output vector, and
T
W = {Wr{, Wﬂ € R™ the vector representing interactions between

the two systems.

Usually, the cost function of a multiple-system is the sum of the cost functions

of all component systems:
J(U, Y, W) = Jl(Ul, Yl, W2)+J2(U2, Yz, W]) (51)

The problem of coordinating multiple systems can be stated as an optimization
problem: minimize the cost function, J, subject to the constraint, Se.

Though there are no general approaches to solving this problem for a complex
multiple-system, some conceptual methods and basic principles have been suggested

in [LMOB82]. One of these methods is called model coordination. Under this method,
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Figure 5.2: Goal Coordination of two systems.

the problem is divided into two-level optimization problems. First, suppose the

interaction, W, is fixed at Z. Then compute

H(Z) = min JWU, Y, Z).
(Z) U, V% s, U, Y, Z)

H(Z) is then minimized over all allowable values of Z. This two-level optimiza-
tion problem is solved iteratively until the desired performance is achieved. Another
method is called goal coordination in which the system is represented as in Fig. 5.2.
Suppose W, is not necessarily equal to X ;. Overall optimality is achieved by sequen-
tially optimizing two subsystems, while treating W; as an ordinary input variable
of each corresponding subsystem. This requires X; and W to be equal, which is
called the interaction balance principle. Similar to the process of model coordination,
optimality is achieved iteratively. Another basic principle of coordination, called the
interaction prediction principle, is stated as follows. Let W = [W’f, W;P]T be the
predicted interaction and W = [W’f, WﬂT be the actual interaction under the
control U. Then the overall optimum will be achieved if the prediction gives the
true value, that is, W=w.

Obviously, solving these optimization problems largely depends on the knowledge
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of the structure and/or dynamic parameters of low-level subsystems and mathemat-
ical synthesis. Moreover, in a hierarchical system it is desirable .that adding a high—
level coordinator should not affect the internal structure and/or parameters of the
low-level subsystems and should only give appropriate coordination commands to
them, so that each level can be designed independently of other levels. That is, the
higher the level is, the more intelligence it has, and the less precise its knowledge
about the low levels becomes. These requirements motivated us to design the KBC.

To design a coordinator, we first need to define a system performance index.
It should be chosen to express the desired system performance and should also be
amenable to some optimization methods. For example, the perforfnance index de-
fined in Eq. (5.1) is suitable for the concepts of model coordination and goal co-
ordination. To design a KBC, one needs an index to explicitly express system per-
formance; such an index will henceforth be called the principal output. The overall
system performance index may not necessarily be the simple summation of the per-
formance indices of all component systems. Because only system constraints are
important for coordination, one may not even be able to define subsystem perfor-
mance indices. Moreover, we want to relate the principal output directly to the
coordination commands. The coordination commands are defined as the reference
inputs to subsystems. The following sections will show that both the explicit expres-
sion for system performance and the direct relationship between the principal output
and the coordination commands will simplify the design of the knowledge base and

the goal-oriented search.
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5.3 Description of the Principal Output Prediction Scheme

In a hierarchical structure, each level can be viewed as a mapping from its refer-
ence input to the output. The servo controller of each subsystem is usually designed
separately from, and independently of, the others. In order not to interfere in the
internal structure and/or parameters of the lower level, the only effective control
variable is the reference input to the lower level. The reference inputs are a set of
pre-designed commands, which represent the overall behavior of the multiple sys-
tems. For example, when multiple robots work in a common workspace, the reference
input is the desired path and trajectory of each robot generated without considering
the presence of other robots. The purpose of a high-level coordinator is to modify
the desired paths and/or trajectories to avoid collision among the robots. From a

high-level coordinator’s point of view, the following conditions are assumed.

C1. Each subsystem is a stable, closed-loop controlled system.
C2. Each subsystem has a linear response to its reference inpus.

C3. Each subsystem will remain stable even during its interaction with other sub-

systems.

C4. System performance can be described explicitly by the principal output .

In Fig. 5.1, let Y be the principal output vector of the multiple-system, Y, =
[YT, YZ]7 be the vector of reference input to the low level. Note now that the
components of Y may not be simply the outputs of subsystems, but could be a

function of these outputs:

Y =F0(Y1, Yz), where Fo : R x RP? — R?.
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Because each subsystem is a closed-loop controlled system, Y'; can be represented

as
Y,=f;(Yiy, W;), where ¢, 3=1,2, j#4i and Jf;: R"xR™ — R".
Then Y can be represented as

Y =FYy, Yy, W,, Wy), (5.2)

where F' : R™ x R™ x R™ x R™ — RP. The principal-output vector Y in Eq.
(5.2) establishes an explicit relationship between the overall system performance and
the reference inputs.

Let Y (k + d/k) and Y 4(k + d) be the d-step ahead prediction and the desired
value of the principal output Y (k) at time k+d, respectively. Then, the performance

index of the overall system can be defined as
. T .
Ty = [Ya(k+d) = V(k+d/B)] [Ya(k+d) = V(k+d/k)].

The purpose of using a coordinator is to choose a suitable reference input vector
Y (k) in order to minimize J(k) at time k subject to a set of constraints.

Suppose the prediction of the principal output corresponding to each choice of
Y .(k) is available, and the constraints can be expressed with a set of production
rules. Then, in each sampling interval, the desired performance can be obtained
by iteratively trying different reference inputs and édjusting them according to the
principal output prediction. For example, we propose the following algorithm to

coordinate two subsystems, where the superscript ¢ denotes the iteration count.

1) Compute the principal output prediction v’ k+ d/k) for given reference inputs
g p

Y? (k) and YO, (k).
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(2) Using f’i(k + d/k), modify the reference inputs of subsystem 1, Y3 (k), i =

0,1, 2,
(8) Compute Yiﬂ(k + d/k) for given reference inputs Y}, (k) and Y5 (k).

(4) Set: «— 7+1 and repeat steps (2) and (3) until Yi+1(k+d/k.) cannot be improved

any further with Y (k) due to the constraints.
(8) Set i« 0.

(6) Using f’z(k + d/k), modify the reference inputs of subsystem 2, Y5 (k), i =

0, 1, 2,
(7) Compute Yi+l(k + d/k) for given reference inputs Y9 (k) and Y%, (k).

(8) Set i + i+1 and repeat steps (6) and (7) until Yi+1(k+d/k) cannot be improved

any further with Y (k) due to the constraints.

(9) Set 7 «— 0 and repeat steps (2) — (8) until Yi(k—}-d/k) reaches its desired value.

The conceptual structure of this scheme is given in Fig. 5.3. Obviously, this
scheme needs a multiple-step predictor to compute }A’l(k + d/k) and a KBC for the
modification process of the reference inputs. By using this principal output predictor
to characterize system performance, the knowledge for coordinating multiple systems
becomes clear, thereby simplifying the design of a knowledge base.

We now need to address the following two problems: (1) Given the principal
output prediction, how can we design this KBC? This will be discussed in the next
section. (2) How can we design such a principal output predictor? In Chapter 4, an
MIMO predictor has been designed using NNs. In the next sections, we emphasize

to solve the first problem.
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Figure 5.3: Conceptual structure of the knowledge-based coordination system.

5.4 Design of the Knowledge—-Based Coordinator

A multiple-system with the KBC forms a hierarchical structure, and the low-
level subsystems are viewed as a mapping from their reference input to the principal
output. The goal is to modify the reference input so that the principal output
reaches its desired value. For a given multiple-system We must define the principal
output. Note that knowledge-based coordination is not strictly a mathematical
optimization problem. The principal output must (1) have an explicit relation to the
reference inputs, and (2) be measurable or computable from measured data. Because
a multiple-system is designed to perform a common task(s) among the component
systems, such a principal output is usually defined to express the situation of the

common task(s), even though it may not explicitly reflect some of the generally—used
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optimization criteria, such as energy or time.

As an example, consider the coordinated control of two robots. The two robots’
operations may be tightly-coupled or loosely—coupled. They are tightly—coupled, for
example, when they hold a single object rigidly and are coordinated to move the
object. On the other hand, they are loosely—coupled, when they work in a common
workspace and are coordinated to avoid collision. Suppose each robot is equipped
with a servo controller which was originally designed for a single robot. The two
robots are coordinated by modifying each robot’s reference input. For the tightly—
coupled case, the principal output can be defined as the object’s position error or
the internal/external force exerted on the object. For the loosely—coupled case, on
the other hand, the positions and/or velocities of the robots’ end-effectors can be
used to represent the status of collision avoidance, and, thus, they are qualified to
be the principal output. For both cases, an explicit relationship between system
performance and reference input is established by defining the appropriate principal
output.

As stated in the previous sections, we‘ want to use the principal output predictor
to see where each reference input of the subsystem will lead to. If the principal output
prediction is given, simplified knowledge on how to coordinate a multiple-system can

be stated in two steps:

(1) Modify the reference input and feed the modified input to the predictor.

(2) IF the principal output prediction yield good performance
THEN feed the reference input to the low-level subsystems

ELSE re-modify it.

Since only one reference input is modified at each time, the remaining problems
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are then in which direction the reference input is modified (increase or decrease),
how much it should be modified, and what are its limits? For a single-system,
we have already developed such a knowledge-based controller in Chapter 3. For a
multiple-system, the modification process of each reference input is similar to that
of a single-system, so only the related results of Chapter 3 are summarized below.

Knowledge Representation

Using a predictor, the performance of a multiple-system is characterized by the
predicted tracking error in its principal output that results from the application of
the current reference input. Thus, the space of predicted tracking errors forms the
input space of the KBC’s knowled‘ge base. The goal of the KBC is then to implement
the modification process discussed thus far. It is not difficult to express this process
in terms of a set of production rules. For each element of the reference input, the
basic modification process can be represented by a decision tree as shown in Fig. 3.1.
The ¢j-th node in the tree is represented by ([a}, bi], ¢i), where c; is the quantity

added to the reference input,’
yrtH (k) = y2(k) + ¢

y2(k) is an element of the original reference input vector to one of the subsystems at
time k, yi*! is its modified value after the i-th iteration, and [a}, ] is the interval
to be searched, aj- < cj- < b;- for all 7, j. The process is the same as stated in Chapter
3, by giving the reference input yi(k), at any node ([a}, b, ), the interval [a, b:]
will be split into two subintervals [at!, bif'] = [af, ¢!] and [a}}}, %] = [, b,

which form two successive nodes. At the :-th iteration and at the ¢j-th node, let the

1Because only the reference input to one subsystem is modified at a time, to simplify the notation,
subsystem 1 and 2 will not be distinguished within this section, that is, y.(k) will represent one
element of either Y';,.(k) or Yo, (k).
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predicted tracking error resulting from y:(k) be denoted as
ej(k) = §*(k + d/k) — ya(k + d),

where y4(k + d) is an element of Y 4(k + d) and §*(k + d/k) is the corresponding
element of f"(k + d/k). Then, ¢ is computed as

(. L .
b — (b —ai)K, if ei(k) <0

G=10, if ei(k) =0 (5.3)

\ aj + (bj. - aj-)K, if e;'-(k) >0,
and 0 < K < 1 is a weighting coeflicient which determines the step size of the
iterative operation. a3 and b3 are the pre-designed lower and upper bounds for the

amount of reference input modification, and usually ¢J = 0.

Solution Existence and Stability Analysis

The basic forms of production rules are

IF ei(k) < 0 AND [ei(k)| > e,
THEN increase ¢; AND compute yi*! (k) = y2(k) + c;

77

IF ¢i(k) > 0 AND |ei(k)| > e,

THEN decrease ¢; AND compute (k) = y2(k) + ck;

IF |éi(k)| < c,

THEN set y*+!(k) = yi(k) AND stop the iterative operation.

€ > 0 is a pre-specified error tolerance. Because the amount of modification to the

reference input is bounded, or a) < cj- < b3 for all 7, j, there may be a case where

lei(k)] > € for all ¢;. This problem is solved with the same methods as stated in

Chapter 3.
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Suppose the prediction gives the true principal output, and let us consider the
KBC and the closed-loop subsystem. The KBC can then be viewed as a map
M, : E — Yp, specified by all the production rules, where E is the space of
predicted principal-output tracking error and Yp the reference input space. The
low-level, closed—loop subsystem is also a map, L : Yr — E, which is specified
by the desired dynamic properties of the servo controllers. Because L represents a
well-designed controller and there exists a reference input at time k, Yi(k) € Yg
such that the tracking error reaches zero. Accordingly, it is reasonable to assume
that L is a linear map. The properties of the map M = LM, : E — E depend
mainly on the properties of the map M. In fact, all the antecedents of produc-
tion rules are based on the prediction of principal output. If the predictor gives the
true principal output, then the properties of the invariant map M : E — E are
determined solely by the knowledge base.

For system stability, all production rules in the knowledge base must form a con-
traction map. Similar to the arguments in Chapter 3, if (1) the principal-output
prediction of a multiple-system is computable and the predictor gives the true prin-
cipal output, and (2) L : Yr — E of the low-level closed-loop subsystems is a
linear map, and (3) the map Mp : E — Ypx is given by a decision tree, then we
conclude that the composite map M =L My : E — E is a contraction map. As
pointed out in Chapter 3, at each node of the decision tree, the iterative learning
process is performed and the rules always keep the search direction pointed to the
node where the tracking error decreases. This implies that the iterative learning
process decreases the tracking error.

Prediction of the Principal Output

Though it is assumed that the principal output, Y, is measurable or computable
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. from the measured data, it may be very difficult to derive a closed—form expression
for Eq. (5.2).. To overcome this problem, we have developed an MIMO predictor
using an NN in Chapter 4 in which the problem of tracking a time-varying system is
solved and the BP algorithm is extended to a vector form. In what follows, only the
structure of the predictor for the principal output is stated, and the detailed design
procedures are the same as that described in Chapter 4.

Referring to Eq. (5.2), the d-step ahead prediction of Y can be represented by

Y(k+d/k) = F,(Yi,, Y, Y), (5.4)
where Y]T = (Y],-(k + i]), ey, er(k), Y]r(k - 1), ety er(k — 22))
Y?r = (Y2r(k+jl)7 Tt er(k)’ Y2’l‘(k_ 1)7 B er(k‘—jz))

Y = (Y(k), Y(k=1), -+, Y(k—1))

F,: R x R™” xR —R?

T, 21, z'é, j1 and j, are constant integers. The interaction effects among subsystems
are implicitly included in the historical data of Y. In Eq. (5.4), the principal
output prediction is directly represented as a mapping of the reference inputs and the
historical data Y. An NN-based predictor can be designed to learn the relationship of
Eq. (5.4), using the procedures presented in Chapter 4. Fig. 5.4 shows the structure
of the predictor, where the reference inputs Y, and Y,,, and the historical data
Y are fed to the nodes at the INPUT layer. When the NN becomes well-trained,
the predictions Y (k + d/k) for d = 1, 2,--- are then produced from the OUTPUT
nodes. To implement this NN-based predictor, two major problems have been solved
in Chapter 4: (1) how to track a time-varying mapping, and (2) how to efficiently
represent and compute an MIMO mapping with the NN. The detailed arguments are

not repeated here.
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Figure 5.4: Structure of the NN-based predictor.

With the ability for learning an input-output (I/O) mapping from experience,
an NN can be used to track the variation of the mapping. However, an NN alone
cannot form an intelligent coordination/control system. As a general method of
representing systems> with learning ability, NNs lack the ability of logical reasoning
and decision making, of interpreting environmental changes, and of quick response
to unexpected situations. Therefore, a KBC is needed. Despite its drawbacks, the
NN-based predictor establishes an explicit relationship between the principal output
and the reference inputs to subsystems. Hence, the knowledge base is simplified. One
can also add easily to the knowledge base such rules as the constraints of subsystems,
operation monitoring, system protection, and switching of the coordination schemes.

The KBC will emphasize system coordination but not data interpretation, while the
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Figure 5.5: Two 2-link robots holding an object.

ability to learn will rely mainly on the NN, that is, the NN will adapt itself to the

model /parameter uncertainties, disturbances, component failures, and so on.

5.5 Coordinated Control of Two 2-Link Robots

To demonstrate how to apply the proposed scheme for solving real life problems,
we consider the problem of coordinating two 2-link robots holding a rigid object.
The low-level subsystems include two robots each with a separately designed servo
controller. The basic configuration of this exampleis given in Fig. 5.5. The Cartesian
frame is fixed at the base of robot 1, and the trajectories of the object and the robots’
‘end——effectors are specified relative to this frame. The task is to move the object
forward and then backward in X direction while keeping the height in Y direction
constant. The desired trajectory of the object are selected by a high-level planner
as the reference input to the low level. If the two robots hold the object firmly, then
the dynamics of the system are modeled as follows.

Dynamics of the Object
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Let f; = [fiz, f,-y]T be the force exerted by the end-effector of robot 7 on the

object in Cartesian space. Then the motion of the object is described by

mI"D + mg = f, f =W F = [Ig, 12] fl y (55)

f2

where m is the mass of the object, P the position of the object in Cartesian space, g
the gravitational acceleration, f the external force exerted on the object by the two
robots, and I, is a 2 X 2 unit matrix. From Eq. (5.5), one can see that, to achieve the
object’s specified acceleration, the combination of forces shared by the two robots is
" not unique.

Dynamics of Each Robot with Servo Controller

Suppose two robots have an identical mechanical configuration, then the force-

constrained dynamic equation of robot ¢ in joint él)ace is given by
H(q,)q; + Clqi, §:) 4: + Glg) + 3] fi =74 =1, 2,

where q; = [¢a, qn]T and T; = [, ng]T are the vectors of the joint position and
torque of robot z, respectively. J; is the Jacobian matrix, and the other terms are
explained in Eq. 3.19 and the appendix. Suppose both robots are position-controlled

with the computed torque algorithm. That is, the control input to robot ¢ is
Ti = H(q;y — Kpi(q; — q:a) — Kpig; — i) + ﬁ, (5.6)

where H and h are the estimated values of H and C ¢, + G, respectively. g,, is the
desired value of q;, Kp; and K,; are the controllers’ gains. The reference input to
the system is the desired trajectory of the object specified by Py, P, and Py, which
will be transformed into the desired trajectories of the end-effector and the joints of

each robot.
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Problem Statement
Suppose the object is a rigid body and there is no relative motion between the

end-effectors and the object. For Eq. (5.53), let f; and F4 be the desired values of

f and F, respectively. Then, we have
Fi=Fpyi+Fra=W'f;+ (L — WW)y,, (5.7)

where W* € R**? is the pseudo-inverse of W, I, is a 4 x 4 unit matrix, and y, € R*

an arbitrary vector in the null space of W. Therefore, the forces exerted by the end-

F'ria
effectors consist of two parts: Fay = € R* is the force to move the object
Farod
Fpa . . : .
and F'jy = € R? is the internal force. The following two problems arise:
Froq

(1) sharing the moving force by the two robots, and (2) chaﬁging the internal force
so as to satisfy a set of constraints, such as joint torque limitsl or energy capacity.

In Eq. (5.7), f; can be specified by the desired trajectory. F'py is given as
the desired internal force, for example, F';y = 0 for the least energy consumption.
Because W* is a constant matrix and both f,; and F'j; are specified, the desired force
F, is determined uniquely. However, this ideal situation of load sharing may not be
achieved due to force and trajectory tracking errors. These errors may be caused by
modeling/parameter errors, control performance tradeoff, and/or disturbances. It
is, therefore, necessary to share the load by, or to re-assign the load to, each robot
dynamically. Our goal is to désign a KBC to coordinate the two robots moving the
object while minimizing the internal force.

Principal Output and Its NN—-Based Predictor

The reference inputs to the low-level subsystems are the desired acceleration

P4, velocity Pid, and position P;y of robot i’s end-effector, : = 1, 2. The internal
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force can be used to evaluate system performance and has an explicit relation to the
reference inputs. So, the internal force is defined as the principal output. Because
the force exerted by each robot to achieve a specified acceleration of the object is
not unique, it is possible to adjust the internal force by modifying the reference
inputs. Since the position tracking error needs to be kept small and the desired
acceleration has an explicit relationship to the force exerted on the object, only the
desired acceleration is modified in order to reduce the internal force. Then, the

desired acceleration issued to each robot is Pidm — the modified value of Pid,

Pidmz-i)édc+-i5id7 i=17 2,

where P, is the increment given by the KBC to the original reference input. An
NN-based predictor is designed to predict the force exerted on the object, which cor-
responds to each reference input. The predicted internal force (that is, the principal

output) is then computed. The NN-based predictor has eight nodes at the INPUT

layer, and the inputs are

Pld(k’)7 Pld(k - 1)’ P2d(k)’ P2d(k - 1)7 and
Pign(k), Pigm(k—1), Pogm(k), Pogm(k—1).

There are five HIDDEN nodes and six OUTPUT nodes with outputs:
fik+d/k), for i=1,2, d=1,2, 3.

Simulations Results

In the simulation, the task is that the two robots move the object in X direction
from the initial position to the final position over one-meter distance in five seconds,
and then move back to the initial position. The desired velocity and acceleration of

the object are zero at both initial and final positions. The kinematic and dynamic
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Figure 5.6: Internal force error in X direction without the KBC.
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parameters of the robots are presented in Table 3.1. The sampling interval is T =
0.01 sec. Force predictions are used for the modification process, and position tracking
is achieved by the position controllers. The 1-step ahead predictions }'i(k-{- 1/k), i =
1, 2 are used in the KBC. The desired internal force is set to zero. Without the KBC,
the internal force error in X direction is plotted in Fig. 5.6. After adding the KBC,
the RMS error of the internal force in X direction is reduced by 63% as shown in
Fig. 5.7. Moreover, both the external force error and the position tracking error are
kept almost the same as those without the KBC. Detailed results are summarized in
Table 5.1. Since there is no motion in Y direction, the internal force error in that

direction is small enough not to require the KBC.

5.6 Summary

Focusing on the problem of coordinating multiple systems, a knowledge-based
coordinator is designed using the techniques of both intelligent control and neural

networks. As the high-level coordinator in a hierarchical structure, its basic principle
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Figure 5.7: Internal force error in X direction with the KBC.

is to modify the reference inputs of low-level subsystems according to the principal
output prediction in order to achieve the desired performance. By adding the pro-
posed KBC, the internal structure and parameters of the low-level subsystems are
not affected. Hence, each servo controller of the low-level subsystems can be designed
separately from, and independently of, the others; no constraints need to be imposed.
on the design of low-level controllers. This implies that some commercially—designed
servo controllers for a single system can be coordinated to work for a multiple-system.

Using the principal output and its prediction, and the structure of the decision
tree for knowledge representation, the knowledge base necessary to coordinate mul-
tiple systems is greatly simplified while guaranteeing system stability. By using a
predictor, the negative effects of system time delay is eliminated and each reference
input is analyzed before putting it in operation. The unknAown parameters and/or
time-varying properties of a multiple-system are handled by the NN-based predic-

tor, while leaving the logical reasoning and decision making on the coordination to

the KBC.
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To test this new scheme, the coordination problem for two 2-link robots holding
a rigid object was simulated. By modifying the reference input of each robot, the
internal force exerted on the object was reduced by 63%, indicating the scheme’s

potential for the effective coordination of multiple robots.
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Sample intervals RMS errors of internal forces (V)
without KBC with KBC
0 - 1000 |in X direction 9.58447 3.85020
in Y direction 0.93141 0.53177
1001 - 2000 | in X direction 9.57130 3.53340
in Y direction 0.92339 0.49949
2001 — 3000 | in X direction 9.57097 3.53688
in Y direction 0.92339 0.49956
Sample intervals RMS errors of external forces (V)
without KBC with KBC
0 -1000 |[in X direction 0.72359 0.95822
in Y direction 2.54853 2.54345
1001 - 2000 | in X direction 0.34883 0.70199
in Y direction 0.01436 0.03345
2001 - 3000 | in X direction 0.34883 0.70346
inY direction 0.01436 0.03355
Sample intervals RMS tracking errors of object’s positions (m)
without KBC with KBC
0-1000 | in X direction 0.03509 0.03529
in Y direction 0.05733 0.05784
1001 - 2000 | in X direction 0.03509 - 0.03530
in Y direction 0.05759 0.05813
2001 - 3000 | in X direction 0.03509 0.03530
in Y direction 0.05759 0.05813

Table 5.1: The RMS errors of forces and position tracking.




CHAPTER VI

APPLICATION OF THE KBC — COLLISION
AVOIDANCE IN A MULTIPLE-ROBOT
SYSTEM

6.1 Introduction

Effective application of industrial robots to increase productivity and improve
product quality calls for the development of an intelligent control system for them.
Particularly, multiple robots need to be coordinated in order to perform such so-
phisticated manufacturing tasks as assembly. In a multiple-robot system, not only
must each robot have good behavior, but also must multiple robots be coordinated
to achieve the desired performance. One of the challenging problems in develop-
ing intelligent robot control systems is to coordinate multiple robots in a common
workspace without colliding with each other.

A robot control system usually consists of a four-level hierarchy: task planning,
path planning, trajectory planning, and servo control. The problem of collision
avoidance among robots! can be solved at the path planning level by considering
collision between the robot and the fixed/static obstacles in the workspace. By “path

planning”, we mean off-line geometric planning in robots’ workspace. Generally,

1The term “robot” will henceforth mean “robotic manipulator” and the two terms will be used
interchangeablely, unless stated otherwise.

102
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there are two approaches to path planning: graph search and use of potential field
[Kha86]. In the former, a collision—free path is obtained by searching a graph which
is derived from geometric constraints. The latter assumes an artificial potential field
applied to obstacles and the goal position. A collision-free path is then planned
along the curve of minimum potential.

Collision avoidance can also be achieved By planning collision-free trajectories
with optimization or search methods. A simple solution is to keep all other robots
away from the workspace if it is occupied by a robot. Obviously, this scheme lacks
the flexibility of allowing more than one robot to jointly accomplish a complex task
such as assembly, and requires a longer time to complete a task, since the usage of
the workspace is strictly sequential. Shin and Zheng developed a simple scheme for
planning trajectories of two robots working in the same workspace by minimizing
the robots’ operation time while avoiding collision between them [SZ89]. Their basic
idea is to delay one robot by a minimum amount of time in order to avoid collision
with the other robot. However, an exact collision time between the two robots that
is required for this scheme is difficult to obtain, since a precise trajectory for a given
robot is not always available.

In practice, the desired path and trajectory of each robot are determined by
guiding the robot through the workspace with a joystick, and its servo controller
is designed independently of, and separately from, the other robots. To coordinate

such robots in a common workspace, one has to devise a scheme for on-line collision

detection and avoidance.
Regardless of the collision-avoidance scheme used, it is essential to track a robot’s
desired trajectory precisely, which in turn calls for high-performance servo con-

trollers. Otherwise, collision may occur even if the desired trajectory is planned to
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be collision—free. This implies that the dynamics of multiple robots must be figured
in their coordination. An ;)n—line coordinator is needed to guide the robots using
sensory information. This on-line coordination is commonly termed the path finding
problem. Since path finding does not always guarantee the robots to achieve their
goal positions, a high-level planner is still necessary. However, the existence of on-
line coordination will ease the burden on both path planning and trajectory planning
for collision detection and avoidance. The path finding problem for a multiple-robot
system is the main subject of this chapter.

Most industrial robots are designed to work as a stand-alone device and are
usually equipped with PID—type servo controllers. Thus, it is reasonable to assume

that

A1l. The path of a robot is obtained by teaching, and thus, avoids collision only with

fixed obstacles in the workspace.

A2. Trajectory planning does not deal with the problem of avoiding collision between

moving robots.

A3. Collision avoidance is not a subject to consider when designing servo controllers.

Servo controllers are commercially-designed and independent of one another.

A4. No precise knowledge of the dynamic structure and/or parameters of each robot

and its servo controller is available.

There are only a few papers dealing with the on-line coordination of multiple
robots for collision avoidance. The work described in [FH88] is a typical example.
By representing the dynami;cs of each robot with a state—space equation, a nonlinear
state feedback controller is designed such that the resulting closed-loop system is

decoupled and linearized. The dynamics of multiple robots are also represented by
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n state equations for n robots to be coordinated. A coordinator is then designed,
and the essential part of the coordination command deals with the coupling effects
among the links of different robots. The strategies for collision detection and avoid-
ance are based on analytically—described avoidance trajectories, and the design pro-
cedure depends heavily on a priori knowledge of robots’ dynamics and mathematical
synthesis. The potential problems of this scheme are its computational complex-
ity, and its restriction to the robots with cylindrical joints. Potential-field methods
are also used to deal with the path finding problem [Ti190, War90]. However, none
of the schemes mentioned earlier satisfies all of the realistic assumptions A1 — A4,
because they are not intended for on-line coordination of multiple robots equipped
with commercially-designed servo controllers.

It is in general very difficult to coordinate multiple robots under assumptions A1
- A4. This coordination problem can be viewed as having a hierarchical structure,
in which the internal structure and parameters of low-level subsystems — individual
robots — must not be affected by adding a high-level coordinator. Thus, a new
method must be developed to achieve the on-line coordination of multiple robots
which are equipped with commercially-designed, simple controllers.

Based on a hierarchical structure, we develop a practical, yet general, design
method for coordinating multiple robots in a common workspace under assumptions
Al - A4. The high level consists of a knowledge-based coordinator (KBC) and a
predictor. The coordinated robots form the low level. The detailed structure and/or
parameters of low—level subsystems need not be known to the KBC, thus allowing
the individual subsystems to be designed separately in isolation. This implies that
commercially—designed robots can be coordinated to work in a common workspace

without the need of modifying their servo controllers. (Such a modification is usually
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very difficult to make.)

Section 6.2 states the problem of coordinating multiple robots for on-line collision
avoidance and outlines our ideas in solving it. In Section 6.3, the proposed scheme
is applied to coordinate two cylindrical robots for collision avoidance and is tested
with extensive simulations. The scheme is also tested to coordinate two revolute
robots — the second application example — in Section 6.4. In this second example,
we show that collision associated with kinematic redundancy can also be handled
easily by developing a set of corresponding rules for collision detection. Section 6.5

is a summary of the chapter.

6.2 Problem Statement and Basic Solution Ideas

Suppose two robots work in a common workspace. For simplicity, only the col-
lisions in a two-dimensional workspace are considered, implying that there are no
constraints on the vertical movement of the robots. Thus, for the collision avoidance
problem, one can assume that each robot has three degrees of freedom (DOFs): two
DOFs in X - Y plane of the world coordinate, and one translational DOF in the ver-
tical (Z) direction. In other words, the robots have three DOF's, and it is sufficient
to consider collision avoidance in a two—dimensional plane. The right—-of-way can be
assigned to either robot whenever necessary. Then the master will follow its planned
trajectory, while the slave robot must be coordinated on-line to avoid collision. The
coordinator should be able to easily switch the role of the master and slave robots,
when the trajectory of the slave robot cannot be modified for collision avoidance due
to some physical constraints. The coordinator must not only generate a sequence of
commands for collision avoidance, but also monitor each robot’s dynamic response

to the commands.
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There are two steps for a human to avoid collision with a moving object: anticipate
(estimate) the object’s future position, and modify his/her original trajectory if a
collision is likely to occur. This decision-making process forms the basis for our
knowledge-based coordinator. We must solve the problems of (1) predicting the
robots’ future position, (2) developing a set of rules for collision detection based
on the predicted robots’ positions, and (3) modifying robots’ original trajectories
to avoid collision. Our solution approach is based on a hierarchical structure and
satisfies all of the realistic assumptions A1 - A4. In this hierarchy, the only action
to take at the high level is to issue a sequence of appropriate commands to the low-
level subsystems, so that the internal structure and parameters of one level will not
be affected by adding another level. These commands are defined as the reference
inputs to the low-level subsystems. For multiple robots in a common workspace, the
reference inputs to the low level are the planned trajectory of each robot without
considering the presence of other robots. The purpose of the coordinator is to modify
these planned trajectories to avoid collision among the robots.

Though the master robot is supposed to follow its planned trajectory, its actual,
precise position at each instant is not known due to tracking errors and system dis-
turbances and/or noises. Hence the key problem in accomplishing on-line collision
avoidance is to predict d steps ahead the robots’ positions. Let Y;4(k) be the refer-
ence input of robot z,¢ = 1, 2, at time k. Suppose the robots’ predicted positions
corresponding to each choice of Y;4(k) are available, and other constraints can be
represented by a set of production rules, such as “IF the trajectory of the slave robot
cannot be changed due to the limits of joint torque THEN switch the designation
of master and slave robots.” In each sampling interval, collision avoidance is accom-

plished by iteratively trying different reference inputs and adjusting them according



108

to the predicted tracking error.

Our basic idea is to estimate the effects of the reference inputs with a predictor
and modify them with a KBC in order to avoid collision. Using the predictor, one
can foresee the effects of each reference input on the robots’ future positions. Given
the predicted positions of the robots, the simplified knowledge on how to coordinate

the robots for collision avoidance can be stated as follows:
e Modify the reference input and feed it to the predictor.
e IF the predicted positions do not lead to collision THEN feed the reference

input to the robots ELSE re-modify it.

By using the robots’ predicted positions, the knowledge of how to coordinate multiple
robots to avoid collision becomes clear, thereby simplifying the design of the KBC’s
knowledge base. To complete the design of the KBC, the following three problems

must be addressed in detail.

(1) How is the knowledge of collision detection and avoidance acquired and repre-

sented for a specified configuration of robots?
(2) How is a multiple-step predictor designed?

(3) Given predicted robots’ positions and angles, how is the KBC designed in order

to modify the reference inputs of the robots?

Problem 2 and 3 have been solved in Chapter 4 and 5; therefore, this chapter will

focus on the solution to problem 1.

6.3 Example 1: Coordination of Two Cylindrical Robots

The proposed scheme has a very general structure for the on-line coordination

of multiple robots under realistic assumptions Af - A4. Based on robots’ predicted
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positions, different rules can be developed for different requirements and robots con-
figurations, and can then be included in our knowledge-based coordinator. In this
section, we will show how to derive such rules for two cylindrical robots working in
a common workspace. Another example of two revolute robots will be treated in
Section 6.4, exhibiting the KBC’s capability in handling the collision associated with

kinematic redundancy.

6.3.1 Definition of Collision

The configuration of two cylindrical robots in a common workspace is shown in

Fig. 6.1. To define a collision, we use the method proposed in [FH88]. In Fig. 6.1,

A A Robot
P, (k+d k) Fyeedily

$  (ked 1K) $2 (e /1)

=

P, (k+d)

7 Position Py (k)
Angle ¢ (k)

Figure 6.1: Configuration of two cylindrical robots in a common workspace.

the relationship between the base coordinates of the two robots are expressed by the
distance di2 and the angles ¢o; and ¢g2. The position of robot ¢ at time %k, P;(k),
is the position of its end-effector relative to its base coordinate. The angle, ¢;(k),

is the angle between the robot link and the X axis of robot i’s base coordinate.

Their d—step ahead predictions at time k are denoted as Bi(k + d/k), ¢:(k + d/k).
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Suppose robot 1 is given the right-of-way, then a fictitious permanent colliding robot

is defined with its position P.(k + d) and angle ¢.(k + d) as follows [FHS8S]:

Pk+d) = (dia)?+ (Po(k+ d/k))? — 2di2Py(k + d/k) cos(¢y (k + d/k) — do1)
(6.1)
$e(k+d) = arctan Pi(k + d/k) sin(¢y(k + d/k)) (6.2)

diz — Pi(k+d[k) cos(¢y(k+d/E))
To guarantee collision avoidance in the presence of tracking and prediction errors,
position and angular safety margins are defined by P; > 0 and ¢; > 0. Without loss
of generality and also for simplicity, in the following discussion we assume ¢o; = 0

and ¢02 =T.

6.3.2 Rules for Collision Detection

There are six different possible configurations for the two robots, and two of
them — in which collision may occur — are shown in Fig. 6.2. To detect a possible

collision, the estimated angular margin is defined by

, Ap—d,, if A$>0
A e (63)
Ad+¢d,, if Ad<0
where Ad = (doz — 2k +d/k)) — dc(k+ d).

Referring to Fig. 6.2, we propose the following rules for collision detection:

R3-1: FOR ¢.(k+d) > 0,

IF  Ad, <0 AND |Ad,| < |¢e(k + d)] AND (Py(k + d/k) > P.(k +d) — P,),

THEN a collision is detected.

R3-2: FOR ¢.(k +d) <0,

IF  Ad, >0 AND |Ad,| < |gc(k + d)] AND (Py(k + d/k) > Pu(k + d) — P,),
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Figure 6.2: Collision detection for two cylindrical robots.

THEN a collision is detected.

Note that condition Pg(k + d/k) < P.(k + d) — P, in the above rules of collision
detection is conservative. In fact, P.(k + d) — P, < Py(k + d/k) < D may hold

without causing any collision. Referring to case (a) of Fig. 6.2, D is computed as:

' Sin(ﬁ?’l(k +d/k)) _ if sin(oé
d12 Sln((z)l(k—l-d/k)—}-ﬂ) PS7 f (¢1(k+d/k)+ﬂ)#0

D = | (6.4)

| di2 - Py(k+d/k) — P, else
where 8 = |@.(k + d)| — |Ad,|. The corresponding rules of collision detection then

become:

R3-3: FOR ¢.(k+d) >0,
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IF  Ad, <0 AND |Ad,| < |¢c(k +d)] AND Py(k +d/k) > D,

THEN a collision is detected.

R3-4: FOR ¢.(k+d) <0,

IF A, >0 AND |Ad,| < |¢c(k+d)| AND Py(k+d/k) > D,

THEN a collision is detected.

6.3.3 A Collision Avoidance Algorithm

We want to iteratively modify the reference inputs Y4(k) = [Pa(k), ¢ia(k)]7,
i = 1, 2, by checking possible collisions in future. Because one of the two robots is
given the right—-of-way, the KBC only r;eeds to modify the other robot’s reference
input for collision avoidance. The proposed algorithm for ccordinating two robots
to avoid collision is then given below, where the superscript ¢ denotes the iteration

count.

(1) Using the predictor, compute the predicted positions and angles of the two
robots, Pi(k + d/k), $1(k + d/k), Py(k + d/k) and $ao(k + d/k).

(2) Compute the position and angle of the fictitious permanent colliding robot,
P.(k + d) and ¢.(k + d), using Egs. (6.1) and (6.2).

(3) Set i« 0andlet Pi(k +d/k) = Py(k+ d/k), Gi(k+d/k)= do(k+ d/E).

(4) Compute the angular margin, A¢d,, using Eq. (6.3).

(5) Detect collision using R3-1 and R3-2 (or R3-3 and R3-4). If no collision is
detected, then terminate.

(6) Modify the reference input of robot 2 using the KBC, and compute the
corresponding predicted position and angle of robot 2, Pit'(k + d/k) and
&5t (k + d/k).
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(7) Set i« i+ 1 and repeat steps 4—6.

The remaining problem is then to implement this algorithm in the KBC, which was

treated in Chapter 5.

6.3.4 Simulation Results

The two cylindrical robots discussed so far are simulated to demonstrate the
capability of the proposed scheme. The simulation is arranged as shown in Fig. 6.3,

where both robots move simultaneously. Each simulated robot consists of the first

Robot 2

Robot 1 |

Figure 6.3: Simulation arrangement of two cylindrical robots.

and third link of a Stanford/JPL robotic manipulator [Bej74], while keeping the

other joint angles at zero. The simplified dynamic model is

é: = 0.7027 7
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B = 01379 15 + 87555, i = 1,2,

where ¢; and P; are the angle and position of robot ¢’s joint 1 and 3, respectively, and
Ti1, Tiz are the corresponding joint torque and force. For each robot, a PD controller

is designed

Ta = 37.7(¢ia — &) + 14.7(dia — &),

Tia = 192.2(Py — P,) + 74.7(Pq — P;) — 63.5.

The safety margins are set to P, = 0.2 m and ¢; = 0.25 rad. The sampling
interval is 0.01 sec.

An NN-based predictor is designed for each robot. All the dynamic parameters
and controller structure/parameters are unknown to both the NN-based predictor
and the KBC. The NN-based predictor has six INPUT nodes, eight HIDDEN nodes,

and six OUTPUT nodes. The inputs of the prgdictor are
Piy(k), Pqa(k—1), Pa(k—2), dia(k), dia(k—1), ¢is(k—2), for i=1,2,
and the outputs of the predictor are
Bi(k +1/k), Pi(k+2/k), Pi(k+3/k), di(k+1/k), di(k+2/k), ik +3/k).

In the KBC, 2-step ahead predictions are used to guide the modification of the
reference inputs. The 2-step ahead prediction errors of robot 2 are plotted in Fig. 6.4.
The NN-based predictor converges within 250 sampling intervals, though it may be
far from being well trained. The results of 1-step and 3-step predictions of robot 2
as well as robot 1 are similar to the plots in Fig. 6.4.

Under the KBC’s coordination, the actual paths of the two robots are plotted in

Fig. 6.5. Robot 1 follows its own planned trajectory while robot 2 moves cautiously
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Figure 6.4: Two-step—ahead prediction errors of robot 2.

to avoid collision. In the simulation, only the position reference input of robot 2 is
modified. N ote'that since the two robots move simultaneously, robot 2 is kept away
from the working region overlapping with that of robot 1. Instead of modifying the
position reference input, the angular reference input of robot 2 can be modified. In
that case, robot 2 will be deiayed and enter the overlapped region following robot
1. Moreover, robot 1’s reference inputs can also be modified if collision cannot be
avoided by modifying robot 2’s reference inputs alone.

In most industrial settings, the effects of process and measurement noises must be
addressed, testing not only the noise-rejection ability of each robot’s servo controller,
but also the capability of the KBC and the NN-based predictor. Fig. 6.6 shows the
actual paths of the robots under the KBC’s coordination in the presence of process

noise in both robot control systems. The conditions of this simulation are the same
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as above, except that the distance between the two robots dj2 = 1.3 m and the safety
margins P, = 0.3 m, ¢s = 0.3 rad. Under these conditions, the KBC still worked

well in avoiding collision between the two robots.

8
.6+
1
4.

.
.24
<

Figure 6.5: Actual paths of the two robots.

6.4 Example 2: Coordination of Two Revolute Robots

Our second example is to coordinate two revolute robots in a two-dimensional
workspace, as shown in Fig. 6.7. Similar to the case of two cylindrical robots, the
translational motion in Z direction is not constrained. However, in this workspace,
if Qo C Q is the space in which the angle of link 2 is 0 or 7 for each robot, then
for each point (z, y) € @\ Qo there are two different link configurations allowing
the end-effector to reach the goal point. In other words, a 2-link robot is redundant

in this workspace. Robot 1 is designated as the master and will follow its planned
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Figure 6.6: Actual paths of the two robots in the presence of process noise.

trajectory, while robot 2 is the slave and has to be coordinated for collision avoidance.
Under assumptions A1 — A4, this redundant case is more difficult to coordinate than
cylindrical robots, especially when we have to rely solely on mathematical synthesis.
However, even in such a case we can derive‘a set of rules for collision detection and
avoidance. We want to keep the set of the rules simple, but there is a tradeoff between
the simplicity of rules and the conservativeness of collision detection. In what follows,

we will consider the problem of coordinating two revolute robots with emphasis on

i

the development of rules for collision detection and strategies for collision avoidance.

6.4.1 Definition of Collisions

Consider two revolute robots working in a two~dimensional workspace, as shown
in Fig. 6.7. Let ¢i1(k), gi2(k) be the joint angles of robot ¢ at time k, and §i(k+d/k)

and §Gi2(k + d/k) be their d-step ahead predictions, respectively. (In what follows,
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Figure 6.7: Configuration of two revolute robots in a common workspace.

di(k+d/k) and §ip(k-+d/ k) will be represented by §;; and §;2, respectively, to simplify
the notation.) Two fictitious permanent colliding robots — corresponding to the two

possible configurations of robot 1 in Fig. 6.7 — can be defined with positions Py, P

and angles ¢, da,

Py sin ¢10 )
dya — cos ¢

(6.5)
L1 singy )

Po = \/(13'10)2 + (d12)? -2 1510 di2 cos <1310, and ¢, = arctan (

dy2 — cos Gi1

(6.6)

Pcl = \/(L11)2 + (d12)2 -2 L11 d12 Ccos éll, and (]5,:1 = arctan (

where L;; is the length of link j of robot ¢, dy, the distance between the bases of two

robots, and

A

Py = \/(Li1)2 + (Li2)* 4+ 2 Ly Lz cos §ia,
18I0 i + Lig sin(§ix + Giz)
2

- L
$io = arcsin( ), i=1,2 j=1,2
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We want to define a permanent colliding robot corresponding to different values
of Py, P, and ¢, ¢. The position of the permanent colliding robot can be

conservatively selected as

Pc = l’l’liIl(Pco, Pcl); (67)

and its angle ¢, will be defined depending on different cases.

6.4.2 Rules for Collision Detection

There are three robot configurations depending on the angle of a permanent
COllldlIlg I‘ObOt: (1) ¢c0 Z Oa ¢cl 2 0) (2) ¢cO < 0) ¢cl < Oa and (3) ¢cO 2 0, ¢c1 <0
or o < 0, ¢ > 0. For each of these cases, robot 2 can be represented by the

predicted position P; and the predicted angle é2, where
Pz = ma,X(on, L21), (68)

and ¢, will be computed depending on different cases. For collision detection, the

angular and length margins are defined by

) Ad—ds, if A$>0 X )
Ad, = ) ) and AP, =P, —(P,+P;), (6.9)
A¢ + &, if Ap<0

where Ad = (doz — ‘;Sz) - ¢.

Then, a set of rules for collision detection are derived for each case. Fig. 6.8 shows
the collision detection of Case 1 with the safety margins ¢; = 0 and P, = 0. The rules
for detecting collision between two revolute robots in a two-dimensional workspace
are summarized below.

Case 1: Both ¢ >0, and ¢4 >0

Define ¢, = max(¢c0, ¢a1) and ¢ = max(égo, g21), then the rules are
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Figure 6.8: Collision detection for two revolute robots: Case 1.

R4-1: IF Ad, < 0 AND |Ad,| < 4| AND AP, <0,

THEN a collision is detected.

> |l
THEN set ¢ = min(qzzo, g21), compute Ad = (¢oz — 9132) — ¢, and

R4-2: IF Ad, <0 AND A4,

Ad, as in Eq. (6.9),

IF [Ad| < |¢| AND AP, <0,

THEN a collision is detected.
END
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Case 2: Both ¢, <0, and ¢, <0

Define ¢, = min(¢co, ¢) and 952 = min(q@zo, da1), then the rules are

R4-3: IF A, > 0 AND |Ad,| < |4.| AND AP, <0,

THEN a collision is detected.

R4—4: IF Ag, > 0 AND |Ag,

> |¢dl;

THEN set ng = max(éﬁgo, g21), compute A<;S = (Poz — qA$2) — ¢ and
Ad, as in Eq. (6.9),

<|¢c| AND AP, <0,

IF |Ag,

THEN a collision is detected.
END

Case 3: ¢c0 Z 07 ¢c1 < 0 or ¢c0 < 0, ¢c1 2 0.

Define ¢. = max(|¢eo|, |¢al) and $2 = max(tgzzo, go1), then the rules are

R4-5: IF Ad, < 0 AND |Ad,| < |2 4| AND AP, <0,

THEN a collision is detected.

R4-6: IF Ad, <0 AND |Ag,

> |2 ¢,

THEN set ¢, = min(gggo, go1), compute Ad = (do2 — ggg) — ¢, and
Ad, as in Eq. (6.9),

<2 ¢.| AND AP, <0,

IF |Ad,

THEN a collision is detected.

END

Clearly, the rules for collision detection are much more complicated than those for
two cylindrical robots because of the kinematic redundancy. However, these rules
can be simplified if the planned trajectories of the two robots are given a priori, as

discussed in Section 6.4.4.
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6.4.3 Strategies for Collision Avoidance

It is assumed that the desired trajectories of both robots are planned while con-
sidering fixed obstacles (not the moving robots) in the workspace. Using a multi-step
predictor and the rules developed above, a possible collision can be detected. Once
a collision is detected, the planned trajectory of robot 2 will be modified using the
algorithm in Section 6.3.3 in order to avoid the collision. Though either increasing
or decreasing the speed of robot 2 may avoid the collision, the reasonable maneuver
is to slow down robot 2 since the maximum speed and acceleration/deceleration are
usually bounded. This implies that the reference input be modified in one direction
(that is, decrease). In order to give robot 2 a sufficient time so that it can maneuver
to avoid the anticipated collision, the safety margins ¢ and P; are added to the
length and angular margins as in Eq. (6.9). Moreover, it is possible to modify the
planned trajectory of one joint to avoid collision, which will in turn simplify the

modification process of the reference inputs.

6.4.4 Simulation Results

The robots are arranged as shown in Fig. 6.9, and the dynamic and kinematic
parameters of the two robots are identical and shown in Table 3.1. It is assumed that
each robot is equipped with a PD-type servo controller, and the sampling interval
is 0.01 sec. The planned trajectories are symmetric, and their values at some special
points are given in Table 6.1, where the subscript d denotes the desired value.

An NN-based predictor is designed for each robot. There are six INPUT nodes

with inputs

gind(k), gia(k —1), gia(k —2), giod(k), giaa(k —1), gi2a(k —2),
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Figure 6.9: Simulation arrangement of two revolute robots.

eight HIDDEN nodes and six OUTPUT nodes with outputs,
ga(k +1/k), Ga(k +2/k), Gu(k +3/k), Gia(k+1/k), Gia(k + 2/k), Gia(k + 3/K),

for robot 2,2 =1, 2.
Considering the specific configuration and the planned trajectories of this exam-

ple, the rules for collision detection can be simplified. Since the moving directions of

both robots are the same in this example, one can always derive a suitable permanent

colliding robot by choosing
¢ = max(Peo, ¢a1), and P, = min(Po, Pn).
The rules for collision detection can then be simplified and are listed below.

(1) Compute 4;2 = max(qAﬁzo, g21), and 152 = maX(on, Lg).

(2) Compute angular and length margins Agd,, and AP, as in Eq. (6.9).
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Robot 1 Joint 1 Joint 2

qi1d ‘1'11d ijnd q12d dlzd Q'lzd

initial values, t = &, 90° 0 0 0° 0 0

middle point, t = ¢;/2 | 0° | max | max| 90° | 0 0

final values, t = ¢; -90°| O 0 0° 0 0

Robot 2 Joint 1 Joint 2

g21d | G21d | G21d | Qa2d | Go2d | Go2d

initial values, t = {g 90° 0 0 0° 0 0

middle point, t = t;/2 | 180° | max | max | —90° | 0 0

final values, t =1y 270° | O 0 0° 0 0

Table 6.1: Trajectory specification of the two revolute robots.

(3) Detect collision using the following rules:

R4-7: IF ¢. > 0 AND A, <0 AND |Ad,| < |¢.| AND AP, <0,

THEN a collision is detected.

R4-8: IF ¢, <0 AND Ag, > 0 AND |Ad,| < |¢| AND AP, <0,

‘ THEN a collision is detected.

The angular and length safety margins are set to ¢, = 0.2 rad. and P, = 0.05 m,
and 2-step ahead predictions are used for collision detection. Fig. 6.10 shows the
actual trajectory of robot 2, showing the slow—down of robot 2 to avoid collision.
The detailed process of collision detection and avoidance is shown in Fig. 6.11 in

which the collision region is divided into four sub-regions. Using rule R4-7, in region

> |l

1 collision is avoided by keeping AqASS > 0. In regions 2 — 4, we have |A$s
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planned trajectory

0 500 1000 1500 2000 2500
time (x 0.01 sec.) '

Figure 6.10: The actual trajectories of robot 2.

AP, > 0, and Ag¢, < 0, respectively. That is, rule R4-8 is never met, so no collision
occurs. These results indicate that the robots can be successfully coordinated by the

KBC to avoid collision.

6.5 Summary

A new knowledge—based, hierarchical scﬂeme is proposed to coordinate multiple
robots in a common workspace for on-line detection and avoidance of collision among
them. The proposed KBC qnd NN-based predictor form the high level of this hier-
archy, and the robots to be coordinated form the low level. The KBC foresees the
effects of each reference input on the low level by using the predictor, and modifies
the reference input based on the prediction results in order to avoid collision among
the robots.

The proposed scheme assumed that both path planning and trajectory planning

did not consider on-line collision detection and avoidance, and adding the KBC did
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Figure 6.11: Collision detection and avoidance with the KBC.

not impose any constraints on the design of robots’ servo controllers. This may relax
the usual requirements (for example, the knowledge of exact dynamics) imposed on
path planning, trajectory planning, and ser?o controllers design. Other constraints,
such as joint torque limits and master/slave assignment, can be easily added to the
knowledge base. Since the internal structure and parameters of the individual robot’s
control system are not affected, one can coordinate multiple robots — equipped with
built-in servo controllers — working in a common workspace.

Though both the examples presented in this paper are concerned with two robots,
it is not difficult to extend the results to the case of more than two robots, because
different rules of collision detection and avoidance can be added in for different robots’
configurations. Once a possible collision is detected, it can be avoided by iteratively

modifying the reference input of each robot using the KBC. The simple structure
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and algorithm, no constraints on the design of individual robot control systems, and
good simulation results make the proposed scheme attractive for many industrial

applications.



CHAPTER VII

DIRECT CONTROL AND COORDINATION
USING NEURAL NETWORKS

7.1 Introduction

In the previous chapters, we have developed a knowledge-based coordinator. The
combination of the techniques of intelligent control and neural networks provides
such advantages as a hierarchical structure, a simplified knowledge base and infer-
ence process, less a priori knowledge requirements on subsystems, and flexibility of
adding more production rules. However, the potential capability of neural networks
in control application does not seem to get a full play because neural networks are
only used like an observer in the KBC. In this chapter, we will develop an NN-based
controller to control a class of nonlinear systems and an NN-based coordinator for
a tightly coupled multiple-system.

Many industrial control and coordination systems have difficulty achieving high
performance with conventional control designs. For example, the main problems
in process control are negative effects such as a long system-response delay, the
dead zone and/or saturation of actuator mechanisms, and the nonlinear response of
control valves. Process and measurement noises also degrade system performance.

The dynamic property of a controlled plant may not be very complex, even though its

128
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detailed structure and parameters may be unknown. However, when such a plant is
put in operation, it will be difficult for the control system to achieve high performance
due mainly to the negative effects mentioned above.

Contemporary industrial process control systems dominantly rely on PID-type
controllers, though the hardware fo implement control algorithms has been improved
significantly in recent years. In addition to the difficulty in achieving high control
quality, the fine tuning of the controller’s parameters is a tedious task, requiring
experts with knowledge both in control theory and process dynamics. Another ex-
ample is the coordinated control of multiple robots cooperation. Each robot is a
stand—alone device equipped with commercially—deéigned servo controllers. When
more than one robot must cooperate to accomplish a common goal, in addition to
the good behavior of each individual robot, their effective coordination is crucial
to achieve the desired level of overall performance. This coordination problem is
usually organized hierarchically. The low level includes the servo controllers which
are designed independently of, and separately from, each other. The addition of a
high-level coordinator should not require alteration of the internal structure and/or
parameters of the low-level controllers. The main diﬂicultiés associated with this
coordination problem come from nonlinear system dynamics, kinematic redundancy,
MIMO, inaccurate system parameter values, and so on. To cope with the above
problems/difficulties, new controllers (coordinators) should be developed. The goal
of this chapter is to develop such a new controller (coordinator) using neural net-

works. Particularly, we shall focus on

1. industrial process control in the presence of the nonlinearity of dead zone and

saturation, and the negative effects of long response delays and process noises,

2. the coordinated control of two robots holding an object, in which each robot
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is equipped with commercially—designed servo controllers.

A controller is usually connected serially to the controlled plant under consider-
ation. For a multilayer perceptron, the weights of the network need to be updated
using the network’s output error. For an NN-based controller, the NN’s output is
the control command of the system. However, when the NN is serially connected to
a controlled plant, the network’s output error is unknown, since the desired control
action is unknown. This implies that the BP algorithm for training an NN cannot be
applied to control problems directly. Therefore, one of the key problems in designing
a direct NN-based controller is to develop an efficient training algorithm.

We note that most of the work mentioned in the survey (Section 2.3 of Chapter
2) is in the form of indirect adaptive control or has complex training methods and
system structures, and none of them were developed to coordinate multiple systems.

This fact was summarized in [NP90]:

At present, methods for direct adjusting the control parameters based on
the output error (between the plant and the reference model output) are
not available. This is because the unknown nonlinear plant lies between

the controller and the output error.

In contrast to the indirect adaptive control, in this chapter we will develop a direct
adaptive controller and a coordinator. A simple algorithm is proposed based on the
BP for a class of nonlinear systems typified by industrial process control applications
and for a multiple-robot coordination problem. The proposed NN-based controller
(coordinator) is trained by using the system’s output errors directly with a little a
priori knowledge of the controlled plant.

In Section 7.2, the control problem using NNs is stated formally, and the ba-
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sic structure of the proposed NN-based controller (coordinator) is analyzed. The
training algorithm is developed in Section 7.3, and the corresponding theorems are
proved. Section 7.4 presents a procedure for designing the NN-based controller and
addresses problem related to its implementation. Section 7.5 summarizes the simu-
lation results of a temperature control system in a thermal power plant to test the
proposed NN-based controller. This is a typical system with a long response delay,
nonlinearity of dead zone and saturation, and process noise in process control. The
performance of the NN-based controller is also compared with a PI controller. In
Section 7;6, the coordinated control of two robots holding an object is presented, in-
cluding the dynamics of the coordinated systems, specification of the desired forces,
force error analysis, and the system structure with an NN-based coordinator. The
proposed NN-based coordinator is evaluated for two 2-link robots holding an object
via simulation, and the results are presented in Section 7.7. Section 7.8 is a summary

of the chapter.

7.2 Problem Statement and the NN—-based Contro‘ller

A controlled plant can be viewed as a mapping from the control input to the
system output:
z = f(x, u, t), y=g(z, u, t),
where 2 € R™, y € R" and u € R™ are system state, output and input,
respectively. The controller of this plant, if exists, can be represented as a mapping

from the system feedback and/or feedforward to control commands:

U = c('y7 Ya» t)1 (71)

where y, is the desired system output. As is usually the case, only the system output

1s assumed to be measured.
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Figure 7.1: A control system with an NN-based controller.

We want to design an NN-based controller which will replace a conventional
controller. In other words, the NN-based controller is cascaded with the controlled
plant as shown in Fig. 7.1 and trained to learn the mapping in Eq. (7.1). The
desired control input w4(t), is required to produce the desired output y,(t). The

system—output error and the control-input error are then defined, respectively, by

et) =yt —y(t),  and  eu(t) = ug(t) — ut).

The control-input error e,(t), is also called the network-output error, since u(t) is
the output of the NN-based controller. An NN is usually trained by minimizing the
network-output error e,(t). However, if the NN controller is cascaded in series with
the controlled plant, then e,(t) is not known, since the desired control input w4(t)
is unknown. So, the immediate problem in designing such an NN-based controller
is how to train the NN.

As we have seen from the survey in Chapter 2, one of the most popular structures
of neural networks is multilayer perceptron with BP algorithm. The BP algorithm is
based on the gradient algorithm to minimize the network—-output error and is derived
from the special structure of the networks. In what follows, the BP algorithm for a
three-layer perceptron is listed as a reference to see what is the problem using it as a
controller/coordinator. Referring to Fig. 7.2, let 6,; and 0,1 be the thresholds at the

HIDDEN and the OUTPUT layer, respectively, where 1 < j < Ny and 1 < k < N,.
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Figure 7.2: A multilayer perceptron used as an NN-based controller.

Then, the computation of the NN’s output and updating of the NN’s weights are

summarized in the following five steps.
(1). Compute the output of the HIDDEN layer: Xj;

1
 14exp (=045 — by5)’

X15(t)

i=1

(2). Compute the output of the OUTPUT layer: Xox

1 A

(3). Update the weights from the HIDDEN to the OUTPUT layer: Wi

Wie(t + At) = Wy(t) + m b6ie Xa;(2),

where 6y = (ng(t) — sz(t)) Xor(t) (1 — Xax(t)),

and ng is the desired value of X5;.

(4). Update the weights from the INPUT to the HIDDEN layer: W;;

Wit + At) = Wi(t) +n 6;X:(2),

N
where Oy; = Z Wi Xi(t), j5=1,2,---

, Na.

(7.2)

(7.3)
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N
where 6_,' = Z b1k lek(t + At) le(t) (1 - le(t)) .
k=1

(5). Update the thresholds: 62 and 0;.
02k(t + At) = 02k(t) + 116 b1k, Hlj(t + At) = 01j(t) -+ 7o 5j, (74)

where 7, 11, 7¢, and 774 > 0 are the gain factors.

In any control system design, it is desired to specify the system performance
in terms of system-output errors, e,(t) = y,(t) — y(t), rather than the unknown
network—output error e,(t). To design such a controller using NNs, we adopt the
basic principle of a multilayer perceptron with BP because of its ability of universal
approximation and its convergent property based on the gradient algorithm [WM89).
The major obstacle to design such an NN-based controller is to train the NN us-
ing system—output errors, e,(¢), rather than the network—output errors' e,(t). This
problem is solved in the next section. ’

7.3 Training an NN—-based Controller with System—QOutput
Errors

To derive the BP algorithm, the cost function of the network is defined as

13 2
Eu(t) = ) Z (euk(t)) )
k=1
where eui(t) = urqa(t) — ui(t) is the network-output error at the k-th node of the

OUTPUT layer. As mentioned earlier, E,(t) is not available since uz4(t) is unknown

for all k. Let the l-th component of the system—output error be defined by

eyl(t) = yld(t) - yl(t)a l= 1, 2, -, .

Then, the cost function in terms of the system—output error is defined as

E,(t) = %Z (eq(t))’ = %z": (wia(t) — wi(t))*

n
=1 =1
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= - Z (G,(ud G‘l’[(’l.l,))2 ’ (75)
215

where Gy(u) is the I-th component of the dynamic system y(¢) = G(u(t)), y(t) =
[11(2), «-+, yu ()%, and w(t) = [us(t), -+, un,(¢)]". Eq. (7.5) is computable from
the measurement of the system output. In other words, we know a function of the
network—output error, though the detailed structure and parameters of the ma,pping
G(-) may not be known. We want to train the NN by minimizing the cost function

Eq. (7.5).
Using the gradient algorithm, the weights from the HIDDEN to the OUTPUT

layer are modified by

Wikt + At) = Win(t) + AWy, (7.6)
and setting AWy o -;ﬁ%-%. (7.7)
Noting that uz(t) = Xok(¢) in the NN-based controller!, we get
™ 2 0400 55 0 O
Since Qg%it) = Xau(t) (1 — Xoi(t)) and % = X1;(t), Eq. (7.8) becomes
STy =~ (lt) ~ui(t) g Xaelt) (1= Xault) Xof). (1)

Substituting Eq. (7.9) into Eq. (7.7), one can get

AWir(t) = nf 6% Xa;(2), (7.10)
v _ = ayl(t)
where 6}, = l; (y1a(t) — wi(t)) Fua(?) Xoi(t) (1 — Xax(t)) (7.11)

n fact, Xok(t) is the scaled value of uj(t). At this stage, it is assumed that the value of ug(t)
is within the range of (0, 1). The scaling problem will be discussed later.
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6y,(t)
Fur(t)’

7y > 0 is a gain factor. The only unknown in Eq. (7.11) is the (I, k)-th

component of the Jacobian matrix of the controlled plant.
Recall that the network—output error at the k-th node of the OUTPUT layer is
defined by

euk(t) = ukd(t) - uk(t). (7.12)

Referring to Eq. (7.11), the component of system-output error contributed by the

k-th control input is defined by

calt) = 3 (al)) ~u(t) G (1.13)

To apply the gradient algorithm, we have the following theorem.
Theorem 7.1: Suppose the system response delay corresponding to the k-th
control input is dy. To train the NN using the system—output error and ensure the

convergence of the training algorithm, the necessary and sufficient condition is
sign (esk(t)) = sign (eur(t — do)) . (7.14)

Proof: In the gradient algorithm, the solution converges to a minimum of the cost
function if and only if the search is made along the negative direction of the gradient
of the cost function. BP is based on the gradient algorithm and listed in Egs. (7.2)

to (7.4). Because ugq(t) — ur(t) = X&(t) — Xox(t), Eq. (7.3) becomes

81k = eqr(t) Xar(t) (1 — Xak(t)). (7.15)
Substituting Eq. (7.13) into Eq. (7.11), we get

8% = esk(t) Xar(t) (1 — Xai(t)). (7.16)

Because both Egs. (7.15) and (7.16) are derived by applying the gradient algorithm,

to ensure the convergence of the training algorithm given in Egs. (7.6) and (7.10),
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the necessary and sufficient condition is Eq. (7.14), when the system response delay

i1s accounted for. O

dyi(t) | . . .
The accurate value of BZ;((t)) is not important, because the step size can be
k
‘ 6y1(t) 3y1(t)
» . —_ y . . .
adjusted by setting 9, = Fur(?) ol Certainly, this requires Bun(?) < oo, Vit
) ) oyt . . .
Therefore, if the sign of 831((2) at each instant is known, then we get a simple
k

algorithm to train the NN by using the system output error instead of the network

output error. However, for general nonlinear systems, it is not easy to determine the

sign "of 063‘((?) at each instant. Hence, in what follows, we shall develop a training
k
t
algorithm for a class of systems with 8651((2) < 00, Yt,and the following properties.
k

Specially, in the next section, an NN-based controller is designed for a class of SISO

systems, and the case of MIMO system is discussed in Sections 7.6 and 7.7.

7.4 Design of the NN—based Controller

For a SISO system, the training algorithm presented in the previous section can
be simplified by using the deﬁﬁition of system direction.

Definition 1: If the system output monotonically increases (decreases) as the
control input of a controlled plant increases, then the system is called positive-
responded (negative-responded). Both positive-responded and negative-responded
systems are called monotone-responded.

Definition 2: For a SISO system y(t) = G(u(t)), if the system is positive-
responded (negative-responded), then the system direction is defined by D(G) =1
(D(G) = -1).

Definition 1 characterizes a class‘ of systems. For example, a linear system is
cascaded with an element of pure response delay, dead zone and/or saturation. For-

tunately, there are many industrial process control systems that possess the property
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of monotone-response. To train an NN-based controller for such a class of systems,
we have the following theorem.

Theorem 7.2: For a SISO monotone-responded system, in order to train the
NN-based controller in Fig. 7.2 using system-output error, £he weights on the arcs

from the HIDDEN to the OUTPUT layer are updated by

Win(t+ At) = Win(t) + 0 61 Xu;(2), (7.17)
where &1, = (ya(t) —y(t)) D(G) Xau(t) (1 - Xn(t)).

Proof: For a SISO system, Eqgs. (7.12) and (7.13) are simplified to e,(t) =

uqg(t) — u(t) and es(t) = (ya(t) — y(t)) % From Eq. (7.14), we get the condition

of convergence: sign (e (t)) = sign (e.(t — do)). If the system response delay is d,

then for a positive-responded system
sign (ua(t — do) — u(t — do)) = stgn (ya(t) — y(t)). (7.18)
Similarly, for a negative-responded system we have
stgn (ug(t — do) — u(t — dp)) = —stgn (ya(t) — y(t)). (7.19)
From Egs. (7.18) and (7.19), we conclude that the condition for convergence is
sign (uq(t — do) — u(t — do)) = sign (ya(t) — y(t)) D(G). (7.20)

Eq. (7.20) then implies that the corresponding training algorithm is based on Eq.
(7.17). O

Figs. 7.1 and 7.2 show the basic structures of the system and the NN-based
controller, respectively. For a SISO system, there is one node at the OUTPUT layer,

that is, Ny = 1. The choice of the NN’s inputs should reflect the desired and actual
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status of the controlled system. Therefore, the inputs of the NN-based controller are

usually the system’s desired and actual outputs, and tracking errors:

yd(t) » ya(t — At), ---, yd(t —my At), y(t), y(t — AL), -, y(t —ma At),

ey(t) ’ ey(t - At)7 Tt ey(t — m3 At),

where m;, my and mz > 0 are integer constants, and e,(t) = yq(t) — y(¢). The
number of the HIDDEN nodes depends on the controlled plant under consideration.
However, selection of a suitable number may require extensive experiments.

Based on Theorem 7.2, the formulas for updating the weights from the INPUT
to the HIDDEN layer and the thresholds are derived using the same procedure given
in Section 7.3. The computation of the NN-based controller for a SISO system is
then summarized as follows.

A. Compute the output of the HIDDEN layer: Xj;(t).

' N
1 where O]j = Z I/Vz'j Xi(t), J= 17 2a Tt Nl-

Xt = 7 + exp (=045 — 645)’ =

B. Compute the output of QUTPUT layer: X2 (¢).

1 L
where Oy =) Wy; Xq;(t).

X21(t) = 1+ exp (_021 _ 021)7 =

C. Update the weights from HIDDEN to OUTPUT layer: Wy;1(t).

Win(t+ At) = Win(t) + 07 61 Xa;(2),

where & = (ya(t) - y(t)) D(G) Xnn(®) (1 — Xun()).
D. Update the weights from INPUT to HIDDEN layer: W;;(¢).

Wit + At) = Wi(t) +7° &f Xi(d),

where 6 = §&}; Wi Xq;(t) (1 — Xy;(t))
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where n{ and n¥ > 0 are the gain factors.

E. Update the thresholds: 6, and 6;.
021(t + At) = 021(¢) + nfy 611, 0:15(t + At) = 015(t) + ny 65,

where 9}, and 77 > 0 are the gain factors of the thresholds at the OUTPUT and the
HIDDEN layer, respectively.

Another problem in designing such an NN-based controller is the choice of scaling
factors. The sigmoid function in NN computation forces the NN‘outputs to be
within the range of (0, 1), although the control input u(t), is limited by the range
of actuators, (Unin, Unaz). Therefore, the NN outputs should coincide with, or be a
little narrower than, the range of the actuator’s limits. The output of the NN—-based

controller is then computed by
'Ll,(t) = X21(t) (Uma:v - Umin) + Umin-

Generally, an NN works in the mode of training — operation. In other words,
an NN is put in operation only after it is “well-trained.” By “well-trained,” we
mean that the weights of the NN need not be modified any more. However, for a
time-varying system, it is meaningless to say that an NN is “well-trained”, since the
system always changes with time. Thus, not updating the weights for a time-varying
system ma.y result in the system going out of control. it is therefore necessary to
always update the weights of the NN-based controller. In other words, the weights
of the NN-based controller should be updated but not in the mode of training —

operation, though the updating may not be done during every sampling interval.
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7.5 Simulation Results of a Temperature Control System

Many industrial process control systems can be characterized by a linear system
cascaded with a nonlinear element as a result of dead zone and actuator limits, and/or
a pure time delay caused by transportation delay and system response delay. To test
the capability of the proposed NN-based controller, we conducted simulations while
emphasizing the ability to overcome the negative effects of dead zone, saturation, long
response delay, and process noise. The simulated system is a simplified temperature
control system of a once—through boiler in a thermal power plant. The input is the
variation of feedwater flow rate. The output is the variation of the temperature
at the middle point where water becomes steam. The system is represented by an

ARMAX model:

A(z") y(k) = B(z7") u(k — do) + C(=7") &(k) (7.21)
where A(z7') = 1-—0.45181 271 —0.47546 272,
B(z™') = —0.04560 z~' —0.00404 272,
C(z™Y) = 1-0.35740 271 — 0.03392 272,

dp = 18 sampling intervals.

Here the sampling interval is chosen to be 8 seconds, y(k) and u(k) are the system
output and control input at a discrete time k, respectively, and (k) is an uncorre-
lated random sequence with zero mean and variance R that represents the process
noise. Note that this model is for simulation only. The NN-based controller has no
knowledge about this system except its response direction.

A nonlinear element of dead zone and saturation is cascaded with the system Eq.
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(7.21) to model an actuator, which is described by

,

Unin if [u(t)| 2> dead_zone and Upin > u(t)

0, if |u(t)| < dead_zone
ua(t) = ¢ (7.22)
u(t), if |u(t)| > dead_zone and Upin < u(t) £ Unex

‘ Unaz, if |u(t)] > dead_zone and u(t) > Upez -
The dead zone and saturation are treated as unknown properties of the controlled
plant. We want the NN-based controller to overcome their negative effects by NN’s
learning ability. Actually, since the system response direction will not be changed
by adding dead zone and saturation, the NN-based controller should work well.
Moreover, there is no special consideration for process noise in the design of NN-
based controller, like other deterministic controller designs, though controllers have
to be tested for the ability of noise rejection.

To reflect the status of the controlled system, the inputs of the NN-based con-

troller are chosen as the desired system outputs and the output errors:

ya(k), ya(k — 1), ya(k —2),

va(k) — y(K), yalk—1)—y(k—1), yalk —2) — y(k —2).
That is, there are six inputs at the INPUT layer of the NN-controller (N = 6). Note
that the middle—point temperature system is in fact a high order system, though
it can be approximately modeled by a low order linear systemn with a long pure
time delay. Certainly, the NN-based controller is not used to model this high order
controlled plant but to control it. So, it may be not necessary to use the same time
delay of the controlled plant (18 sampling intervals in Eq. (7.21)) as its inputs. We
also tested the NN-based controller with more delayed inputs. The results are not
superior to those presented below. The number of the HIDDEN nodes ié selected to

be three (N = 3). The overall system structure is sketched in Fig. 7.3.
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Figure 7.3: Structure of an NN~based control system.

The main simulation results are summarized below.

1. When dead_zone = 5.0, Upor = 10.0, Uy, = —10.0, and R = 0.0 (no process

noise), the result is plotted in Fig. 7.4. The initial weights of the NN are

selected randomly, and the NN weights converge within 150 sampling intervals.

When dead._zone = 7.0, Upor = 10.0, Ui = —10.0, and R = 0.0, Figs. 7.5 and
7.6 present the system response and the corresponding control input, respec-
tively. Obviously, a large dead zone affects the system performance severely,

but the NN-based controller still works well.

When dead_zone = 5.0, Upar = 10.0, Upin = —10.0, and R = 0.5 to test the
ability of noise rejection, the desired and actual system output responses are
plotted in Fig. 7.7. The corresponding control input and the process noise are

shown in Fig. 7.8, where n(k) = é(k) — 0.35740 £(k — 1) — 0.03392 £(k — 2).
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Figure 7.7: System output response with process noise R = 0.5.
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Figure 7.8: System control input and process noise with R = 0.5.

To compare the performance of the proposed NN-based controller with that of a
PID-type controller, we have designed a PI controller for the middle-point temper-

ature control system. The PI controller is

: k
u(k) = —Kp (ya(k) — y(k)) — K1Y (ya(d) — y(3))

1=0

with K, = 2.2 and K; = 0.3. When dead_zone = 5.0, Upor = 10.0, Unpin = —10.0
and no process noise (R = 0.0), the system response controlled by the PI controller
is plotted in Fig. 7.9. According to this figure, one should decrease K, in order to
reduce the oscillation. However, due to the effects of dead zone, one cannot make
any notable improvement in the system performance. On the other hand, due to the
effects of long time delay, increasing I, will lead to an unstable response. When
dead_zone = 5.0, Upnar = 10.0, Upin = —10.0 and R = 0.5, the result of the PI
controller is plotted in Fig. 7.10. Comparing Fig. 7.9 with Fig. 7.4, and Fig. 7.10

with Fig. 7.7, we conclude that the performance of the NN-based controller is much
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better than that of the PI controller. Actually, a PI controller cannot perform well
for a system with a long time delay, dead zone, saturation, and process noise.

From the above simulation results, we conclude that the proposed NN-based con-
troller performs well for this class of nonlinear systems. In the NN-based controller,
the system—output error is computed from the measurements. As a priori knowledge,
the system direction is easily obtained either from a step response experiment or from
the physical property of a controlled plant. To test the need of Eq. (7.17), —D(G)
is used in the training algorithm, which instantly results in the NN’s divergence.

The remaining problem is how to choose the number of the HIDDEN nodes.
There is no systematic way to choose the number of the nodes at the HIDDEN
layer(s) to approximate a given mapping. Therefore, selection of hidden nodes may
depend on experiments. Fig. 7.11 shows the result using N; = 6, dead_zone = 5.0,
Umaz = 10.0, Upin = —10.0 and R = 0.0. Comparing Fig. 7.11 with Fig. 7.4, one
can see that adding more HIDDEN nodes does not improve the system performance.

But adding more nodes will improve the system’s reliability.
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Figure 7.11: System output response with six hidden nodes.

7.6 Design of the NN-based Coordinator for Two 2—-Link
Robots

To test the proposed algorithm for multiple-system coordination, as an exam-
ple, an NN-based coordinator (NNBC) is @ésigned to coordinate two 2-link robots
holding an object in this section. The basic configuration of this example is given
in Fig. 5.5. The purpose is to investigate the suitability of the proposed algorithm.
As we stated before, with a NNBC, the system forms a hierarchical structure, the
high level is the NNBC, and the low-level subsystems include two robots each with
a separately designed servo controllers.

Dynamics of the Coordinated Systems and Problem Statement

The detailed dynamics of the coordinated systems and the problem statement
are presented in Section 5.5, and only the key points are summarized below.

Suppose the two robots hold the object firmly, then the motion of the object is
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described by

mP+mg=F, f=Ffi+7F (7.23)

where m is the mass of the object, P the position of the object in Cartesian space,
g the gravitational acceleration, f; = [fis, f,-y]T the external force exerted on the
object by robot z.

Suppose two robots have an identical mechanical configuration, then the force-

constrained dynamic equation of robot ¢ in joint space is given by
H(q,)4: +Clgs, ¢:) 4:+G(g)+ 37 fi=7i, =1, 2, (7.24)

where ¢; = [¢a, q,-g]T and 7; = [m, Tiz]T are the vectors of the joint position and
torque of robot 7, respectively. J; is the Jacobian matrix, and the other terms are
explained in Eq. 3.19 and the appendix.

In the proposed NNBC, the controlled joint torque consists of two parts
Ti = Tip + Tic.
T is contributed by the NNBC, and 7, is given by a position controller
Tip = H (@0 — Kpi(q; — @ia) — Kpila; — 4:4)) + ﬁ, (7.25)

where H and h are the estimated values of H and C ¢; + G, q;4 is the desired value
of q;, Kp; and K,; are the controllers’ gains.

As stated in Section 5.5, we want to coordinate the two robots moving the object
while minimizing the internal force. In this section, we will design an NNBC to
achieve this goal.

Specification of the Desired Forces and Force Error Analysis

Let the desired force sharing of the two robots is

Fiu=0 fa+ Fo fouu=Ts—a)f;— £, (7.26)
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where o is a selection matrix, o = diag oy, 02], 0<0; <1, j=1, 2; f, a bias
force. Then the desired external and internal forces are

fao=futfu ond  fr=5(fu=fa) = fo+ 520 —T) fu

Therefore, the desired external force f,, the selection matrix o and the desired bias

force f, should be specified to compute the desired force exerted by each robot: f,,

and f,,.

Suppose the measured forces are f; and f,, then the actual external and internal

forces exerted on the object are

f=fitfr and  f=g(fi-fa)

Then, the force errors are

fre=Ffu—Ffi=o fo+Fi—F+ 71> and  fp,=—(o fd+fb_fd+f2)’(

If the external force achieves its desired value, then we have f,, + f,. = 0. So,
these force errors do not contribute to moving the object, that is, they are caused
by internal force errors. This implies that if we design a controller based on f,,
to regulate the internal force and suppose the controller is a linear controller with
control output fll, then the control action acted on robot 2 should be f; = — fll

[Pit88]. Note that the force on end-effector and joint torque are related by

Therefore, when the control action is transformed into the joint space, we usually
have 7y # —72 due to different Jacobian matrices.

Referring to Eqs. (7.24) and (7.25), if H = H and h = h, then the closed-loop

system can be written as

=@ H((4: — @) + Kpildia — 4:) + Kpi(qig — 0)) + (I]) " Tie
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Figure 7.12: Coordinating two robots holding an object by an NNBC.

Since the desired external force is specified according to the desired trajectory, the
desired external force can be achieved by a well-designed position controller. We can
therefore design a coordinator so as to regulate the internal force by changing 7.

Basic Structure of the System with an NN-based Coordinator

The basic structure of a two-robot system equipped with an NNBC is shown in
Fig. 7.12. From the coordinator’s point of view, the controlled plant is a mapping
from the input torque 7, = [ch, T%L]T to the forces exerted on the object F'. This
is an MIMO mapping F = G(7.) with time-varying property. We want to design
an NNBC to directly control such a system using the theorems developed in Sections
3 and 4. For such an MIMO system, we define the direction matrix as follows.

Definition 3: For an MIMO system F' = G(7.), the direction matrix of the
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system is defined by

D(G) = sign (gf;) ,
where the sign of a matrix M is defined as the matrix formed by the sign of the
corresponding elements of M.

When conditions such as the range of joint motion are posed on the system, it is
possible to determine this matrix as shown in the example in the next section. From
the force analysis, the following variables may be used as the inputs of the NNBC:
the measured forces exerted on the object, F', its desired value, F'y, the measured
joint positions of the two robots, g = [q{, qg]T, and the actual torque exerted on
each joint of the two robots, 7. Obviously, all the inputs and outputs of this NNBC
are vectors. For such a vector-structured multilayer perceptron, a vector form of the
BP algorithm has been derived in Chapter 4. For the purpose of NNBC and counted
in the direction matrix of the coordinated system, the main steps of the algorithm
are summarized below.

All inputs and outputs of this NN are vectors, X; € R", X,; ¢ R™, and X, €
R? are the output of INPUT, HIDDEN and OUTPUT layer, respectively, for 1 <
i < N, 1 <j< N;. The computation includes five steps

A. Compute the output of the HIDDEN layer X,;:

X, = [z1j1, -+ Tijm)”
. ' T
1 1
— . 01 Y — RN 5
£(0:5) 1 + exp (—o151 — 01j1) 1 4 exp (—01jm — O15m)
N
Olj = Z Wz'j Xi’ ] = 17 2) ity Nb

=1
where W;; € R™*" is the weighting matrix from node ¢ of the INPUT layer to node
J of the HIDDEN layer, f; : R™ — R™ is defined as a sigmoid function of each

component of a vector, and 0y; = [611, -, 01jm]T is the threshold vector at node
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j of the HIDDEN layer.
B. Compute the output of the OUTPUT layer X,

X., = [511211, Tty lep]T

1 1 T

1 + exp (—o0211 — 0211)’ T exp (—o21, — 0215) | ’

= f1(021)=
Ny

021 = Z lel X1j7
=

where Wy;; € RP*™ is the weighting matrix from node j of the HIDDEN layer to
the OUTPUT layer, f, : R? — R?, and @y = [0211, -+, O21,]" is the threshold
vector at the OUTPUT layer.

C. Update the weights from the HIDDEN to the OUTPUT layer Wy;;:

T
W]jl(t + At) = lel(t) + AWm, where Alel =MmM [611 T]_] ’

T .
6u = (X2 - X..|" D(G) diag[zan(1 — zan), -+, T21p(1 = T21,)]

and T7 is a p x m X p tensor, with the I-th matrix as

Ty = (le)T «— at the l-throw, [=1, 2, ---, p.

D. Update the weights from the INPUT to the HIDDEN layer W;;:
W.‘j(t + At) = Wij (t) + AW,‘j, where AW,‘j =7 [5J T]T ,

8; = 811 Wi (t + At) diag [2151(1 — z1j1), T1j2(1 — Z152) -5 Trgm(l — T1im)],
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and T is a m x n x m tensor, with the I-th matrix as

- T
0

T = (X,-)T +~— at the I-throw, [=1, 2, ---, m.

E. Update the thresholds at the OUTPUT and the HIDDEN layer Oy,
and Oy;:

@21(t + At) = @21(t) + A@z], Where (A@Ql)T = Te 611

O1;(t + At) = O1;(t) + AOy;, where (AOy)T =14 §;

71, N, Mo and ng > 0 are the gain factors.
The problems of input—-output scaling has been discussed in Section 7.4. In what

follows, the design procedures are detailed with an example and tested via simulation.

7.7 Simulation Results of Two 2-Link Robots Holding an
Object

referring to Fig. 5.5, the Cartesian frame is fixed at the base of robot i, and the
desired trajectories of the object and the robots’ end-effectors are specified relative to
this frame. The task is to move the object forward and backward in X direction while
keeping 'phe height in Y direction constant. The desired trajectory which is selected
by a high-level planner is to move the object in X direction from an initial position
to a final position (for one meter distance) in five seconds, and then move back to
the initial position. The desired velocity and acceleration of the object are zero at

both the initial and the final positions. The kinematic and dynamic parameters of
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the robots are presented in Table 3.1. The sampling interval is 10 ms. The selection
matrix is set to o = diag [0.5, 0.5] and the bias force f, = 0. Ea,gh robot is position
controlled with the controller in Eq. (7.25). Note that the NNBC has no knowledge
about the dynamics of the coordinated robots except the direction matrix which is
derived as follows.

Let F' = [fizy f1y, fous fgy]T be the forces exerted on the object by each robot in
X and Y directions, and 7. = [T11¢, T12¢, T21cs ngc]T be the torque exerted on each
joint of the two robots by the NNBC. Then the direction matrix is defined by
([ 0fiz Ofic Ofic Ofix |)

3T11c 87‘12c O0Ta1c 3T22c

afly afly afly afly

aTllc 37‘12c aTZlc 3722c

. OF .
D = sign (6TC) = sign
af2a: af?.'z: 6f2:c af2:z:

aTllc 6T12c 37‘21c 37’22c

af2y any af2y af2y
\- Omie Omize O0Tare OToae _)

From the configuration shown in Fig. 5.5, we can assume that the limitation of the
joint angles are

0° < g1 < 180°, —180° < q12 < 0°,

0° < go1 < 180°, 0° < ¢o2 < 180°.

Then the direction matrix can be determined as

-1 -1 +1 +1

3F> +1 +1 41 +1

D = sign (
or. ~1 =1 +1 +1

+1 +1 +1 +1



157

This will be used in the computation of the NNBC. For this example, a three-layer
perceptron is used. There are four INPUT nodes with inputs
q =1, q12, ¢21, q22] F = [fie; fiys Fow> Ful”

T T
Fd = [fl:cd7 flyda szd’ f2yd] T= [Tlla Ti2, T21, T22] ’

which reflect the desired and actual status of the coordinated system. The OUTPUT

layer has one node with output
T
T T T
Te = [Tlc') T2c] = [ﬁlc, T12¢s T2lc» T220] .

To evaluated the performance of the proposed scheme, the NNBC is tested via sim-
ulation and the results are summarized below.

Suppose the mass of the object is 5 kg, without the NNBC, the internal force
error in X direction is plotted in Fig. 7.13. By adding the NNBC with 15 hidden
nodes, the the performance is greatly improved as shown in Fig. 7.14. The RMS
error of the internal force in X direction is reduced by 94.6%. In Y direction, the
RMS internal force error is reduced by 46.2%, though the internal force error is
small enough due to no motion in this direction. Moreover, both the external force
error and the position tracking error are kept almost the same as those without the
coordinator. The detailed results are summarized in Table 7.1.

If the mass of the object is increased to 10kg, the NNBC also works well with 20
hidden nodes. The internal force error in X direction is reduced by 89.8%, as shown
in Figs. 7.15 and 7.16, and Table 7.2.

The remaining problems include:

e Choice of the number of HIDDEN-layer nodes. There is no systematic way
to choose the number of the nodes at the HIDDEN layer(s) to approximate a
given mapping. As shown in Section 7.5, adding more HIDDEN-layer nodes

may not always improve the system performance.
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Sample intervals

RMS errors of internal force (N)

without the NNBC | with the NNBC

0 — 1000 | at X direction 9.58411 2.01236
at Y direction 0.93142 0.51720

1001 — 2000 | at X direction 9.57103 0.51404
at Y direction 0.92337 0.49638

2001 — 3000 | at X direction 9.57048 0.51248
at Y direction 0.92337 0.49629

Sample intervals

RMS errors of external force (N)

without the NNBC with the NNBC

0 — 1000 at X direction 0.72164 0.81624
at Y direction 2.54845 3.53886

1001 — 2000 | at X direction 0.34370 0.36121
at Y direction 0.01436 0.01104

2001 — 3000 | at X direction 0.34370 0.36120
at Y direction 0.01436 0.01105

Sample intervals

RMS tracking errors of object’s position (m)

without the NNBC with the NNBC
0 — 1000 | at X direction 0.03694 0.03772
at Y direction 0.05733 0.00692
1001 — 2000 | at X direction 0.03694 0.03773
at Y direction 0.05759 0.00312
2001 — 3000 | at X direction 0.03694 0.03773
at Y direction 0.05759 0.00312

Table 7.1: RMS errors when mass = 5Hkg.
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Sample intervals

RMS errors of internal force (N)

without the NNBC with the NNBC
0 — 1000 | at X direction 15.96137 3.75179
at Y direction 1.12425 1.11996
1001 — 2000 | at X direction 16.08066 1.89737
at Y direction 1.10789 1.11099
2001 — 3000 | at X direction 16.07986 1.84620
at Y direction 1.10790 1.10275

Sample intervals

RMS errors of external force (N)

without the NNBC with the NNBC
0 — 1000 | at X direction 1.40957 1.84460
at Y direction 6.67420 9.57597
1001 — 2000 | at X direction 0.67540 0.88516
at Y direction 0.06293 0.26797
2001 — 3000 | at X direction 0.67540 0.85093
at Y direction 0.06294 0.13169

Sample intervals

RMS tracking errors of object’s position (m)

without the NNBC with the NNBC
0 — 1000 | at X direction 0.03696 0.03903
at Y direction 0.11624 0.01390
1001 — 2000 | at X direction 0.03696 0.03896
at Y direction 0.11669 0.00657
2001 — 3000 | at X direction 0.03696 0.03882
at Y direction 0.11669 0.00652

Table 7.2: RMS errors when mass = 10kg.
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e Start the NN-based controller (coordinator). Since the initial values of the
weights are random numbers, the learning period may result in a large oscilla-
tion of the system output. This may be unacceptable for a certain controlled

plant even for an open—loop stable system.

7.8 Summary

To handle difficult control and coordination problems, we developed a direct con-
troller and a coordinator with neural networks. Particularly, the NN-based controller
aims to handle industrial process control systems in which the negative effects of a
long system response delay, nonlinear elements with dead zone and/or saturation,
and process noises are the main obstacles in achieving high performance. The pro-
posed NN-based controller can replace conventional controllers, and has overcome
all of the problems mentioned above. The NNBC is applied to the coordinated
control of two robots holding an object. Such a coordinated system is organized
hierarchically, where the high level is the NNBC and the low level is the coordi-
nated robots. It is assumed that each robot is a stand-alone device equipped with a
commercially designed (perhaps by different vendors) servo controller. The internal
structure and/or parameters of the low-level subsystems are not affected by adding
the NNBC. This implies that some industrial robots could be coordinated to perform
more sophisticated tasks than originally intended.

In contrast to the scheme of indirect adaptive control [NP90], the proposed scheme
enables the NN to be trained with system-output errors, rather than the network-
output errors. The training algorithm is derived based on BP. However, in the
BP algorithm, it is required to modify the weights by network—output error which

is not known when a multilayer perceptron is cascaded in series to the controlled
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plant. Therefore, the proposed algorithm enhances the NN’s ability to handle a wider
range of contrél applications. A detailed analysis of the algorithm was presented
and the associated theorems were proved. The only a priori knowledge about the
controlled plant is the direction of its response, which is usually easy to determine
for a SISO system. The direction ma,trix. of an MIMO system can be determined,
if some system constraints are imposed. Extensive simulations have been carried
out @nd the results are shown to be quite promising. Good performance, a simple
structure and algorithm, and the potential for fault tolerance make the proposed

NN-based controller and the NNBC attractive for industrial application.
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Figure 7.13: The internal force error in X direction, without the NNBC.
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Figure 7.14: The internal force error in X direction, with the NNBC.
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CHAPTER VIII

PERFORMANCE EVALUATION OF
REAL-TIME CONTROL AND
COORDINATION SYSTEMS

8.1 Introduction

A real-time, digital, control computer or controller computer can be thought of
as a three-stage pipe: data acquisition from sensors, data processing to generate
control/display commands, and outputting the results to actuators/display devices.
Although each of the three stages will take time to complete, this chapter is only
concerned with the time taken by the most complicated stage, data processing, since
the other two are much simpler and more static. More precisely, the amount of time
taken to execute programs that implement control algorithms — called the computing
time delay — is the subject of this chapter.

A controller computer implements the control algorithms by executing a sequence
of instructions. Unlike analog control systems, the reliability of a digital control sys-
tem depends not only on the MTBF (mean time between failures) of the controller
hardware and software, but also on the delay in executing control algorithms on the
controller computer. The execution time for a control algorithm is defined as the pe-

riod from its trigger to generation of a corresponding control command. It is an extra

164
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time delay that is introduced to the feedback loop in a controlled system. Because
of the existence of conditional branches, resource sharing delays, and processing ex-
ceptions, the execution time for a given control algorithm, or the computing time
delay, is usually a continuous, random variable which is usually smaller than the
sampling interval. Controllers are usually designed without considering their actual
implementation. Thus, it is very important to analyze the effects of computing time
delay on control system performance when control algorithms are implemented on
digital computers.

The computing time delay is quite different from the usual system time delay,
and cannot be taken care of prior to putting a system in use due to its randomness
caused, for example, by the data-dependent branches and loop counts in a program
that implements the control algorithm under consideration.

When the computing time delay is long relative to the sampling interval (but
small relative to the mission lifetime), it may seriously affect control syétem per-
formance. Depending on the magnitude of computing time delay relative to the
sampling interval, its effects on the control system are classified into either a delay or
loss problem. To be more precise, let £ and T denote the computing time delay and
the sampling interval, respectively. A delay problem results when 0 < ¢ < T, and
the loss problem occurs when ¢ > Ts. The former represents the undesirable effects
(for example, in terms of operational cost or energy) caused by a computing time
delay which is nonzero but smaller than the deadline (that is, the beginning of the
next sampling interval) of a control algorithm or task,! while the latter represents
the case of no update of the control output for one or more sampling intervals.

To implement a control algorithm on a digital computer, the sampling rate must

1The terms “control task” and “control algorithm” will henceforth be used interchangeably.
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be chosen carefully by not only satisfying the conditions of the Shannon’s sampling
theorem, but also by achieving the desired performance. A good example of this can
be found in [Kho87] where a series of robot control experiments were conducted for
different sampling rates while keeping the controller gains fixed. A higher sampling
rate is shown to imply improved performance and higher stiffness (or disturbance
rejection property). However, increasing the sampling rate will make the computing
time delay effects more pronounced on control system performance. These effects
cannot be neglected, especially when the time constant of the plant is short and the
order of the plant is high [Mit85]. To remedy this problem, an optimal state feedback
control law was proposed by [Mit85]. Instead of ﬁsing the current-state feedback
u(k) = —Ka(k), the control input is formed by u(k) = —KAx(k—1)—- KBu(k—1),
that is, the computing time delay is approximated to be one sampling interval. The
sampling period, T}, is chosen to be the same as the computation time of the control
algorithm. In [BDG86], the computing time delay is represented as a delayed state
measurement, and an averaging A/D device is used for the measurement. Then for
an LQG-type, sampled—data regulator problem, an equivalent discrete-time problem
is shown to have an increased system order. A design procedure was proposed there
for this equivalent discrete-time problem.

However, the work in both [Mit85] and [BDG86] did not consider the randomness
of the computing time delay. Approximating the computing time delay with one or
more sampling intervals and incorporating it into controller design was the basic
idea used there. As mentioned earlier, the computing time delay problem must
account for the random effects of data-dependent conditional branches/loops and the
unpredictable delays in sharing resources during the execution of control algorithms.

So, estimating the maximum delay or assuming the computing time delay to be
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constant is neither realistic nor possible.

The magnitude of the computing time delay and the number of output losses that
the controlled system can tolerate are important indices to evaluate the performance
of any digital control algorithm. These indices will inherently change with the type of
control algorithms and systems under consideration. To demonstrate the importance
of the computing time delay, we shall evaluate this index for typical real-time control
systems — robot control and coordination systems, which are briefly described below.

Numerous robot control algorithms have been proposed and their computing time
delays estimated. However, to our best knowledge, none of these has analyzed explic-
itly the effects of computing time delay on control system performance. For example,
an adaptive control algorithm based on the computed torque algorithm is reported
to require 17 ms on an MC68000 CPU [LL84], and the self-tuning predicted control
needs 6.7 ms on an NS32132 CPU [CS88]. These results not only indicate the need
of high-speed CPUs, but also raise an interesting question: can the system tolerate
this extra computing time delay ? A robot control system is usually evaluated on the
basis of tracking accuracy, repetition error, and motion speed. For a nonlinear, time-
. varying system like a robot, the effects of computing time delay on its performance
become significant enough to warrant a careful investigation of various control algo-
rithms before using them. This is also true for all other time~critical control systems
such as aircraft and life-support systems. (See [SKL85] for an example of aircraft
landing.)

In recent years, the application of artificial intelligence and neural networks has
received considerable attention in control and robotics communities as surveyed in
Chapter 2. In a knowledge-based control system, control actions are usually deter-

mined either by searching its knowledge base or looking up tables. This, especially
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in the case of a heuristic search process, may require a significant amount of time rel-
ative to the sampling interval. Unlike a controller based on numerical computations,
the time for symbolic reasoning and heuristic searches may vary with the operational
conditions of the system. In an NN-based control system, if the neural network is
implemented in software, then the computing time delay problem becomes very sig-
nificant, since NN computation may take much longer time than conventional control
algorithms. Moreover, loss of control outputs affects not only the system output at
the instant of loss, but also the updating the NN’s weights, which may, in turn, affect
system performance. Therefore, both the delay problem and loss problem should be
analyzed for knowledge-based and NN-based systems.

We shall focus on analyzing the effects of computing time delay on the perfor-
mance of control and coordination systems. Using examples, we will also show how a
specific control system is evaluated in terms of computing time delay. In Section 8.2,
we first review the basic concepts and definitions related to real-time, digital control
systems which were introduced in [SKL85]. Then, we address the generic problem
of analyzing the effects of computing time delay on control system performance. A
generic criterion for the qualitative analysis of computing time delay effects is derived,
and a common misconception in handling computing time delay is corrected. We
present in Section 8.3 both qualitative and quantitative analyses of the computing
time delay effects on a robot control system. Upper bounds of computing time delay
are derived with respect to system stability and system performance. These upper
bounds can be used as an extra constraint on controller design or an index for selec-
tion of a CPU to implement a control algorithm. For a typical coordination problem
— two robots holding an object — the effects of computing time delay associated

with the knowledge-based coordinator and the NN-based coordinator developed in
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Figure 8.1: A digital control system in presence of computing time delay.

the previous chapters are investigated in Sections 8.4 and 8.5, respectively. Section

8.6 is a summary of the chapter.

8.2 Effects of Computing Time Delay on a Control System

The basic concepts and performance measures proposed in [SKL85] are best suited
for the analysis of the effects of computing time delay on control system performance,
because they are based on task completion times. For completeness, some of the basic
concepts in [SKL85] are briefly described. Then, a generic analysis of the effects
of computing time delay is presented along with necessary conditions for system

stability.

8.2.1 Performance Measures in the Presence of Computing Time Delay

As mentioned earlier, we are interested in analyzing the effects of computing time
delay that results from the implementation of a “well-designed” control algorithm
on a digital computer. (By “well-designed”, we mean that the system is stable
and the effects of discretization are accounted for.) The presence of the computing
time delay in a control system can be represented by a delay element after the D/A
converter and hold circuit, as shown in Fig. 8.1. Hence, the analysis of the effects of

computing time delay must be done in a continuous-time domain. Note that, due to
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its randomness, the computing time delay is totally different from other usual factors,
such as the effects of discretization and system delay, which are not the subject of
this chapter.

Let X C R™ denote the state space and x(¢) € X the state of the controlled
system at time ¢. Evolution of states from time {p in the presence of a nonzero

computing time delay, £, is represented by

z(t) = ®(t, to, 2(to), u(t —¢)),

where ® is the state transition map, u(t) € Us € U C R' the control input at
time t, U, the admissible input space, and U the input space. The behavior of the

system is monitored via

’ y(t) = F(ta u(t - 5)’ w(t))>

where I is the output function, y(¢) € Y C R™ the output vector at time ¢ and Y
the output space. Let X4 and Y 4 be the allowed state space and the allowed output
space, respectively. Note that, if £ = 0, then u(t) € Uy implies x(t) € X4 and
y(t) € Ya. If 0 < € < T, the maximum computing time delay that the controlled

system can tolerate at time ¢ is defined as the hard deadline at that time:

dewy = sup {€:2(t) € X4}, (8.1)
u(t)GUA .

This means that if £ > da (), then the system may move out of the allowed space.
Note that, the hard deadline at time t is a function of the state of the controlled
system at t. For a control task performed during [to, ¢;], its hard deadline should
be the smallest value of dgy) for all t € [to, t;]. For all but very simple cases,
it is impossible to get a closed—form relationship between hard deadlines and the

allowed space Y 4 (see [SKL85] for more on this). So, Eq. (8.1) is usually used as a
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conceptual definition. If the computing time delay associated with a control task is
greater than its hard deadline, a dynamic failure results [SKL85], meaning that the
system has moved out of the allowed state space (for example, the system moved

into an unstable region).

8.2.2 How Does the Delay Problem Affect the System Performance ?

As mentioned earlier, system performance and stability are affected by a nonzero
computing delay, £. We want to investigate how the closed-loop system is affected

by this nonzero computing delay. Let a closed-loop system be represented by

e(t,8) = f(¢, 2(t,€), £), 0<{<T. (8.2)

Since ¢ can usually be made small relative to the control mission lifetime by using
parallel processing or high-speed CPUs, Eq. (8.2) can be expanded as a Taylor

series, and the subsequent first-order approximation gives

B(t,6) ~ f(t, 2(t,0), 0)+¢ (af(f’ “(;(;0), 0) B:cgf,()) | 1t a;a(;,O), 0))

= f(t, =(t,0), 0) +£ g(t, =), ) (8.3)

of(t, =(t,0), 0) O=(t,0) n af(t, =(t,0), 0)

where g(t, x)

oz o¢ o
of(t, =(t,0), 0) _ 9f(¢, =(t,), §) leco, and Oz(t,0) _ d=(t,¢) |
BN = o€ =0 T

Note that, g(¢,2) is not a function of £. From Eq. (8.3), we conclude that the
computing time delay affects the system performance through a permanently acting
perturbation.

Since the control system is usually designed under the assumption of ¢ = 0,

the closed-loop system is represented by &(¢t) = f(¢, @(t)). Suppose there exists a
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Lyapunov function V(¢,«) which is positive definite, decrescent and

V(t,e) = 202 OV2) 54 o) < o),

where r(-) belongs to class K such that the closed-loop system ®(t) = f(t, ®(t)) is

stable.? For 0 < £ < Ty, referring to Eq. (8.3), we have

Ve(t, &) = (OV(t,w)+aV(t,m)

ot Oz f(t7 m(t,O), 0)) + € Q_V_ag.;;_w_). g(t, w)

< iz h+e 120D g, o))

< <o +e I 2 g, =) 1,

which results in the following two stability conditions

sup || g(t, @) ||< oo, (8.4)
t>to, ”m”<p
ov(t, =
sup | ———((9————) I|< oo. (8.5)
t>to, ||Z]I<p T

If conditions (8.4) and (8.5) hold, then there exists a 0 < ¢ < T, small enough
such that Vi(f, ) < 0. Because V(t, z) is a positive definite, decrescent function,
condition (8.5) is satisfied. Thus, if condition (8.4) is satisfied, then there exists a 0 <
¢ < T, small enough such that the closed-loop system is uniformly stable. Note that,
though the stability analyses in discrete-time and continuous—time systems are not
equivalent, a stable system in continuous time is still stable after the discretization,
if the sampling rate is chosen properly. This fact is a basis for the analysis presented

in this chapter.

2See, for example, Nonlinear System Analysis by M. Vidyasagar, Prentice~Hall, 1978 for the
definition of class K.
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8.2.3 What about Designing a Controller with an Assumed Maximum

Value of ¢ ?

When designing a controller, one may attempt to handle the computing time delay
by using an assumed maximum value of £. However, as was discussed in {Woo86],
it is impossible to get a precise value of ¢ due to the randomness in executing data
dependent branches and loops and sharing resources during the execution of control
programs. Moreover, in what follows, we will show that this kind of impreciseness in
£ may fail any attempt of using an assumed maximum value. Suppose the controlled
plant is described by Go(s) = G1(s)e™ %, where d > 0 is the system time delay and not
necessarily an integral multiple of the sampling interval. Suppose the computing time
delay is £ = & Ts, 0 < & < 1, then the equivalent controlled plant is approximated
by

G(s) = Gy(s) e7 T, T=d+¢.

Let d = LoTs; — doTs, 0 < do < 1, where Ly > 0 is an integer, then

T = LoTs + (éo — do)Ts = LTs — mTs, 0<m<l,
L=Lo+1 and m=1-(fo—do), if & > do

where
LZLO and m=€0-—d0, if ﬁoSdo.

Now, the controlled plant can be represented as
G(s) = e tT* Gy (s) emT**,

Let G(z) be the controlled plant G(s) in discrete-time domain. Then by the hold

equivalent (zero-order hold), we get

Gz)=(1-2"Y)z2L 2z {M} ,

S
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ngs
where Z -—-(—)—.-s—-—} represents the z—transform of the time-domain function of

G(s) emTes

S

. Therefore, the computing time delay will affect the open—loop zeros,
poles at the origin, and the gain. This can be verified by the following simple

example.
-1.5s
Example: Suppose G(s) = ;T.-S-, T, = 1. By the hold equivalent, the controlled

plant in discrete time domain is

z + 0.0652 .

Goes(z) = 0.5934 75 (2 = 0.3679)° if £€=06, or (8.6)
z + 2.4872

Goa(z) = 01813 1228 if ¢=03. (8.7)

22 (z — 0.3679)°
Obviously, a controller designed for Eq. (8.6) by assuming a maximum computing

time delay may not work well for Eq. (8.7).

8.2.4 How Does the Loss Problem Affect System Performance ?

The loss problem is quite different from the delay problem. Let k denote a
discrete-time index, and suppose at time k& the computer controller fails to update
the control output. Because of the D/A converter and the hold circuit, the output
of the computer controller does not change when a loss problem occurs; that is,
u(k — 1) is used over two sampling intervals instead of one sampling interval. For
example, loss of one controller’s output at time k for the aircraft landing problem in
[SKL85] keeps the elevator deflection unchanged, but the aircraft does not remain
at the same position. At time k + 1 the controller computer picks up a new sample
y(k + 1) and calculates the corresponding control output u(k + 1). Thus, loss of
one control output is equivalent to the case when the controller computer fails to
deliver an output during any one sampling interval over the entire mission lifetime.

Let Au(k) = u(k) — u(k — 1), then —Awu(k) can be treated as a disturbance added
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to the system control input at time k. Because this could occur randomly at any
time during the mission, the failure to deliver a control output can be treated as a
random disturbance to the system. If the computer again fails to deliver a control
output at time k + 1, then the actual control is still the same as w(k — 1). Let
Au(k+1) = u(k + 1) — u(k — 1) and suppose E[Au(k)] = 0. Since the correlation
matrix E[Au(k) Au?(k + 1)] may not necessarily be zero, this may be a correlated
random disturbance.

For all but simple systems, it is difficult to accurately analyze the effects of

computing time delay for the following reasons.

o It is not easy to derive the allowed state space X4, as was pointed out in

[SKL85].

e The computing time delay is a random variable, and its effects may change

throughout the entire mission lifetime.

e Different control systems have different structures, thus requiring a separate
analysis for each control system. In other words, only case-by-case analyses

are possible.

To be more specific, in the next section, the effects of computing time delay on the
performance of a typical real-time control system will be analyzed. For qualitative
analysis, the generic stability criterion Eq. (8.4) will be used. For quantitative
analysis, the example demonstrates how the effects of computing time delay in a

control system can be analyzed and evaluated in practice.
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8.3 Real-Time Performance Analysis of a Robot Control
System
The generic analysis of computing time delay effects can only be solidified with
real control systems, because the computing time delay is an application-sensitive
measure. In this section we will therefore analyze a robot control system in detail.
To analyze a robot control system under a permanently acting perturbation, we
need to know the system dynamic equation, and the control algorithm to be used.

The dynamics of a robot arm can be written as

H(q) §+C(q, 9) ¢ +G(q) =T, (8.8)

where q is the vector of joint position, H(q) is the inertia matrix, C(q, ¢) q represents
the centrifugal and Coriolis forces, G(q) the vector of gravitational loading, and 7

the vector of torque/force exerted by joint actuators.

8.3.1 Qualitative Analysis

Let the controller be represented by © = c(q, ¢, ). Note that the controller
is originally designed by assuming § = 0. By letting ; = q and @; = ¢, we can

describe the closed-loop system by

Ty = Ty

T, = H(:cl)'1 (—C(xy, a;z) zy — G(1) + c(@1, x2, £)). (8.9)
These equations can be rewritten as

e(t, §) = f(t, =(t, £), £), (8.10)

T
where © = [a:?, wfg] , and
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f(t, x(t, &), &) = T2
H(wl)'l (—C(wl, :cg) €Ty — G(wl) + c(a:l, ®2, E))

For qualitative analysis, referring to Eq. (8.3), we get the standard form of a system

with a permanently acting perturbation as

o(t, £) = (¢, =(¢, 0), 0) +£ g(t, ).

From Eq. (8.10), we get

3a:2(t, 0)
73
glt,2) = d1(t,0 ds(t,0 8 25, 0
agy __________3318(5, ) + ag ——————mﬂa(g, ) + H(z,)™? c(ml’a;% )

0
where ag = . [H(wl)—l (—C(x1, 2) 2 — G(>1) + c(z1, @2, 0))}

' 0

Ao = H(:cl)"l 5;}—; (—-C({Bl, iBz) T, + c(:cl, Ty, O)) .
Because each term of g(t, @) is bounded aboveint,  sup Il g(t, &) || < oo, that

t2to, [|12<p
is, the stability condition Eq. (8.4) is satisfied. Thus, we conclude that there exists

a 0 < ¢ < T, small enough such that the closed-loop system is uniformly stable.

8.3.2 Quantitative Analysis with Respect to System Stability

For any quantitative analysis of the effects of computing time delay, it is necessary
to specify the control algorithm to be used. In the robot control system, the controller
is T = c(q, q, 0). If the system parameters in Eq. (8.8) are known, then one can

choose the control torque/force vector as
T = H(q)u(t) + C(g, 9)q + G(g), (8.11)
u(t) = 4q(t) — Kp(4(t) — 44(1)) — K, (q(t) — q4(2)) (8.12)

where qé is the desired joint positions and Kp, K, are the matrices of controller

gains. This is the well-known computed torque algorithm, and on which several
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adaptive algorithms (for example, [OS88]) are proposed in the presence of unknown

parameters. Taking Laplace transform of Eq. (8.12), we get
U(s) = s’Qu(s) — (Kps + K,)A(s), (8.13)

where U(s), Qu(s) and A(s) are the Laplace transforms of u(t), g,(t) and é(¢) =
q(t) — q4(t), respectively. Plugging Egs. (8.11) and (8.13) into (8.8) and noting that

H(q) is nonsingular, we get
( I+ (Kps+K,))A(s)=0, thatis, s’I+Kps+K,=0. (8.14)

If there is a nonzero computing time delay, 6(¢) must be replaced by é(t — ¢). When
the controller is actually implemented on a digital computer, the reference input
¢,(t) does not change during one sampling interval, and thus, Egs. (8.13) and (8.14)

become

U(s, £) = s Qu(s) — (Kps + K,) e A(s), and

(32 I+ (Kps+K,) 6'35) A(s) = 0.

Because ¢ < T, and T is small enough to recover the continuous-time signals, we

can approximate e™% ~ 1 — £s to get
(s T+ (Kp s+ K,)(1 —€s)) A(s) = 0.

that is, s* (I—Kpé)+s (Kp-K,f)+K,=0. (8.15)

We may choose Kp = diag[Kp:], K, = diag|[K,], Kpi;, K, >0, i =
1, 2, ---, n, such that the closed~loop system becomes uncoupled, linear, and ex-

ponentially stable. Then, Eq. (8.15) becomes

$2 (1— Kpi€) +s (Kpi — Kpé) + Kpi =0, i=1,2, -, n. (8.16)
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We can-derive from Eq. (8.16) the least upper bound of ¢ for system stability:

: . [Kpi 1 . |
€< 11}f (mm{rpi, KD;’}) , 1=1,2, -+, n. (8.17)
This upper bound of £ can be viewed as a hard deadline with respect to system

stability and used as an extra constraint on the selection of controller gains.

8.3.3 Quantitative Analysis with Respect to System Performance

In practice, we need not only to know the least upper bound of ¢ with respect
to system stability, but also the quantitative performance changes caused by it. As
stated before, the controller is designed under the assumption of ¢ = 0. If the

controller gains are diagonal matrices, then Eq. (8.14) becomes
82+I&,D,‘S+I{pi=0, =1, 2, -+, n. (818)

Comparing this with the standard form of a second order system s2+2 (; wy; s+w?; =
0, we choose
Kpi=2CGwn, Kp=uw?, 1i=1,2 -+ n, (8.19)
where (; and wy; are the closed-loop damping ratio and the natural frequency of
subsystem i, respectively.
We consider the relative displacement of the closed—-loop system’s poles from their
originally-designed positions as a result of the nonzero computing time delay. Let

8. be the actual pole position which is moved from its desired position, sq, due to

the presence of £ > 0. s4 and s, are given by Egs. (8.18) and (8.16), respectively, as

1
sa = —3 Kp;+j ;1; V4 Kpi — K3, and

—(Kpi — Kpi £) £ j (/4 (1 = Kpi €) Kpi ~ (Kpi — Kyi £)?
2(1-Kp;¢) .
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We define the maximum relative displacement of poles as the performance tolerance

| 04i — i |

o = max 2" Teil (8.20)
i Odi
where o4 = || sall2 = /K, and
Ky
R — —rr L > g
Oai ” Sa ”2 1 — [(Di f’ Ogi 2 Odi

Therefore, from Eqs. (8.20) and (8.19), if the performance tolerance « is specified,

we get
1 ) ”
max 1 - it a#l,
i YR )2

£ < 2 4’3“’”' (I—a) (8.21)

. if =1

i Erme it ast,
forz =1, 2, ---, n. This is the upper bound of ¢ with respect to the performance

tolerance for the computed torque algorithm. That is, the computing time delay must
satisfy Eq. (8.21) in order not to violate the specified performance tolerance. This
upper bound can be viewed as a hard deadline with respect to system performance,
and used as an index to select a CPU to implement the control algorithm.

The computed torque algorithm Eq. (8.11) is based on the assumption that the
parameters of Eq. (8.8) are completely known. However, they are, in fact, unknown,
or not known precisely. Some adaptive schemes may be used to estimate these
parameters and then the computed torque algorithm or variations thereof [0S88]. If
it is assumed that the estimators give the true values and a peffect tracking of time-
varying parameters, then performance changes can be analyzed separately while
figuring the time consumed by the estimators in the computing time delay. This
implies that Eqs.(8.17) and (8.21) can also be used as an approximate analysis for
adaptive control methods which are based on the computed torque algorithm. Since
the parameter estimators and the adaptive algorithm require a longer computing time

delay than non—-adaptive ones, it is important to analyze the effects of computing time
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delay. To this end, in the next two sections, we will analyze the effects of computing
time delay for both a knowledge-based coordinator and an NN-based coordinator
for two robots holding an object. Unlike the single-robot control system treated in
the previous section, those examples deal with a complex control system for which

the system dynamic equations are either unknown or known only qualitatively.

8.4 Real-Time Performance Analysis of the Knowledge—
Based Coordination System

In a knowledge-based or an NN-based control/coordination system, the system
dynamic equations are usually unknown or known only qualitatively, and one can-
not describe the control actions mathematically. This implies that evaluation of
the effects of computing time delay effects on such systems may depend heavily
on simulations and/or experimenfs. Moreover, as was concluded in previous sec-
tions, loss of control outputs is equivalent to introduction of random disturbances.
However, disturbance- and/or noise-rejection ability of a knowledge-based or an
NN-based control/coordination system has not been addressed in most relevant lit-
erature. Therefore, we want to analyze the effects of both delay and loss problems
for a knowledge-based and an NN-based control/coordination system. In this sec-
tion, the effects of computing time delay on system performance is analyzed for a
knowledge-based coordination system developed in Chapter 5. The NN-based coor-
dinator developed in Chapter 7 will be investigated in ngxt section.

The problem is to coordinate two 2-link robots holding a rigid object. The solu-
tion consists of two levels: the high level is a knowledge-based coordinator (KBC)

and the low-level subsystems are two robots each with a separately designed servo

controller. The basic configuration of this example is shown in Fig. 5.5. The Carte-
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sian frame is fixed at the base of robot 1, and the trajectories of the object and the
robots’ end—effectors are specified relative to this frame. We want to move the object
forward and then backward in X direction while keeping the height in Y direction
constant. The detail of the problem statement and the principle of the KBC are
presented in Chapter 5.

In the example of two 2-link robots holding an object, each robot is position
controlled with the computed torque algorithm. For such a control algorithm, an
upper bound of computing time delay with respect to system stability has been

derived in Eq. (8.17), and rewritten below as

: . | Kpi 1 }) . -
<inf [min{—, —3)}, 1=1, 2 8.22
¢ i ( { I(pi Kp; ( )

For the position controller with the computed torque algorithm, obviously there are
many choices of the controller gains to satisfy different performance requirements
in addition to the conditions of system stability. However, the selection of the con-
troller gains must satisfy the condition of Eq. (8.22) concerning the computing time
delay. In this coordination scheme, the KBC forms a high-level coordinator, and the
internal structure and/or parameters of the low-level subsystems are not affected.
Therefore, this upper bound can be used to approximately analyze the effects of
computing time delay on the stability of multiple-system with the KBC.

" The search process of the KBC is determined by the decision tree shown in Fig.
3.2, and the modification to the system reference input is computed with Eq. (5.3).
Thén the average search speed is given by setting K = 0.5. After the n-th iteration,

the magnitude of modification to the reference input is

|ag — ol

g1 =

2n+1
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In the worst case, the search will not be completed until

- |ad — 83|
|7 He|cf| <6  or —-————————;n_l_lo <,

where 6 > 0 is a pre-specified tolerance. Usually, the initial value is ¢ = 0. There-

fore, the maximum number of iterations with the average search speed is given by

_|Inlad — 3] —Iné
n = [ % 1. (8.23)

For example, if ad = —5, 8 =5, ¢§ =0, K = 0.5 and § = 0.001, then in the worst
case, the KBC needs 13 iterations (n = 13) to complete the search process. From
Eq. (8.23), the maximum computing time may be estimated, which is then used to
select the controller gains and satisfy the condition Eq. (8.22).

Let the cost function of two 2-link robots holding an object be defined by

1 N

5 2 (EF(k) Bi(k) + B(k) Be()), (8.24)
k=1

where Er(k) = 3(£1(k) — £,(k)) and Ee(k) = (f14(k) — £1(k)) + (F2a(k) — F2(K))

are the internal force and external force error, respectively.

J =

According to the robot dynamic parameters, three groups of controller gains are
designed and listed in Table 8.1. The sampling interval is 75 = 10 ms. For the
first group K,; = 157.90, Kp; = 18.85, the upper bound of the computing time
delay is 53.0 ms. This implies that the system can tolerate a delay of 51,. The
cost functions corresponding to different delays are plotted in Fig. 8.2. The system
becomes unstable if 67, extra delays are introduced. So, in this case, the delay
problem will never affect the system stability. Fig. 8.3 shows the cost functions using
the second group of controller gains K,; = 986.96, Kp; = 47.12 for different delays.
The upper bound of the computing time delay is 21.2 ms. In our simulation, the

system was shown to become unstable if two sampling-interval delays are introduced.
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Controller gains Closed-loop system Upper bound of ¢
K, Kbp; damping ratio ¢ | natural frequency w, (ms)
157.90 18.85 0.75 2 x2m(rad/s) 53.0
986.96 47.12 0.75 5 x2w(rad/s) 21.2
3947.84 94.25 0.75 10 x2m(rad/s) 10.6

Table 8.1: Tested controller gains and the upper bounds of computing time delay.

If the third group of controller gains (K,; = 3947.84, Kp; = 94.25) are used, then
the upper bound of the computing time delay is reduced to 10.6 ms. Because the
sampling interval is T; = 10 ms, the computing time delay will greatly affect the
system performance. The cost functions corresponding to different computing time
delays are plotted in Fig. 8.4. The system becomes unstable at ¢ = Tms. Obviously,
this group of controller gains cannot be used due to the potential problem caused
by the computing time delay. Therefore, we conclude that the selection of controller
gains should not only satisfy the desired system responses but also the upper bound
of computing time delay — Eq. (8.22). From Figs. 8.2 - 8.4, we also conclude that
the system performance is improved by adding the KBC for different computing
time delays. Note that the KBC is designed only to improve the system performance
(more precisely, to reduce the internal force); we cannot rely on the KBC if the
original system becomes unstable.

The loss problem is also simulated for the coordination of two 2-link robots
holding an object. In the simulation, ten consecutive outputs are lost after the
object reached the maximum or the minimum velocity. The controller gains are

K,; = 157.90 and Kp; = 18.85. The simulation results are summarized in Table 8.2.
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Cost function

without the KBC | with the KBC

no output loss 92.584 13.228

lose 10 outputs at the

point of maximum velocity 92.670 13.224

lose 10 outputs at the

point of minimum velocity 92.678 13.218

Table 8.2: The cost functions with different output losses for the KBC.

These results indicate that the KBC is not sensitive to the loss problem, agreeing

with the observation in [SC88]: PID-type controllers are not sensitive to the loss
problem.

8.5 Real-Time Performance Analysis of the NN-Based Co-
ordination System

One of the advantages of NNs is that parallel processing can be easily imple-
mented. By distributing the computational burden to all nodes, the effects of the
delay problem on system performance can be reduced. However, as a controller or
coordinator, the numbers of the nodes at each layer may not be as large as those
in such applications as pattern recognition and image processing. So, the NN-based
controller or coordinator may be implemented in software, and thus the computing
time delay may become significant, as shown in the example below. Moreover, it is
also true that the loss problem may affect the system performance as discussed in
Section 8.1. In what follows, the NNBC developed in Chapter 7 is evaluated for both

the delay and the loss problems.
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Computation | Multiplication Addition Division | Exponential
(M) (4) (D) (E)
HIDDEN layer N1 N Ny (N +1) M N,
OUTPUT layer No Ny Ny (N +1) N, N,
weights from
HIDDEN to 4 N, N, 3 N1 N, 0 0
OUTPUT layer
weights from
INPUT to (44 N2) N Ny | (L 4+ N;) N N, 0 0
HIDDEN layer
thresholds Ny + N,y Ny + N, 0 0
‘M=5N Ny +5N, N+ N Ny N+ N, + N, |
total A=2NN 42N, +2 N, +4 Ny No+ N Ny N,
D= N;+ N, and E =N+ N,

Table 8.3: The computational requirement of a three-layer perceptron.

We must consider the computational requirement of a three-layer perceptron
with the standard BP algorithm in order to obtain quantitative knowledge about the
computational requirement. The details of the standard BP algorithm can be found,
for example, in [RM86], and thus omitted here. Suppose there are N input nodes,
N; hidden nodes, and N, output nodes, and each node performs scalar operations
only. The computational requirement is given in Table 8.3. For example, when
N =4, N; = 15, and N, = 1, the computation required is 451 multiplicative, 272

additive, 16 divisional, and 16 exponential operations. In the NNBC proposed in
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Chapter 7, each node has the ability to perform vector operations. For the example
of coordinating two 2-link robots holding an object, the dimension of the vector is
four. This implies that the computational requirement is at least four times the
above figure for the neural network part alone. Therefore, the computational burden
is significant if the neural network is implemented in software.

Similar to the evaluation of the KBC, using the same cost function Eq. (8.24),
three groups of controller gains in Table 8.1 are evaluated. Fig. 8.5 shows the
results using the first group controller gains: K,; = 157.90, Kp; = 18.85. Without
the NNBC, the upper bound is still 53 ms. However, compared with Fig. 8.2, we
conclude that the NNBC is more prone to be unstable than the KBC as a result
of computing time delay. Note that the unstability in Figs. 8.2 and 8.5 will never
occur, since the computing time delay always less than one sampling interval. The
cost functions for the second and third groups of controller gains are plotted in Figs.
8.6 and 8.7. The performance of the NNBC is not degraded due to the computing
time delays as long as the two-robot system is still stable in the presence of the
computing time delay. Similar to the KBC, the NNBC is used to improve the system
performance, but not to stabilize an unstable multiple-system.

The NNBC is also tested for the loss problem. The simulation arraﬁgement is the
same as that for KBC, that is, ten control outputs are lost after the object reached
the maximum or the minimum velocity. The controller gains are K,; = 157.90 and
Kp; = 18.85, and the results are presented in Table 8.4. These results indicate that
the NNBC is not sensitive to the loss problem either. This implies that the weights
of the NN for this example may not necessarily have to be updated in every sampling

interval.
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Cost function

without the NNBC | with the NNBC

no output loss 92.584 0.641

lose 10 outputs at the

point of maximum velocity 92.670 0.652

lose 10 outputs at the

point of minimum velocity 92.678 0.659

Table 8.4: The cost function with different output losses for the NNBC.

8.6 Summary

The increasing use of digital computers to implement real-time controllers has
made it essential to carefully study the effects of computing time delay on the stability:
and performance of controlled systems. This computing time delay is different from
the usual system time delay; it is a random delay resulting from the execution of
control programs on a digital computer.

The effects of computing time delay on control system performance are classified
into delay and loss problems, which are then analyzed for both general and special
cases. A generic criterion is derived for the qualitative analysis of the delay problem.
Since any quantitative analysis requires the detailed knowledge of the controlled
system and the control algorithm to be used, we have chosen a prototypical, real-time
control system with a commonly-used control algorithm — a robot control system
with the computed torque algorithms — to give a detailed account of computing
time delay effects. For such a system, the upper bounds of computing time delay

for system stability and performance are derived as an extra constraint on controller
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design and selection of CPUs to implement the control algorithm.

Both the knowledge-based and the NN-based coordinator are evaluated for the
delay and loss problem via simulation. Since the internal structure and/or parameters
of the low-level subsystems are not affected by adding the coordinators, the servo
controllers of the subsystems are designed separately from, and independently of, the
others. Therefore, the upper bounds of computing time delay are still valid even when
two such subsystems cooperate. Moreover, the maximum number of iterations with
an average search speed is derived and can be used to estimate the computation time
required for the KBC. Both the qualitative and quantitative analyses of the robot
control/coordination system have demonstrated how system performance is affected
by the computing time delay and how a given system can be evaluated based on the
computing time delay.

By adding the coordinator, the system performance is improved even under the
effect of computing time delay, as long as the coordinated subsystems are stable in
the presence of computing time delay. The coordinator cannot be used to stabilize
an unstable multiple-system. Moreover, for coordinating two 2-link robots holding

an object, both KBC and NNBC are shown to be not sensitive to the loss problem.
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Figure 8.2: Performance of the KBC with the 1st group of gains.
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CHAPTER IX

CONCLUSION

Focusing on the coordination of multiple systems, two practical and general de-
signs have been developed: a knowledge-based coordinator (KBC) and an NN-based
coordinator (NNBC). The basic principles we followed are (1) in a hierarchical struc-
ture; the higher the level is the more intelligence it has for decision making, but
the less precision with which it knows about the internal structure and parameters
of lower levels, and (2) different levels should be independent of each other in the
sense that the internal structure and parameters are not affected by adding other
levels. With either of the proposed coordinators, the coordinated system forms a
hierarchical structure in which the high level is the coordinator and the low level is
the coordinated subsystems. By adding either of the coordinators, the two princi-
ples are satisfied. This implies that some commercially-designed servo controllers
may be directly coordinated for some tasks which require multiple-system coopera-
tion. Considering the implementation of a control algorithm on digital computers,
the effects of computing time delay has also been analyzed in this dissertation. For
a robot control system, the upper bounds of computing time delay are derived as
extra constraints on the control system design. Both the KBC and the NNBC are

evaluated in terms of computing time delay.
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The KBC combines the techniques of intelligent control and neural networks.
The low-level subsystems are viewed as a mapping from the system reference inputs
to the system outputs. In order not to interfere in the internal structure and/or
parameters of the low—level subsystems, the only action that the coordinator takes is
to issue a sequence of appropriate reference inputs. The basic idea is to estimate the
effects of the reference inputs using a predictor and to modify them through a search
in a knowledge base in order to achieve the desired performance. A general-purpose,
MIMO predictor has been designed using neural networks. By introducing the pre-
dictor, the knowledge base for multiple-system coordination is greatly simplified,
and each reference input is evaluated before its actual application. The NN-based
predictor deals with the unknown parameters and/or time-varying properties of the
coordinated multiple-system, while the KBC emphasizes logical reasoning and deci-
sion making.

The NNBC is designed based on the property that a multilayer perceptron can be
used to approximate any continuous mapping. The basic structure of ‘the NNBC is
a multilayer perceptron. The outputs of the NNBC are the coordination commands
to the low-level subsystems, that is, the outputs of the NN are the control variables
of the low-level subsystems—. NNs are usually trained by using the output errors of
the network. However, unlike the indirect control schemes such as those proposed
in [NP90], when an NN is used to control a plant directly, the output errors of the
_network are unknown, since the desired control actions are unknown. Therefore,
in designing the NNBC, one of the key problems is to develop an efficient training
algorithm. We want to train the NNBC by using the output errors of the controlled
plant, instead of using the unknown output error of the NN. A simple training

algorithm has been developed which enables the NN to be trained by the output
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errors of the controlled plant. In this way, the proposed algorithm enhances the
NN’s ability to handle control applications.

The effects of computing time delay on the stability and performance of controlled
systems have been carefully studied for both a general robot control system and the
coordinators developed in this dissertation. The effects of the computing time delay
are classified into delay and loss problems. We concluded that the delay problem
affects the control system through a permanently acting perturbation, while the loss
problem is equivalent to random disturbances. For qualitative analysis of the delay
problem, a generic criterion is derived in terms of system stability. For quantitative
analysis, upper bounds of computing time delay on system stability and performance
are derived for a robot control system with the computed torque algorithm. These
upper bounds can be used as extra constraints on controller design and CPU selection
to implement the control algorithm. Both the KBC and NNBC are evaluated in
terms of thve delay problem and the loss problem via simulation. Since the internal
structure and/or parameters of the low-level subsystems are not affected by adding
the coordinators, the upper bounds of computing time delay still hold when two such
subsystems work cooperately. This is the basis of evaluation for botil the KBC and
NNBC.

The main contributions of this dissertation are summarized as follows:

1. A KBC has been developed by combining the techniques of intelligent control
and neural networks. Using an NN-based predictor, the design of the knowl-
edge base for multiple-system coordination is simplified. The KBC emphasizes

logical reasoning, while the ability of learning mainly relies on the NN.

o

A direct adaptive control and coordination scheme is developed using neural

networks. A simple training algorithm is proposed based on the BP algorithm.
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This algorithm solved a major problem of neural networks in some control
applications in which the output errors of the network are unavailable for on-
line training,.

. As a high-level coordinator, by adding either of the KBC or NNBC the co-
ordination system forms a hierarchical structure. Therefore, some industrial
robots with independently and commercially designed servo controllers could

be coordinated to perform more sophisticated tasks than originally intended.

. On-line collision avoidance of multiple robots working in a common workspace
can be accomplished by a simple method, without imposing any constraint on

path planning, trajectory planning, and design of servo controllers.

. By using either the KBC or the NNBC, we open a new way to solve the problem

of coordinating multiple robots holding an object.

. Replacing a conventional controller, the NN-based controller overcomes the
negative effects of a long system response delay, nonlinear elements with dead
zone and/or saturation, and process noises in a class of industrial process con-

trol systems.

. The NN-based predictor alone can be used as a general-purpose predictor for

many industrial applications.

. The theory of performance evaluation on real-time computer control systems
is extended. The computing time delay problem and the control output loss
problem are defined, and their effects on system performance are analyzed in
detail. For a certain type of robot control systems, the upper bounds of the
computing time delay are derived which can be used as an extra constraint on

controller design and CPU selection to implement a control algorithm.
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The future work of this research includes:
1. Extend the KBC to coordinate more than two robots in a common workspace

to avoid collision.

2. Investigate the application of the general-purpose predictor in intelligent deci-

sion support systems.

3. Develop a method to determine the number of hidden nodes when designing a

NN-based controller.

4. Extend the NNBC to coordinate two multiple-link robots.
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APPENDIX A

SIMULATION OF TWO 2-LINK ROBOTS
HOLDING AN OBJECT

Al. Kinematics and Dynamics of a 2-Link Robot
Direct Kinematics
Referring to Fig. 3.6, when the joint position ¢ = [qi, qg]T is specified, the

position of the end-effector is given by

P,=Ljc1+ Ly e

P, = L, 81+ L3 s12,

where L; is the length of link z,

¢; = cosq;, 8; =singq;, 1=1, 2, and
12 = cos(qr + ¢2), s12 = sin(q1 + g2)-

Inverse Kinematics

Given the position of the end-effector (P, P,), the joint positions are computed

as follows:

P,
(1). compute 6 = arctan —Z,

Py

L%—L%—(P£+P5))

2). compute 6, = arccos | —
(2): compute 6y ( 2L, \JPE+ P}
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(3). compute ¢ =0 — 64,

@+m-m-g)

(4). compute ¢, = arccos ( 2L, L,

Jacobian Matrix

( 0P, 0P, ]
J = On  Og _ —(L1 51 + Lz s12) —~Ls 819
8P, 9P, Ly a1 + Ly ¢r2 Ly ¢12 ,
01 9q2
51 Ly c12 Ly s12 1
I —(L1 1 + L2 c12) —(L1 81 + Ly s12) Ly Ly s’
i [ —Lici Gi— Ly iz (G1+4q2)  —L2 c12 (g1 + G2)
| L1 s1 g1~ La siz (g1 + G2) —La s12 (¢1 + G2)
- Dynamics

The dynamic equation of a robotic manipulator in joint space, in general form, is

H(q) §+C(q, ¢) ¢+ G(q)+IT f =, (A1)

where q, 7, f are the joint position, joint torque, and the force exerted on the end-
effector, respectively. H(q) is the inertia matrix, C(q, q) ¢ represents the Coriolis
and centrifugal forces, G(q) represents the gravitational force, and J is the Jacobian
matrix. For a 2-link robot, we have ¢ = [¢1, )t T =[n, n)F, and f = [f., fy]T.

Then each term of Eq. (A.1) is given as

H( ) mlel -+ 77?,-2([4% + LEQ + 2L1LC262)-+ 11 + 12, TIZQL] Lc2C2 + m2L32 + 12
q =
my Ly Lea co + mg L2 + I, me L2, + I

) —2mg L1 Ly 82 G2,  —mg Ly Lo 82 42
C(q, q) =
mg L1 Ly 82 ¢, 0
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T
Main-body
coordinates

object

T T T
RIS

World coordinates

Figure A.l: Basic configuration of the simulated system.

my La ger+me g (Lez crz+ Ly 1)
G(q) =

mg Lep g €12

m;, Le and I; are the mass, mass center and moment of inertial of link ¢, respectively.
g is the gravitational acceleration.
A2. Simulation of Two 2-Link Robots Holding an Object

In the mechanism of two 2-link robots holding an object, it is assumed that
there is no relative motion between the end-effectors and the object. The object
is called the main body of the mechanism because the position of every link in the
mechanism can be determined by given the position of the main body [Wal86]. The
basic configuration is shown in Fig. A.l. Let v = P be the velocity of the object,

then the motion of the object is described by

) 0
mv'“fl—'f2= )

——_m’ g
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where f; is the force exerted by robot i, ¢ = 1, 2. m is the mass of the object and
g is the gravitational acceleration. Referring to Eq. (A.l), the force constrained .

dynamic equation of robot ¢ in joint space is
Hi(q,) 4; + Ci(q;, 4;) 4: + Gi(q,) +3I] fi=m
Then the simulation procedures are listed below.

1. Given: the acceleration of the object v.

Compute: the velocity of the object v by integration.

2. Given: the velocity of the object v.

Compute: the position of the object P by integration.

3. Given: the position of the object P.

Compute: the positions of the end-effectors

end-effector 1: P, = P,

end-effector 2: Py = P — [base_distance, 0]" .

4, Given: the position of the end-effectors Py and Ps.
Compute: the joint positions of the two robots ¢; = [qi1, qi2]” and q, =

[g21, ng]T by inverse kinematics.
5. Given: the joint accelerations ¢, and gq,.
Compute: the joint velocities ¢, and g, by integration.
6. Given: the joint velocity q, and position ¢;, ¢t =1, 2.
Compute: the robots’ dynamic parameters H;(gq;), Ci(q;, q:), Gi(q;), Jaco-

bian matrices J; and its derivative J;, 1 =1, 2.



7. Given: the joint velocity q;, position g; and joint torque 73, i =1, 2.

Compute:

202

Ki=7,-Ci q;— G,

and form the equation AX = B, where

8. Solve X from AX = B to get the accelerations of the object and joints, and

™1

T2

~I, -1,
T o

0o JT
0 0
0 0
Hy =

the forces exerted on the object.

r, = —-j,' i],-, T = 1, 2,
v
4,
) X - .q.z b
J
- | £ ]
m 0
; and Ig——
0 m

9. Compute the controlled joint torque 7;, 2 =1, 2.

10. Go to Step 1.
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