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A B ST R A C T

INTELLIGENT COORDINATION OF MULTIPLE SYSTEMS WITH NEURAL
NETWORKS

b yXianzhong Cui

Chairperson: Kang G. Shin

Many control applications require cooperation of two or more independently de­

signed, separately located, but mutually affecting, subsystems. In addition to the 

proper functioning of each subsystem, their effective coordination is very important 

in order to achieve the desired performance. This has led to the development of new 

multiple-system coordinators and the evaluation of their performance in real-tim e 

implementation. Two coordination schemes have been proposed: a knowledge-based 

coordinator (KBC) and a neural network-based coordinator (NNBC). Either of them 

functions as a high-level coordinator in a hierarchical system. In such a hierarchical 

structure, the detailed structure and/or parameters of low-level subsystems need not 

be known to the coordinator, so that each subsystem can be designed separately.

The basic idea of the KBC is to estimate the effects of commands to low-level sub­

systems using a predictor and to modify them by searching a knowledge base in order 

to achieve the desired performance. A general-purpose predictor has been designed 

for MIMO (multiple-input, m ultiple-output) systems using neural networks (NNs). 

By introducing the predictor, the knowledge base for multiple-system coordination



is greatly simplified, and each command is evaluated before its execution.

The basic structure of the NNBC is a multilayer perceptron. NNs are usually 

trained by using the output errors at its OUTPUT layer. However, when an NN is 

used to control a plant directly, these errors are unknown, since the desired control 

actions are unknown. This implies that the conventional back propagation training 

algorithm cannot be applied to control problems directly. A simple training algorithm 

has been developed which enables the NNBC to be trained by using the output 

errors of the controlled plant, thus enhancing the NN’s ability to handle control 

applications.

The effects of computing time delay on the stability and performance of controlled 

systems have been carefully studied both for general robot control systems and for 

the proposed coordinators. For the qualitative analysis of the computing time delay, 

a generic criterion is derived in terms of system stability. For quantitative analy­

sis, upper bounds of computing time delay on system stability and performance are 

derived for a robot control system. These upper bounds can be used as extra con­

straints on controller design and selection of CPUs used to implement the control 

algorithm.

The coordination of two robots holding an object, the coordination of multiple 

robots to avoid collision, and the control of a nonlinear thermo-process are investi­

gated to test the capability of the proposed schemes. Because the internal structure 

and parameters of the low-level subsystems are not affected by using either the KBC 

or the NNBC, some commercially-designed servo controllers can be coordinated to 

accomplish more sophisticated tasks than originally intended.



C H A PT E R  I

INTRODUCTION

1.1 M otivation and Purpose

Many control applications require cooperation of two or more independently de­

signed, separately located, but mutually affecting, subsystems. Examples of these 

applications are the coordinated control of multiple robots holding a single object, 

coordination of multiple robots working in a common workspace to avoid collision, 

coordinated control of a main steam tem perature and a reheater steam temperature 

in a therm al power plant, and coordination of multiple generating units for econom­

ical load distribution in an electric power system. The coordination problem forms 

a hierarchical structure in which the internal structure and parameters of low-level 

subsystems should not be affected by adding a high-level coordinator. In addition to 

the proper functioning of each subsystem, effective coordination of all subsystems is 

very im portant in order to achieve the desired performance. Multiple-system coor­

dination can in general be stated as a constrained optimization problem. However, 

solving the coordination problem is very difficult due mainly to the lack of a precise 

system model and/or dynamic parameters, as well as the lack of efficient tools for 

system analysis, design, and real-tim e computation of optimal solutions. Therefore, 

new methods for design and analysis are needed to achieve the closed-loop coordi-

1
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nation of multiple systems. The goals of this research are to develop practical and 

general design methods for multiple-system coordination with a hierarchical struc­

ture, and to evaluate the performance of their real-tim e implementation.

Although some basic principles in coordinating multiple systems were developed 

in early 80s [LM082], most related publications addressed only conceptual inter­

pretation, and very few of them dealt with actual applications. In recent years, 

certain special coordination problems have drawn considerable attention. One of 

the challenging topics is coordinated control of multiple robots. Assuming complete 

knowledge about robot dynamics, most published results are specially designed for 

the purpose of coordinating multiple robots. However, most of them are not based 

on a hierarchical structure and are usually not suitable for coordinating two robots 

which are built with independently-designed, commercial servo controllers.

In this dissertation, we focus on the coordinated control of several physically 

distributed systems. Generally, there are four levels of hierarchy in a coordination 

system, as shown in Fig. 1.1. The highest level is the monitoring and interface level, 

which provides man-machine interface, goal setting, and decision making. The next 

level is the planning and supervision level in which the commands to conduct some 

general, descriptive tasks are transformed to a specified command sequence while 

satisfying a set of constraints. The third level is called the coordination level and 

is designed to modify the commands from the higher level, so that the command 

sequence becomes executable without violating the constraints under environmental 

changes. The lowest level is the servo control level. In this level, each subsystem is 

equipped with a servo controller which is designed separately from and independently 

of others. The servo controllers are distributed physically and coupled whenever they 

need to perform cooperative tasks. These subsystems are said to be loosely-coupled if



3

Monitoring and 
M an-M achine Interface

I w

Planning and Supervision

Coordination

Servo Control

Controlled Plants
6 6 6 6 6 6

Figure 1.1: Conceptual structure of a hierarchical coordinated control system.

the internal structure and parameters of the subsystems do not affect each other, but 

must satisfy some common external constraints. For example, multiple robots work 

in a common workspace and are coordinated to avoid collision. Otherwise, these 

subsystems are tightly-coupled. For example, multiple robots hold a single object 

rigidly. Obviously, tightly-coupled subsystems are more difficult to coordinate than 

loosely-coupled ones.

In a hierarchical structure, the higher the level is, the more intelligence it has 

for decision making, but the less precision of knowledge it knows about lower levels. 

Each level should be independent of the others in the sense that the internal structure 

and parameters will not be affected by adding other levels. Based on these principles, 

two different schemes for multiple system coordination have been developed in this 

dissertation by using the techniques of intelligent control and neural networks (NNs). 

In the first scheme, a knowledge-based coordinator is designed by combining the



techniques of intelligent control and neural networks. From the viewpoint of a high 

level, in order not to interfere in the internal structure/param eters of the low level, 

the only control action to take is to issue a sequence of appropriate commands to 

low-level subsystems. Our basic idea is to estimate the effects of these commands 

using a predictor and then modify the commands through a search in a knowledge 

base in order to achieve the desired performance. In the second scheme, an NN- 

based coordinator is developed. One of the main properties of neural networks for 

control applications is that they can be used to approximate any continuous mapping. 

Therefore, a multiple-system can be coordinated directly using neural networks, 

provided we can train such a neural network to learn the relationship between the 

corresponding responses of the low-level subsystems and the appropriate high-level 

coordination commands. Because the internal structure and parameters of the lower 

levels are not affected by using either of the proposed methods, it is possible that 

some commercially-designed servo controllers could be coordinated to perform more 

sophisticated tasks than originally intended.

To implement the proposed methods on digital computers, all computations must 

be finished in real-time. Hence, our research also deals with the real-tim e computa­

tion of coordination commands. Traditionally, the performance of a control system 

is evaluated by such criteria as stability, rise time, maximum overshoot, and so on. 

In addition to these, for a real-time control system, the most im portant issue is 

timeliness and reliability. A controller computer implements the control algorithms 

by executing a sequence of instructions. Unlike analog control systems, the reliabil­

ity of a digital control system depends not only on the MTBF (mean time between 

failures) of the controller hardware and software, but also on the delay in executing 

control algorithms on the controller computer. The execution time, or the computing
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time delay, for a control algorithm is defined as the period from its trigger to the 

generation of a corresponding control command. It is an extra time delay introduced 

into the feedback loop in a controlled system. Because of the existence of condi­

tional branches, resource sharing delays, and processing exceptions, the computing 

time delay for a given control algorithm is usually a continuous, random variable 

which is smaller than the sampling interval. This extra time delay cannot be treated 

as a constant a priori and added into controller design. Thus, it is very important 

to analyze the effects of computing time delay on control system performance when 

control algorithms are implemented on digital computers. This is especially true for 

the control/coordination systems with heuristic search and/or symbolic reasoning.

1.2 Overview of the Research

Following an extensive survey of multiple-system coordination, intelligent con­

trol, and neural networks in Chapter 2, we propose a hierarchical knowledge-based 

controller for a single system in Chapter 3. As a starting point in developing 

a knowledge-based coordinator, we investigate the function and structure of the 

knowledge-based controller. A knowledge base is designed for which the knowledge 

acquisition and representation are analyzed. The inference process will conduct a 

goal-oriented search in the knowledge base. Since a knowledge-based system may 

not be described mathematically, one should pay special attention to the stability 

issue. Therefore, the overall system stability is proved. Solution existence and error 

bounds are also analyzed. The good performance of the knowledge-based controller 

is verified via simulations for both linear and nonlinear systems.

The design of a general-purpose predictor is discussed in Chapter 4. By “general- 

purpose”, we mean that a predictor is suitable for MIMO (m ultiple-input multiple-



output) systems with linear, nonlinear, time-invariant, and/or time-varying prop­

erties. Neural networks are used to design such a predictor. The following aspects 

are investigated: capability of neural networks for approximate prediction, basic 

structure of the neural network as a predictor, tracking a time-varying system, er­

ror analysis, and a training algorithm for an NN with vector inputs and outputs. 

The NN-based predictor is tested extensively via simulation for the MIMO systems 

mentioned above.

Chapter 5 presents the design procedures of the knowledge-based coordinator 

(KBC). The KBC combines the results discussed in Chapters 3 and 4, and forms 

a high-level coordinator in a hierarchical structure. The basic idea is to estimate 

the effects of the coordination commands to subsystems using a predictor and to 

modify these commands through a search in a knowledge base in order to achieve 

the desired performance. The problem of multiple-system coordination is stated 

formally, and some basic principles of multiple-system coordination are reviewed. 

The proposed scheme and the assumptions are described in detail. To show how 

to apply the proposed KBC to actual problems, the coordinated control for both 

tightly-coupled and loosely-coupled multiple systems is studied. In this chapter, 

the coordinated control of two 2-link robots holding a single object is presented as 

an example of the tightly-coupled multiple-system. The purpose is to reduce the 

internal force exerted on the object by modifying the reference input of each robot 

using the KBC. Adding the KBC does not impose any constraints on the design 

of the robots’ servo controllers. In other words, the robots’ dynamic properties are 

figured in the coordination without affecting the internal structure and parameters 

of each robot’s control system.

For loosely-coupled systems, the coordinated control of multiple robots working



in a common workspace to avoid collision is analyzed in Chapter 6. It is assumed 

that both the desired path and trajectory of each robot are specified by teaching 

separately and without considering collision avoidance. A robot is designated as 

the master or a slave. The master will follow its desired trajectory, and the desired 

trajectories and/or paths of the slaves will be modified by the KBC to avoid collision. 

Both cylindrical robots and revolute robots are considered.

The second scheme for multiple-system coordination is presented in Chapter 7 

in which neural networks are used for direct control and coordination. One of the 

key problems in designing such a controller (coordinator) is to develop an efficient 

training algorithm. NNs are usually trained by using the output errors of the network, 

instead of using the output errors of the controlled plant. However, when an NN is 

used to control a plant directly, the output errors of the network are unknown, since 

the desired control actions are unknown. This implies that the conventional back 

propagation training algorithm cannot be applied to control problems directly. In 

this chapter, a simple training algorithm is developed for a class of nonlinear systems, 

and this enables the NN to be trained by the output errors of the controlled plant. 

Both an NN-based controller and an NN-based coordinator have been designed and 

tested via simulation. The NN-based controller was tested on a thermo-process and 

shown to perform well in the presence of long system time delay, nonlinearity of 

dead zone and saturation, and process noise. The NN-based coordinator was tested 

on the same example for the KBC — two 2-link robots holding an object — and 

achieved even better results than that in Chapter 5.

Chapter 8 investigates the issues of performance evaluation for real-tim e control 

systems. We analyze the effects of computing time delay on the performance of 

both general real-tim e digital control systems and the proposed coordinators. For
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a given fixed sampling interval, the effects of computing time delay are classified 

into delay problem and loss problem. The performance measures in the presence of 

computing time delay are reviewed, and then the effects of the both delay and loss 

problems are analyzed in detail. Some common misunderstandings of the effects of 

computing time delay are also clarified. For the qualitative analysis of the computing 

time delay, a generic criterion is derived in terms of system stability. For quantitative 

analysis, upper bounds of computing time delay on system stability and performance 

are derived for a robot control system. These upper bounds can be used as extra 

constraints on controller design and selection of CPUs to implement the control 

algorithm.

Finally, Chapter 9 summarizes the main contributions of this research and con­

cludes the dissertation.



C H A PTER  II

LITERATURE SURVEY

This research covers three subjects: multiple-system coordination, intelligent 

control, and neural networks.

2.1 Survey o f M ultip le-System  Coordination

Early work on the basic theory of multiple-system coordination was summarized 

in [LM082] and focused on large scale systems. Some conceptual principles were 

proposed including hierarchical system structures, goal coordination, model coor­

dination, and interaction balance principle. Dynamic programming, mathematical 

programming, and other methods were also discussed as m athematical tools used for 

solving the coordination problem. However, most of the work in [LM082] addressed 

only conceptual interpretation, but little has been said on applications. [Ozg89] 

surveyed and briefly analyzed existing approaches to decentralized and distributed 

control design for large scale systems including system and controller structures, 

intelligent control approaches, and implementation problems.

In recent years, research on coordinated control has focused on some specific 

applications, such as multiple-robot coordination. Though most designs of multiple- 

robot coordination are not in a hierarchical form, recent research in “multiple robots

9
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holding a single object” is briefly reviewed below as an example of application- 

oriented work.

2.1.1 M u ltip le-R ob ot C oordination

When two or more robotic manipulators hold a single object, many problems 

occur due mainly to redundancy. If the object is assumed to be rigid and there is no 

relative motion between the end-effectors and the object, then they form a closed 

chain. In this closed chain, each end-effector with six DOFs (degrees of freedom) can 

exert six components of forces and moments on the object. However, the resulting 

motion of the object has only six components. Therefore, we have to control 12 

variables (for the case of two manipulators) to get a result of six variables. In other 

words, due to kinematic constraints of the closed chain, some DOFs are lost. The 

number of these lost DOFs equals the number of DOFs gained to control internal 

forces of the closed chain [KL88], that is, the force/torque exerted on these DOFs 

will not cause any motion of the object, but will generate internal forces.1 Detailed 

dynamic equations of the closed chain are given in [KL88], [Nak88], [ZL88], and 

[TBY88]. These internal forces must be controlled. Since load distribution to each 

joint is not unique due to redundancy, the joint torque needed to eliminate the 

internal forces are not unique either. Moreover, two manipulators may have different 

maximum loading capability due to different configurations, implying that the best 

load sharing may not necessarily be an equal share. The purpose of coordination 

is to control the internal forces while distributing the load and tracking a desired 

trajectory.

The load sharing problem can be stated as a constrained optimization problem.

henceforth, the term “fo rce” will be used to mean force and torque, and the “position ” means 
position and orientation, except as noted elsewhere.
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[KL88] tried to separate the DOFs that contributed to the motion of object and that 

caused internal forces. Then master/slave scheme can be interpreted as a special 

case where the master controls the motion of the object while the slave controls in­

ternal forces exerted on the object. Load distribution was achieved by minimizing 

a quadratic function of joint torque and forces exerted on the object. The work in 

[LZ88] and [ZL88] dealt mainly with the load distribution problem for a master/slave 

scheme. They derived the optimization problem from the dynamic equation of each 

robot and the object obtained 2n +  6 linear scalar equations with 2(n +  6) unknowns 

for joint torque and forces exerted on the object, where n is the number of DOFs of 

each robot. Associating these equations with constraints such as joint torque limits, 

the problem can be solved by some known optimization algorithms, like nonlinear 

programming. Hsu presented a hierarchical structure dealing with part-m atching 

tasks with multiple robots [Hsu89]. The load sharing problem was solved by mini­

mizing the weighted norm of the force applied to the object. The difficulty of these 

optimization methods lies in their real-tim e implementation.

Because two manipulators must grasp the object firmly, a small position error may 

cause a large force error. System design should, therefore, emphasize the coordination 

of interaction among the manipulators and the object. Zheng et al. analyzed the 

constrained relation between two manipulators, that is, given the position, velocity, 

acceleration and joint torque of the leader, how can those of the follower be solved 

[ZL85]. The generalized joint torque of the leader and follower can be computed, and 

used for coordinated control of the two manipulators. A nonlinear feedback control 

scheme was proposed in [TBY86], [TBY87] and [TBY88]. By applying nonlinear 

feedback, the dynamic equations of a two-robot system was linearized and decoupled. 

Yun discussed the case where two manipulators hold a single object and move it



12

along a surface while exerting a certain amount of contact force [Yun89]. Here 

nonlinear feedback was designed to linearize and decouple the nonlinear system, and 

a controller was designed based on the linearized system.

Adaptive control is also developed for coordination, for example [Ser88], [Koi85], 

[WKD89] and [MB89]. In [Ser88], a task-related Cartesian frame is set for both 

manipulators, so that the desired trajectory and force for each manipulator may be 

expressed relative to this common frame and coordination is achieved when the de­

sired trajectory is generated. Then each manipulator acts as though it were carrying 

out commands alone in the Cartesian frame. In other words, the controllers work 

independently and the coupling effects between the two manipulators through the 

load are treated as disturbances which are then rejected by the adaptive property 

of a linear adaptive controller [Ser87]. Finally, the virtual forces in Cartesian space 

are transformed into joint space by a Jacobian matrix. A scheme using self-tuning 

control was proposed in [Koi85] in which each manipulator was represented by an 

ARMAX model. The system output vector included the position, orientation, linear 

and angular velocity of the end-effector, and the control inputs were joint torque. 

The self-tuning algorithm was used to minimize a certain cost function.

To eliminate the interactive force exerted on the object, [Pit88] designed a load- 

sharing controller. It is equivalent to adding two force feedback inputs to the com­

puted torque algorithm so as to compensate for the force caused by the load and 

interaction between two manipulators. This algorithm was originally developed for 

motion control of a single robot with an unknown load. However, when it is ap­

plied to the coordinated control of two manipulators, note that not only the load is 

changed but also that the motion is constrained. This mode is different from that 

of one manipulator. Thus, it may not perform as well as in the case of a single ma­
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nipulator. [Hay86], [Uch87] and [UD88] extended the hybrid position/force control 

algorithm, which is well-known for single robot compliant control, to multiple-robot 

coordination. In [KY88], the master/slave and hybrid position/force schemes were 

compared, and they concluded that the hybrid control is preferable. [AS88] extended 

the work of kinematic resolved-rate control to multiple-robot coordination. A force 

feedback loop was closed around the kinematic controller for each manipulator. Each 

robot was force-monitored to prevent it from imposing excessive stress on the object. 

Load distribution was handled by minimizing a quadratic cost function concerning 

the forces in task space.

The work in [KT88] is based on an unstructured model of y { — G i(e,) -f S;(/,-), 

where yi is the end-effector position in a global coordinate frame, e,- the input 

trajectory vector and / ,  the external force measured in the same frame. G; and 

S i are Lp stable, linear mappings but their internal structures are not specified. 

Controllers are designed such that one controls the position and the other controls 

the force.

2.1.2 C om m ents

Recently, the National Science Foundation sponsored a Workshop on Coordina­

tion of Multiple Robot Manipulators: Planning, Control, and Applications [KB88]. 

One of the recommendations for future research is dynamical modeling and control 

systems in CMM (coordinated multiple manipulators) for which some important 

topics are modeling and simultaneous force/position control, parallel algorithms for 

control of CMM, and adaptive control of CMM.

Many coordinated control schemes have been proposed. However, it was found 

that almost all of them  attem pted to solve the problem by improving the performance
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of the servo control systems. This may not always work well because of the tracking 

error, especially for an imperfect trajectory generated by teaching. Currently, most 

commercially-designed robots are position-controlled or position-force controlled, 

and usually adopt PID (proportional, integration and derivative) controllers. This 

kind of control systems may not be suitable for those applications which require 

cooperation of multiple robots. Is it possible to coordinate two industrial robots with 

only a high-level coordinator without affecting the internal structure and parameters 

of low-level controllers by adding the coordinator? Answering this question is the 

major part of the proposed research.

2.2 Survey of Intelligent Control

Since the first IEEE International Symposium on Intelligent Control (IC) in 1985, 

numerous papers have been published in this field. For a history of IC and its 

classification criteria, see survey papers [JS88], [Eld88], [APW88], [Mey87], [Sar88], 

and [GP89]. In what follows, only recent relevant works are briefly reviewed.

The major tools used for IC are the techniques developed in AI (artificial intelli­

gence) — especially expert systems (rule-based systems, knowledge-based systems), 

and fuzzy set theory. Generally, the knowledge representation and reasoning m eth­

ods established in AI are useful for making high-level decisions. This seems to be 

the reason why most control applications of AI have emphasized the development of 

computer-aided control system design packages, supervisory process operations, pro­

duction planning, and so on. At the servo control level, an expert system seems un­

suitable because of its difficulty in real-time computation. However, since knowledge 

from human experts can be easily represented by a set of production rules, applica­

tion of IC in the servo control level has established two major branches. An expert
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Figure 2.1: Basic structures of intelligent control.

system can be combined with a conventional controller and used for controller tuning, 

fault diagnosis, and control system restructuring. This scheme intends to extend the 

range of conventional control algorithms by encoding general control knowledge and 

heuristic searches. Such schemes will henceforth be referred to as parameter-adaptive 

IC  or expert control and are shown in Fig. 2.1 (a). The other schemes attem pt to 

simulate human cognitive ability, which may require deep knowledge acquired from 

the plant dynamics and/or operation experiences. A set of production rules may be 

used to represent a qualitative model of a plant and to associate control operations 

with different situations. In this case, fuzzy set theory is often used for information 

extraction on which qualitative reasoning is based. This scheme is presented in Fig.

2.1 (b) and will henceforth be called performance-adaptive IC  or fuzzy control or 

qualitative control.
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2.2.1 P aram eter-A daptive Intelligent Control

[ABL88], [KBVB88] and [Lit90] presented typical structures of param eter-adap­

tive IC. In [ABL88], an IC is designed to tune a PID controller. Six different features 

are monitored: overshoot, rise time, settling time, peak height ratio, average value 

of the first two local minima and maxima, and the number of local maxima detected 

before settling down. Two sets of production rules are established on the measure­

ment of these features. One is called alarm rules which will be fired when instability 

is identified. The other rules will be fired to re-tune the PID parameters. An algo­

rithm , called the membership-based tuning algorithm, is used to quantify this tuning 

process. Another expert tuner of the PI controller is presented in [PJM87]. Its main 

objectives are wind-up protection of the I part and tuning of the PI gains. The 

transient response of a closed-loop system is characterized into nine categories in­

cluding too-low-monotone, too-low-oscillatory, and so on. Moreover, the open-loop 

response is described by eight categories and the nonlinearity with eight categories. 

Similar to [ABL88], stability is monitored by the knowledge base.

Under the category of param eter-adaptive IC, an expert system can also be used 

to form a supervisory control system. [NKR89] designed a controller bank which 

consisted of a multiple-model adaptive controller and a model reference adaptive 

controller. An expert system is used to make a decision on which controller should 

be used. In [MW90], a rule-based system is developed to compensate for the dead- 

zone nonlinearity in a position-control system. As a supervisor, the rule-based 

system chooses control algorithms from the controller bank according to operating 

conditions. Employing the concept of blackboard, [Whi89] proposed the framework 

of a knowledge-based system with hierarchical structure. The global blackboard and 

two control modules form the top level and direct the operation of whole system. In
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the second level, various tasks are executed, including fault diagnosis and controller 

tuning. The bottom level is implemented with a programmable logic controller which 

controls the process.

2.2.2 P erform ance-A daptive Intelligent Control

Performance-adaptive IC is designed to replace the conventional controller. W ith 

qualitative reasoning in the controller, it must be integrated into the plant contain­

ing quantitative measurement and control signals. A typical design is to apply fuzzy 

set theory. First, the measurement of system output is fuzzified through a mem­

bership function so that qualitative reasoning can be conducted in the controller. 

Then the output of the controller is defuzzified into the actual control signal of an 

actuator. Knowledge is represented by a set of production rules. However, a fuzzy 

controller is usually implemented by look-up tables, to achieve high computational 

efficiency and to avoid unnecessary inference processes. Summaries of fuzzy control 

schemes are presented in [GP89] and [Lee90]. W ith a brief overview of the theory of 

fuzzy logic and rule-based control, [Ber88] described the major differences between 

the construction of fuzzy, rule-based controllers and conventional designs. [LL89] 

compared the performance of a fuzzy controller for servomotors with both the PID 

controller and the MRAC (model reference adaptive control) in terms of steady-state 

error, settling time and response time. Except for the basic structure of fuzzy control 

mentioned above, alternative designs have also been proposed. For example, [KV89] 

introduced a reference model into the design of a fuzzy logic controller for a linear 

system. [AW90] discussed the basic concepts of qualitative modeling and reasoning 

in process control. It was pointed out that a controller using a pure qualitative 

model of a process is inefficient in practice. To improve the performance of control
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systems, the qualitative model should be combined with process-related qualitative 

knowledge.

Under the category of performance-adaptive IC, the principle of learning control 

can also be implemented [GJ88]. In control theory, a learning controller is a tria l- 

and-error mechanism that repeats a fixed procedure. [GJ88] replaced this fixed 

procedure by a knowledge-based controller such that the intermediate output errors 

are treated as knowledge. The error and error increment are quantified into eleven 

intervals, such as negative-big, positive-low-middle, and so on. Based on this, an 

11 X 11 table is formed corresponding to 121 rules. For control problems, control 

actions can be learned from the process directly or designed according to a model 

which is learned from the process [KKG88], [GW88]. In [KKG88], three expert 

systems form the controller: the goal selector, the identifier, and the adapter. Each 

learned model is valid within a subspace of parameters. The control rules are learned, 

allowing the system to recognize the qualitative region to which the controlled plant 

belongs at each time.

There are two important issues in designing fuzzy controllers: selection of a mem­

bership function and design of a knowledge base. Both of them depend on the 

knowledge extracted from experienced operators, on an understanding of the physi­

cal process of the plant, on the experimental results, and so on. [IS90] presented a 

scheme for the optimal design of membership functions. [Bat89] designed a supervisor 

to change the membership functions based on a certain performance index. There­

fore, different operation situations can be controlled with a self-tuning property by 

switching the membership functions. Moreover, considering the fuzzy controller as 

a nonlinear time-varying controller and the plant as a linear tim e-invariant system, 

the stability of the closed-loop system was analyzed by using the circle criterion of
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nonlinear control theory. Production rules can be derived from an analytical model. 

However, due to the approximation, simplicity and/or uncertainty of the model, the 

resulting rules may not achieve the desired performance. On the other hand, the 

rules from a human expert may lack the completeness to guarantee the optimality. 

Keeping this problem in mind, [Isi87] derived rules from experiments and imple­

mented minimum time control in a mobile robot. In [LK87], two kinds of rules are 

designed: training rules and machine rules. The training rules are represented by 

a set of production rules which directly map the position and velocity errors of the 

controlled plant to the linear motion of the control mechanism. The machine rules 

are learned from the accumulated experience of control. The key problem is how to 

generate the “IF” part of the rules and keep consistency with existing rules.

Another important problem in designing an IC is how to characterize system 

performance. As discussed above, system output (or state) error and error increment, 

and the quality of step response are commonly used to express system performance. 

Besides these, [JD87] suggested to use the estimated, dominant pole locations of 

a closed-loop system as the characteristics of system performance, even though no 

knowledge base was built on it. [KBVB88] arranged output error and its derivative 

in a phase plane, and the goal was to control the system reaching the origin of this 

plane. The phase plane was divided into 48 areas and based on which the control 

rules were designed.

2.2.3 C om m ents

For a successful design of IC, the following features are important: (1) W hat 

are the characteristics used to express the performance of a system? (2) How is 

qualitative knowledge extracted from quantitative sensor data? and how is the result
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of qualitative reasoning quantified into the quantitative control signal of actuators? 

(3) How is the knowledge base designed? (4) How are the rules of learning from 

experiences implemented? (5) How is system stability analyzed and guaranteed? 

From the above review, we note that only few papers analyzed system stability. The 

difficulty in applying conventional stability theory may come from the qualitative 

description of the plant model and the qualitative reasoning about the control actions.

It is necessary to compare the schemes of intelligent control with conventional 

control designs. [BCLM89] presented such a comparison, that is, fuzzy control was 

compared with state feedback control via a cart-pole balancing problem. For a given 

application, deciding which type of controllers should be used may depend on the 

following criteria: design complexity, completeness, robustness, performance, and 

modification of the controller. Berenji pointed out that fuzzy controllers may need 

significant calibration efforts to adjust membership functions and modification of 

the knowledge base may also require considerable effort. Another problem is how to 

integrate an IC with existent conventional control systems. At present, numerous 

IC designs have been proposed from servo control to the top level supervision. How­

ever, actual on-line implementations are scarce. One of the reasons is the lack of 

integration between IC and conventional control systems [Arz89]. [Arz90] discussed 

different schemes for this purpose based on the application of G2 — a real-time 

expert system tool.

It is suggested that IC could be used to complement the conventional designs 

of process control, especially either as a backup to conventional controllers or as a 

means of improving man-machine interface. Comparing with the controllers based 

on fuzzy logic and rule base, controllers designed using neural networks are a new 

type of IC and will be reviewed in the next section.
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2.3 Survey of Neural Networks

The potential of NNs for control applications lies in the following properties: (1) 

they could be used to approximate any continuous mapping, (2) they can reach this 

approximation through learning, and (3) parallel processing and fault tolerance are 

easily achieved.

2.3.1 G eneral Theory o f Neural Networks for Control A pplications

There are several survey papers which thoroughly reviewed the history and var­

ious applications of NNs. [Lip87] is such an earlier paper in which six important 

NN structures are discussed: the Hopfield net, the Hamming net, the Carpen- 

ter/Grossberg net, the single layer perceptron, the multilayer perceptron, and Koho- 

nen’s self organizing feature maps. The first three are suitable for binary inputs while 

the others are for continuous-valued inputs. They are also distinguished by training 

with or without supervision. Recently, [Cam90] and [Mel89] presented more detailed 

description of the major NN structures and algorithms, and provide a good starting 

point to study neural networks. [Koh87] reviewed the history of neural modeling 

and pointed out that it is natural to use NNs for all pattern recognition problems 

and sensor-motor control problems. Moreover, a general theory and methodology 

on the training of NNs is presented in [WM89]. [Fra89] gave a chronological review 

of the development of NNs in control applications and provided comparisons with 

adaptive control techniques. [KH89] surveyed the application of NNs in robotics, and 

concluded that NNs are suitable for task planning, path planning, and path control.

The most popular NN structures for applications are multilayer perceptron with 

the BP (back propagation ) algorithm and the Hopfield net. Both are trained with 

supervision, and multilayer perceptron seems more suitable for control applications
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because continuous-valued input could be applied. [Wer88] summarized a gener­

alized formulation of BP and discussed network architectures and applications. A 

detailed version of the BP algorithm is presented in [RM86]. BP is now successfully 

used for pattern classification, though the original development of BP placed more 

stress on control [Wer89a]. The importance and application of NNs to control and 

system identification are addressed in [Wer89a] and [Wer89b], and five dominant 

architectures now in use for control are also discussed: supervisory control, inverse 

dynamics control, control with BP through time, and two designs based on adaptive 

critics and reinforcement learning.

Applying NNs to process control has recently become widespread. Most appli­

cations adopt the multilayer perceptron with the BP algorithm, due mainly to the 

property that a multilayer perceptron could be used as a universal approximation of 

continuous functions. Moreover, its well-established network architecture and simple 

training algorithm enforce its potential for control applications. [HN89] presented 

a survey of the basic theory of BP covering architecture design, performance mea­

surement, function approximation capability, and learning. It is proved that any L 2 

function from [0,1]" to R m can be implemented to any desired degree of accuracy 

with a three-layer2 perceptron. [Cyb89] and [Bar89] proved and summarized some 

approximation properties of NNs. It was shown that for any continuous function, 

/* , on a compact subspace of d-dimensional Euclidean space, there exists a sequence 

of network functions, / n, that converges uniformly to /* . In general, they concluded 

that perceptron with one hidden layer and an arbitrary continuous sigmoidal func­

tion can approximate continuous functions with arbitrary precision, if there are no

constraints on the number of nodes or the size of the weights. [SW89] reached the

2Within this dissertation, the term “n-layer” means that the network has n — 2 hidden layers.
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same conclusion and proved that the activation function in hidden nodes is not nec­

essarily a sigmoid but a general nonlinear function. Moreover, [Son90] compared the 

representational capabilities of three-layer and four-layer perceptron and concluded 

that nonlinear control systems can be stabilized using four layers but not, in general, 

using three layers.

All of the work mentioned above dealt with the existence of NNs for universal 

approximation. Usually, the numbers of nodes in input and output layers are de­

termined according to the input/output patterns. Therefore, an important problem 

is how to determine the number of hidden nodes required to approximate a given 

function with desired accuracy. For a three-layer network, [Ara89] shown that if 

the hidden nodes use binary values, J  — 1 hidden nodes are the necessary and suf­

ficient condition to obtain an arbitrary mapping for given J  input patterns. Arai 

also concluded that to get an arbitrary mapping for continuous-valued inputs with 

finite hidden nodes, more than three-layer networks must be taken into account. 

[GWG89] proposed a method of estimating the number of hidden nodes required by 

any three-layer perceptron performing binary mapping. [KH88] provided an analyt­

ical solution to the problem of choosing the number of hidden nodes and the best 

learning gains.

2.3.2 A pplications o f N eural Netw orks to  System  Control

Most earlier papers on NN applications to system control are summarized in the 

survey papers mentioned above. In what follows, only recent developments are re­

viewed. Generally, the control system architectures using NNs can also be classified 

into two groups: performance-adaptive control and parameter-adaptive control. In 

each group different networks and training algorithms could be adopted. Most pa­
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pers appear to have preferred performance-adaptive control to parameter-adaptive 

control.

There is a type of NN controllers with a similar structure to MR AC, but the 

reference model is used only to train an NN. In [GS88], a four-layer perceptron was 

used as the controller, and the reference model was a human teacher. In [BKG89], 

an unsupervised approach to nonlinear system control was proposed, and the input 

signals of the NN were the output of a reference model, and the desired and actual 

output of the system. It was shown that stability was maintained under the same 

bounds as the guaranteed stability of linear controllers.

Another scheme in performance-adaptive control is training an NN to learn the 

inverse of a system. Certainly, this requires that the system is invertible. [CP89], 

[PSY88], [Els88], [ZPK89], [BB89], and [LGI89] are such examples. However, the 

weights of the network need to be updated using the network’s output error which is 

unknown when the NN is serially connected to a controlled plant. This implies that 

the BP cannot be applied directly. In [CP89], the controlled system was treated as 

an additional, unmodifiable layer, and the output error of the network was computed 

from the system -output error. In [PSY88], the system -output error was propagated 

back through the plant using partial derivatives of the plant at an operating point. 

Elsley [Els88] used a three-layer perceptron to learn the inverse Jacobian of a sys­

tem, letting each input activate four nodes at the NN’s INPUT layer, and each was 

sensitive to some range of input values. Then the outputs of the four nodes at NN’s 

OUTPUT layer were combined to form the control signal. The network was trained 

with a correct inverse Jacobian. However, in practice, even if the system is invertible, 

the inverse control scheme may be not acceptable. For example, if the system is in 

non-minimum phase, then the resulting design is not internally stable. In [YG89],



a context-sensitive network was designed to learn the inverse Jacobian m atrix of 

a PUMA 560 robot. The robot’s end-effector and joint velocities are related by 

X  =  J(g)g, where J(g ) is the Jacobian matrix, q and X  are the inputs of an NN, 

and q is its output. For a six-DOF robot, there are 12 inputs and six outputs. 

The basic idea was to partition the inputs into two sets for two networks, q and X  

were used as the inputs of a context network and a function network, respectively. 

Then, the outputs of the context network were used to set up the weights of the 

function network. In other words, the function network was programmed by the 

context network. The training algorithm was the extension of the BP. The invert- 

ibility of nonlinear systems was discussed in [Gu90], and a sufficient-input criterion 

for designing an NN to learn a system’s inverse was established.

Asada used NNs for robot compliant motion control, where the compliance was 

treated as a nonlinear mapping from a measured force to a motion correction [Asa90]. 

A three-layer perceptron was used to learn the mapping. As an example, the peg- 

in-hole problem was presented. For this example, it is critical to recognize which 

edge(s) of the hole the peg contacts. The NN must be able to detect and discrim­

inate individual contact. Since the original structure of multilayer perceptron is 

suitable for a static mapping, two modified schemes were suggested in [YY90] using 

a recurrent feedback loop with a time delay function. Moreover, the stability of a 

system with NN controllers learning system inverse were analyzed using the Lya­

punov method. Miller proposed a learning control technique which is an extension 

of CM AC (cerebellar model articulation controller), and the controller was tested on 

a five-link robot [MHGK90]. Kraft et al. [KC89] compared an NN controller with 

an MRAC and a self-tuning regulator. The NN controller had a similar structure 

to CMAC. They concluded that NNs can solve some problems for which traditional
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adaptive controllers may not perform well.

An NN can also be made to learn some system properties, based on which a con­

troller is then designed. In [BM89], the output prediction of a system was computed 

by a three-layer perceptron. Then, using the prediction, a controller was designed 

to minimize a cost function. In [HA89], NNs were also used for model predictive 

control, in which the NN was trained to simulate the dynamics of a plant. Fadali 

et ah presented a scheme of bang-bang control for robotic manipulators, in which 

a multilayer perceptron was used to learn the switching time [FAET90]. In [Pou89], 

two types of NNs were proposed for control: forward NNs and recurrent multilayer 

NNs. Training rules were designed using the same methods as those for nonlinear 

adaptive control systems, such as Lyapunov’s stability theory. [NP90] used a mul­

tilayer perceptron with the BP algorithm for system identification. The NN was 

trained to attain  the same dynamic behavior as the controlled plant. Then a con­

troller was designed by using the NN’s outputs to cancel the nonlinear part of the 

controlled plant and including the same terms of a reference model. [HF91] reported 

a method of feedback linearization of the controlled plant using NNs. The NN’s role 

is to directly approximate the Lie derivatives which form the state feedback control. 

The NNs consist of two layers; the training algorithm is derived based on Lyapunov 

stability type argument.

A typical structure of param eter-adaptive control with an NN was presented in 

[GEK88]. An NN was used as an estimator to adjust the parameters of a servo 

controller. As an example, a two-element, Cohen-Grossberg type NN was trained to 

tune the parameters of a PD controller. In [Swi89], a PID controller was tuned by a 

multilayer perceptron. In [JL90], a multilayer perceptron was used to estimate the 

payload of a robot during high speed motion. The estimation problem was stated as
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a pattern-recognition problem based on trajectory tracking errors, and an adaptive 

model-based controller was designed.

2.3.3 C om m ents

NNs can serve as either a controller or an observer. An NN may perform best as 

a controller. However, during the training period, the system may lose robustness 

due to the random initial weights of the NN. As an observer, the NN is used only for 

system identification, but the problem of initial weights is usually not serious. Most 

of the works cited above are in the form of indirect control, that is, the controller is 

designed based on the results of system identification or parameter estimation which 

is realized by NNs. On the other hand, when an NN is used to control a plant directly, 

more difficulties arise due to the lack of a well-developed algorithm. Generally, an 

NN is trained by minimizing its output error. However, in the case of direct control, 

the outputs of the NN are the control inputs of the plant. Therefore, the desired 

outputs of the NN are unknown, since the desired control actions are unknown. This 

implies that the output errors (training errors) of the NN is not available and the 

standard BP algorithm cannot be used directly. W ith this in mind, a simple scheme 

for direct control (coordination) for a class of nonlinear systems has been developed 

in Chapter 7 of this dissertation.

Applications of NNs in control are far from being complete, though some papers 

have been published and claimed success. Moreover, little work has been done to 

compare NN approaches with traditional control designs. Obviously, more theoretical 

analyses, case studies, and experiments are needed.



C H A PT E R  III

HIERARCHICAL KNOWLEDGE-BASED  
CONTROLLER FOR A SINGLE SYSTEM

3.1 Introduction

Conventional control theory is based on mathematical models that describe the 

dynamic behavior of controlled plants. These models usually consist of a set of linear 

or nonlinear differential/difference equations, most of which are derived under some 

forms of approximation and simplification. However, complexity, model uncertainty 

and/or parameter uncertainty of the controlled plants often make the controllers very 

complicated. On the other hand, human operators do not always handle a system 

control problem with a detailed mathematical model, but rather with a qualitative 

or symbolic description of the controlled plant. This fact calls for the need of IC 

(intelligent control) for complex systems. In Chapter 2, we know that most related 

IC designs can be referred to as parameter-adaptive or performance-adaptive IC. 

The fundamental difference between these two lies in the goal of its knowledge base. 

The typical structures of a parameter-adaptive IC and a performance-adaptive IC 

are sketched in Fig. 2.1 (a) and (b), respectively. Though many IC schemes have 

been proposed, it is difficult to compare them because of lack of theory and lack of 

a universal performance criterion. As we pointed out in Chapter 2, for a successful

28
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design of IC, the following issues are important:

1. W hat are the characteristics used to express the performance of a system?

2. How is qualitative knowledge extracted from quantitative sensor data? and how 

is the result of qualitative reasoning quantified into the quantitative control 

signal of actuators?

3. How is the knowledge base designed?

4. How are the rules of learning from experience implemented?

5. How is system stability analyzed and guaranteed?

In contrast to the param eter-adaptive and performance-adaptive ICs, we propose 

a new hierarchical knowledge-based controller in this chapter. The basic principles 

of this controller will be described in Section 3.2. The characteristics of the low- 

level subsystem and the modification of reference input are also presented in this 

section. Section 3.3 is a detailed description of the knowledge-based controller, 

which includes knowledge representation, existence of the solution, and inference 

process. The stability of the knowledge-based controller is analyzed in Section 3.4. 

In Section 3.5, the procedure for designing a predictor is discussed briefly, and a 

detailed error analysis is introduced which gives the lower and upper bounds of the 

trajectory tracking error. The simulation results of the knowledge-based controller 

is also shown in that section with promising performance. This chapter concludes 

with Section 3.6.

3.2 D esign Principles and Characteristics 

B asic Principles

A control system is evaluated by examining its response to typical, pre-planned



trajectories, such as step, slope, parabola and/or sinusoidal signals. There are two 

ways to improve the performance of the control system. One is to set the desired 

trajectory as the system reference input and to redesign the internal structure of the 

servo controller in order to track the reference input precisely. For a complex control 

system, if this approach is used, the servo control level will become more compli­

cated, and the fine tuning of the controller parameters will be extremely tedious 

(particularly for nonadaptive schemes). Moreover, there are some design trade-offs 

to consider, such as the one between rise time and maximum overshoot. The other 

way is to choose and adjust a reference input such that the controlled system tracks 

the pre-planned trajectory. This forms a hierarchical structure, but requires little 

change in the internal structure of the servo control level. This is exactly what a 

hierarchical system is supposed to be; each level in the hierarchy is independent and 

does not affect the internal structures of other levels.

In other words, in the high-level controller’s view, the low-level subsystem is 

nothing but a mapping from the reference input to the system output. Therefore, 

there are two ways to improve the performance of the subsystem. One is to modify 

the map itself, that is, some parameters or even the structure of the servo controller. 

This requires the high-level to know the detailed internal structure of the lower 

level. The other way is to modify only the domain of the map (that is, the reference 

input of the lower level) without requiring any detailed knowledge of the subsystem’s 

structure. Considering the generality and the inexactness of the structure of the low- 

level subsystem, we have adopted the latter approach. This also coincides with the 

principle of increasing intelligence while decreasing precise knowledge of the lower 

levels as we move up the levels of hierarchy.

It is assumed that the servo controller is designed independently of the high-
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Figure 3.1: Structure of the hierarchical knowledge-based controller.

level controller, and that its dynamic structure and parameters are unknown to the 

high-level controller. Therefore, we shall design a knowledge-based controller (as a 

high-level controller) which modifies only the reference input to the subsystem as 

shown in Fig. 3.1, in which G(s) and C(s) are the controlled plant and a conventional 

controller, respectively. As a result, the internal structure and/or parameters of the 

(low-level) servo controller are not altered at all, thus imposing no constraints on the 

servo control level. This will, in turn, enable commercially-designed servo controllers 

to perform more sophisticated tasks than originally intended.

C haracteristics o f the Subsystem  and th e  M odification Process

To design a knowledge-based controller, one has to specify the input space of 

the knowledge base, or choose a typical representation of the system’s dynamic char­

acteristics. The most commonly used components are output error and/or error 

increment, and the standard figures of step response. However, to express system 

characteristics more directly and to eliminate the undesirable effects of time delay, 

we propose to use predicted system outputs from which suitable reference inputs



32

are determined. It is assumed that the lower level of hierarchy is a well-designed, 

closed-loop control system, and the system output prediction is available.

Now, the problem is how to modify the reference input in order to make the 

system output track the desired trajectory. Using the system output prediction, the 

desired performance can be achieved by iterative trial as is done in learning control. 

Note that learning control is usually used for a repetitive trajectory and needs a 

learning period during which an unacceptable output error could occur. By contrast, 

this knowledge-based controller is designed for an arbitrary trajectory and has to 

complete the iterative learning process in each sampling interval. The modification 

process is to

1. give a reference input,

2. compute the predicted system output,

3. calculate the predicted tracking error by comparing the prediction and the 

desired trajectory, and

4. modify the reference input based on this error.

Note that actions taken in a control system are in general irrecoverable; that is, each 

reference input to the servo controller is the final decision at each sampling interval 

and cannot be undone. However, combining prediction and modification allows us to 

analyze the anticipated consequence of each reference input, thereby at least partially 

solving the irrecoverable problem.

This modification process can be formalized as follows. Let yxT{k) be the reference 

input, yd(k) the desired trajectory, and yx(k +  d/k)  the d-step ahead prediction of 

the system output at time k , where the superscript i denotes the ?-th iteration. The
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reference input y lr{k) is modified by

vi+lw  = + K i m  e<(k+ d),

where ex(k + d) =  y'(k  +  d/k)  — yd(k +  d),

Vr ( k )  = yd(k), * =  0, 1, •••.

Ko(k) is the learning gain at time k during ?'-th iteration, and Ko(k) =  0. Then we 

get

yl+'ik) =  yd(k) + X ; K 3o(k) e»'(* +  d).
j —0

Accurate tracking will be achieved by the iterative operation and the prediction, 

and this iterative operation must be completed in each sampling interval. To make 

the above modification feasible, the following conditions need to be met: (1) the 

iterative operation converges fast, and (2) the output prediction of the system is 

computable. Condition (1) is usually met because the lower level is a well-designed 

control system, and y'r(k) is near the optimal point. Condition (2) will be discussed 

in the next chapter.

The low-level subsystem is equipped with some well-designed servo controllers, 

and assumed to be linear. Then, following an argument similar to the one in [TY86], 

we can prove that a learning gain Ko(k) exists such that e'(k +  d) — > 0 as i — > oo. 

Though such a Ko(k) exists, due to lack of knowledge of the low-level subsystem, it 

is not easy to calculate the gain accurately. Moreover, the parameters and/or model 

uncertainties are not even considered, thus necessitating design of a knowledge-based 

controller.

3.3 D escription of the K now ledge-B ased Controller

K nowledge R epresentation
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Using the predictor, the subsystem performance is characterized by the predicted 

tracking error and the current reference input. Therefore, the space of the pre­

dicted tracking error forms the input space of the knowledge base. The goal of the 

knowledge-based controller is to implement the modification process discussed thus 

far. It is not difficult to express this process by a set of production rules. The pos­

sible actions that the knowledge-based controller can take include: increasing the 

reference input, decreasing the reference input, and keeping the reference input un­

changed. The problem is how much to increase/decrease and how to determine the 

bounds of the reference input. Because this scheme is based on the modification of 

the reference input according to the resulting predicted output, the internal structure 

and parameters of the low-level subsystem are not affected. This property allows us 

to consider the predicted tracking error, but not its derivative, as the system char­

acteristics so as to simplify designing of production rules. The basic modification 

process can be represented by a decision tree as shown in Fig. 3.2.

The i j - th  node is represented by ([a*-, &*•], c*), where c%- is the quantity added to 

the reference input,

Iil+1(k) = yd(k) + c),

and [a*-, &*•] is the interval to be searched, and a‘- <  c%- < &*• for all i, j .  By giving 

the reference input y'(/c), at any node ([a*-, &'■], c*), the interval [a}, &*•] will be split 

into two subintervals [aj.+1, 6*fc+1] =  [a}, c*] and [ a ^ \ , 6̂ ]  =  [c*-, 6*-], which form 

the two successor nodes of [<z‘-, &*•]. During the z-th iteration and at ij-th  node, let 

e*(fc) denote the predicted tracking error resulting from yzr(k):

e)(k) =  ez(k + d) =  yz(k + d / k ) -  yd(k +  d).
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Figure 3.2: Decision tree

ci =

Then, c‘- is computed as:

*
b) — (&*• — a*j)K, if e)(k) <  0 

0, if e‘-(fc) =  0

a) + (&} -  a))K,  if e)(k) > 0

and 0 <  K  < 1 is a weighting factor which determines the step size of the iterative 

operation. and 6$ are the pre-designed lower and upper bounds of the reference 

input modification, and usually Cq =  0, that is, at the beginning, the reference input 

is not modified.

Solution E xistence and Inference Process

The basic forms of the production rules are follows. 

IF  e’(fc) < 0 A N D  |ej(&)| >  e,
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T H E N  increase cJ A N D  compute y'r+1(k) =  yd(k) +  4 .

IF  e)(k) > 0 A N D  |ej(A:)| >  e ,

T H E N  decrease c’- A N D  compute j/*+1(fc) =  yd(k) +  c’-.

IF  |ej(*)| <  e ,

T H E N  set j/*+1(fc) =  ylr(k) A N D  stop the iterative operation.

e >  0 is a pre-specified error tolerance. Because the amount of modification to the 

reference input is bounded, or <  c*- < 6°, for all i, j ,  there may be a case that 

|ej(fc)| >  e for all c*-. To avoid this situation, the desired trajectory needs to be 

carefully designed. For example, when the desired trajectory is a step function and 

the system time delay is equal to two sampling intervals, at k =  0 the continuous 

system response cannot have a jump no m atter how large the reference input is. A 

reasonable choice of e is another way to prevent this problem. This problem can be 

monitored by adding, for example, the following rule into the knowledge base:

IF (|c} - b ° \ < 6  O R  |4  -  a«| < 6) A N D  \e){k)\> e

T H E N  change or 6° automatically and continue the search, O R  

ask the operator for an adjustment, O R  

stop the iterative operation and choose d- with 

the smallest e)(k) as the best output.

Suppose the weighting factor K  is set too small or too large, then the search for 

a proper c’- may take a very long time. This would not be acceptable if the required 

computation cannot be completed within one sampling interval. The case of the 

computation/search time exceeding one sampling interval is equivalent to having no 

solution. This case is monitored by:
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IF  the search time >  Tmax A N D  |e‘ (fc)| >  e

T H E N  stop the iterative operation A N D

choose Cj with the smallest e*(fc) as the best output, A N D  

modify the weighting coefficient K ,

where Tmax is a pre-selected maximum allowable search time.

Based on the structure of the decision tree, one can see that the simplest inference 

process is similar to forward chaining, starting from the root node. However, it may 

be learned after a period of operation that, for example, a positive augment c* is 

always needed. If such a fact is learned, the inference process can start from any 

node with c‘- >  0 and go forward or backward, depending on the sign of the predicted 

tracking error. Note that the backward search does not mean a reverse search, but 

rather intends to find a suitable node from which a forward search can begin. As 

soon as the forward search begins, the search process is not reversible.

3.4 Stability P roof

It may be easy to establish the stability of the low-level subsystem for a fixed 

reference input, because it is a well-designed closed-loop control system. However, 

this does not imply the stability of the whole system. See Fig. 3.3 for a block 

diagram of the knowledge-based control system. Both system poles and zeros are 

affected by the presence of the knowledge-based controller and the predictor. If the 

transfer functions for all the blocks in Fig. 3.3 are given, we may be able to derive 

the conditions for system stability. But this is not the case in reality: C(s ) and G(s) 

may not be known accurately, and the iterative learning with the prediction and 

the knowledge-based controller do not form a simple feedback loop and cannot be 

expressed as simple m athematical transfer functions.
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Figure 3.3: Block diagram of the knowledge-based control system.

If we suppose that the prediction gives the true system output, then let us consider 

the knowledge-based controller and the closed-loop subsystem. (The assumption of 

perfect output prediction is of course unrealistic and will be relaxed in our later 

discussions.) The knowledge-based controller can be viewed as a map Mo : E  —> 

Y r ,  specified by all the production rules, where E  C R  is the space of predicted 

tracking error and Y r  C R  the reference input space. The low-level closed-loop 

subsystem is also a map, L : Y r  —> E, which is specified by the desired dynamic 

properties of the servo controller. Because L represents a well-designed controller 

and a reference input, y %r{k ) € Y r ,  exists at time k such that the trajectory tracking 

error el(k  +  d) =  0, it is reasonable to assume that L is a linear map. The properties 

of the map M  =  L Mo : E —> E  depends mainly on the properties of the map M 0. 

In fact, all the antecedents of production rules are established based on the output 

prediction. If the predictor gives the true output, then the properties of the invariant 

map M  : E  —» E  is determined solely by the knowledge base.

For system stability, all production rules in the knowledge base must form a
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contraction map. More formally, we have the following theorem.

T heorem  3.1: Suppose (1) the output prediction of the low-level subsystem is 

computable and the predictor gives the true output, and (2) L : Y r  —> E  of the 

low-level closed-loop subsystem is a linear map. If the map Mo : E  —» Y r  is given 

by the decision tree, then the composite map M  =  L Mo : E  —* E  is a contraction 

map.

Proof: The basic production rules can be represented in the form of

IF  by the reference input y lT{k), the predicted tracking error e*(&) < 0 

T H E N  increase c‘- to get c^.\, c^.\ > c*-,

IF  by the reference input y*r(k), the predicted tracking error &){k) > 0 

T H E N  decrease d- to get c'fc+1, c +̂1 < c'-,

where e)(k) is the predicted tracking error resulting from the augment cl- at the j-  

th  node of the ?-th level in the decision tree. These rules associate each predicted 

tracking error with a specified value of c*-. From a new augment djf1 or c j^ ,  the 

predicted tracking error e,fc+1(fc) and ej^\(fc) are then computed.

Since the decision tree is searched downward after finding a starting node in the 

tree, we want to show that this search process has the following property:

d (c!+2, 4 +1) < d (4 +1> 4 )- (3 d )

for all i, j ,  k , / =  0, 1, 2, • • •, and d( , ) is a metric on Y r . Referring to Fig. 3.2, 

we get

4 +1 =  +  (K+1 -  a ? ' ) K  = 4  +  (cj -  a))K

4 S  =  K X \ - ( V £ l - a > & ) K  = bij - ( h ) - c ) ) K  

cj+2 =  «;+2 +  ( b f ‘ -  a\v ‘)K = o' + M +1 -  o'AK
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4 t?  =  6!+? -  (JW  -  < D K  =  4  ~  (4  -  # l )K

<%l = <■$ +  -  C *  =  4  +  («ESi -  4 > *

4t! = -  WJ3 -  4%)k = 4 -  (6* -  4+>)/r.

The metric defined on Y r  is given by

d ( 4 « ,  cj) =  |4 +1 -  cji =  i(a*. -  4 ) ( i  -  k )\

<«(<*'. 4 )  s  I45i -  41 =  1(4 -  4-H1 -  K )\

d(c‘«  4+1) =  |c,i+2 -  4 +1| =  |( 4  -  4 )(1  -  I i )K\  (3.2)

d(c*+J, 4 +1) =  |cf+? -  4 +1j =  |(c* -  «})(1 -  JiT)2| (3.3)

■d(4&  4 ¥ i)  =  l<&2 -  e£t\l =  1(4 -  4 H 1 -  K ?\  (3.4)

d ( # S ,  4 ¥ .)  =  k ! S - 4 t ! . l  =  l ( 4 - 4 ) ( 1 - JO^I-  (3.5)

Suppose 0.5 <  K  < 1, then at node 2, from Eqs. (3.2) and (3.3) we get

d(4+2, 4 +1) > d ( 4 «  4 +1).

Taking the larger of d(c)+2, c1̂ 1) and d (c ) |2, <4+1) and comparing it with d(c]j.+1, c}), 

we get

d (4+2, 4 +1) <  d (4 +1, 4 ) ,  (3.6)

because (1 — K ) K  < (1 — K) .  Similarly, at node 3, from Eqs. (3.4) and (3.5) we get 

d (4+s> 4 + i ) > d(c|+2, 4+ \)- Taking the larger of d(cj+2, 4 + \)  and d(cj+2, c‘fc+ \) 

and comparing it with d (c ^ 11, c‘), we get

d ( 4 t l  4 + \)  <  d(4+i5 4 ). (3-7)

because (1 — K ) K  < (1 — K ). Both Eqs. (3.6) and (3.7) show that Eq. (3.1) holds. 

When 0 < K  <  0.5, Eq. (3.1) can be proved similarly.
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Because L : Y r  —> E  is a linear map, the property of Eq. (3.1) in Y r  is 

preserved under the map L and has the form of

da(ej«  4 +1) < 4 ) .  (3-8)

for all i, j ,  k, I = 0, 1, 2, • • • and d j ( , ) is a metric on E. By Eq. (3.8), M  : E  —> E 

is a contraction map, and the theorem is proved. □

At each node in the structure of the decision tree, the rules always keep the search 

in the direction pointing to the node where the tracking error decreases. Because 

the iterative learning process is performed at each node, this is equivalent to the 

claim that the iterative learning process decreases the tracking error. As mentioned 

in Section 3.3, the inference process is not reversible, and thus, it is impossible to 

have an unstable system response.

3.5 D esign o f th e K now ledge-B ased Control System  and 
Sim ulation

D esign of a Predictor

As stated earlier, the low-level subsystem is equipped with a servo controller, and 

is assumed to have a linear response to the reference input. For such a linear system, 

there are several algorithms available for designing a predictor. For convenience,

we have designed a self-tuning predictor in order to test the performance of the

knowledge-based controller only. The principle of the self-tuning predictor is briefly 

stated below (see [KC81] or [CS88] for a detailed account). The low-level, closed- 

loop subsystem is represented by an ARMAX model:

A (z-1) y(k)  =  B (2_1) yr(k -  d0) +  C ( z ' 1) £(k) (3.9)

where A (z~l ) = 1 +  a\ z~l +  • • • +  an z~n,
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B ^ - 1) =  b0 + h  * -x +  ••• + b n z~n,

C (z-1) = 1 +  ci z~x +  • • • + c n z~n.

do is an index representing the time delay, y(k) and yr(k) are the output and the

reference input of the subsystem, respectively. £(k) is an uncorrelated random series 

with zero mean representing the modeling error and process noise. Define the d-step 

ahead prediction error as

ep(k + d) = y(k + d) — y(k + d/k).  (3.10)

Substituting Eq. (3.10) into (3.9), and representing A (z-1), B (z-1) and C (2-1) as 

A, B  and C for simplicity, we get

A  ep(k) =  B  yr(k - d o ) -  A y (k /k  -  d) + C $(k). (3.11)

Eq. (3.11) can be viewed as a new system, in which the input is the prediction

y ( k / k —d), the output is the prediction error ep(k), yr(k — d0) is the measurable noise, 

and £(k) is the unmeasurable noise. Define the cost function as J  — E  {ep(k +  d ) | 

and let

C  =  E 0 A +  z~d° F,

where E 0 and F are polynomials of 2-1 , and deg(E 0) = d — 1, deg(F) =  n — 1. By 

minimizing J ,  we get the optimal predictor

y(k  +  d/k)  =  yr(k +  d) +  ep(k). (3.12)

This is the prediction during the first iteration, that is, yx(k +  d/k)  =  y(k + d/k).  

The prediction error corresponding to Eq. (3.12) is

cp{k -f- d) = Eq £{k +  d). (3.13)
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All the parameters of the system and the predictor are unknown and estimated on­

line by an RLS (recursive least square) algorithm. y(k + d / k ) is then computed using 

the estimated parameters.

In the knowledge-based controller, for each computed y’(fc), the corresponding 

output prediction yl(k +  d / k ) should be computed. Note that only y°(k -f d/k)  is 

computed by Eq. (3.12), while giving y°(k) = yd(k). The subsequent steps within 

this iteration are computed as

y \ k  +  d/k)  = y°(k + d/k)  ICm, i =  1, 2, 3, • ■ •, (3.14)

where it is assumed that yd{k) ^  0, V k > 0. This formula is based on the assump­

tion that the low-level, closed-loop subsystem has a linear response to its reference 

input. For the case of i > 1, using Eq. (3.14) instead of Eq. (3.12) not only simplifies 

the computation, but also reduces the sensitivity of the iteration to some estimated 

parameters. In Eq. (3.14), K lm is a gain factor. A servo controller is usually de­

signed such that the system has a unity gain with respect to its reference input; it 

is reasonable to set =  1. However, y°(k +  d/k)  is computed with the error Eq.

(3.13); in case the prediction error increases after the iterative operation, the gain 

factor would not necessarily be one for i > 1 so as to compensate for the prediction 

error.

Error A nalysis

Thus far, we have assumed that the predictor gives the true output, which is not 

realistic. The effect of the prediction error on the tracking error is thus analyzed 

below. The tracking error is defined as

c*(Ar) =  y(k)  -  yd(k). (3.15)

As a result of the z’-th iteration, suppose the actual reference input becomes y'r(k)
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and the d-step ahead prediction of the output is y'(k + d/k).  y°(k + d/k)  is computed 

by the self-tuning predictor Eq. (3.12), and y'(k +  d/k),  i > 1, is computed by Eq.

(3.14). When

|e*'(* + d)\ = |y \ k  +  d/k)  -  yd(k +  d)\ < e, (3.16)

the iterative learning process is stopped, and the result is given as the actual reference 

input y/(k)  with the corresponding output prediction y*(k +  d/k).  Because the 

iteratively computed prediction error is ep(k) — y(k)  — yx( k / k  — d), using Eq. (3.15) 

we get

et(k) -  ep{k) = y%(k/ k  -  d) -  yd(k). (3.17)

Eq. (3.16) can be used to convert Eq. (3.17) in the form |et(k) — 4(k)\ < e. Because 

|et(A:)| -  \el(k)\ < |et(&) -  esp(k)\ and \et(k) -  esp{k)\ -  \esp{k) -  e«(A:)|, we conclude

\4(k)\ - e ^  ^  \4(k)\ + e- (3-18)

This formula gives the upper and lower bounds of the tracking error when the 

knowledge-based controller is added. Specifically, it shows that the tracking error 

cannot be much less than the iteratively computed prediction error.

Obviously, an inaccurate prediction may degrade the performance of the know­

ledge-based controller. It can be seen from Eq. (3.13) that the prediction error of 

the self-tuning predictor is the moving average of a zero mean, uncorrelated random 

series of order d— 1. Based on this observation, the subsequent steps of the prediction 

are iteratively computed by Eq. (3.14). To reduce the tracking error, a sophisticated 

predictor needs to be designed as a part of the iterative operation. The other way is 

to change the gain factor K xm in Eq. (3.14) in order to compensate for the prediction 

error.

Sim ulation R esults
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Figure 3.4: Output of a linear system without knowledge-based controller.

Simulations were carried out for two types of systems. First, we tested an open- 

loop linear system whose model is

y (k ) =  0.45181 y(k  -  1) +  0.47546 y(k  -  2) -  0.04560 u(k -  1) -  0.00404 u(k -  2),

where y and u are the system output and control input, respectively. Using a propor­

tional controller with K p =  20.9, its closed-loop response is calculated and plotted 

in Fig. 3.4. The RMS (root mean square) tracking error is R M S E  — 2.13420. By 

adding the knowledge-based controller, the performance is improved as shown in 

Fig. 3.5 with R M S E  = 1.30151.

The second system we tested is a 2-link robot manipulator [AS86] — an open- 

loop nonlinear system:

H(g) q  +  C (g, q ) q  +  G ( q )  =  r ,  (3.19)

where q  = [qi, <jr2]T and r  =  [ri, r2]T are the vectors of joint position and torque, 

respectively. H(g) is the inertia matrix, C (g, q)  q  represents the Coriolis and 

centrifugal forces, and G ( q)  represents the gravitational force. Its configuration is
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Figure 3.5: Output of a  linear system with knowledge-based controller.

shown in Fig. 3.6, and dynamic and kinematic parameters are presented in Table 3.1. 

The detailed form of Eq. (3.19) is presented in the appendix of this dissertation. A

Length Mass center Mass Moment of inertia

Link 1 1 m 0.5 m 20 kg 0.8 kg m  s2

Link 2 1 m 0.5 m TO kg 0.2 kg m  s2

Table 3.1: Kinematic and dynamic parameters of the simulated robot.

controller is designed with the computed torque algorithm [AS86]. The proportional 

and derivative gains are K p = 986.96 and K d — 62.83, which correspond to (  = 

1.0 and u>„ =  10 7v/s. The sampling interval is Ts =  O.Olsec. For simplicity, the 

desired trajectory is specified in joint space. To achieve the desired performance, the 

computed torque algorithm requires the accurate values of each term  in Eq. (3.19). 

If inaccurate values of the inertia matrix (denoted by H ) are used in the computed 

torque algorithm, the performance is degraded as shown in Fig. 3.7 with an RMS
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Figure 3.6: A 2-link robot manipulator.

tracking error R M S E  — 0.29228. When the knowledge-based controller is added, 

the performance is improved as shown in Fig. 3.8 with R M S E  =  0.09654. For 

comparison, with accurate values of the inertia matrix H , the closed-loop response 

of the first link are plotted in Fig. 3.9 and 3.10. The corresponding RMS tracking 

errors are R M S E  =  0.23962 without the knowledge-based controller and R M S E  =

0.04230 with it. One can see that performance is also improved. Moreover, the 

simulation results of the second link are similar to those of the first link.

3.6 Summary

A knowledge-based controller has been proposed as a new architecture of IC 

and analyzed in detail. Its basic principle is to modify the reference input of the 

low-level subsystem in order to track a pre-designed trajectory accurately and to 

leave the internal structure and/or parameters of the subsystem unaffected. With 

the concept of iterative learning, the knowledge base is simple to design and the 

stability of the overall system is guaranteed. By using a d-step ahead predictor,



the undesirable effect of system time delay is eliminated and each reference input is 

analyzed in advance. This, in turn, solves the irrecoverable control problem. Now, 

the immediate work is to extend this scheme to the problem of coordinating multiple 

systems.
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C H A PT E R  IV

DESIGN OF A GENERAL-PURPOSE MIMO 
PREDICTOR WITH NEURAL NETWORKS

4.1 Introduction

The m ulti-step predictor is an essential part in the knowledge-based controller 

proposed in the previous chapter. In fact, there are numerous applications which 

require predicting system output in real time. For example, load forecasting in 

an electric power system is essential for an economical dispatch of electricity being 

generated. Automatic tracking of a flying object is the first step for fire control. In 

a power plant, prediction of the temperature and pressure at the outlet of a boiler 

is very useful to operators, especially during the period of startup and shutdown. 

Moreover, output prediction plays a vital role in predictive control. In this chapter, 

a general-purpose predictor is developed, which is not only for the knowledge-based 

controller but also for the applications mentioned above.

It is not difficult to design a predictor for linear SISO (single-input single-output) 

systems. For example, a self-tuning predictor is designed to predict the Si-content of 

pig iron for a blast-furnace [KC81]. However, it is a difficult task to design a m ulti- 

step predictor for an MIMO system. This is especially true for those systems with 

nonlinear, time-varying dynamics and/or long system time delays. The dynamic

51
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equation of such a system is in general very difficult to derive, since the dynamic 

parameters are usually unknown, and/or even the internal structure of the system 

dynamics is sometimes unknown. No general method is known to exist for the design 

of a predictor for such systems.

Fortunately, NNs (neural networks) seem to shed light on solving this problem. 

Weigend et al. presented a good example of using NNs for time series prediction in 

which the NN was trained to predict the time serieses of the sunspot and a compu­

tational ecosystem [WHR90]. One of the major advantages of NNs is that they can 

represent any specified mapping with a learned configuration. A multilayer percep- 

tron with a sufficient number of nodes is able to approximate any continuous mapping 

[Lip87, Bar89]. The output prediction of a system can be viewed as the mapping 

from the system’s historical data and future inputs to future outputs, though it can­

not usually be represented in an analytical form. The main intent of this chapter is 

to design a general-purpose MIMO predictor for a system using NNs.

One of the well-developed NNs is the multilayer perceptron with the back prop­

agation training algorithm developed by [Wer88] and [RM86]. However, most NN 

applications are in the mode of train-first-and-then-operate; that is, the NN is 

trained with a set of training data before putting it in operation. After the NN 

becomes “well-trained”, the weights of the NN will no longer be changed. This 

working mode is called the “training-operation” mode. For example, a multilayer 

perceptron was used in [BM89] as an SISO predictor to predict the pH value of a 

stirred tank reactor and this was then used as a basis for the design of a predictive 

controller. The moving-window concept was adopted and the weights of the NN 

would no longer be adjusted after the training period. The predictor proposed in 

[WHR90] also worked in the training-operation mode. However, this mode may not
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be suitable for the control or prediction of some time-varying industrial processes. If 

adjusting NN’s weights is viewed as a feedback from the NN’s output error, then this 

feedback loop would be broken when the NN becomes “well-trained” . (Obviously, 

this mode cannot be applied to time-varying systems.) To remedy this problem, an 

NN should be updated, rather than trained, that is, the weights of the NN should be 

adjusted on-line in order to keep track of the variation of a system. We call such a 

working mode as the “updating mode. Updating an NN is essential to the design of 

an MIMO predictor for time-varying systems.

In the standard BP algorithm, the weights of the NN are adjusted by minimizing 

the network’s output error. However, when an NN is used as a predictor, its output 

error is unknown since the future outputs of the predicted system are not known. 

We have designed a predictor which is updated only by using the historical data of 

the predicted system and does not require the knowledge of the the dynamic param­

eters nor the structure of the predicted system. Weights of the NN are dynamically 

adjusted to deal with the effects of nonlinear, time-varying properties, and/or long 

system -tim e delays. Because the NN-based predictor will always work in a closed 

loop, component failures in the NN will be learned and the NN will subsequently 

be re-configured, and then system reliability is improved. Furthermore, the parallel 

processing structure of the NN makes it suitable for high-dimensional systems.

To im itate an actual neuron, each node of an NN is usually designed to perform 

only scalar operations. However, for an MIMO system, if each node can only handle 

scalar operations, the size of NN may become too large to manage. We therefore 

propose to equip each node of the NN with the ability of vector operations in order to 

easily specify some known coupling relations within the predicted system and to get 

an easier (thus more intuitive) form of the training algorithm. This vector structured
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Figure 4.1: Basic structure of a three-layer perceptron.

multilayer perceptron will form the backbone of the proposed MIMO predictor.

This chapter is organized as follows. In Section 4.2, the basic structure of the 

NN-based predictor is described and the input-output mapping of an MIMO system 

is analyzed. Section 4.3 focuses on the problem of tracking time-varying systems by 

updating the NN. The scaling problem and error analysis of the NN-based predictor 

are also addressed in Section 4.3. A multi-dimensional BP (back propagation) algo­

rithm  is developed in Section 4.4; it is an extension of the scalar version presented in 

[RM86]. Simulation results are presented in Section 4.5 for various systems: MIMO 

linear, nonlinear, time-invariant, and time-varying. Finally, the main points of this 

chapter are summarized in Section 4.6.

4.2 Basic Structure of an MIMO NN--Based Predictor

The standard structure of a three-layer perceptron is shown in Fig. 4.1. W ith the
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ability of learning from examples of a mathematical mapping, an NN can be trained 

to attain  the dynamic property of the mapping. Typically, a set of input-output 

pairs {(u(A:), y(k )) | y =  G{u), k =  0, 1, 2, • • •} are used as training data, where G 

is the input-output mapping. These training data are used to adjust the weights of 

the NN which represents the input-output mapping. The BP algorithm attem pts to 

approximate a mapping in the sense of least mean squares [Lip87]. The computation 

of an NN with the BP algorithm consists of two steps: computing the output of the 

NN forward from the INPUT layer to the OUTPUT layer, and adjusting the weights 

backward from the OUTPUT layer to the INPUT layer. The computation at each
L

node is shown in Fig. 4.2 with Xj  = f ( Y 2  ^  +  $j), where Xj  is the output of
i=i

node j ,  X{ the input from node i, W{j the weight on the arc from node i to node
1

0j the threshold at node 7", and f ( x )  = ---------- ;---- - is a sigmoid function. Once
1 +  exp(—a:)

new output at the OUTPUT layer is ready and denoted by X 2k, then the output 

error of the NN is computed as Ek = X$k — X 2k, where X 2k is the desired output of 

the NN. The weights of each layer are then modified according to the output error 

Ek . In other words, this training process is driven by the output error of the NN. It 

has been proved that a multilayer perceptron with two hidden layers and a sufficient
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number of hidden nodes can approximate any input-output mapping [Cyb89].

If the predicted system is causal, then the dynamic relationship between input 

and output can be conceptually represented as

Y(k) = h ( Y ( k  -  i ), U(k -  j ) ,  *), (4.1)

where Y  € R p is the output vector, U  € R n the input vector, k G Z  the discrete time 

index, and h  : Rp x R n x Z - >  R p. Y ( k  — i), i =  1, 2, • • • is the historical data of 

the system output. U(k  — j ) ,  j  =  0, 1, 2, • • • is the system input at and before time 

k. If the mapping, li, in Eq. (4.1) were known, the future output of the system could 

be computed step by step by predicting the future inputs U(k  + d), d = 1, 2, •••. 

However, it is usually very difficult to derive a closed-form expression for Eq. (4.1) 

— even if such a closed-form existed. The d-step ahead prediction of Y  can be 

represented as

Y { k  + d / k ) =  hp(Y , U, k ), (4.2) ’

where Y  =  [F(fc), Y ( f c - l ) ,  •••, Y ( k - i ) }  

U  =  [U{k + n) ,  •••, £/(*), U { k - 1 ) ,  •••, U ( k - i 2)} 

h p: R p x R n x Z —> R p,

where i , ii and z2 are positive integers. The parameters and/or structure of this 

mapping are not known either. It is therefore practically impossible to design a 

general-purpose predictor with mathematical synthesis alone, though a closed-form 

expression for such an MIMO mapping may sometimes exist. So, we propose to 

design an NN which will learn the mapping Eq. (4.2). A three-layer perceptron 

is used for this purpose, where the inputs are Y  and U , and the output is Y ( k  +  

d/fc), d =  1, 2, • • •. There are two major difficulties in implementing this scheme.
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The first problem is related to the training process. In the standard BP algorithm, 

the NN should be trained by minimizing the NN’s output errors. For our case, 

however, the desired values of the NN’s output are the system outputs, Y (k +d ), d =  

1, 2, • • •. The network-output errors are then the system prediction errors which 

are computed as

ep(k + d) = Y ( k  + d ) -  Y ( k  +  d/k).

This implies that the network should be trained by using the system’s unknown 

future outputs Y ( k  +  d). A set of training data can be acquired beforehand, and 

used to train the NN. After the NN is “well trained” , the NN will no longer modify 

its weights and produce the output, while the inputs are present at the INPUT 

nodes. For time-varying mappings, however, it is meaningless to say that an NN 

is “well trained.” Moreover, as pointed out in the previous section, this training- 

operation mode implies that the NN work in an open loop after the training, which 

is not acceptable in a real-tim e control or prediction system. Therefore, our MIMO 

predictor needs an NN that is updated on-line in order to keep track of a tim e- 

varying mapping and to work always in a closed loop. More on this will be discussed 

in the next section.

The second problem is how to efficiently and clearly represent the training algo­

rithm  for an MIMO system. Note that Eq. (4.2) is an MIMO mapping. If each node 

of the NN can only handle scalar operations, then we need a fully-connected multi­

layer mesh. Each node at the INPUT or OUTPUT layer of this mesh corresponds to 

an element of the input or output vector of the mapping. By using the standard BP 

algorithm, it is difficult to express some known coupling relations within the mapping 

and obtain a set of succinct formulas for the training algorithm. Therefore, we need 

an NN which can handle vector operations in order to reduce the total number of
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the nodes required. Such an NN will be discussed in Section 4.4.

4.3 Tracking a T im e-V arying System  and Error A nalysis

4.3.1 Training A lgorithm  for th e  U pdating M ode

Suppose the predicted system is an SISO system with output y( t ) and its d-step 

ahead prediction y(t + d/t)  at time t (t is the continuous-time index). Let X 2k(t) and 

X$k(t) be respectively the actual output of the NN-based predictor and its desired 

value at time t. Then the network-output error is computed by

E k(t) = X*t (i) -  X 2t(t).

In the standard BP algorithm, we must use this network-output error to train the 

NN. However, when the NN is used as a predictor, the network’s output is the 

prediction of the system output,1 and the network-output error is the prediction 

error:

Ek(t) =  X*k(t) -  X 2k(t) = y(t  +  d) -  y(t + d/t).  (4.3)

Ek{t) is unavailable since the system’s future output y(t +  d) is not available at time 

t. Hence, we must use the system’s historical data to update the NN-based predictor 

on-line in order to maintain the closed-loop operation by keeping track of a tim e- 

varying system. To update the NN-based predictor, instead of using Eq. (4.3), we 

propose to use a posterior prediction error:

E k(t - d )  = X{k{t - d ) -  X 2k{t - d )  = y(t) -  y( t / t  -  d).

This arrangement is equivalent to cascading the NN with delay elements, as shown

in Fig. 4.3. In what follows, a modified BP algorithm is derived to handle these

1In fact, the network’s output X 2k is a scaled value of the system’s output prediction y.  At this 
stage, it is assumed that y  is within the range of (0, 1). The scaling problem will be discussed later.
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Figure 4.3: Basic structures of the NN-based m ulti-step predictor.

delay elements. The formulas are given for SISO systems, which will be extended to 

the MIMO case in the next section.

1 . C o m p u te  th e  O u tp u t o f th e  H ID D E N  L ayer, X xj

The HIDDEN layer’s outputs are

X i  j(t) =
I

1 +  exp (—Oij -  6ijY 
N

where 0 xj = ^  W{j Xi[t),  j  = l , 2 , - - - , N u
i=i

X{ is the input at INPUT node i, W{j is the weight from INPUT node i  to HIDDEN 

node j : and 8Xj is the threshold at HIDDEN node j .

2 . C o m p u te  th e  O u tp u t o f th e  O U T P U T  L ayer, X 2k
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The outputs of the OUTPUT layer are

=  l+ e x p  (—O » -0 a * ) ’ (4'4)
Ni

where 0 2k =  X) ^xi(0» k - l ,  2, • • •, JV2, 
i=x

W\jk is the weight from HIDDEN node j  to OUTPUT node k , and 02k is the threshold 

at OUTPUT node k.

3. U p date the W eights from  the H ID D E N  to  O U T P U T  Layer, Wijk

We want to use the delayed data X 2k(t — d) to update the network. The cost 

function of the network is defined by

1 2̂ 1 N2 2
m  =  5 e  m t  -  d ) f  =  -  e  (*&(* -  <0 -  x 2t(t -  d)) . (4.5)

z k=1 z k=1

Let the updated weights be W\jk(t + At )  — Wijk(t) + A W i j k. Using the gradient

algorithm,
d m  dE(t)  d 0 2kA W i j k  oc -  — A J .  =  -  - ± - L  (4.6)
dWijk d 0 2k dWijk

From Eq. (4.4), we have

dE(t)  dE(i)  d X 2k(t) dE(t)
d 0 2k d x 2k(t) d o 2k d x 2k(t)

x 2k{t) ( l - X 2k{t)),  and

Then, we get

S = (I W m  x ' ,{t) 1 = x ' i ( t ) ■

dE(t)  dE(t)
X 2k(t) ( 1 - X 2k(t)) X u (t). (4.7)

d W ljk d X 2k(t)

Because

dE(t)  dE( t ) d X 2k(t -  d)
d X 2k(t) ~  d x 2k( t - d )  d x 2k{t)

=  -  ( x ^ t - d ) - X 2i( t - d ) ) dXg2̂ l
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Let

Su: =  ( x i ( t  -  d) -  Xu (t -  d)) X 2t(t) (1 -  X2k(t)) , (4.8)

then Eq. (4.7) becomes

v  M  d X ^  ~  V  n« , idWljk h k X i , ®  d x ^ t) • (4.9)

Now, the problem is how to compute . Because X 2k{t) =  y(t + d/ t)  is the
oX.2k{t)

d-step ahead prediction and X 2k(t — d) =  y( t / t  — d) is the same value of y(t +  d / t ) 

delayed by d, we conclude

d X 2k{t -  d)
d X 2k(t)

=  1, V i and d. (4.10)

f)F(t)
In Eq. (4.6), we set A Wijk =  — — » Vi > 0 is a gain factor. Therefore,

OWijk
using the results of Eqs. (4.9) and (4.10), we get

W\jk{t +  A i) =  Wijk(t) +  AWijk

A W i j k  =  f]x 81 k  - ^ i j ( ^ ) »

where 8 \k is given by Eq. (4.8). This has the same form as the standard BP algorithm, 

but the definition of the cost function in Eq. (4.5) is different. Similarly to the above 

process, other formulas are listed below without any detailed account.

4. U pdate the W eights from the IN P U T  to  H ID D E N  Layer, Wij

Wij(t  +  A t )  =  W i j t f  +  r i S j X i i t ) ,
' n 2

where 8j = £  6 lk Wijk
k=1

X ^ t )  ( l - X y ( O ) ,  (4.11)

where rj > 0 is a gain factor.

5. U p date th e  Thresholds &2k and Oij

6 2k(t +  At)  — 62k{t) + 1]is Sik, 

6 ij(t + At)  = 8 lj{t) + T]g 8j,



where rjie > 0 and i]g > 0 are gain factors, and Sik, &j are given by Eq. (4.8) and Eq. 

(4.11), respectively.

4.3.2 Scaling Problem  and Error A nalysis

In the NN, the output of each node passes through a sigmoid function (Fig. 4.2) 

which forces the output of each node to be within the range of (0, 1), and thus, the 

inputs to the INPUT nodes also need to be scaled to this range. Suppose the output 

of a predicted system is y(k)  € (ymin, Umax) and a linear scaling formula is used, 

then the scaled value of y(k)  is given as

J/(^) Vmin
Vs ( k )  = (4.12)

Umax Vmin

The output of the NN-based predictor is the scaled value of d-step ahead prediction 

X 2k(k) = ys(k + d/k).  Then the unsealed values are

y(fc) =  ?/s (&) {jjm ax  2/min) T  ym in

y(k + d / k ) =  ys(k +  d/k) (ymax Vmin) “h ymin• (4.14)

From Eqs. (4.13) and (4.14), we get the absolute prediction error

Cp(fc) =  |/(^) y{k/k  d) =  Cps(̂ 0 (Umax Vmin)?

where ep3(k) =  ys(k) -  ys(k /k  -  d) =  X$k(k -  d) -  X 2k(k -  d)

is the absolute output error of the NN-based predictor.

The relative prediction error is defined as

y(k)  -  y{k/k  -  d) £p(&)
Vmax Vmin ymax Vmin

A ep(k) =

Similarly, the relative output error of the NN is defined as

Vs{k) ~  ys(k /k  -  d)Aeps(k)
1.0

(4.16)
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Substituting the scaling formula Eq. (4.12) into Eq. (4.16), we get

y(k) -  y ( k / k  -  d)
Aep$(&) “ =  A ep{k). (4.17)

Umax ymin

From Eqs. (4.15) and (4.17), we can observe that the unsealed absolute prediction 

error may be much larger than the scaled one, but the unsealed relative prediction 

error is the same as the scaled one. This indicates that the accuracy of the NN- 

based predictor depends only on the accuracy of the NN’s approximation to the 

actual mapping. Finally, ymax and ymin should be determined as

Vmax = sup {y(k) I for all A: > 0} , ymin =  inf {y(k) | for all k > 0} ,

such that the range of the scaled value approaches (0, 1) in order to excite the 

network.

4.4 M ulti—D im ensional Back Propagation A lgorithm

Each node within a conventional NN is designed to handle only scalar operations, 

and the number of the nodes or layers is increased to deal with a more complex 1 /0  

mapping. However, for a complex MIMO mapping like Eq. (4.2), the network size 

may become too large to manage. Alternatively, one can equip each node of an NN 

with the ability of vector operations, because this is easier to express some known 

coupling relations and will result in a set of succinct formulas. So, all inputs and 

outputs of this NN are vectors. Referring to Fig. 4.1, let X i  € R n, X 1j € R m, and 

X 2k € R p be the output of the INPUT, HIDDEN and OUTPUT layer, respectively, 

for 1 <  i < N,  1 <  j  < Ni ,  and 1 < k <  N 2. Extension of the BP algorithm to a 

vector form is presented below.

1. C om puting the output of the H ID D E N  layer X 1?
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The output of the HIDDEN layer is computed by

r p

Xxj  =  } Kljm] —

i
(4.18)

(4.19)

1 +  exp(—oiji -  Oiji)' ’ 1 +  e x p -  8,Jm)

O. j  =  E W i j X i ,  j  =  l ,  2, . . . ,  JV,,
!=1

where W y € R mXTl is the weighting matrix from node i of the INPUT layer to node 

j  of the HIDDEN layer, f j  : R m -» R m is defined as a sigmoid function of each 

component of a vector, and ©ij =  [0iji, • • •, 6ijm]T is the threshold vector at node 

j  of the HIDDEN layer.

2. C om puting th e  output o f the O U T P U T  layer X?k

Similarly, the output of the OUTPUT layer is

' 1   1
1 + e x p ( - o 2fci -  0 2 * i ) ’ ’ 1 + e x p ( - o 2fcp -  6>2fcp).

JVi
O^k =  jk X xj, k =  1, 2, •••,  a^2,

3=1

i T

(4.20)

(4.21)

where W Xjk 6 R pXm is the weighting matrix from node j  of the HIDDEN layer to 

node k of the OUTPUT layer, f k : R p —> R p is defined as a sigmoid function of 

each component of a vector, and 02A: =  [#2M) • ■ • 5 02kP\ is the threshold vector at 

node k of the OUTPUT layer. Note that if m =  p =  n, W y =  diag [ion, • • •, 

and "Wijk — diag [tum, • • •, winn]jk, then the system is uncoupled.

3. U p d a tin g  th e  W eigh ts from  th e  H ID D E N  to  O U T P U T  L ayer W i jk

Let the desired output of the network be X%k = T d
x 2kl i 2kp , and let the

output error of node k be defined as E k =  X ^ k — X 2k and the cost function be 

defined as

n 2 1 at2

f  =  E l  = (X!„ -  X , t f  ( X i k -  X„) . (4.22)
*=1 k=l
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We want to update W ij* and W ,j by minimizing E  and taking the form of

W  ljk(t + At )  = W  ljk(t) + AWijfc,

W y (i +  At)  =  W y (<) +  AW,-j,

where t  is the continuous tim e index.

By using the gradient algorithm, we should set

A W i j k  oc

(4.23)

(4.24)

BE T BE T

L^WiifcJ d o ak \ J (4.25)

B W BO
where —----- G R lxp, and T i  =  2 € RPxmXP is a three dimensional tensor since

dO„k d W i jk
O afc € R pxl and W ljfc € R p*m.

BE
To compute -7——, referring to Eq. (4.22), we get 

BOsk

BE' BE BX, k  Yd  T 8 X , k
B 0 2k d x sk dO,k  

From Eq. (4.20), we obtain

BX^k __ B fk(Q,k)  
B 0 2 k BO?k

dO?k
(4.26)

Because x 2ki and

d x 2ki d x 2ki '
do2k i Bo2 kp

d x 2kp d x 2kp
Bo2k\ do2kp _

d x 2kt
do2ki

X2kl (1 — X2ki)

(4.27)

written in the form

dX^k
d O sk diag [aj2fci(l -  ®2fci), • • •, x 2kp(l — a?2fcp)] • (4.28)

Therefore, substituting Eq. (4.28) into (4.26) and using the notation 6lk, we get

Sik =
BE

= (X*k -  X 2k?
d X 2k

BO,k v" = fc ~ 2K' d O ak 

= ~  X *k)T diag [x2&i(l -  ®2fci), • • ■, x 2kp(l  -  x 2kp)] G R lxp

(4.29)
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To compute T i ,  from Eq. (4.21), we have the /-th component of 0 2k as o2ki =
Ni
E W ) . *  x > i , ‘ = h  %■■■, p, where (W /)ljA. is the /-th row of W ^ .  Then, the 
i=i
/-th m atrix of Ti, T i/ =  £ R mxp, / =  1, 2, • • •, p, has the form of

oW  i jfc

Tw =
d02kl 

3 W ljk

0

d Ni

0

0
T

0

3
( (W, ) ljk X x3)  

0

( X xj)T

0
d ( w t) l h

•
-

(4.30)

at the /-th row.

In Eq. (4.25), we set A W  ijk =  — rji
3E

where rji > 0 is the gain factor
3 W ljk_

of the OUTPUT layer. Therefore, from Eqs. (4.29) and (4.30), we get

A W ijk =  -  ?/x
dE

3 0 ^
Ti = Vi S lk T] (4.31)

4. U p dating  the W eights from the IN P U T  to  H ID D E N  Layer W tJ-

According to the gradient algorithm, we should set

A W ij oc
■ 3E  ‘ T ‘ 3 E  T
3 W  ijm

(4.32)

3 F  3 0
where —------€ R lxm, and T =  - - A -  € R mXnXm is a three dimensional tensor since

d O xj 3 W  ̂

O xj € R mxl and W t-,- € R mXn.
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d ETo compute 7—-—, we have
OLf1j

dE dE d X 13
dOij d X xj dO,j  ’ (4.33)

using Eqs. (4.19) and (4.18) leads to

axxi a
dO dO ij

Because
dE g  dE d o 2k

dX, j  t i  d o d X  

substituting Eqs. (4.21), (4.29) into (4.35) leads to

(4.35)

r ) F  N2 r) ( Nl \  N2
= £  ( -  «.*) a x ~  £  *.< =  £  ( -  «.*) w lik.

O A i j  k= 1 O J L 1j  \ l=l  J  k=1
(4.36)

Therefore, substituting Eqs. (4.34) and (4.36) into (4.33), and using the notation 6j, 

we get

* dE
j ~ d o

' n 2

dE d X ij
d X xj dOxj (4.37)

— I ^ ^ ife "VVij k 1 diag j i (1 # iji), 5 3'ijm(l ^ljm)] G lxm

To compute T  , from Eq. (4.19), we have the 7-th component of O xj as oXji =
N

£  ( W , ) . . X t- , ! = l ,  2, . . . ,  m, where ( W / ) i s  the /-th row of W tJ. Then, the /-th

matrix of T , T / =  € R nxm, / =  1, 2, • • •, m,  has the form of
dWi j

T, =_ doiji
d W {j

0

d N

w i ;  v £ w l - *•
0

(4.38)
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0

T

0

9

0

( ^ ■ ) r

0

n m l

•
-

at the /-th row.

V
d E

<9W2JJ
, where r/ > 0 is the gain factor ofIn Eq. (4.32), we set A W ij =  

the HIDDEN layer. Therefore, from Eqs. (4.37) and (4.38), we conclude

dE
A W = -  7]

dO, k

T

(4.39)

5. U p d a tin g  th e  T h resh o ld s  o f th e  O U T P U T  layer 02k 

We want to update the thresholds 02k and ©xy by

®2k(t + A Z) = 02 k{t) + A02 k

©ij { i  ■(■ A /) =: 0 i j ( / )  4" A 0 ij .

By the gradient algorithm, we should set

A 0 2k oc -

(4.40)

(4.41)

dE
d&2k

(4.42)

Using Eqs. (4.22), (4.21) and (4.20), we get 

d E  dE  d X 2k
d&2k

(X^k - X 2k)T 9 ( f k ( Oak))d x 2k de2k v de2k
(-^2fc X-^k) diag [3'’2fel(l %2k\)) i 3<2fcp( 1 ^ 2fcp)] •

(4.43)

In Eq. (4.42), we set A02A; =  — rjie
dE

d&2k
, where rjig > 0 is the gain factor of the

thresholds at the OUTPUT layer. Therefore, from Eqs. (4.43) and (4.29), we get

A 0 »  =  [0lt]T . (4.44)
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6. U pdating th e  Thresholds of the H ID D E N  layer Qij

Using the gradient algorithm, we should set

AOij oc
dE T

do 1 3 .
(4.45)

Because 757 r ~> using Eqs. (4.36), (4.19) and (4.18), we get
( JKj i j  O J L x j  U \ j \ j

dE
de U

n2 \ dE ) jg- (f^ )) (4.46)
vfc=i

’ n 2

)   ̂ ^ ^ I j k  j d i a g  [ x i j i ( l  S ' l j l ) ,  , 2 ' l jm ( l  ^ T jm ) ] •
ik=1

In Eq. (4.45), we set AO jj =  — go
dE

5 0 i,
, where go > 0 is the gain factor of the

thresholds at the HIDDEN layer. Therefore, from Eqs. (4.46) and (4.37), we get

A 0 ij =  rje [ffj (4.47)

To summarize what we have developed so far, the computation of the multi­

dimensional BP algorithm is listed as follows.

1. Compute the output of the HIDDEN layer by Eqs. (4.19) and (4.18).

2. Compute the output of the OUTPUT layer X 2k by Eqs. (4.21) and (4.20).

3. Update the weights from the HIDDEN to OUTPUT layer W i jk by Eqs. (4.23), 

(4.31), (4.29) and (4.30).

4. Update the weights from the INPUT to HIDDEN layer W b y  Eqs. (4.24), 

(4.39), (4.37) and (4.38).

5. Update the thresholds of the OUTPUT layer 02/e by Eqs. (4.40), (4.44) and 

(4.29).

6. Update the thresholds of the HIDDEN layer Q\j  by Eqs. (4.41), (4.47) and 

(4.37).
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Extending the BP algorithm to a vector form shifted the complexity from the 

network level to the node level. Though the overall computation requirement is not 

reduced, it results in a set of succinct formulas and is easier to specify the I/O  nodes

of the NN for an MIMO mapping and to express some known coupling relations.

Moreover, if the NN is implemented in software and instructions of vector operations 

are provided, then the programming is more efficient with this vector form of BP 

algorithm.

4.5 Sim ulation R esults

To test the capability of the proposed predictor, a series of simulation experiments 

were conducted and the main results are summarized below. First, a two-input two- 

output, linear, time-invariant system

Xi (t) =  x 2(t) + u1(t)

x 2(t) =  — 5a?i(^) -  Sx2(t) +  u2(t) (4.48)

yi{t) =  22xi(t) +  10, i =  1 ,2 ,

is simulated with the sampling interval Ts =  0.01 sec. The inputs u\ ( t ) and U2 (t) are 

set as sinusoidal waves of frequency 10 Hz  and magnitude 10.0. Let

Y ( k ) =  \yi(k), yi{k)]T , U(k )=[ u i ( k ) ,  u2(k)\T , and

Y ( k  + d/k)  =  M k  + d/k),  y2(k + d / k ) f .

Then an NN-based predictor is designed with ten input nodes, five hidden nodes, 

and five output nodes. The inputs of the network are

E7(Jfe), U ( k -  1), U(k  -  2), U { k -  3), l / ( f c - 4 ) ,  and

Y ( k -  1), Y (k — 2), Y ( k -  3), Y { k -  4), Y { k -  5).
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*  < !■ { .—  n . i. y . . . .. - ! - , ] .   ,   ij —   ij i .     t „ ^  i ,  y - . . i.. , .... ...............   j  ,  g    |  .

3800 3850 3900 3950 4000 4050 4100 4150 4200
time (x 0.01 sec.)

Figure 4.4: yi(k.) of the nonlinear, time-invariant system and its prediction error.

The outputs are the d-step ahead predictions Y ( k  +  d/k),  d =  1, •••,  5. The 

network is trained with the actual system outputs Y ( k  + d). The training period is 

4000 sample intervals, and the relative RMS prediction errors are tabulated in Table 

4.1. The network is shown to be “well trained” after 4000 sample intervals.

Using the same structure of the NN-based predictor as above, the following non­

linear, tim e-invariant system is tested:

Xi(t) = x 2(t) + ui{t)

X2 (0  =  - 5  (xl(t)  +  a-'i(O) -  3.t2(0  +  u2{t) (4.49)

yi(t) =  22x{(t) +  10, i =  l , 2 .

The inputs ui(t)  and u2(t) are set to be sinusoidal waves of frequency 10 H z  and 

magnitude 10.0. The actual values of yi(k),  y2(k) and their prediction errors are 

plotted in Figs. 4.4 and 4.5, which have shown that the NN-based predictor works 

well for the nonlinear, tim e-invariant system.

Both Eqs. (4.48) and (4.49) are time-invariant for which the “training — op-
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Sample intervals 

for statistics

Relative RMS prediction errors of yi (%)

1

pr

2

ediction ste 

3

jps

4 5

0 -  500 20.61574 18.59294 15.80285 15.43578 17.34273

1000 -  1500 3.50542 2.99628 3.24761 4.43171 5.31734

2500 -  3000 3.08927 2.26003 2.52720 3.14259 3.43695

3500 -  4000 2.87110 1.75731 2.20443 2.60701 2.60416

4500 -  5000 2.68230 1.56914 2.17914 2.38665 2.06842

Relative RMS prediction errors of 7/2 (%)

1

pr

2

ediction ste 

3

ps

4 5

0 -  500 17.47703 14.82588 14.74718 16.53000 18.53330

1000 -  1500 2.41279 2.68619 3.95526 5.09985 4.82806

2500 -  3000 1.86467 ' 1.95556 2.69478 3.20278 2.90345

3500 -  4000 1.53732 1.60446 2.21500 2.35390 2.12424

4500 -  5000 1.35910 1.60634 2.09154 1.88261 1.69240

Table 4.1: The relative RMS prediction errors of the linear system.
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e2(k+2/k)
 — ■  ■

y2(k+2)  ‘ ....
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3800 3850 3900 3950 4000 4050 4100 4150 4200
time (x 0.01 sec.)

Figure 4.5: 2/2(&) of the nonlinear, time-invariant system and its prediction error.

eration” mode works well. However, this is not the case for time-varying systems. 

To test such a system, we simulated a 2-link robotic manipulator, whose dynamic 

equation is given as

H (g) q +  C{q, q) q +  G(q)  =  r

rrr  ̂ ( J 1 ' #

where q = [gi, 52] is the vector of joint positions, and r  =  [ti, t2] joint torque. 

The detailed explanation of this system is given in Eq. (3.19) and the appendix of 

this dissertation. It is a nonlinear, two-input two-output, time-varying system. The 

joint torque, r , is set as sinusoidal waves of 10 H z  and magnitude 2.0 for T\ and 0.1

for r2. The sampling interval is chosen as Ts = 0.01 sec. W ith an initial configuration

as shown in Fig. 3.6, the joint positions vary under the effects of gravitational force 

and joint torque. The NN-based predictor has ten input nodes, five hidden nodes, 

and five output nodes. The inputs of the network are

r(fc), r ( k  — 1), r ( k  — 2), r ( k  -  3), r ( k  — 4), and

q ( k -  1), q ( k -  2), q(k — 3), q ( k - 4 ) ,  q(k -  5).
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The outputs are the d-step ahead prediction of the joint position q{k + d/k),  d =  

1, • • •, 5. The simulation results are plotted in Figs. 4.6 and 4.7, for qi(k), q^{k) and 

their prediction errors, respectively. The training period is 4000 sampling intervals. 

After the training period, the prediction error increased dramatically as expected. 

This shows that the “training — operation” mode does not work for time-varying 

systems.

So, we keep track of the variation of this time-varying system by using the up­

dating mode described in Section 4.3. The results are plotted in Figs. 4.8 and 4.9. 

When compared with Figs. 4.6 and 4.7, only the predictor with the updating mode is 

shown to work well. For this NN-based predictor, we evaluated the convergent pro­

cess of the system -output prediction and the convergent process of the NN’s weights. 

When the NN’s weights are no longer changed, the NN becomes “well-trained” . The 

simulation results have indicated that the system -output prediction converges to its 

true value within 200 sampling intervals. However, the NN becomes “well-trained” 

only after 3000 — 4000 sampling intervals. That is, the system -output prediction 

converges much faster than the the well-training of an NN. This again supports the 

idea that the NN-based predictor should be updated, but not trained. Certainly, for 

a time-varying system, it is meaningless to say that an NN is “well-trained”.

4.6 Summary

The output prediction of a system can be represented as a mapping from its 

historical data and future inputs to future outputs. Even if the parameters and/or 

structure of the system dynamics were unknown, an NN can be designed to approxi­

m ate this mapping. Using these facts, an MIMO NN-based predictor is proposed and 

tested for various systems. The basic structure of the predictor is determined, and
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the following two major problems are solved. First, in order to track a time-varying 

mapping, the concept that an NN should be updated, rather than trained, is intro­

duced and verified. By this concept and its corresponding algorithm, the proposed 

predictor uses only the system’s historical data to adjust the weights of the NN. This 

also makes the network always work in a closed loop so that the reliability of the 

NN-based predictor is improved. Second, the BP algorithm is extended to a vector 

form so that an NN can be used to represent an MIMO mapping more efficiently 

and express some known coupling relations within the mapping more easily. This 

requires the nodes of the network to be capable of vector operations. Furthermore, 

the prediction error is analyzed and is shown to depend only on the network’s error 

in approximating the actual mapping.

The proposed NN-based predictor has been tested for MIMO linear, nonlinear, 

tim e-invariant, and time-varying systems. All of them have shown promising results, 

indicating the potential use of the proposed predictor for many industrial applica­

tions.
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C H A PTER  V

KNOWLEDGE-BASED COORDINATOR AND  
ITS APPLICATION TO MULTIPLE ROBOTS

5.1 Introduction

Although some basic principles in coordinating multiple systems were developed 

in early 80s [LM082], most publications addressed only conceptual interpretation, 

and very few dealt with actual applications. The main difficulty in coordinating 

multiple systems comes from the lack of precise system models and parameters as well 

as the lack of efficient tools for system analysis, design, and real-tim e computation 

of optimal solutions. New methods for analysis and design are thus required for the 

closed-loop coordination of multiple systems.

Since intelligent control does not depend only on mathematical analyses and ma­

nipulations, it is an attractive candidate for dealing with complex system control 

problems. An intelligent controller achieves the desired performance by searching for 

a goal in its knowledge base. In addition to the structures of performance-adaptive 

and parameter-adaptive IC introduced in Chapter 2, we have proposed a knowledge- 

based controller in hierarchical structure in Chapter 3. This knowledge-based con­

troller is a high-level controller, which attem pts to modify only the reference input 

to the low level. The low-level subsystem could be a servo control system, and its in-

78
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ternal structure and parameters are not affected by adding this high-level controller. 

Output prediction was used to characterize system performance, and the knowledge 

needed to control the system was then simply represented by a decision tree.

However, all the results reported in the literature were intended for single systems. 

Most of the system characteristics surveyed in Section 2.2.2 may not be suitable for 

coordinating multiple systems, because system performance may not be easily defined 

and related to the measured data and control inputs. In fact, for a complex multiple- 

system, even a human expert’s knowledge on how to coordinate it to achieve the 

desired performance is limited and incomplete. So, it is difficult to design a complete 

knowledge base for such a system. The addition of a coordinator (not necessarily 

an intelligent one) leads to the problem of coordinating multiple systems to form a 

hierarchical structure. Such an addition should not interfere in the internal structure 

and parameters of low-level subsystems, making the structure of performance- or 

param eter- adaptive intelligent controllers unsuitable for multiple-system coordina­

tion. The internal structure and/or parameters of low-level subsystems are usually 

not known to the coordinator. Moreover, stability analysis becomes very impor­

tant, due mainly to the uncertain low-level structure and/or parameters, and to the 

incomplete knowledge of the coordination and system characteristics. We should, 

therefore, answer the following questions when designing an intelligent coordinator:

1. W hat are the strategy and the structure for coordinating multiple systems?

2. W hat are the characteristics of multiple-system performance?

3. W hat knowledge is necessary for coordination?

4. How should the knowledge be represented?

5. How can the qualitative knowledge be extracted from sensor data?
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6. How can the result of qualitative reasoning be changed into the quantitative 

control signals of actuators?

7. How can system stability be analyzed and guaranteed?

A knowledge-based coordinator (KBC) for multiple systems is proposed in this 

chapter by combining the techniques of intelligent control and neural networks. The 

KBC is a high-level coordinator within a hierarchical structure. Detailed structure 

and/or parameters of low-level subsystems are not required by the KBC, thus al­

lowing individual subsystems to be designed independently. This implies that some 

commercially-designed controllers can be coordinated to perform more sophisticated 

tasks than originally intended. In Section 5.2, the problem of multiple-system co­

ordination is stated, and some basic principles of multiple-system coordination are 

reviewed. The proposed scheme and the assumptions are described in Section 5.3. 

Section 5.4 addresses the design of a KBC, including the knowledge representation, 

system stability, and an MIMO NN-based predictor. An example is given in Section 

5.5, in which a KBC is designed and tested via simulation for coordinating two 2-link 

robots holding a single object. This chapter is summarized by Section 5.6.

5.2 Problem  and Principles of M u ltip le-system  Coordina­
tion

Fig. 5.1 describes two interacting systems, and this description can be easily 

generalized to the case of more than two systems. The system dynamics are described 

by

S ^ U u  Y u  W 2) =  0 and Sa(l7a, Y a, W x) = 0,
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Figure 5.1: Interaction of two systems.

where Ui  € R ni, W i  € R m’, and Y ; € R Pi, for i =  1, 2. Let p = P1 +P2 , n = n x+ n 2 

and m =  m x -f- ra2. The constraints are expressed by

So

where C/

y

w

{(U,  y, W) : Si =0, S2 = 0} ,
rp y l  X

U \ ,  U 2 € R n s the augmented control input vector,

T  T l  ^Y i , y 2 € R p the augmented system output vector, and

T yf, l y j ]  € R m the vector representing interactions between 

the two systems.

Usually, the cost function of a multiple-system is the sum of the cost functions 

of all component systems:

J { u ,  y, w ) =  J \ ( u i, y u w 2) + j 2( u 2, y 2, w x). (5.1)

The problem of coordinating multiple systems can be stated as an optimization 

problem: minimize the cost function, J ,  subject to the constraint, So.

Though there are no general approaches to solving this problem for a complex 

multiple-system, some conceptual methods and basic principles have been suggested 

in [LM082]. One of these methods is called model coordination. Under this method,
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U

Figure 5.2: Goal Coordination of two systems.

the problem is divided into two-level optimization problems. First, suppose the 

interaction, W ,  is fixed at Z .  Then compute

H (Z )  =  min J(U,  Y ,  Z) .
(£/, Y , Z )eSo

H (Z)  is then minimized over all allowable values of Z.  This two-level optimiza­

tion problem is solved iteratively until the desired performance is achieved. Another 

method is called goal coordination in which the system is represented as in Fig- 5.2. 

Suppose W i  is not necessarily equal to X,-. Overall optimality is achieved by sequen­

tially optimizing two subsystems, while treating W{  as an ordinary input variable 

of each corresponding subsystem. This requires X ; and W{  to be equal, which is 

called the interaction balance principle. Similar to the process of model coordination, 

optimality is achieved iteratively. Another basic principle of coordination, called the

W lt W 2 be theinteraction prediction princij)le, is stated as follows. Let W  =
r i T

predicted interaction and W  — W j ,  W 2 be the actual interaction under the 

control U.  Then the overall optimum will be achieved if the prediction gives the 

true value, that is, W  — W .

Obviously, solving these optimization problems largely depends on the knowledge



of the structure and/or dynamic parameters of low-level subsystems and m athem at­

ical synthesis. Moreover, in a hierarchical system it is desirable that adding a high- 

level coordinator should not affect the internal structure and/or parameters of the 

low-level subsystems and should only give appropriate coordination commands to 

them, so that each level can be designed independently of other levels. That is, the 

higher the level is, the more intelligence it has, and the less precise its knowledge 

about the low levels becomes. These requirements motivated us to design the KBC.

To design a coordinator, we first need to define a system performance index. 

It should be chosen to express the desired system performance and should also be 

amenable to some optimization methods. For example, the performance index de­

fined in Eq. (5.1) is suitable for the concepts of model coordination and goal co­

ordination. To design a KBC, one needs an index to explicitly express system per­

formance; such an index will henceforth be called the principal output. The overall 

system performance index may not necessarily be the simple summation of the per­

formance indices of all component systems. Because only system constraints are 

important for coordination, one may not even be able to define subsystem perfor­

mance indices. Moreover, we want to relate the principal output directly to the 

coordination commands. The coordination commands are defined as the reference 

inputs to subsystems. The following sections will show that both the explicit expres­

sion for system performance and the direct relationship between the principal output 

and the coordination commands will simplify the design of the knowledge base and 

the goal-oriented search.
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5.3 D escription o f the Principal Output Prediction Scheme

In a hierarchical structure, each level can be viewed as a mapping from its refer­

ence input to the output. The servo controller of each subsystem is usually designed 

separately from, and independently of, the others. In order not to interfere in the 

internal structure and/or parameters of the lower level, the only effective control 

variable is the reference input to the lower level. The reference inputs are a set of 

pre-designed commands, which represent the overall behavior of the multiple sys­

tems. For example, when multiple robots work in a common workspace, the reference 

input is the desired path and trajectory of each robot generated without considering 

the presence of other robots. The purpose of a high-level coordinator is to modify 

the desired paths and/or trajectories to avoid collision among the robots. From a 

high-level coordinator’s point of view, the following conditions are assumed.

C l .  Each subsystem is a stable, closed-loop controlled system.

C2. Each subsystem has a linear response to its reference input.

C3. Each subsystem will remain stable even during its interaction with other sub­

systems.

C4. System performance can be described explicitly by the principal output .

In Fig. 5.1, let Y  be the principal output vector of the multiple-system, Y r = 

[ y f r , Y ^ r\T be the vector of reference input to the low level. Note now that the 

components of Y  may not be simply the outputs of subsystems, but could be a 

function of these outputs:

Y  = F 0( Y U Y 2), where F 0 : R Pl x R P2 — > R p.
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Because each subsystem is a closed-loop controlled system, V,- can be represented

as

Y i  = f i ( Y i r , W j ) ,  where i, j  =  1, 2, j  ±  i, and / ,  : R ni x R m' — > R Pl.

Then Y  can be represented as

Y  =  F ( Y l r , Y 2 r , W u  W 2 ) ,  (5.2)

where F  : R ni x R ”2 x R mi x R m2 — »■ R p. The principal-output vector Y  in Eq. 

(5.2) establishes an explicit relationship between the overall system performance and 

the reference inputs.

Let Y ( k  + d / k ) and Yd(k  +  d) be the d-step ahead prediction and the desired 

value of the principal output Y ( k )  at time fc +  d, respectively. Then, the performance 

index of the overall system can be defined as

J(k)  =  [ Y d{k +  d) -  Y ( k  + d/k)]T [Y d(k + d) -  Y ( k  +  d/k)] .

The purpose of using a coordinator is to choose a suitable reference input vector 

Y r(k) in order to minimize J ( k ) at time k subject to a set of constraints.

Suppose the prediction of the principal output corresponding to each choice of 

Y r{k) is available, and the constraints can be expressed with a set of production 

rules. Then, in each sampling interval, the desired performance can be obtained 

by iteratively trying different reference inputs and adjusting them according to the 

principal output prediction. For example, we propose the following algorithm to 

coordinate two subsystems, where the superscript i denotes the iteration count.

» o
(1) Compute the principal output prediction Y  (k-j -d/k ) for given reference inputs 

Y°lr(k) and Y l ( k ) .
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(2) Using Y \ k  +  d/k),  modify the reference inputs of subsystem 1, Y \ r(k), i =

0 , 1 , 2 , - . . .

(3) Compute Y*+1(k + d/k)  for given reference inputs Y \ r(k) and Y l { k ) .

A *+1(4) Set i <— i+1  and repeat steps (2) and (3) until Y  (k + d / k ) cannot be improved

any further with K ir(fc) due to the constraints.

(5) Set i *— 0.

(6) Using Y \ k  -f d/k),  modify the reference inputs of subsystem 2, Y l ( k ) ,  i =

0 , 1, 2 , • • •.

(7) Compute Y ' +1(k + d/k)  for given reference inputs Y®r(k) and Y \ r(k).

A J - J - l

(8) Set i *+1 and repeat steps (6) and (7) until Y  (k+d/k)  cannot be improved

any further with Y \ r(k) due to the constraints.

(9) Set i <— 0 and repeat steps (2) — (8) until Y  (k + d/k)  reaches its desired value.

The conceptual structure of this scheme is given in Fig. 5.3. Obviously, this 

scheme needs a multiple-step predictor to compute Y  (k + d/k)  and a KBC for the 

modification process of the reference inputs. By using this principal output predictor 

to characterize system performance, the knowledge for coordinating multiple systems 

becomes clear, thereby simplifying the design of a knowledge base.

We now need to address the following two problems: (1) Given the principal 

output prediction, how can we design this KBC? This will be discussed in the next 

section. (2) How can we design such a principal output predictor? In Chapter 4, an 

MIMO predictor has been designed using NNs. In the next sections, we emphasize 

to solve the first problem.
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Figure 5.3: Conceptual structure of the knowledge-based coordination system. 

5.4 D esign of the K now ledge-B ased Coordinator

A multiple-system with the KBC forms a hierarchical structure, and the low- 

level subsystems are viewed as a mapping from their reference input to the principal 

output. The goal is to modify the reference input so that the principal output 

reaches its desired value. For a given multiple-system we must define the principal 

output. Note that knowledge-based coordination is not strictly a mathematical 

optimization problem. The principal output must (1) have an explicit relation to the 

reference inputs, and (2) be measurable or computable from measured data. Because 

a multiple-system is designed to perform a common task(s) among the component 

systems, such a principal output is usually defined to express the situation of the 

common task(s), even though it may not explicitly reflect some of the generally-used
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optimization criteria, such as energy or time.

As an example, consider the coordinated control of two robots. The two robots’ 

operations may be tightly-coupled or loosely-coupled. They are tightly-coupled, for 

example, when they hold a single object rigidly and are coordinated to move the 

object. On the other hand, they are loosely-coupled, when they work in a coinmon 

workspace and are coordinated to avoid collision. Suppose each robot is equipped 

with a servo controller which was originally designed for a single robot. The two 

robots are coordinated by modifying each robot’s reference input. For the tightly- 

coupled case, the principal output can be defined as the object’s position error or 

the internal/external force exerted on the object. For the loosely-coupled case, on 

the other hand, the positions and/or velocities of the robots’ end-effectors can be 

used to represent the status of collision avoidance, and, thus, they are qualified to 

be the principal output. For both cases, an explicit relationship between system 

performance and reference input is established by defining the appropriate principal 

output.

As stated in the previous sections, we want to use the principal output predictor 

to see where each reference input of the subsystem will lead to. If the principal output 

prediction is given, simplified knowledge on how to coordinate a multiple-system can 

be stated in two steps:

(1) Modify the reference input and feed the modified input to the predictor.

(2) IF  the principal output prediction yield good performance

T H E N  feed the reference input to the low-level subsystems 

E L SE  re-modify it.

Since only one reference input is modified at each time, the remaining problems
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are then in which direction the reference input is modified (increase or decrease), 

how much it should be modified, and what are its limits? For a single-system, 

we have already developed such a knowledge-based controller in Chapter 3. For a 

multiple-system, the modification process of each reference input is similar to that 

of a single-system, so only the related results of Chapter 3 are summarized below. 

K now ledge R e p re se n ta tio n

Using a predictor, the performance of a multiple-system is characterized by the 

predicted tracking error in its principal output that results from the application of 

the current reference input. Thus, the space of predicted tracking errors forms the 

input space of the KBC’s knowledge base. The goal of the KBC is then to implement 

the modification process discussed thus far. It is not difficult to express this process 

in terms of a set of production rules. For each element of the reference input, the 

basic modification process can be represented by a decision tree as shown in Fig. 3.1. 

The i j - ih node in the tree is represented by ([«*■, &'•], c’-), where c1- is the quantity 

added to the reference input,1

!£*"(*) =  ¥?(*) +  <$•

y%k)  is an element of the original reference input vector to one of the subsystems at 

tim e &, yl+1 is its modified value after the i-th iteration, and [a*-, ty] is the interval 

to be searched, a1- < cl- < bl- for all i, j .  The process is the same as stated in Chapter 

3, by giving the reference input yl(k),  at any node ([a*-, 6*-], c*), the interval [a ', b1-] 

will be split into two subintervals [ô .+1, ^ +1] =  [a*, c‘] and [a ^ \ ,  6 ^ ]  =  [c*-, &*•],

which form two successive nodes. At the z-th iteration and at the ij- th  node, let the

1 Because only the reference input to one subsystem is modified at a time, to simplify the notation, 
subsystem 1 and 2 will not be distinguished within this section, that is, yr ( k ) will represent one 
element of either Y \ r (k)  or Y



c;

90

predicted tracking error resulting from ylr(k) be denoted as

eK fc) =  y' (k +  dl k ) ~  y ^ k +  rf)’

where yd(k +  d) is an element of Y d(k +  d) and y‘(k +  d/k)  is the corresponding
a  {

element of Y  (k + d/k).  Then, c‘- is computed as

b) -  (b) -  a))I<, if e)(k) < 0

< 0, if e’(fc) =  0 (5-3)

a' +  (b) -  a))I<, if e)(k) > 0,

and 0 < K  < 1 is a weighting coefficient which determines the step size of the 

iterative operation. and are the pre-designed lower and upper bounds for the 

amount of reference input modification, and usually c° =  0.

S o lu tio n  E x is ten ce  an d  S ta b ility  A nalysis

The basic forms of production rules are

IF e){k) < 0 A N D  |e}(fc)| >  e ,

T H E N  increase d- A N D  compute ylr+1{k) = y^{k) +  c*-;

IF e){k) > 0 A N D  |eJ(A:)| >  e ,

T H E N  decrease c‘- A N D  compute y lr+1(k) =  y°(k) +  c*-;

IF \e)(k)\ <  e ,

T H E N  set y*r+1(k) =  y'r(k) A N D  stop the iterative operation.

e > 0 is a pre-specified error tolerance. Because the amount of modification to the 

reference input is bounded, or Oq < cj < f°r h j-, there may be a case where 

|e* (&)| > e for all c*-. This problem is solved with the same methods as stated in 

Chapter 3.
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Suppose the prediction gives the true principal output, and let us consider the 

KBC and the closed-loop subsystem. The KBC can then be viewed as a map 

Mo : E  — > Y r ,  specified by all the production rules, where E  is the space of 

predicted principal-output tracking error and Y r  the reference input space. The 

low-level, closed-loop subsystem is also a map, L : Y r  — > E, which is specified 

by the desired dynamic properties of the servo controllers. Because L represents a 

well-designed controller and there exists a reference input at time k,  YJ.(fc) € Y r  

such that the tracking error reaches zero. Accordingly, it is reasonable to assume 

that L is a linear map. The properties of the map M  =  LMo : E  — > E depend 

mainly on the properties of the map Mo. In fact, all the antecedents of produc­

tion rules are based on the prediction of principal output. If the predictor gives the 

true principal output, then the properties of the invariant map M  : E  — ► E are 

determined solely by the knowledge base.

For system stability, all production rules in the knowledge base must form a con­

traction map. Similar to the arguments in Chapter 3, if (1) the principal-output 

prediction of a multiple-system is computable and the predictor gives the true prin­

cipal output, and (2) L : Y r  — ► E of the low-level closed-loop subsystems is a 

linear map, and (3) the map M 0 : E — ► Y r  is given by a decision tree, then we 

conclude that the composite map M  =  L Mo : E  — ► E is a contraction map. As 

pointed out in Chapter 3, at each node of the decision tree, the iterative learning 

process is performed and the rules always keep the search direction pointed to the 

node where the tracking error decreases. This implies that the iterative learning 

process decreases the tracking error.

P rediction  o f the Principal O utput

Though it is assumed that the principal output, Y ,  is measurable or computable



from the measured data, it may be very difficult to derive a closed-form expression 

for Eq. (5.2). To overcome this problem, we have developed an MIMO predictor 

using an NN in Chapter 4 in which the problem of tracking a time-varying system is 

solved and the BP algorithm is extended to a vector form. In what follows, only the 

structure of the predictor for the principal output is stated, and the detailed design 

procedures are the same as that described in Chapter 4.

Referring to Eq. (5.2), the d-step ahead prediction of Y  can be represented by

Y ( k  +  d/k)  =  F p(Y lr , Y 2r, Y ), (5.4)

where Y ir =  ( Y i r(k + i-i), •••,  Y iT(k), Y i r(k — 1), •••,  Y  ir(k -  i2))

Y 2r =  ( Y 2r(k + j 1), Y 2r(fc), Y 2r( k - 1 ) ,  Y 2r( k - j 2))

Y  =  (Y(k) ,  Y ( k -  1), . . . ,  Y ( k - i ) )

Fp : R ni x R ”2 x R p — > R p,

i , *i, i2, j \  and are constant integers. The interaction effects among subsystems 

are implicitly included in the historical data of Y . In Eq. (5.4), the principal 

output prediction is directly represented as a mapping of the reference inputs and the 

historical data Y . An NN-based predictor can be designed to learn the relationship of 

Eq. (5.4), using the procedures presented in Chapter 4. Fig. 5.4 shows the structure 

of the predictor, where the reference inputs Y ir and Y 2r, and the historical data 

Y  are fed to the nodes at the INPUT layer. When the NN becomes well-trained, 

the predictions Y ( k  + d / k ) for d = 1, 2, • • • are then produced from the OUTPUT 

nodes. To implement this NN-based predictor, two major problems have been solved 

in Chapter 4: (1) how to track a time-varying mapping, and (2) how to efficiently 

represent and compute an MIMO mapping with the NN. The detailed arguments are 

not repeated here.
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Figure 5.4: Structure of the NN-based predictor.

W ith the ability for learning an input-output (I/O ) mapping from experience, 

an NN can be used to track the variation of the mapping. However, an NN alone 

cannot form an intelligent coordination/control system. As a general method of 

representing systems with learning ability, NNs lack the ability of logical reasoning 

and decision making, of interpreting environmental changes, and of quick response 

to unexpected situations. Therefore, a KBC is needed. Despite its drawbacks, the 

NN-based predictor establishes an explicit relationship between the principal output 

and the reference inputs to subsystems. Hence, the knowledge base is simplified. One 

can also add easily to the knowledge base such rules as the constraints of subsystems, 

operation monitoring, system protection, and switching of the coordination schemes. 

The KBC will emphasize system coordination but not data interpretation, while the
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Figure 5.5: Two 2-link robots holding an object.

ability to learn will rely mainly on the NN, that is, the NN will adapt itself to the 

model/parameter uncertainties, disturbances, component failures, and so on.

5.5 Coordinated Control o f Two 2—Link R obots

To demonstrate how to apply the proposed scheme for solving real life problems, 

we consider the problem of coordinating two 2-link robots holding a rigid object. 

The low-level subsystems include two robots each with a separately designed servo 

controller. The basic configuration of this example is given in Fig. 5.5. The Cartesian 

frame is fixed at the base of robot 1, and the trajectories of the object and the robots’ 

end-effectors are specified relative to this frame. The task is to move the object 

forward and then backward in X  direction while keeping the height in Y  direction 

constant. The desired trajectory of the object are selected by a high-level planner 

as the reference input to the low level. If the two robots hold the object firmly, then 

the dynamics of the system are modeled as follows.

D ynam ics o f the O bject
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Let / ,  =  [fix, f iy]T be the force exerted by the end-effector of robot i on the 

object in Cartesian space. Then the motion of the object is described by

m P  +  mg = f , f  = W  F  = [I2, I 2] (5.5)
f t  

/ 2

where m is the mass of the object, P  the position of the object in Cartesian space, g 

the gravitational acceleration, f  the external force exerted on the object by the two 

robots, and I2 is a 2 x 2 unit matrix. From Eq. (5.5), one can see that, to achieve the 

object’s specified acceleration, the combination of forces shared by the two robots is 

not unique.

D y n am ics of E ach R o b o t w ith  Servo C o n tro lle r

Suppose two robots have an identical mechanical configuration, then the force- 

constrained dynamic equation of robot i in joint space is given by

H  (qi)qi +  C (q{, q{) q{ +  G(g,-) +  J  J  = r,-, i = 1, 2,

m m
where =  [qn, # 2] and t ;  =  [t , i , r2-2] are the vectors of the joint position and 

torque of robot i , respectively. J; is the Jacobian m atrix, and the other terms are 

explained in Eq. 3.19 and the appendix. Suppose both robots are position-controlled 

with the computed torque algorithm. That is, the control input to robot i is

T i -  H  (qid -  K Di(qi -  qid) -  K pi(qi -  qid)) +  h , (5.6)

where H  and h are the estimated values of H  and C qL +  G, respectively. qid is the 

desired value of q{, i^Di and are the controllers’ gains. The reference input to 

the system is the desired trajectory of the object specified by P d ,  P d  and P d ,  which 

will be transformed into the desired trajectories of the end-effector and the joints of 

each robot.
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P ro b le m  S ta te m e n t

Suppose the object is a rigid body and there is no relative motion between the 

end-effectors and the object. For Eq. (5.5), let f d and F d be the desired values of 

f  and F,  respectively. Then, we have

F d = F Md +  F Id =  W * f d +  (I, -  W * W ) y 0, (5.7)

where W* € R 4x2 is the pseudo-inverse of W , I4 is a 4 x 4 unit m atrix, and y 0 € R 4

an arbitrary vector in the null space of W . Therefore, the forces exerted by the end-

F  M U

F  M2d

effectors consist of two parts: FMd = e  R 4 is the force to move the object

and Fid
F  i \ d 

F  I2d

e  R 4 is the internal force. The following two problems arise:

(1) sharing the moving force by the two robots, and (2) changing the internal force 

so as to satisfy a set of constraints, such as joint torque limits or energy capacity.

In Eq. (5.7), f d can be specified by the desired trajectory. F j d is given as 

the desired internal force, for example, F i d = 0 for the least energy consumption. 

Because W* is a constant matrix and both f d and F j d are specified, the desired force 

F d is determined uniquely. However, this ideal situation of load sharing may not be 

achieved due to force and trajectory tracking errors. These errors may be caused by 

modeling/parameter errors, control performance tradeoff, and/or disturbances. It 

is, therefore, necessary to share the load by, or to re-assign the load to, each robot 

dynamically. Our goal is to design a KBC to coordinate the two robots moving the 

object while minimizing the internal force.

P rin c ip a l O u tp u t and  I ts  N N -B a se d  P re d ic to r

The reference inputs to the low-level subsystems are the desired acceleration 

P i d ,  velocity P { d , and position P i d of robot Vs end-effector, i — 1, 2. The internal
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force can be used to evaluate system performance and has an explicit relation to the 

reference inputs. So, the internal force is defined as the principal output. Because 

the force exerted by each robot to achieve a specified acceleration of the object is 

not unique, it is possible to adjust the internal force by modifying the reference 

inputs. Since the position tracking error needs to be kept small and the desired 

acceleration has an explicit relationship to the force exerted on the object, only the 

desired acceleration is modified in order to reduce the internal force. Then, the 

desired acceleration issued to each robot is Pidm ~~ the modified value of Pid-,

P i d m  ~  P i d c  “t" P i d i  * — 1 1 2 ,

where P u c is the increment given by the KBC to the original reference input. An 

NN-based predictor is designed to predict the force exerted on the object, which cor­

responds to each reference input. The predicted internal force (that is, the principal 

output) is then computed. The NN-based predictor has eight nodes at the INPUT 

layer, and the inputs are

P u ( k ) ,  P u ( k -  1), Pidik),  P 2d ( k - 1 ) ,  and

P l d m ( k ) ,  P l d m ( k - l ) ,  p 2 d m ( k ) ,  P 2 d m ( k - 1 ) .

There are five HIDDEN nodes and six OUTPUT nodes with outputs:

f i ( k  +  d/k),  for i = 1, 2, d =  1, 2, 3.

Sim ulations R esu lts

In the simulation, the task is that the two robots move the object in X  direction 

from the initial position to the final position over one-meter distance in five seconds, 

and then move back to the initial position. The desired velocity and acceleration of 

the object are zero at both initial and final positions. The kinematic and dynamic
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Figure 5.6: Internal force error in X  direction without the KBC.

parameters of the robots are presented in Table 3.1. The sampling interval is Ts =

0.01 sec. Force predictions are used for the modification process, and position tracking 

is achieved by the position controllers. The 1-step ahead predictions f ^k+l / k ) ,  i =

1, 2 are used in the KBC. The desired internal force is set to zero. W ithout the KBC, 

the internal force error in X  direction is plotted in Fig. 5.6. After adding the KBC, 

the RMS error of the internal force in X  direction is reduced by 63% as shown in 

Fig. 5.7. Moreover, both the external force error and the position tracking error are 

kept almost the same as those without the KBC. Detailed results are summarized in 

Table 5.1. Since there is no motion in Y  direction, the internal force error in that 

direction is small enough not to require the KBC.

5.6 Sum m ary

Focusing on the problem of coordinating multiple systems, a knowledge-based 

coordinator is designed using the techniques of both intelligent control and neural 

networks. As the high-level coordinator in a hierarchical structure, its basic principle
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Figure 5.7: Internal force error in A' direction with the KBC.

is to modify the reference inputs of low-level subsystems according to the principal 

output prediction in order to achieve the desired performance. By adding the pro­

posed KBC, the internal structure and parameters of the low-level subsystems are 

not affected. Hence, each servo controller of the low-level subsystems can be designed 

separately from, and independently of, the others; no constraints need to be imposed 

on the design of low-level controllers. This implies that some commercially-designed 

servo controllers for a single system can be coordinated to work for a multiple-system.

Using the principal output and its prediction, and the structure of the decision 

tree for knowledge representation, the knowledge base necessary to coordinate mul­

tiple systems is greatly simplified while guaranteeing system stability. By using a 

predictor, the negative effects of system time delay is eliminated and each reference 

input is analyzed before putting it in operation. The unknown parameters and/or 

time-varying properties of a multiple-system are handled by the NN-based predic­

tor, while leaving the logical reasoning and decision making on the coordination to 

the KBC.



To test this new scheme, the coordination problem for two 2-link robots holding 

a rigid object was simulated. By modifying the reference input of each robot, the 

internal force exerted on the object was reduced by 63%, indicating the scheme’s 

potential for the effective coordination of multiple robots.
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Samphs intervals RMS errors of internal forces (N )

without KBC with KBC

0 -  1000 in X  direction 9.58447 3.85020

in Y  direction 0.93141 0.53177

1001 -  2000 in X  direction 9.57130 3.53340

in Y  direction 0.92339 0.49949

2001 -  3000 in X  direction 9.57097 3.53688

in Y  direction 0.92339 0.49956

Sample intervals RMS errors of external forces (N )

without KBC with KBC

0 -  1000 in X  direction 0.72359 0.95822

in Y  direction 2.54853 2.54345

1001 -  2000 in X  direction 0.34883 0.70199

in Y  direction 0.01436 0.03345

2001 -  3000 in X  direction 0.34883 0.70346

in Y  direction 0.01436 0.03355

Sample intervals RMS tracking errors of object’s positions (m)

without KBC with KBC

0 -  1000 in X  direction 0.03509 0.03529

in Y  direction 0.05733 0.05784

1001 -  2000 in X  direction 0.03509 0.03530

in Y  direction 0.05759 0.05813

2001 -  3000 in A' direction 0.03509 0.03530

in Y  direction 0.05759 0.05813

Table 5.1: The RMS errors of forces and position tracking.



C H A PTER  V I

APPLICATION OF THE KBC — COLLISION 
AVOIDANCE IN A MULTIPLE-ROBOT 

SYSTEM

6.1 Introduction

Effective application of industrial robots to increase productivity and improve 

product quality calls for the development of an intelligent control system for them. 

Particularly, multiple robots need to be coordinated in order to perform such so­

phisticated manufacturing tasks as assembly. In a multiple-robot system, not only 

must each robot have good behavior, but also must multiple robots be coordinated 

to achieve the desired performance. One of the challenging problems in develop­

ing intelligent robot control systems is to coordinate multiple robots in a common 

workspace without colliding with each other.

A robot control system usually consists of a four-level hierarchy: task planning, 

path planning, trajectory planning, and servo control. The problem of collision 

avoidance among robots1 can be solved at the path planning level by considering 

collision between the robot and the fixed/static obstacles in the workspace. By “path

planning” , we mean off-line geometric planning in robots’ workspace. Generally,

1The term “robot” will henceforth mean “robotic manipulator” and the two terms will be used 
interchangeablely, unless stated otherwise.

102
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there are two approaches to path planning: graph search and use of potential field 

[Kha86]. In the former, a collision-free path is obtained by searching a graph which 

is derived from geometric constraints. The latter assumes an artificial potential field 

applied to obstacles and the goal position. A collision-free path is then planned 

along the curve of minimum potential.

Collision avoidance can also be achieved by planning collision-free trajectories 

with optimization or search methods. A simple solution is to keep all other robots 

away from the workspace if it is occupied by a robot. Obviously, this scheme lacks 

the flexibility of allowing more than one robot to jointly accomplish a complex task 

such as assembly, and requires a longer time to complete a task, since the usage of 

the workspace is strictly sequential. Shin and Zheng developed a simple scheme for 

planning trajectories of two robots working in the same workspace by minimizing 

the robots’ operation time while avoiding collision between them [SZ89]. Their basic 

idea is to delay one robot by a minimum amount of time in order to avoid collision 

with the other robot. However, an exact collision time between the two robots that 

is required for this scheme is difficult to obtain, since a precise trajectory for a given 

robot is not always available.

In practice, the desired path and trajectory of each robot are determined by 

guiding the robot through the workspace with a joystick, and its servo controller 

is designed independently of, and separately from, the other robots. To coordinate 

such robots in a common workspace, one has to devise a scheme for on-line collision 

detection and avoidance.

Regardless of the collision-avoidance scheme used, it is essential to track a robot’s 

desired trajectory precisely, which in turn calls for high-performance servo con­

trollers. Otherwise, collision may occur even if the desired trajectory is planned to
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be collision-free. This implies that the dynamics of multiple robots must be figured 

in their coordination. An on-line coordinator is needed to guide the robots using 

sensory information. This on-line coordination is commonly termed the path finding 

problem. Since path finding does not always guarantee the robots to achieve their 

goal positions, a high-level planner is still necessary. However, the existence of on­

line coordination will ease the burden on both path planning and trajectory planning 

for collision detection and avoidance. The path finding problem for a multiple-robot 

system is the main subject of this chapter.

Most industrial robots are designed to work as a stand-alone device and are 

usually equipped with PID -type servo controllers. Thus, it is reasonable to assume 

that

A l.  The path of a robot is obtained by teaching, and thus, avoids collision only with 

fixed obstacles in the workspace.

A2. Trajectory planning does not deal with the problem of avoiding collision between 

moving robots.

AS. Collision avoidance is not a subject to consider when designing servo controllers. 

Servo controllers are commercially-designed and independent of one another.

A 4 . No precise knowledge of the dynamic structure and/or parameters of each robot 

and its servo controller is available.

There are only a few papers dealing with the on-line coordination of multiple 

robots for collision avoidance. The work described in [FH88] is a typical example. 

By representing the dynamics of each robot with a state-space equation, a nonlinear 

state feedback controller is designed such tha t the resulting closed-loop system is 

decoupled and linearized. The dynamics of multiple robots are also represented by



n state equations for n robots to be coordinated. A coordinator is then designed, 

and the essential part of the coordination command deals with the coupling effects 

among the links of different robots. The strategies for collision detection and avoid­

ance are based on analytically-described avoidance trajectories, and the design pro­

cedure depends heavily on a priori knowledge of robots’ dynamics and mathematical 

synthesis. The potential problems of this scheme are its computational complex­

ity, and its restriction to the robots with cylindrical joints. Potential-field methods 

are also used to deal with the path finding problem [Til90, War90]. However, none 

of the schemes mentioned earlier satisfies all of the realistic assumptions A1 -  A/f, 

because they are not intended for on-line coordination of multiple robots equipped 

with commercially-designed servo controllers.

It is in general very difficult to coordinate multiple robots under assumptions A1 

-  A/h This coordination problem can be viewed as having a hierarchical structure, 

in which the internal structure and parameters of low-level subsystems — individual 

robots — must not be affected by adding a high-level coordinator. Thus, a new 

method must be developed to achieve the on-line coordination of multiple robots 

which are equipped with commercially-designed, simple controllers.

Based on a hierarchical structure, we develop a practical, yet general, design 

method for coordinating multiple robots in a common workspace under assumptions 

A l  -  A/t. The high level consists of a knowledge-based coordinator (KBC) and a 

predictor. The coordinated robots form the low level. The detailed structure and/or 

parameters of low-level subsystems need not be known to the KBC, thus allowing 

the individual subsystems to be designed separately in isolation. This implies that 

commercially-designed robots can be coordinated to work in a common workspace 

without the need of modifying their servo controllers. (Such a modification is usually
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very difficult to make.)

Section 6.2 states the problem of coordinating multiple robots for on-line collision 

avoidance and outlines our ideas in solving it. In Section 6.3, the proposed scheme 

is applied to coordinate two cylindrical robots for collision avoidance and is tested 

with extensive simulations. The scheme is also tested to coordinate two revolute 

robots — the second application example — in Section 6.4. In this second example, 

we show that collision associated with kinematic redundancy can also be handled 

easily by developing a set of corresponding rules for collision detection. Section 6.5 

is a summary of the chapter.

6.2 Problem  Statem ent and Basic Solution Ideas

Suppose two robots work in a common workspace. For simplicity, only the col­

lisions in a two-dimensional workspace are considered, implying that there are no 

constraints on the vertical movement of the robots. Thus, for the collision avoidance 

problem, one can assume that each robot has three degrees of freedom (DOFs): two 

DOFs in X  -  Y plane of the world coordinate, and one translational DOF in the ver­

tical (Z) direction. In other words, the robots have three DOFs, and it is sufficient 

to consider collision avoidance in a two-dimensional plane. The right-of-way can be 

assigned to either robot whenever necessary. Then the master will follow its planned 

trajectory, while the slave robot must be coordinated on-line to avoid collision. The 

coordinator should be able to easily switch the role of the master and slave robots, 

when the trajectory of the slave robot cannot be modified for collision avoidance due 

to some physical constraints. The coordinator must not only generate a sequence of 

commands for collision avoidance, but also monitor each robot’s dynamic response 

to the commands.



There are two steps for a human to avoid collision with a moving object: anticipate 

(estimate) the object’s future position, and modify his/her original trajectory if a 

collision is likely to occur. This decision-making process forms the basis for our 

knowledge-based coordinator. We must solve the problems of (1) predicting the 

robots’ future position, (2) developing a set of rules for collision detection based 

on the predicted robots’ positions, and (3) modifying robots’ original trajectories 

to avoid collision. Our solution approach is based on a hierarchical structure and 

satisfies all of the realistic assumptions A l  -  A4 . In this hierarchy, the only action 

to take at the high level is to issue a sequence of appropriate commands to the low- 

level subsystems, so that the internal structure and parameters of one level will not 

be affected by adding another level. These commands are defined as the reference 

inputs to the low-level subsystems. For multiple robots in a common workspace, the 

reference inputs to the low level are the planned trajectory of each robot without 

considering the presence of other robots. The purpose of the coordinator is to modify 

these planned trajectories to avoid collision among the robots.

Though the master robot is supposed to follow its planned trajectory, its actual, 

precise position at each instant is not known due to tracking errors and system dis­

turbances and/or noises. Hence the key problem in accomplishing on-line collision 

avoidance is to predict d steps ahead the robots’ positions. Let Yid(k) be the refer­

ence input of robot i, i =  1, 2, at time k. Suppose the robots’ predicted positions 

corresponding to each choice of Yid(k) are available, and other constraints can be 

represented by a set of production rules, such as “IF  the trajectory of the slave robot 

cannot be changed due to the limits of joint torque T H E N  switch the designation 

of master and slave robots.” In each sampling interval, collision avoidance is accom­

plished by iteratively trying different reference inputs and adjusting them according



108

to the predicted tracking error.

Our basic idea is to estimate the effects of the reference inputs with a predictor 

and modify them with a KBC in order to avoid collision. Using the predictor, one 

can foresee the effects of each reference input on the robots’ future positions. Given 

the predicted positions of the robots, the simplified knowledge on how to coordinate 

the robots for collision avoidance can be stated as follows:

® Modify the reference input and feed it to the predictor.

•  IF  the predicted positions do not lead to collision T H E N  feed the reference 

input to the robots E L SE  re-modify it.

By using the robots’ predicted positions, the knowledge of how to coordinate multiple 

robots to avoid collision becomes clear, thereby simplifying the design of the KBC’s 

knowledge base. To complete the design of the KBC, the following three problems 

must be addressed in detail.

(1) How is the knowledge of collision detection and avoidance acquired and repre­

sented for a specified configuration of robots?

(2) How is a multiple-step predictor designed?

(3) Given predicted robots’ positions and angles, how is the KBC designed in order 

to modify the reference inputs of the robots?

Problem 2 and 3 have been solved in Chapter 4 and 5; therefore, this chapter will 

focus on the solution to problem 1.

6.3 Exam ple 1: Coordination of Two Cylindrical R obots

The proposed scheme has a very general structure for the on-line coordination 

of multiple robots under realistic assumptions A1 -  AJh Based on robots’ predicted
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positions, different rules can be developed for different requirements and robots con­

figurations, and can then be included in our knowledge-based coordinator. In this 

section, we will show how to derive such rules for two cylindrical robots working in 

a common workspace. Another example of two revolute robots will be treated in 

Section 6.4, exhibiting the KBC’s capability in handling the collision associated with 

kinematic redundancy.

6.3.1 D efin ition o f C ollision

The configuration of two cylindrical robots in a common workspace is shown in 

Fig. 6.1. To define a collision, we use the method proposed in [FH88]. In Fig. 6.1,

Robot 2\

P (k+d)
02m

Robot 1 tyjk-bd)

Position Pj (k) 

Angle ^j (k)

Figure 6.1: Configuration of two cylindrical robots in a common workspace.

the relationship between the base coordinates of the two robots are expressed by the 

distance d\2  and the angles </>0i and $02■ The position of robot i at tim e k, P{(k), 

is the position of its end-effector relative to its base coordinate. The angle, (j>i(k), 

is the angle between the robot link and the X  axis of robot i ’s base coordinate.
A A

Their d—step ahead predictions at time k are denoted as P{(k -f d/k),  <f>i{k +  d/k).
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Suppose robot 1 is given the right-of-way, then a fictitious permanent colliding robot 

is defined with its position Pc(k + d) and angle <j>c(k +  d) as follows [FH88]:

Pc{k + d) =  \J(di2)2 +  {Pi(k +  d /k ) ) 2 -  2di2P\{k +  d /k ) cos(^i(k +  d/k)  -  <f)01)

(6 .1)

M t  +  d) =  arctan A (*  +  rf/fc) sin( M \ + * / * ) ) _ . (6.2)
di2 — P\{k +  d/k)  c o s d/k))

To guarantee collision avoidance in the presence of tracking and prediction errors,

position and angular safety margins are defined by Ps > 0 and <j>s >  0. W ithout loss

of generality and also for simplicity, in the following discussion we assume 0oi =  0

and <f>02 =  7T.

6.3.2 R ules for Collision D etection

There are six different possible configurations for the two robots, and two of 

them — in which collision may occur — are shown in Fig. 6.2. To detect a possible 

collision, the estimated angular margin is defined by

A<̂  — 4>s, if A<̂  >  0
A (j>s =  i <6-3)

A ^ +  <f>s, if A<̂  < 0

where A<j> = (<̂ 02 — <i>2(k + d/k))  — </>c(k +  d).

Referring to Fig. 6.2, we propose the following rules for collision detection:

R 3-1: FO R <f>c(k + d) > 0,

IF A } 3 < 0 A N D  |A ^ | < \4>c{k +  <01 A N D  (P2(k +  d/k)  > Pc{k +  d) -  Pa), 

T H E N  a collision is detected.

R 3—2: FO R <f>c{k +  d) < 0,

IF A 4>s > 0 A N D  A< Ĵ <  |(j>c{k +  d) | A N D  (P2(k +  d/k)  > Pc{k +  d) -  Ps),
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Robot 1 Robot 2

02

Robot 1

(a)

Robot 2

'(b)

Figure 6.2: Collision detection for two cylindrical robots.

T H E N  a collision is detected.

A

Note that condition P2(k + d/k)  < Pc(k + d) — Ps in the above rules of collision 

detection is conservative. In fact, Pc(k + d) — P3 < P2(k + d/k)  < D  may hold 

without causing any collision. Referring to case (a) of Fig. 6.2, D  is computed as:

D  =

*12
sin(^i(fc +  d/k))

sin($i(fc + d/k)  +  /3)
-  Ps, if sin(<£i(fc +  d/k)  +  fi) ^  0

(6.4)

di2 — P i(k + d/k)  — Ps, else
A _

where /? =  |<f>c(k +  d)\ — |A 0S|. The corresponding rules of collision detection then 

become:

R 3-3: FO R <f>c{k +  d) >  0 ,
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IF  A } s <  0 A N D  A } s < |<f>c(k +  d) | A N D  P2{k +  d /k ) >  D ,

T H E N  a collision is detected.

R 3 -4 : F O R  </>c(k + d) < 0 ,

IF  A fa  >  0 A N D  |a<£s| <  \(f>c(k  +  d)| A N D  P2(k + d / k ) > D ,

T H E N  a collision is detected.

6.3 .3  A  C ollision A voidance  A lg o rith m

We want to iteratively modify the reference inputs Yid(k) =  [Pid(k), <j>id(k)]T, 

z =  l , 2, by checking possible collisions in future. Because one of the two robots is 

given the right-of-way, the KBC only needs to modify the other robot’s reference 

input for collision avoidance. The proposed algorithm for coordinating two robots 

to avoid collision is then given below, where the superscript i denotes the iteration 

count.

(1) Using the predictor, compute the predicted positions and angles of the two 

robots, Pi(k  +  d/k),  4>i(k +  d/k),  P2(k  +  d/k)  and j>2(k +  d/k).

(2) Compute the position and angle of the fictitious permanent colliding robot, 

Pc(k +  d) and </>c(k +  d), using Eqs. (6.1) and (6.2).

(3) Set i <— 0 and let P ^ k  +  d/k)  = P2(k +  d/k),  (j)l2(k +  d/k)  = </>2(k +  d/k).

(4) Compute the angular margin, A<̂ s, using Eq. (6.3).

(5) Detect collision using R3-1 and R3-2 (or R3-3 and R3-4). If no collision is

detected, then terminate.

(6 ) Modify the reference input of robot 2 using the KBC, and compute the 

corresponding predicted position and angle of robot 2, P2+1(k  +  d/k)  and

H +1(k + d/k).
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( 7 )  Set i <— i +  1 and repeat steps 4—6.

The remaining problem is then to implement this algorithm in the KBC, which was 

treated in Chapter 5.

6.3 .4  Sim ulation R esu lts

The two cylindrical robots discussed so far are simulated to demonstrate the 

capability of the proposed scheme. The simulation is arranged as shown in Fig. 6.3, 

where both robots move simultaneously. Each simulated robot consists of the first

I

Robot 1 Robot 2

Figure 6.3: Simulation arrangement of two cylindrical robots.

and third link of a Stanford/JPL robotic manipulator [Bej74], while keeping the 

other joint angles at zero. The simplified dynamic model is

= 0.7027 T{1
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Pi =  0.1379 rt3 +  8.7555, * =  1, 2,

where <j>i and Pi are the angle and position of robot i ’s joint 1 and 3, respectively, and

Tih Ti3 are the corresponding joint torque and force. For each robot, a PD controller 

is designed

th =  37.7(<j>id -  <i>i) +  1 4 .7 (^  -  <j>i),

ri3 = l92.2(Pid — Pi) +  74.7(Pt<i — Pi) — 63.5.

The safety margins are set to P3 — 0.2 m  and 4>s — 0.25 rad. The sampling

interval is 0.01 sec.

An NN-based predictor is designed for each robot. All the dynamic parameters 

and controller structure/param eters are unknown to both the NN-based predictor 

and the KBC. The NN-based predictor has six INPUT nodes, eight HIDDEN nodes, 

and six OUTPUT nodes. The inputs of the predictor are

Pid(k), Pid(k -  1), Pid(k -  2), <f>id(k), (j>id(k -  1), <f>id(k -  2), for i = 1,2,

and the outputs of the predictor are

Pi(k + l / k ), Pi(k + 2 /k) ,  Pi(k + 3 /k ), j>i{k + 1/fc), &(fc +  2/* ), }i(k  + 3/fc).

In the KBC, 2-step ahead predictions are used to guide the modification of the 

reference inputs. The 2-step ahead prediction errors of robot 2 are plotted in Fig. 6.4. 

The NN-based predictor converges within 250 sampling intervals, though it may be 

far from being well trained. The results of 1-step and 3-step predictions of robot 2 

as well as robot 1 are similar to the plots in Fig. 6.4.

Under the KBC’s coordination, the actual paths of the two robots are plotted in 

Fig. 6.5. Robot 1 follows its own planned trajectory while robot 2 moves cautiously
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Figure 6.4: Two-step-ahead prediction errors of robot 2.

to avoid collision. In the simulation, only the position reference input of robot 2 is 

modified. Note that since the two robots move simultaneously, robot 2 is kept away 

from the working region overlapping with that of robot 1. Instead of modifying the 

position reference input, the angular reference input of robot 2 can be modified. In 

that case, robot 2 will be delayed and enter the overlapped region following robot

1. Moreover, robot l ’s reference inputs can also be modified if collision cannot be 

avoided by modifying robot 2’s reference inputs alone.

In most industrial settings, the effects of process and measurement noises must be 

addressed, testing not only the noise-rejection ability of each robot’s servo controller, 

but also the capability of the KBC and the NN-based predictor. Fig. 6.6 shows the 

actual paths of the robots under the KBC’s coordination in the presence of process 

noise in both robot control systems. The conditions of this simulation are the same
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as above, except that the distance between the two robots d\2  =  1.3 m  and the safety 

margins Pa =  0.3 m, (f>a — 0.3 rad. Under these conditions, the KBC still worked 

well in avoiding collision between the two robots.

actual path

.4-

robot 2robot 1

- . 2 -

planned path.
actual path

-.9
6 1.2.8-.2 0 2 4

Figure 6.5: Actual paths of the two robots.

6.4 Exam ple 2: Coordination of Two R evolu te R obots

Our second example is to coordinate two revolute robots in a two-dimensional 

workspace, as shown in Fig. 6.7. Similar to the case of two cylindrical robots, the 

translational motion in Z  direction is not constrained. However, in this workspace, 

if Slo C fX is the space in which the angle of link 2 is 0 or 7r for each robot, then 

for each point (x, y) € 0  \  f)0 there are two different link configurations allowing 

the end-effector to reach the goal point. In other words, a 2-link robot is redundant 

in this workspace. Robot 1 is designated as the master and will follow its planned
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Figure 6.6: Actual paths of the two robots in the presence of process noise.

trajectory, while robot 2 is the slave and has to be coordinated for collision avoidance. 

Under assumptions A 1 -  A4 , this redundant case is more difficult to coordinate than 

cylindrical robots, especially when we have to rely solely on mathem atical synthesis.
4

However, even in such a case we can derive a set of rules for collision detection and 

avoidance. We want to keep the set of the rules simple, but there is a tradeoff between 

the simplicity of rules and the conservativeness of collision detection. In what follows, 

we will consider the problem of coordinating two revolute robots with emphasis on 

the development of rules for collision detection and strategies for collision avoidance.

6.4.1 D efin ition  o f C ollisions

Consider two revolute robots working in a two-dimensional workspace, as shown 

in Fig. 6.7. Let qn(k), qi2(k) be the joint angles of robot i at time k, and qn(k + d/k)  

and qi2(k -f d / k ) be their d-step ahead predictions, respectively. (In what follows,
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Figure 6.7: Configuration of two revolute robots in a common workspace.

q n (k+ d /k ) and qi2(k+d/k)  will be represented by qn and &2, respectively, to simplify 

the notation.) Two fictitious permanent colliding robots — corresponding to the two 

possible configurations of robot 1 in Fig. 6.7 — can be defined with positions Pco, Pc\ 

and angles 0C0, <j>cU

( A A .
An sin d>in \

  ’d12 -  cos 0 io /
(6.5)

Pci =  \ / (L i i ) 2 +  (d12)2 -  2 L n  d\2  cos and <f>eX =  arctan (  y 1 1 | , 
v \«12 — cos q i i j

(6 .6)

where Lij is the length of link j  of robot i, dX2 the distance between the bases of two 

robots, and
Pio =  \J (L n ) 2 +  (Li2)2 +  2 L n L {2 cosqi2, 

Ln  sin qix +  L i2 sin(&i +  &2)'
&io =  arcsm , i — 1, 2 , j  — 1, 2 .

i0
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We want to define a permanent colliding robot corresponding to different values

of Pco, Pci and <j>cq, <f>c The position of the permanent colliding robot can be

conservatively selected as

Pc =  min(Pco, Pci), (6.7)

and its angle <j)c will be defined depending on different cases.

6 .4 .2  R u les  fo r C ollision D e tec tio n

There are three robot configurations depending on the angle of a permanent 

colliding robot: (1) <f>co >  0, <f>ci >  0, (2) <f)c0 < 0, <j>ci < 0, and (3) (f>cQ > 0, <j>ci < 0 

or <f>co < 0, <f>ci >  0. For each of these cases, robot 2 can be represented by the 

predicted position P2 and the predicted angle $2, where

P2 =  max(P2o, L 2i), (6.8)

A

and fa  will be computed depending on different cases. For collision detection, the 

angular and length margins are defined by

-<J>S, if A<£ >  0
and APa =  Pc - ( P 2 +  Ps), (6.9)

A<̂  +  <&>, if < 0
A A

where A <f> =  (<̂ 0 2 — <t>2) — (j>c•

Then, a set of rules for collision detection are derived for each case. Fig. 6.8 shows 

the collision detection of Case 1 with the safety margins (f>3 = 0 and Ps =  0. The rules 

for detecting collision between two revolute robots in a two-dimensional workspace 

are summarized below.

C ase 1: B o th  </»c0 >  0, a n d  <f)c 1 >  0
A A

Define <j>c =  max(</>co, <j>c 1) and <̂2 =  max(<^2o» ?2i)> then the rules are
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Figure 6.8: Collision detection for two revolute robots: Case 1.

R 4-1: IF A <f>s <  0 A N D  A <f>s < \(f>c\ A N D  A P3 <  0, 

T H E N  a collision is detected.

R 4-2: IF A<£s <  0 A N D  A 0S > \<j>c\,
A A A A

T H E N  set </>2 =  m in(02o, 921), compute A</> =  {(f>02 — <j>2) — <f)c and 

A ^s as in Eq. (6.9),

IF A (j>s < \<j>c\ A N D  A Ps <  0,

T H E N  a collision is detected.

E N D
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Case 2: B oth  <f>co <  0, and fa\ <  0
A A

Define fa  =  min(<^co, fa i) and fa  =  min(</>20, 921)1 then the rules are

R4-3: IF A  f a  >  0 AND \A fa\ <  \fa\ AND A P3 <  0,

T H E N  a collision is detected.

R4-4: IF A fa  >  0 AND \A fa\ > \ fa\ ,
  A A A A

THEN set f a  = max(<̂ 2oi 921)1 compute A<f> = (^ 0 2  — f a )  — f a  and 

A fa  as in Eq. (6.9),

IF A fa  < \ fa\ A N D  A P S <  0,

T H E N  a collision is detected.

E N D

C ase 3: fa0 > 0, fai < 0 o r  <f>co < 0, fa  1 >  0.
A A

Define <f>c = m ax(|^c0| , \fai\) and fa — m ax(^20, 921), then the rules are

R 4 -5 : IF  A fa  < 0 A N D  \Afa\ < |2 fa\ A N D  A Pa < 0,

T H E N  a collision is detected.

R 4 -6 : IF  A fa  < 0 A N D  |A<^a| > |2 fa\,
A A A A

T H E N  set fa  =  m m (fa0, 921), compute A<f> = (^02 — fa) — fa  and 

A fa  as in Eq. (6.9),

IF A fa  < |2 fa\ A N D  A Ps < 0,

T H E N  a collision is detected.

E N D

Clearly, the rules for collision detection are much more complicated than those for 

two cylindrical robots because of the kinematic redundancy. However, these rules 

can be simplified if the planned trajectories of the two robots are given a priori, as 

discussed in Section 6.4.4.
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6.4 .3  Strategies for C ollision Avoidance

It is assumed that the desired trajectories of both robots are planned while con­

sidering fixed obstacles (not the moving robots) in the workspace. Using a m ulti-step 

predictor and the rules developed above, a possible collision can be detected. Once 

a collision is detected, the planned trajectory of robot 2 will be modified using the 

algorithm in Section 6.3.3 in order to avoid the collision. Though either increasing 

or decreasing the speed of robot 2 may avoid the collision, the reasonable maneuver 

is to slow down robot 2 since the maximum speed and acceleration/deceleration are 

usually bounded. This implies that the reference input be modified in one direction 

(that is, decrease). In order to give robot 2 a sufficient time so that it can maneuver 

to avoid the anticipated collision, the safety margins <f>s and Ps are added to the 

length and angular margins as in Eq. (6.9). Moreover, it is possible to modify the 

planned trajectory of one joint to avoid collision, which will in turn simplify the 

modification process of the reference inputs.

6.4 .4  Sim ulation R esu lts

The robots are arranged as shown in Fig. 6.9, and the dynamic and kinematic 

parameters of the two robots are identical and shown in Table 3.1. It is assumed that 

each robot is equipped with a PD -type servo controller, and the sampling interval 

is 0.01 sec. The planned trajectories are symmetric, and their values at some special 

points are given in Table 6.1, where the subscript d denotes the desired value.

An NN-based predictor is designed for each robot. There are six INPUT nodes 

with inputs

9tld(&)j Q ild ( ,k  l)j  Q t l d ( k  2), q i 2 d ( t y i  Q i2 d ( k  1), (J i2 d (k  2),
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Robot 1 Robot 2

1 .6  m

Figure 6.9: Simulation arrangement of two revolute robots, 

eight HIDDEN nodes and six OUTPUT nodes with outputs,

qn(k + l / k ) ,  qn(k + 2/k),  qn(k + 3/fc), q{2(k + l / k ) ,  qi2(k + 2/k),  qi2{k + S/k),

for robot i, i =  1, 2.

Considering the specific configuration and the planned trajectories of this exam­

ple, the rules for collision detection can be simplified. Since the moving directions of 

both robots are the same in this example, one can always derive a suitable permanent 

colliding robot by choosing

<t>c = max(<£co, (j>d), and Pc — min(Pco, Pci).

The rules for collision detection can then be simplified and are listed below.

A A A A

(1 ) Compute <f>2 =  max(02O» hi ) :  anc  ̂ ^2 =  max(P2o? £ 21)•

A A

(2) Compute angular and length margins A</>s, and A Ps as in Eq. (6.9).
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R o b o t  1 Joint 1 Joint 2

Q\\d <Zll d 9lld Ql2d Ql2 d Ql2d

initial values, t =  t 0 90° 0 0 0° 0 0

middle point, t = t f / 2 0° max max o o 0 0

final values, t  = t j

oO051 0 0 0° 0 0

R o b o t  2 Joint 1 Joint 2

<l2\d <721 d ? 2 1 fi <l22d <722d 9 2 2  d

initial values, t — to 90° 0 0 0° 0 0

middle point, t = t j / 2 00 O
O max max -90° 0 0

final values, t = t f 270° 0 0 0° 0 0

Table 6.1: Trajectory specification of the two revolute robots.

(3) Detect collision using the following rules:

R 4 -7 : IF  <f>c > 0 A N D  <  0 A N D  |A ^ | <  \<f>c\ A N D  A Ps < 0,

T H E N  a collision is detected.

R 4 -8 : IF  <f>e < 0 A N D  A } s > 0 A N D  \a ]>s\ <  \<f>c\ A N D  A Ps <  0,

T H E N  a collision is detected.

The angular and length safety margins are set to <j>s =  0.2 rad. and Ps =  0.05 m, 

and 2-step ahead predictions are used for collision detection. Fig. 6.10 shows the 

actual trajectory of robot 2, showing the slow-down of robot 2 to avoid collision. 

The detailed process of collision detection and avoidance is shown in Fig. 6.11 in 

which the collision region is divided into four sub-regions. Using rule R4-7, in region
A ^ A

1 collision is avoided by keeping A (J>s > 0. In regions 2 -  4, we have A <f>s > |</>c|,
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5000 1000 1500 2000 2500

time (x 0.01 sec.)

Figure 6.10: The actual trajectories of robot 2.

A A  >  0, and A <j>s < 0, respectively. That is, rule R4-8 is never m et, so no collision 

occurs. These results indicate that the robots can be successfully coordinated by the 

KBC to avoid collision.

6.5 Sum m ary
v

A new knowledge-based, hierarchical scheme is proposed to coordinate multiple 

robots in a common workspace for on-line detection and avoidance of collision among 

them. The proposed KBC and NN-based predictor form the high level of this hier­

archy, and the robots to be coordinated form the low level. The KBC foresees the 

effects of each reference input on the low level by using the predictor, and modifies 

the reference input based on the prediction results in order to avoid collision among 

the robots.

The proposed scheme assumed that both path planning and trajectory planning 

did not consider on-line collision detection and avoidance, and adding the KBC did
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1500 2000 250010000 500

time (x 0.01 sec.)
Figure 6.11: Collision detection and avoidance with the KBC.

not impose any constraints on the design of robots’ servo controllers. This may relax 

the usual requirements (for example, the knowledge of exact dynamics) imposed on 

path planning, trajectory planning, and servo controllers design. Other constraints, 

such as joint torque limits and master/slave assignment, can be easily added to the 

knowledge base. Since the internal structure and parameters of the individual robot’s 

control system are not affected, one can coordinate multiple robots — equipped with 

built-in servo controllers — working in a common workspace.

Though both the examples presented in this paper are concerned with two robots, 

it is not difficult to extend the results to the case of more than two robots, because 

different rules of collision detection and avoidance can be added in for different robots’ 

configurations. Once a possible collision is detected, it can be avoided by iteratively 

modifying the reference input of each robot using the KBC. The simple structure



and algorithm, no constraints on the design of individual robot control systems, and 

good simulation results make the proposed scheme attractive for many industrial 

applications.



C H A PT E R  V II

DIRECT CONTROL AND COORDINATION  
USING NEURAL NETWORKS

7.1 Introduction

In the previous chapters, we have developed a knowledge-based coordinator. The 

combination of the techniques of intelligent control and neural networks provides 

such advantages as a hierarchical structure, a simplified knowledge base and infer­

ence process, less a priori knowledge requirements on subsystems, and flexibility of 

adding more production rules. However, the potential capability of neural networks 

in control application does not seem to get a full play because neural networks are 

only used like an observer in the KBC. In this chapter, we will develop an NN-based 

controller to control a class of nonlinear systems and an NN-based coordinator for 

a tightly coupled multiple-system.

Many industrial control and coordination systems have difficulty achieving high 

performance with conventional control designs. For example, the main problems 

in process control are negative effects such as a long system-response delay, the 

dead zone and/or saturation of actuator mechanisms, and the nonlinear response of 

control valves. Process and measurement noises also degrade system performance. 

The dynamic property of a controlled plant may not be very complex, even though its

128
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detailed structure and parameters may be unknown. However, when such a plant is 

put in operation, it will be difficult for the control system to achieve high performance 

due mainly to the negative effects mentioned above.

Contemporary industrial process control systems dominantly rely on PID -type 

controllers, though the hardware to implement control algorithms has been improved 

significantly in recent years. In addition to the difficulty in achieving high control 

quality, the fine tuning of the controller’s parameters is a tedious task, requiring 

experts with knowledge both in control theory and process dynamics. Another ex­

ample is the coordinated control of multiple robots cooperation. Each robot is a 

stand-alone device equipped with commercially-designed servo controllers. When 

more than one robot must cooperate to accomplish a common goal, in addition to 

the good behavior of each individual robot, their effective coordination is crucial 

to achieve the desired level of overall performance. This coordination problem is 

usually organized hierarchically. The low level includes the servo controllers which 

are designed independently of, and separately from, each other. The addition of a 

high-level coordinator should not require alteration of the internal structure and/or 

parameters of the low-level controllers. The main difficulties associated with this 

coordination problem come from nonlinear system dynamics, kinematic redundancy, 

MIMO, inaccurate system parameter values, and so on. To cope with the above 

problems/difficulties, new controllers (coordinators) should be developed. The goal 

of this chapter is to develop such a new controller (coordinator) using neural net­

works. Particularly, we shall focus on

1. industrial process control in the presence of the nonlinearity of dead zone and 

saturation, and the negative effects of long response delays and process noises,

2. the coordinated control of two robots holding an object, in which each robot
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is equipped with commercially-designed servo controllers.

A controller is usually connected serially to the controlled plant under consider­

ation. For a multilayer perceptron, the weights of the network need to be updated 

using the network’s output error. For an NN-based controller, the NN’s output is 

the control command of the system. However, when the NN is serially connected to 

a controlled plant, the network’s output error is unknown, since the desired control 

action is unknown. This implies that the BP algorithm for training an NN cannot be 

applied to control problems directly. Therefore, one of the key problems in designing 

a direct NN-based controller is to develop an efficient training algorithm.

We note that most of the work mentioned in the survey (Section 2.3 of Chapter 

2) is in the form of indirect adaptive control or has complex training methods and 

system structures, and none of them were developed to coordinate multiple systems. 

This fact was summarized in [NP90]:

At present, methods for direct adjusting the control parameters based on 

the output error (between the plant and the reference model output) are 

not available. This is because the unknown nonlinear plant lies between 

the controller and the output error.

In contrast to the indirect adaptive control, in this chapter we will develop a direct 

adaptive controller and a coordinator. A simple algorithm is proposed based on the 

BP for a class of nonlinear systems typified by industrial process control applications 

and for a multiple-robot coordination problem. The proposed NN-based controller 

(coordinator) is trained by using the system’s output errors directly with a little a 

priori knowledge of the controlled plant.

In Section 7.2, the control problem using NNs is stated formally, and the ba­



sic structure of the proposed NN-based controller (coordinator) is analyzed. The 

training algorithm is developed in Section 7.3, and the corresponding theorems are 

proved. Section 7.4 presents a procedure for designing the NN-based controller and 

addresses problem related to its implementation. Section 7.5 summarizes the simu­

lation results of a tem perature control system in a thermal power plant to test the 

proposed NN-based controller. This is a typical system with a long response delay, 

nonlinearity of dead zone and saturation, and process noise in process control. The 

performance of the NN-based controller is also compared with a PI controller. In 

Section 7.6, the coordinated control of two robots holding an object is presented, in­

cluding the dynamics of the coordinated systems, specification of the desired forces, 

force error analysis, and the system structure with an NN-based coordinator. The 

proposed NN-based coordinator is evaluated for two 2-link robots holding an object 

via simulation, and the results are presented in Section 7.7. Section 7.8 is a summary 

of the chapter.

7.2 Problem  Statem ent and the N N -b ased  Controller

A controlled plant can be viewed as a mapping from the control input to the 

system output:

x  =  / ( * ,  u,  i), y  = g (x ,  u ,  t),

where x  € R m, y  € R re, and u  € R ^2 are system state, output and input, 

respectively. The controller of this plant, if exists, can be represented as a mapping 

from the system feedback and/or feedforward to control commands:

«  =  c(y,  y d, t), (7.1)

where y d is the desired system output. As is usually the case, only the system output 

is assumed to be measured.
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e(t) NN u(t) Controlled
'Controller plant

Figure 7.1: A control system with an NN-based controller.

We want to design an NN-based controller which will replace a conventional 

controller. In other words, the NN-based controller is cascaded with the controlled 

plant as shown in Fig. 7.1 and trained to learn the mapping in Eq. (7.1). The 

desired control input Ud(t), is required to produce the desired output 2/^(2). The 

system-output error and the control-input error are then defined, respectively, by

cv(*) =  2ld(t) -  y ( t ), and eu(t) =  Ud(t) — u(t).

The control-input error eu(t), is also called the network-output error, since u(t) is 

the output of the NN-based controller. An NN is usually trained by minimizing the 

network-output error eu(t). However, if the NN controller is cascaded in series with 

the controlled plant, then eu{t) is not known, since the desired control input Ud(t) 

is unknown. So, the immediate problem in designing such an NN-based controller 

is how to train the NN.

As we have seen from the survey in Chapter 2, one of the most popular structures 

of neural networks is multilayer perceptron with BP algorithm. The BP algorithm is 

based on the gradient algorithm to minimize the network-output error and is derived 

from the special structure of the networks. In what follows, the BP algorithm for a 

three-layer perceptron is listed as a reference to see what is the problem using it as a 

controller/coordinator. Referring to Fig. 7.2, let Oij and 02fc be the thresholds at the 

HIDDEN and the OUTPUT layer, respectively, where 1 <  j  < Ni  and 1 <  k < N 2.
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2k

k = l

ljk

j = l

W..

1=1 ,

Figure 7.2: A multilayer perceptron used as an NN-based controller.

Then, the computation of the NN’s output and updating of the NN’s weights are 

summarized in the following five steps.

(1). Compute the output of the HIDDEN layer: X \ j

1 N
X xj(t) = — ---------------  T -r , where Oxj =  Wy X {{t), j  = 1, 2, • • •, N x.

1 +  exp (—C/ij -  Vij) J=1

(2). Compute the output of the OUTPUT layer: X 2k

i Nx
X 2k(t) =  —  J—  j - r ,  where 0 2k = 2  W ljk X xj(t), k =  1, 2, • • •, N 2.

1 +  exp { - (J2k -  V2k) fr{

(3). Update the weights from the HIDDEN to the OUTPUT layer: W Xjk

W Xjk(t +  A t) =  Wijk(t) +  771 6 xk X \ j { t ), (7-2)

where Slk = -  X M(tj) X u ( t )  (1 -  X u ( t ) ) , (7.3)

and X ^  is the desired value of X 2k.

(4). Update the weights from the INPUT to the HIDDEN layer: Wij

Wij(t + A t)  =  Wij(t) +  7] 8jXi(t),
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' n 2
£  Sik w ljk(t +  At)
k= 1

X y(f) (1 -* „ • ( * ) ) .where Sj =

(5). Update the thresholds: $2k and 9\j.

®2k(t + At)  = 02k(t) +  Tjie Sik, 01 j( t  +  A t)  =  0ij(t) +  TJg Sj, (7-4)

where 77, t / i ,  T)e, and rjig >  0 are the gain factors.

In any control system design, it is desired to specify the system performance 

in terms of system-output errors, ey{t) =  yg{t) — y(t) ,  rather than the unknown 

network-output error eu(t). To design such a controller using NNs, we adopt the 

basic principle of a multilayer perceptron with BP because of its ability of universal 

approximation and its convergent property based on the gradient algorithm [WM89]. 

The major obstacle to design such an NN-based controller is to train the NN us­

ing system-output errors, ey(t), rather than the network-output errors eu(t). This 

problem is solved in the next section.

7.3 Training an N N -b ased  Controller w ith  System -O utput 
Errors

To derive the BP algorithm, the cost function of the network is defined as

1 JV2
= - y :  M t ) f ,

L k=i
where euk(t) =  ukd(t) — uk(t) is the network-output error at the k-th node of the 

OUTPUT layer. As mentioned earlier, Eu(t) is not available since ukd(t) is unknown 

for all k. Let the l-th component of the system -output error be defined by

= Vid(t) ~ yi(t), I = 1> 2, • • •, n.

Then, the cost function in terms of the system -output error is defined as 

E vi f )  =  l i t M * ) ) 2 =  l f 2 ( y u { t ) - y i ( t ) ) 2
z /=i z i=i
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=  I I I  (G<(t«d) -  G ,(« ) )2 , (7.5)
Z l-l

where G /(it) is the /-th component of the dynamic system y(t )  =  G(u(t)) ,  y ( t ) =  

[g/i(i), •••,  yn(t)]T, and u ( t ) =  [«i(tf), •••,  UN2(t)]T. Eq. (7.5) is computable from 

the measurement of the system output. In other words, we know a function of the 

network-output error, though the detailed structure and parameters of the mapping 

G(-) may not be known. We want to train the NN by minimizing the cost function 

Eq. (7.5).

Using the gradient algorithm, the weights from the HIDDEN to the OUTPUT 

layer are modified by

W ljk(t + A t)  = W ljk(t) +  A W ljk, (7.6)

and setting A Wljk oc ~  (7>7)

Noting that uk(t) =  X 2k(t) in the NN-based controller1, we get

r - t  ( » « - » ( « ) )  (T.8)

Since =  X 2k(t) (1 -  X 2k(t)) and Eq. (7.8) becomes

dE,( t)  = _  j ,  { M t )  _  yi(t)) m )  X a { t )  (1 _  X2t(t)) X i j ( t y  (7_9)
d W l A t )  S  '  '  '  '  "  duk(t)

Substituting Eq. (7.9) into Eq. (7.7), one can get

A W ^ (i)  =  v’i Xv (t), (7.10)

where 8 ylk = ' p  (yid{t) -  yi(t)) X 2k(t) (1 -  X 2k(t) ) , (7.11)

1In fact, X 2k(t)  is the scaled value of u k(t). At this stage, it is assumed that the value of uk(t)  
is within the range of (0, 1). The scaling problem will be discussed later.
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A / i \

r}\ > 0 is a gain factor. The only unknown in Eq. (7.11) is —— r-r, the (/, fc)-th
OUk(t)

component of the Jacobian m atrix of the controlled plant.

Recall that the network-output error at the k-th node of the OUTPUT layer is 

defined by

e„fc(<) =  ukd(t) -  uk(t). (7.12)

Referring to Eq. (7.11), the component of system -output error contributed by the 

fc-th control input is defined by

=  YZ ( s r f )  ~  y ^ ) )  (7-13)

To apply the gradient algorithm, we have the following theorem.

T h eo re m  7.1: Suppose the system response delay corresponding to the k-th

control input is do. To train the NN using the system -output error and ensure the

convergence of the training algorithm, the necessary and sufficient condition is

sign (esk(t)) = sign (euk(t -  d0 )) . (7-14)

Proof: In the gradient algorithm, the solution converges to a minimum of the cost 

function if and only if the search is made along the negative direction of the gradient 

of the cost function. BP is based on the gradient algorithm and listed in Eqs. (7.2) 

to (7.4). Because ukd(t) — uk{t) =  X ^ t )  — X 2k(t), Eq. (7.3) becomes

Sik = euk(t) X 2k(t) (1 -  X 2fc(<)). (7.15)

Substituting Eq. (7.13) into Eq. (7.11), we get

8 \k =  e*(f)  X 2k(t) (1 -  X 2k(t) ) . (7.16)

Because both Eqs. (7.15) and (7.16) are derived by applying the gradient algorithm, 

to ensure the convergence of the training algorithm given in Eqs. (7.6) and (7.10),
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the necessary and sufficient condition is Eq. (7.14), when the system response delay 

is accounted for. □
dyi{t)The accurate value of 

adjusted by setting ys =  r}\

duk(t) 
dyi{t)

is not important, because the step size can be

dyi(t) < oo, V t._ . . .  Certainly, this requires _ . .
duk(t) M duk(t)

Therefore, if the sign of ——V— at each instant is known, then we get a simple
ouk(t)

algorithm to train the NN by using the system output error instead of the network

output error. However, for general nonlinear systems, it is not easy to determine the 
dyi(t)

sign of at each instant. Hence, in what follows, we shall develop a training

dyi(t)
duk(t)

algorithm for a class of systems with
duk(t)

< 00, V t, and the following properties.

Specially, in the next section, an NN-based controller is designed for a class of SISO 

systems, and the case of MIMO system is discussed in Sections 7.6 and 7.7.

7.4 D esign of the N N —based Controller

For a SISO system, the training algorithm presented in the previous section can 

be simplified by using the definition of system direction.

D efin ition  1: If the system output monotonically increases (decreases) as the 

control input of a controlled plant increases, then the system is called positive- 

responded {negative-responded). Both positive-responded and negative-responded 

systems are called monotone-responded.

D efin ition  2: For a SISO system y(t) — G(u(t)), if the system is positive- 

responded (negative-responded), then the system direction is defined by D{G) =  1 

(D(G) =  -1 ) .

Definition 1 characterizes a class of systems. For example, a linear system is 

cascaded with an element of pure response delay, dead zone and/or saturation. For­

tunately, there are many industrial process control systems that possess the property
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of monotone-response. To train an NN-based controller for such a class of systems, 

we have the following theorem.

T h eo re m  7.2: For a SISO monotone-responded system, in order to train the 

NN-based controller in Fig. 7.2 using system -output error, the weights on the arcs 

from the HIDDEN to the OUTPUT layer are updated by

W u i (t + A t)  =  +  xv(t), (7.17)

where =  (Vi(t) -  y ( t ) )  D ( G )  X n (t)  (1 -  X n ( t ) ) .

Proof: For a SISO system, Eqs. (7.12) and (7.13) are simplified to eu(t) = 

Ud(t) — u(t) and es(t) — (yd{t) — y(t)) . From Eq. (7.14), we get the condition

of convergence: sign (es(t)) = sign(eu(t — do)). If the system response delay is d, 

then for a positive-responded system

sign (ud(t -  d0) -  u(t -  d0)) = sign (yd(t) -  y ( t ) ) . (7-18)

Similarly, for a negative-responded system we have

sign (ud{t -  d0) -  u(t -  d0)) = - s i g n  (yd{t) -  y ( t ) ) . (7.19)

From Eqs. (7.18) and (7.19), we conclude that the condition for convergence is

sign (ud(t -  d0) -  u(t -  d0)) =  sign (yd(t) -  y{t)) D(G). (7.20)

Eq. (7.20) then implies tha t the corresponding training algorithm is based on Eq.

(7.17). □

Figs. 7.1 and 7.2 show the basic structures of the system and the NN-based 

controller, respectively. For a SISO system, there is one node at the OUTPUT layer, 

that is, N% =  1. The choice of the NN’s inputs should reflect the desired and actual
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status of the controlled system. Therefore, the inputs of the NN-based controller are 

usually the system’s desired and actual outputs, and tracking errors:

yd(t) , yd(t -  At) ,  • • •, yd(t -  mi A t) ,  y(t), y(t  -  A i), • • •, y(t -  m2 At) ,

Gy(t) , €y(t At) ,  • • • , Gy{t 7713 At) ,

where m \,  m 2 and m3 > 0 are integer constants, and ey(t) =  yd(t) — y(t). The

number of the HIDDEN nodes depends on the controlled plant under consideration.

However, selection of a suitable number may require extensive experiments.

Based on Theorem 7.2, the formulas for updating the weights from the INPUT 

to the HIDDEN layer and the thresholds are derived using the same procedure given 

in Section 7.3. The computation of the NN-based controller for a SISO system is 

then summarized as follows.

A. Compute the output of the HIDDEN layer: X\j( t).

where Ou  =  £  w iS x ,  (t), j  =  1, 2, • • •, jv„
1 +  exp ( Uij uij) t-=i

B. Compute the output of OUTPUT layer: X 21 (t).

1 Ni
X 2i (t) = —  j —zr j p r ,  where 0 2X =  2  w *i

1 +  exp ( - O 21 -  #21)

C. Update the weights from HIDDEN to OUTPUT layer: W\j\{t).

Wxsi(t +  At )  =  WxjxW +  r i lSixXxj i t ) ,

where 8 ^  =  (yd(t) -  y(t)) D(G) X 2i{t) ( 1 - X 2i(<)).

D. Update the weights from INPUT to HIDDEN layer: Wij(t).

Wij(t + A t)  =  Wij(t) +  yy 8] Xi(t),  

where 8] =  8 yu  Wx,i X ^ t )  (1 -  * „ (* ))
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where rj\ and rf* > 0 are the gain factors.

E. Update the thresholds: 021 and 6 \ j .

Q21 (t +  A i) =  02i(t)  +  Vie 1̂1 > ^ii(* +  A<) =  0 \j{t) +  rje &j>

where rjie and Ve >  ^ are Sa n̂ factors of the thresholds at the OUTPUT and the 

HIDDEN layer, respectively.

Another problem in designing such an NN-based controller is the choice of scaling 

factors. The sigmoid function in NN computation forces the NN outputs to be 

within the range of (0, 1), although the control input u(t), is limited by the range 

of actuators, (Umin, Umax)- Therefore, the NN outputs should coincide with, or be a 

little narrower than, the range of the actuator’s limits. The output of the NN-based 

controller is then computed by

u ( t )  =  -^21 (*0 ( U m a x  Um,'n ) H“ U m in .

Generally, an NN works in the mode of training — operation. In other words, 

an NN is put in operation only after it is “well-trained.” By “well-trained,” we 

mean that the weights of the NN need not be modified any more. However, for a 

time-varying system, it is meaningless to say that an NN is “well-trained”, since the 

system always changes with time. Thus, not updating the weights for a time-varying 

system may result in the system going out of control. It is therefore necessary to 

always update the weights of the NN-based controller. In other words, the weights 

of the NN-based controller should be updated but not in the mode of training — 

operation, though the updating may not be done during every sampling interval.
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7.5 Sim ulation R esults o f a Tem perature Control System

Many industrial process control systems can be characterized by a linear system 

cascaded with a nonlinear element as a result of dead zone and actuator limits, and/or 

a pure time delay caused by transportation delay and system response delay. To test 

the capability of the proposed NN-based controller, we conducted simulations while 

emphasizing the ability to overcome the negative effects of dead zone, saturation, long 

response delay, and process noise. The simulated system is a simplified tem perature 

control system of a once-through boiler in a thermal power plant. The input is the 

variation of feedwater flow rate. The output is the variation of the tem perature 

at the middle point where water becomes steam. The system is represented by an 

ARMAX model:

A (z-1) y(k) = B (z~1) u(k — d0) + C (z-1) £(k) (7.21)

where A ^ " 1) =  1 -  0.45181 z~x -  0.47546 *~2,

=  -0.04560 z - 1 -  0.00404 2-2 ,

C ( z - 1) =  1 -  0.35740 2" 1 -  0.03392 *"2,

do =  18 sampling intervals.

Here the sampling interval is chosen to be 8 seconds, y(k ) and u(k)  are the system 

output and control input at a discrete time k , respectively, and £(&) is an uncorre­

lated random sequence with zero mean and variance R  that represents the process 

noise. Note that this model is for simulation only. The NN-based controller has no 

knowledge about this system except its response direction.

A nonlinear element of dead zone and saturation is cascaded with the system Eq.
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(7.21) to model an actuator, which is described by

Umin if |w(<)| >  dead-zone and Umin >  u(t) 

0, if |u(2)| < dead-zone
(t) — (7.22)

u(t), if |u(t)| >  dead-zone and Umin <  u(t) < Umax

Umax, if |«C0l >  dead-zone and u(t) >  Umax •

The dead zone and saturation are treated as unknown properties of the controlled 

plant. We want the NN-based controller to overcome their negative effects by NN’s 

learning ability. Actually, since the system response direction will not be changed 

by adding dead zone and saturation, the NN-based controller should work well. 

Moreover, there is no special consideration for process noise in the design of NN- 

based controller, like other deterministic controller designs, though controllers have 

to be tested for the ability of noise rejection.

To reflect the status of the controlled system, the inputs of the NN-based con­

troller are chosen as the desired system outputs and the output errors:

Vd{k), yd(k -  1), yd{k -  2),

Vd{k) -  y{k), yd(k -  1) -  y(k  -  1), yd{k -  2) -  y(k -  2).

That is, there are six inputs at the INPUT layer of the NN-controller (N  = 6). Note

that the middle-point tem perature system is in fact a high order system, though

it can be approximately modeled by a low order linear system with a long pure 

time delay. Certainly, the NN-based controller is not used to model this high order 

controlled plant but to control it. So, it may be not necessary to use the same time 

delay of the controlled plant (18 sampling intervals in Eq. (7.21)) as its inputs. We 

also tested the NN-based controller with more delayed inputs. The results are not 

superior to those presented below. The number of the HIDDEN nodes is selected to 

be three (JVi =  3). The overall system structure is sketched in Fig. 7.3.
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Figure 7.3: Structure of an NN-based control system.

The main simulation results are summarized below.

1. When dead-zone =  5.0, Umax =  10.0, Umin =  —10.0, and R  =  0.0 (no process 

noise), the result is plotted in Fig. 7.4. The initial weights of the NN are 

selected randomly, and the NN weights converge within 150 sampling intervals.

2. When dead-zone = 7.0, Umax =  10.0, Umin =  —10.0, and R  = 0.0, Figs. 7.5 and 

7.6 present the system response and the corresponding control input, respec­

tively. Obviously, a large dead zone affects the system performance severely, 

but the NN-based controller still works well.

3. When dead-zone = 5.0, Umax = 10.0, Umin =  —10.0, and R  =  0.5 to test the 

ability of noise rejection, the desired and actual system output responses are 

plotted in Fig. 7.7. The corresponding control input and the process noise are 

shown in Fig. 7.8, where n{k) =  £(k) — 0.35740 £(k — 1) — 0.03392 £(k — 2).
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Figure 7.4: System output response with dead-zone = 5.0.
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Figure 7.5: System output response with dead-zone =  7.0.
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Figure 7.6: System control input with deadjzone =  7.0.
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Figure 7.7: System output response with process noise R — 0.5.
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To compare the performance of the proposed NN-based controller with that of a 

PID -type controller, we have designed a PI controller for the m iddle-point temper­

ature control system. The PI controller is

u(k) =  - K p (yd(k) -  y ( k ) ) -  K jJ 2 (y d ( i )  ~  y(i))
i=o

with K v =  2.2 and K i  = 0.3. When deadjzone =  5.0, Umax =  10.0, Umin =  —10.0 

and no process noise (R  = 0.0), the system response controlled by the PI controller 

is plotted in Fig. 7.9. According to this figure, one should decrease K p in order to 

reduce the oscillation. However, due to the effects of dead zone, one cannot make 

any notable improvement in the system performance. On the other hand, due to the 

effects of long time delay, increasing K p will lead to an unstable response. When 

dead-zone = 5.0, Umax = 10.0, Umin =  -10 .0  and R  =  0.5, the result of the PI 

controller is plotted in Fig. 7.10. Comparing Fig. 7.9 with Fig. 7.4, and Fig. 7.10 

with Fig. 7.7, we conclude that the performance of the NN-based controller is much
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better than that of the PI controller. Actually, a PI controller cannot perform well 

for a system with a long time delay, dead zone, saturation, and process noise.

From the above simulation results, we conclude that the proposed NN-based con­

troller performs well for this class of nonlinear systems. In the NN-based controller, 

the system -output error is computed from the measurements. As a priori knowledge, 

the system direction is easily obtained either from a step response experiment or from 

the physical property of a controlled plant. To test the need of Eq. (7.17), —D(G ) 

is used in the training algorithm, which instantly results in the NN’s divergence.

The remaining problem is how to choose the number of the HIDDEN nodes. 

There is no systematic way to choose the number of the nodes at the HIDDEN 

layer(s) to approximate a given mapping. Therefore, selection of hidden nodes may 

depend on experiments. Fig. 7.11 shows the result using Ni  =  6, dead-zone =  5.0, 

Umax =  10.0, Umin =  —10.0 and R  =  0.0. Comparing Fig. 7.11 with Fig. 7.4, one 

can see that adding more HIDDEN nodes does not improve the system performance. 

But adding more nodes will improve the system’s reliability.
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7.6 D esign o f the N N —based Coordinator for Two 2—Link 
R obots

To test the proposed algorithm for multiple-system coordination, as an exam­

ple, an NN-based coordinator (NNBC) is designed to coordinate two 2-link robots 

holding an object in this section. The basic configuration of this example is given 

in Fig. 5.5. The purpose is to investigate the suitability of the proposed algorithm. 

As we stated before, with a NNBC, the system forms a hierarchical structure, the 

high level is the NNBC, and the low-level subsystems include two robots each with 

a separately designed servo controllers.

D ynam ics o f th e  C oordinated System s and P rob lem  S ta tem en t

The detailed dynamics of the coordinated systems and the problem statement 

are presented in Section 5.5, and only the key points are summarized below.

Suppose the two robots hold the object firmly, then the motion of the object is
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described by

m P  +  mg = f , f  =  f r + f 2, (7.23)

where m  is the mass of the object, P  the position of the object in Cartesian space,
rjn

g  the gravitational acceleration, / ,  =  [/,-*, fiy] the external force exerted on the 

object by robot i.

Suppose two robots have an identical mechanical configuration, then the force- 

constrained dynamic equation of robot i in joint space is given by

+  c (g,-, q{) q{ +  G (q{) + J J  / t =  r;, i = 1, 2, (7.24)

T T • •where = [qn, qn] and =  [r2l, r;2] are the vectors of the joint position and

torque of robot i , respectively. J,- is the Jacobian matrix, and the other terms are

explained in Eq. 3.19 and the appendix.

In the proposed NNBC, the controlled joint torque consists of two parts

T{ — Tip -|- Tic

Tic is contributed by the NNBC, and Tip is given by a position controller

n p = H  (qid -  KjDi(q{ -  qid) -  K pi(g,- -  qid)) +  h , (7.25)

A A

where H  and h are the estimated values of H  and C +  G , qid is the desired value 

of qr,-, Kjrjj and K pi are the controllers’ gains.

As stated in Section 5.5, we want to coordinate the two robots moving the object 

while minimizing the internal force. In this section, we will design an NNBC to 

achieve this goal.

S pecifica tion  o f th e  D esired  Forces and  Force E rro r  A nalysis

Let the desired force sharing of the two robots is

fid = *  fd + fb, fid = (Je -  *)fd ~ fb , (7.26)
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where or is a selection m atrix, <r =  diag [<J\, <r2] , 0 <  crj <  1, j  =  1, 2; f b a bias 

force. Then the desired external and internal forces are

f d  — f l d + f 2 d  and f l d =  _  ^2d) =  /fe +  -(2<r — 16) /d -

Therefore, the desired external force f d, the selection m atrix cr and the desired bias 

force f b should be specified to compute the desired force exerted by each robot: f ld 

and f 2d.

Suppose the measured forces are f 1 and f 2, then the actual external and internal 

forces exerted on the object are

/  =  f i  +  / 2 and f i  =  ^ ( / i  -  / 2).

Then, the force errors are

f l e  =  f l d  -  f i  =  f d  +  f b  -  /  +  / 2» and f 2e =  - ( < r  f d  +  f b ~ f d  +  f t ) - '

If the external force achieves its desired value, then we have f le +  f 2e =  0. So, 

these force errors do not contribute to moving the object, that is, they are caused 

by internal force errors. This implies that if we design a controller based on f le 

to regulate the internal force and suppose the controller is a linear controller with 

control output then the control action acted on robot 2 should be f 2 =  —f x 

[Pit88]. Note that the force on end-effector and joint torque are related by

=  J f

Therefore, when the control action is transformed into the joint space, we usually 

have t  1 ^  — t 2 due to different Jacobian matrices.

Referring to Eqs. (7.24) and (7.25), if H  =  H  and h =  h, then the closed-loop 

system can be written as

f i  =  (J f ) -1 H  {{Qid -  Qi) +  K Di { q id -  q {) +  K vi( q id -  q {))  +  ( J f ) _1 r ic.
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Figure 7.12: Coordinating two robots holding an object by an NNBC.

Since the desired external force is specified according to the desired trajectory, the 

desired external force can be achieved by a well-designed position controller. We can 

therefore design a coordinator so as to regulate the internal force by changing r , c. 

B asic  S tru c tu re  o f th e  S y s tem  w ith  an  N N -b a se d  C o o rd in a to r

The basic structure of a two-robot system equipped with an NNBC is shown in

Fig. 7.12. From the coordinator’s point of view, the controlled plant is a mapping

IT
to the forces exerted on the object F . This 

is an MIMO mapping F  =  G ( r c) with time-varying property. We want to design 

an NNBC to directly control such a system using the theorems developed in Sections 

3 and 4. For such an MIMO system, we define the direction m atrix as follows. 

D efin ition  3: For an MIMO system F  =  G ( r c), the direction m atrix of the
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system is defined by

D(G) =  sign ,

where the sign of a m atrix M  is defined as the m atrix formed by the sign of the 

corresponding elements of M .

When conditions such as the range of joint motion are posed on the system, it is 

possible to determine this m atrix as shown in the example in the next section. From 

the force analysis, the following variables may be used as the inputs of the NNBC:

the measured forces exerted on the object, F ,  its desired value, Fd, the measured

IT
, and the actual torque exerted on 

each joint of the two robots, r .  Obviously, all the inputs and outputs of this NNBC 

are vectors. For such a vector-structured multilayer perceptron, a vector form of the 

BP algorithm has been derived in Chapter 4. For the purpose of NNBC and counted 

in the direction m atrix of the coordinated system, the main steps of the algorithm 

are summarized below.

All inputs and outputs of this NN are vectors, X i  G R n, X xj G R m, and X S1 G 

R p are the output of INPUT, HIDDEN and OUTPUT layer, respectively, for 1 < 

i < N,  1 <  j  < Ni.  The computation includes five steps

A . C o m p u te  th e  o u tp u t  o f th e  H ID D E N  layer X 1j\

1
1 +  exp ( -o i j i  -  0 iji) ’ 1 +  exp -  0 ijm) ?

N

° U  =  E w « x i. J = l .  2, •••,  JV„
{=1

where W ij G R mX” is the weighting matrix from node i of the INPUT layer to node 

j  of the HIDDEN layer, f j  : R m —► R m is defined as a sigmoid function of each 

component of a vector, and 0 i j  =  [0iji, • • •» 0 ijm] is the threshold vector at node
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j  of the HIDDEN layer.

B . C om pute th e  output o f  the O U T P U T  layer X a

X al — [̂ 2115 1 3?21p]

= /x(Oai) = 1 +  exp ( — 0211 — 6 2 1 1 ) ’ ’ 1 +  exp (—o2ip — #2ip).
Ni

oai = £  Wiii x lit
3=1

where W iji € R pXm is the weighting matrix from node j  of the HIDDEN layer to 

the OUTPUT layer, f x : R p —> R p, and 0 2i =  [#211, 02ip]T is the threshold 

vector at the OUTPUT layer.

C. U p date the weights from the H ID D E N  to  th e  O U T P U T  layer W ijit

W iji(t  +  At)  =  W y i( t)  +  A W iji, where A W y i =  771 [tfn T i ] T , 

r  i  T
611 =  [ x ^  -  X 31j D(G) diag [a?2n ( l  -  x 2\x), • ■ •, z 21p(l -  x2ip)] ,

and T i  i s a p x m  x p  tensor, with the Uth matrix as

T

0

Tu = (*«■)

0

at the /-th row, / =  1, 2,

D . U p date the weights from  the IN P U T  to  th e  H ID D E N  layer W l<7:

W {j(t +  At)  =  W ij{t) +  A W y , where A W ;i =  g [Sj T ]T ,

Sj =  Sn 'Wiji( t  T  At)  diag [aJiji(l %iji)i 3?ij2(l 3; 1̂ 2), • • •, Xijm) ] ,
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and T i s a m x n x m  tensor, with the /- th  matrix as

T
0

T, = (X iY

o

at the /-th row, / =  1, 2, • • •, m.

E. U p date th e  thresholds at the O U T P U T  and the H ID D E N  layer 0 2i, 

and 0 ij:

0 2 i(t +  At) =  0 2 i(t) +  A021, where (A 0 2i)T =  Vie 6 u

0 i j(t  + At )  = 0 i j(t) + A 0 ij, where (A 0 ij)T =  ijg 6 j

Vii Vi Vie and ve > 0 are the gain factors.

The problems of input-output scaling has been discussed in Section 7.4. In what 

follows, the design procedures are detailed with an example and tested via simulation.

7.7 Sim ulation R esults o f Two 2-Link R obots Holding an 
Object

referring to Fig. 5.5, the Cartesian frame is fixed at the base of robot 1, and the 

desired trajectories of the object and the robots’ end-effectors are specified relative to 

this frame. The task is to move the object forward and backward in X  direction while 

keeping the height in Y  direction constant. The desired trajectory which is selected 

by a high-level planner is to move the object in X  direction from an initial position 

to a final position (for one meter distance) in five seconds, and then move back to 

the initial position. The desired velocity and acceleration of the object are zero at 

both the initial and the final positions. The kinematic and dynamic parameters of
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the robots are presented in Table 3.1. The sampling interval is 10 ms.  The selection 

m atrix is set to tr =  diag [0.5, 0.5] and the bias force f b =  0. Each robot is position 

controlled with the controller in Eq. (7.25). Note that the NNBC has no knowledge 

about the dynamics of the coordinated robots except the direction m atrix which is 

derived as follows.

Let F  = [fix-, f iy, f 2x, f 2y]T be the forces exerted on the object by each robot in 

X  and Y  directions, and r c =  [rnc, r i2c, T2ic, T22c] be the torque exerted on each 

joint of the two robots by the NNBC. Then the direction matrix is defined by

D  =  sign
' d F '
d r c

sign

d f i x  d f l x  d f i x  d f u

07-llc 07-120 07-210 07"22c

dfly
07-llc

0 / l  y 
07-120

dfly
07-210

dfly
07"22c

d f 2x
07-llc

d f 2x
07-120

d f 2x
07-210

d f 2x
07-220

0/2j/ 0/2y 0/27/ 0/2y
d T U c  0712c 0721c 07-220

From the configuration shown in Fig. 5.5, we can assume that the limitation of the

joint angles are

0° <  gn < 180°, -180° < gia < 0°,

0° <  gai <  ISO0, 0° < 522 < 180°.

Then the direction matrix can be determined as

D  =  sign ©  =

- 1  - 1  + 1  + 1

+ 1  + 1  + 1  + 1

- 1  - 1  + 1  + 1

+1 +1 +1 +1
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This will be used in the computation of the NNBC. For this example, a three-layer

perceptron is used. There are four INPUT nodes with inputs

T T
Q — fell? Qll, 921, 922] , F  =  [fix, f ly, f i x , fly\ ,

T TFd  =  [flxd, flyd, flxd, flyd] T  =  b ll, Til, T21, T22] ,

which reflect the desired and actual status of the coordinated system. The OUTPUT 

layer has one node with output

To evaluated the performance of the proposed scheme, the NNBC is tested via sim­

ulation and the results are summarized below.

Suppose the mass of the object is 5 kg, without the NNBC, the internal force 

error in X  direction is plotted in Fig. 7.13. By adding the NNBC with 15 hidden 

nodes, the the performance is greatly improved as shown in Fig. 7.14. The RMS 

error of the internal force in X  direction is reduced by 94.6%. In Y  direction, the 

RMS internal force error is reduced by 46.2%, though the internal force error is 

small enough due to no motion in this direction. Moreover, both the external force 

error and the position tracking error are kept almost the same as those without the 

coordinator. The detailed results are summarized in Table 7.1.

If the mass of the object is increased to 10%, the NNBC also works well with 20 

hidden nodes. The internal force error in X  direction is reduced by 89.8%, as shown 

in Figs. 7.15 and 7.16, and Table 7.2.

The remaining problems include:

•  Choice of the number of HIDDEN-layer nodes. There is no systematic way 

to choose the number of the nodes at the HIDDEN layer(s) to approximate a 

given mapping. As shown in Section 7.5, adding more HIDDEN-layer nodes 

may not always improve the system performance.
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Sample intervals RMS errors of internal force (N)

without the NNBC with the NNBC

0 — 1000 at X  direction 9.58411 2.01236

at Y  direction 0.93142 0.51720

1001 — 2000 at X  direction 9.57103 0.51404

at Y  direction 0.92337 0.49638

2001 — 3000 at X  direction 9.57048 0.51248

at Y  direction 0.92337 0.49629

Sample intervals RMS errors of external force (N)

without the NNBC with the NNBC

0 — 1000 at X  direction 0.72164 0.81624

at Y  direction 2.54845 3.53886

1001 — 2000 at X  direction 0.34370 0.36121

at Y  direction 0.01436 0.01104

2001 — 3000 at X  direction 0.34370 0.36120

at Y  direction 0.01436 0.01105

Sample intervals RMS tracking errors of object’s position (m)

without the NNBC with the NNBC

0 — 1000 at X  direction 0.03694 0.03772

at Y  direction 0.05733 0.00692

1001 — 2000 at X  direction 0.03694 0.03773

at Y  direction 0.05759 0.00312

2001 — 3000 at X  direction 0.03694 0.03773

at Y  direction 0.05759 0.00312

Table 7.1: RMS errors when mass — 5kg.
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Sample intervals RMS errors of internal force (N)

without the NNBC with the NNBC

0 — 1000 at X  direction 15.96137 3.75179

at Y  direction 1.12425 1.11996

1001 — 2000 at X  direction 16.08066 1.89737

at Y  direction 1.10789 1.11099

2001 — 3000 at X  direction 16.07986 1.84620

at Y  direction 1.10790 1.10275

Sample intervals RMS errors of external force (N)

without the NNBC with the NNBC

0 — 1000 at X  direction 1.40957 1.84460

at Y  direction 6.67420 9.57597

1001 — 2000 at X  direction 0.67540 0.88516

at Y  direction 0.06293 0.26797

2001 — 3000 at X  direction 0.67540 0.85093

at Y  direction 0.06294 0.13169

Sample intervals RMS tracking errors of object’s position (m)

without the NNBC with the NNBC

0 — 1000 at X  direction 0.03696 0.03903

at Y  direction 0.11624 0.01390

1001 — 2000 at X  direction 0.03696 0.03896

at Y  direction 0.11669 0.00657

2001 — 3000 at X  direction 0.03696 0.03882

at Y  direction 0.11669 0.00652

Table 7.2: RMS errors when mass = 10kg.
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® Start the NN-based controller (coordinator). Since the initial values of the 

weights are random numbers, the learning period may result in a large oscilla­

tion of the system output. This may be unacceptable for a certain controlled 

plant even for an open-loop stable system.

7.8 Summary

To handle difficult control and coordination problems, we developed a direct con­

troller and a coordinator with neural networks. Particularly, the NN-based controller 

aims to handle industrial process control systems in which the negative effects of a 

long system response delay, nonlinear elements with dead zone and/or saturation, 

and process noises are the main obstacles in achieving high performance. The pro­

posed NN-based controller can replace conventional controllers, and has overcome 

all of the problems mentioned above. The NNBC is applied to the coordinated 

control of two robots holding an object. Such a coordinated system is organized 

hierarchically, where the high level is the NNBC and the low level is the coordi­

nated robots. It is assumed that each robot is a stand-alone device equipped with a 

commercially designed (perhaps by different vendors) servo controller. The internal 

structure and/or parameters of the low-level subsystems are not affected by adding 

the NNBC. This implies that some industrial robots could be coordinated to perform 

more sophisticated tasks than originally intended.

In contrast to the scheme of indirect adaptive control [NP90], the proposed scheme 

enables the NN to be trained with system-output errors, rather than the network- 

output errors. The training algorithm is derived based on BP. However, in the 

BP algorithm, it is required to modify the weights by network-output error which 

is not known when a multilayer perceptron is cascaded in series to the controlled
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plant. Therefore, the proposed algorithm enhances the NN’s ability to handle a wider 

range of control applications. A detailed analysis of the algorithm was presented 

and the associated theorems were proved. The only a priori knowledge about the 

controlled plant is the direction of its response, which is usually easy to determine 

for a SISO system. The direction m atrix of an MIMO system can be determined, 

if some system constraints are imposed. Extensive simulations have been carried 

out and the results are shown to be quite promising. Good performance, a simple 

structure and algorithm, and the potential for fault tolerance make the proposed 

NN-based controller and the NNBC attractive for industrial application.
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Figure 7.13: The internal force error in X  direction, without the NNBC.
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Figure 7.14: The internal force error in X  direction, with the NNBC.
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Figure 7.15: The internal force error as m  =  10 kg, without the NNBC.
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Figure 7.16: The internal force error as m = 10 kg, with the NNBC.



C H A PT E R  V III

PERFORMANCE EVALUATION OF 
REAL-TIME CONTROL AND  
COORDINATION SYSTEMS

8.1 Introduction

A real-tim e, digital, control computer or controller computer can be thought of 

as a three-stage pipe: data acquisition from sensors, data processing to generate 

control/display commands, and outputting the results to actuators/display devices. 

Although each of the three stages will take time to complete, this chapter is only 

concerned with the time taken by the most complicated stage, data processing, since 

the other two are much simpler and more static. More precisely, the amount of time 

taken to execute programs that implement control algorithms — called the computing 

time delay — is the subject of this chapter.

A controller computer implements the control algorithms by executing a sequence 

of instructions. Unlike analog control systems, the reliability of a digital control sys­

tem  depends not only on the MTBF (mean time between failures) of the controller 

hardware and software, but also on the delay in executing control algorithms on the 

controller computer. The execution time for a control algorithm is defined as the pe­

riod from its trigger to generation of a corresponding control command. It is an extra

164
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time delay that is introduced to the feedback loop in a controlled system. Because 

of the existence of conditional branches, resource sharing delays, and processing ex­

ceptions, the execution time for a given control algorithm, or the computing time 

delay, is usually a continuous, random variable which is usually smaller than the 

sampling interval. Controllers are usually designed without considering their actual 

implementation. Thus, it is very important to analyze the effects of computing time 

delay on control system performance when control algorithms are implemented on 

digital computers.

The computing time delay is quite different from the usual system time delay, 

and cannot be taken care of prior to putting a system in use due to its randomness 

caused, for example, by the data-dependent branches and loop counts in a program 

that implements the control algorithm under consideration.

When the computing time delay is long relative to the sampling interval (but 

small relative to the mission lifetime), it may seriously affect control system per­

formance. Depending on the magnitude of computing time delay relative to the 

sampling interval, its effects on the control system are classified into either a delay or 

loss problem. To be more precise, let £ and Ts denote the computing time delay and 

the sampling interval, respectively. A delay problem results when 0 < £ < Ts, and 

the loss problem occurs when £ > Ts. The former represents the undesirable effects 

(for example, in terms of operational cost or energy) caused by a computing time 

delay which is nonzero but smaller than the deadline (that is, the beginning of the 

next sampling interval) of a control algorithm or task,1 while the latter represents 

the case of no update of the control output for one or more sampling intervals.

To implement a control algorithm on a digital computer, the sampling rate must

1The terms “control task” and “control algorithm” will henceforth be used interchangeably.
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be chosen carefully by not only satisfying the conditions of the Shannon’s sampling 

theorem, but also by achieving the desired performance. A good example of this can 

be found in [Kho87] where a series of robot control experiments were conducted for 

different sampling rates while keeping the controller gains fixed. A higher sampling 

rate is shown to imply improved performance and higher stiffness (or disturbance 

rejection property). However, increasing the sampling rate will make the computing 

time delay effects more pronounced on control system performance. These effects 

cannot be neglected, especially when the time constant of the plant is short and the 

order of the plant is high [Mit85]. To remedy this problem, an optimal state feedback 

control law was proposed by [Mit85]. Instead of using the current-state feedback 

u(k)  =  —K x ( k ), the control input is formed by u(k)  =  —K A x ( k —l) — K lBu( k—l), 

that is, the computing time delay is approximated to be one sampling interval. The 

sampling period, Ts, is chosen to be the same as the computation time of the control 

algorithm. In [BDG86], the computing time delay is represented as a delayed state 

measurement, and an averaging A/D device is used for the measurement. Then for 

an LQG-type, sam pled-data regulator problem, an equivalent discrete-time problem 

is shown to have an increased system order. A design procedure was proposed there 

for this equivalent discrete-time problem.

However, the work in both [Mit85] and [BDG86] did not consider the randomness 

of the computing time delay. Approximating the computing time delay with one or 

more sampling intervals and incorporating it into controller design was the basic 

idea used there. As mentioned earlier, the computing time delay problem must 

account for the random effects of data-dependent conditional branches/loops and the 

unpredictable delays in sharing resources during the execution of control algorithms. 

So, estimating the maximum delay or assuming the computing time delay to be
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constant is neither realistic nor possible.

The magnitude of the computing tim e delay and the number of output losses that 

the controlled system can tolerate are important indices to evaluate the performance 

of any digital control algorithm. These indices will inherently change with the type of 

control algorithms and systems under consideration. To demonstrate the importance 

of the computing time delay, we shall evaluate this index for typical real-tim e control 

systems — robot control and coordination systems, which are briefly described below.

Numerous robot control algorithms have been proposed and their computing time 

delays estimated. However, to our best knowledge, none of these has analyzed explic­

itly the effects of computing time delay on control system performance. For example, 

an adaptive control algorithm based on the computed torque algorithm is reported 

to require 17 ms  on an MC68000 CPU [LL84], and the self-tuning predicted control 

needs 6.7 ms  on an NS32132 CPU [CS88]. These results not only indicate the need 

of high-speed CPUs, but also raise an interesting question: can the system tolerate 

this extra computing time delay ? A robot control system is usually evaluated on the 

basis of tracking accuracy, repetition error, and motion speed. For a nonlinear, tim e- 

varying system like a robot, the effects of computing time delay on its performance 

become significant enough to warrant a careful investigation of various control algo­

rithms before using them. This is also true for all other tim e-critical control systems 

such as aircraft and life-support systems. (See [SKL85] for an example of aircraft 

landing.)

In recent years, the application of artificial intelligence and neural networks has 

received considerable attention in control and robotics communities as surveyed in 

Chapter 2. In a knowledge-based control system, control actions are usually deter­

mined either by searching its knowledge base or looking up tables. This, especially



in the case of a heuristic search process, may require a significant amount of time rel­

ative to the sampling interval. Unlike a controller based on numerical computations, 

the time for symbolic reasoning and heuristic searches may vary with the operational 

conditions of the system. In an NN-based control system, if the neural network is 

implemented in software, then the computing time delay problem becomes very sig­

nificant, since NN computation may take much longer time than conventional control 

algorithms. Moreover, loss of control outputs affects not only the system output at 

the instant of loss, but also the updating the NN’s weights, which may, in turn, affect 

system performance. Therefore, both the delay problem and loss problem should be 

analyzed for knowledge-based and NN-based systems.

We shall focus on analyzing the effects of computing time delay on the perfor­

mance of control and coordination systems. Using examples, we will also show how a 

specific control system is evaluated in terms of computing time delay. In Section 8.2, 

we first review the basic concepts and definitions related to real-tim e, digital control 

systems which were introduced in [SKL85]. Then, we address the generic problem 

of analyzing the effects of computing time delay on control system performance. A 

generic criterion for the qualitative analysis of computing time delay effects is derived, 

and a common misconception in handling computing time delay is corrected. We 

present in Section 8.3 both qualitative and quantitative analyses of the computing 

time delay effects on a robot control system. Upper bounds of computing time delay 

are derived with respect to system stability and system performance. These upper 

bounds can be used as an extra constraint on controller design or an index for selec­

tion of a CPU to implement a control algorithm. For a typical coordination problem 

— two robots holding an object — the effects of computing time delay associated 

with the knowledge-based coordinator and the NN-based coordinator developed in
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u(k)e(k)

D/A and hold 
"** circuit

Computing 
time dealy

Controlled 
plant G(s)

Controller
C(z)

Figure 8.1: A digital control system in presence of computing time delay.

the previous chapters are investigated in Sections 8.4 and 8.5, respectively. Section 

8.6 is a summary of the chapter.

8.2 Effects o f Com puting T im e Delay on a Control System

The basic concepts and performance measures proposed in [SKL85] are best suited 

for the analysis of the effects of computing time delay on control system performance, 

because they are based on task completion times. For completeness, some of the basic 

concepts in [SKL85] are briefly described. Then, a generic analysis of the effects 

of computing time delay is presented along with necessary conditions for system 

stability.

8.2.1 Perform ance M easures in the Presence of C om puting T im e Delay

As mentioned earlier, we are interested in analyzing the effects of computing time 

delay that results from the implementation of a “well-designed” control algorithm 

on a digital computer. (By “well-designed”, we mean that the system is stable 

and the effects of discretization are accounted for.) The presence of the computing 

time delay in a control system can be represented by a delay element after the D/A 

converter and hold circuit, as shown in Fig. 8.1. Hence, the analysis of the effects of 

computing time delay must be done in a continuous-time domain. Note that, due to
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its randomness, the computing time delay is totally different from other usual factors, 

such as the effects of discretization and system delay, which are not the subject of 

this chapter.

Let X  C R " denote the state space and x(t )  £ X  the state of the controlled 

system at time t. Evolution of states from time t0 in the presence of a nonzero 

computing time delay, £, is represented by

*(#) =  $(<, tQ, x{ t0), u ( t - £ ) ) ,

where $  is the state transition map, u ( t ) £ Ua  C U C the control input at 

time t , U a the admissible input space, and U the input space. The behavior of the 

system is monitored via

y(t)  = r (t, u ( t - { ) ,  x(t)),

where T is the output function, y(t)  £ Y  C R m the output vector at time t and Y  

the output space. Let X^ and be the allowed state space and the allowed output 

space, respectively. Note that, if £ =  0, then u(t)  £ JJa implies x( t )  £ X/i and 

y(t )  € Y ^. If 0 < £ < Ts, the maximum computing time delay that the controlled 

system can tolerate at time t is defined as the hard deadline at that time:

dx(t )= sup {£ : x(t )  £ X^} . (8.1)
u(t)eUA

This means that if £ > dx(t), then the system may move out of the allowed space. 

Note that, the hard deadline at time t is a function of the state of the controlled 

system at t. For a control task performed during [t0, ti], its hard deadline should 

be the smallest value of dx(t) for all t £ [£o, U]. For all but very simple cases, 

it is impossible to get a closed-form relationship between hard deadlines and the 

allowed space Y ,4 (see [SKL85] for more on this). So, Eq. (8.1) is usually used as a
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conceptual definition. If the computing time delay associated with a control task is 

greater than its hard deadline, a dynamic failure results [SKL85], meaning that the 

system has moved out of the allowed state space (for example, the system moved 

into an unstable region).

8.2 .2  How D oes the D elay Problem  Affect th e  System  Perform ance ?

As mentioned earlier, system performance and stability are affected by a nonzero 

computing delay, £. We want to investigate how the closed-loop system is affected 

by this nonzero computing delay. Let a closed-loop system be represented by

i f t . 0  =  / f t ,  s f t . f ) ,  £), 0 < (  < T„ (8.2)

Since £ can usually be made small relative to the control mission lifetime by using 

parallel processing or high-speed CPUs, Eq. (8.2) can be expanded as a Taylor 

series, and the subsequent first-order approximation gives

x(t,o -  /<*, ■(«.»). o)+{(*/<«■ . % ■ y ■ °>)
=  /(< , ®(i,0), 0) + £  g(t,  *), ' (8.3)

, t± \ _ d /(* i * M ) ,  °) d x (t, 0) , d f { t ,  x(t ,  0), 0)where g(t ,  x)  = --------- g - -------------- ^ -------------------------------,

d f ( t ,  x ( t , 0), 0) _  d f ( t ,  x{t,£),  0  ,  ̂dx{ t , 0) _  dx(t ,£)  ,
--------- ^ ^  U=o.  ^ d  U=o •

Note that, g ( t , x )  is not a function of £. From Eq. (8.3), we conclude that the 

computing time delay affects the system performance through a permanently acting 

perturbation.

Since the control system is usually designed under the assumption of £ =  0, 

the closed-loop system is represented by x(t)  = f ( t , *(<)). Suppose there exists a
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Lyapunov function V( t , x )  which is positive definite, decrescent and

V («,*) =  / (< ,* )  <  - r ( | |  *  II),

where r(-) belongs to class K  such that the closed-loop system x( t )  =  f ( t ,  x ( t )) is 

stable.2 For 0 <  ^ < Ts, referring to Eq. (8.3), we have

. )  =  /(<) * ( i , o), o)) +  f  ,<«. . )

<  —r(|| g  ||) +  { | ” 1 fl(t, a?) |

< - r ( | | * | l )  +  £ II 6V\ X) II ||9(<, * ) | l ,

which results in the following two stability conditions

sup || g(t,  x )  ||<  oo, (8.4)
t>to, ||a3|i<p

SUP 11 X ̂  H< °°- (8>5)
t > t o ,  | |* ||< P  V X

If conditions (8.4) and (8.5) hold, then there exists a 0 < £ < Ts small enough 

such that V^(t, *) < 0. Because V(t,  x )  is a positive definite, decrescent function, 

condition (8.5) is satisfied. Thus, if condition (8.4) is satisfied, then there exists a 0 < 

£ < Ta small enough such that the closed-loop system is uniformly stable. Note that, 

though the stability analyses in discrete-time and continuous-time systems are not 

equivalent, a stable system in continuous time is still stable after the discretization, 

if the sampling rate is chosen properly. This fact is a basis for the analysis presented 

in this chapter.

2See, for example, Nonlinear System Analysis  by M. Vidyasagar, Prentice-Hall, 1978 for the 
definition of class K .



8.2.3 W hat about D esigning a Controller w ith an A ssum ed M axim um  

Value of £ ?

When designing a controller, one may attem pt to handle the computing time delay 

by using an assumed maximum value of £. However, as was discussed in [W0086], 

it is impossible to get a precise value of £ due to the randomness in executing data 

dependent branches and loops and sharing resources during the execution of control 

programs. Moreover, in what follows, we will show that this kind of impreciseness in 

£ may fail any attem pt of using an assumed maximum value. Suppose the controlled 

plant is described by Go(.s) =  G\ (s)e~ds, where d > 0 is the system time delay and not 

necessarily an integral multiple of the sampling interval. Suppose the computing time 

delay is £ =  £0 Ts, 0 < £0 < 1, then the equivalent controlled plant is approximated

by

G(s) = G1 (s) e~Ts, T =  d +  £.

Let d =  LqTs — doTs, 0 < dQ < 1, where L0 > 0 is an integer, then

T  =  L 0Ta +  (£0 -  d0 )Ts = LTS -  mTs, 0 < m < 1,

L = L0 +  1 and m =  1 -  (£0 -  d0), if £0 > d0

L = L 0 and m = £0 — do, if £0 <  d0.

Now, the controlled plant can be represented as

G(a) =  e~LT’s G i(s) emT*s.

Let G(z ) be the controlled plant G(s) in discrete-time domain. Then by the hold 

equivalent (zero-order hold), we get

where



174

f G(s) emT,a 1
where Z  < —— -------- > represents the z —transform of the time-domain function of

G(s) emTsS—— -------- . Therefore, the computing time delay will affect the open-loop zeros,
s

poles at the origin, and the gain. This can be verified by the following simple 

example.
e-1,5s

E x am p le : Suppose G(s) =  — — , Ts =  1. By the hold equivalent, the controlled
1 “I" s

plant in discrete time domain is

G 0.6( z ) =  0.5934 if {  =  0.6, or (8.6)

2 +  2.4872
=  01813 ,« ( z -  0.3679)’ if « =  °-3' <8'7)

Obviously, a controller designed for Eq. (8.6) by assuming a maximum computing 

time delay may not work well for Eq. (8.7).

8 .2 .4  How D oes th e  Loss P ro b le m  A ffect S y s tem  P e rfo rm a n ce  ?

The loss problem is quite different from the delay problem. Let k denote a 

discrete-time index, and suppose at time k the computer controller fails to update 

the control output. Because of the D/A converter and the hold circuit, the output 

of the computer controller does not change when a loss problem occurs; that is,

u(k  — 1) is used over two sampling intervals instead of one sampling interval. For

example, loss of one controller’s output at time k for the aircraft landing problem in 

[SKL85] keeps the elevator deflection unchanged, but the aircraft does not remain 

at the same position. At tim e k +  1 the controller computer picks up a new sample 

y (k  +  1) and calculates the corresponding control output u (k  +  1). Thus, loss of 

one control output is equivalent to the case when the controller computer fails to 

deliver an output during any one sampling interval over the entire mission lifetime. 

Let Au (k )  = u(k)  — u (k  — 1), then —Au(k)  can be treated as a disturbance added
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to the system control input at time k. Because this could occur randomly at any 

tim e during the mission, the failure to deliver a control output can be treated as a 

random disturbance to the system. If the computer again fails to deliver a control 

output at time k -f 1, then the actual control is still the same as u (k  — 1). Let 

A u ( k  + 1) =  u (k  + 1) — u(k  — 1) and suppose £[A«(fc)] =  0 . Since the correlation 

m atrix E[Au(k)  A u T(k +  1)] may not necessarily be zero, this may be a correlated 

random disturbance.

For all but simple systems, it is difficult to accurately analyze the effects of 

computing time delay for the following reasons.

•  It is not easy to derive the allowed state space X.4, as was pointed out in 

[SKL85].

® The computing time delay is a random variable, and its effects may change 

throughout the entire mission lifetime.

• Different control systems have different structures, thus requiring a separate 

analysis for each control system. In other words, only case-by-case analyses 

are possible.

To be more specific, in the next section, the effects of computing time delay on the 

performance of a typical real-time control system will be analyzed. For qualitative 

analysis, the generic stability criterion Eq. (8.4) will be used. For quantitative 

analysis, the example demonstrates how the effects of computing time delay in a 

control system can be analyzed and evaluated in practice.
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8.3 R eal-T im e Performance A nalysis o f a R obot Control 
System

The generic analysis of computing time delay effects can only be solidified with 

real control systems, because the computing time delay is an application-sensitive 

measure. In this section we will therefore analyze a robot control system in detail.

To analyze a robot control system under a permanently acting perturbation, we 

need to know the system dynamic equation, and the control algorithm to be used. 

The dynamics of a robot arm can be written as

the vector of torque/force exerted by joint actuators.

8.3.1 Q ualitative A nalysis

Let the controller be represented by r  =  c (q, q, £). Note that the controller 

is originally designed by assuming £ =  0. By letting X\ = q and x 2 =  q , we can 

describe the closed-loop system by

H(q) q + C(q, q) q + G ( q ) = r , (8.8)

where q is the vector of joint position, H(qf) is the inertia matrix, C (q, q) q represents 

the centrifugal and Coriolis forces, G(q)  the vector of gravitational loading, and r

X \  ~ x 2

x 2 =  H(aJx) 1 ( - C ( * 1 , * 2 ) CC2 -  G (a ; i)+  c(a;x, £C2, 0 ) .  (8.9)

These equations can be rewritten as

*(*. 0  = f(t< ?). f). (8.10)

r r lTwhere x  =  x \ ,  x 2 , and
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f ( t ,  x ( t ,  £), £) =
X2

H(a3i) 1 (—C(a3i, jb2) ®2 -  G(a?i) +  c(ajl5 x 2, £))

For qualitative analysis, referring to Eq. (8.3), we get the standard form of a system 

with a permanently acting perturbation as

*(*» 0  »  /(*» *(*» o)> 0) + { g ( t ,  x )-

From Eq. (8.10), we get 

g ( t , x )  =

d x 2(t, 0)
d(

_ dx-i(t, 0) , _ a * 2(i,0) , w  ac (* i, aj2, 0)
a 2l ------ ^ ---------r  a 22 ------ EJ7---------h r l ( ® i  j  —

where a 21 H(a?i) 1 ( - C ( * i ,  x 2) x 2 -  G (* i) + c (« i, a?2, 0))]

a22 =  H(®a)-1 d_ 
d x 5

( —C(a2j, ®2) ® 2  +  c(®i, 032, 0 )).

Because each term of gr(f, x)  is bounded above in t, sup || g ( t , a:) || <  00, that
t>to, \\x\\<P

is, the stability condition Eq. (8.4) is satisfied. Thus, we conclude that there exists 

a 0 < £ < Ts small enough such that the closed-loop system is uniformly stable. .

8 .3 .2  Q u a n tita tiv e  A nalysis w ith  R esp ec t to  S ystem  S ta b ility

For any quantitative analysis of the effects of computing time delay, it is necessary 

to specify the control algorithm to be used. In the robot control system, the controller 

is t  =  c(qr, q , 0). If the system parameters in Eq. (8.8) are known, then one can 

choose the control torque/force vector as

T = H( q ) u ( t )  H- C(q, q) q  +  G( q) ,

“ (0  =  i A t ) - K D ( q ( t ) - q A t ) ) - K r ( q ( t ) - q d( t ) ) ,

(8 .11)

(8 .12)

where q d is the desired joint positions and K d , K p are the matrices of controller 

gains. This is the well-known computed torque algorithm, and on which several
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adaptive algorithms (for example, [OS88]) are proposed in the presence of unknown 

parameters. Taking Laplace transform of Eq. (8.12), we get

U (s) =  s2Q d{s) -  (K 0 s +  Kp)A(s), (8.13)

where U (s), Qd(s) and A(s) are the Laplace transforms of u(t),  qd(t) and 6 (t) = 

q(t) — qd{t), respectively. Plugging Eqs. (8.11) and (8.13) into (8.8) and noting that 

H (g) is nonsingular, we get

(s2 I  + (Kds  +  K p)j A(s) =  0, that is, s 2 I +  K p s  +  K p =  0. (8-14)

If there is a nonzero computing time delay, 6 (t) must be replaced by 6 (t — £). When

the controller is actually implemented on a digital computer, the reference input 

qd(t) does not change during one sampling interval, and thus, Eqs. (8.13) and (8.14) 

become

U(s, 0  =  s 2 Q d ( s )  -  ( K d s  +  K p) e ~ at  A ( 5 ) ,  and

(.s2 I + (K ^s +  Kp) e“* )  A(s) =  0.

Because £ < Ts and Ts is small enough to recover the continuous-time signals, we 

can approximate e~st «  1 — £s to get

(s2 I + ( K d s + K p)(l -  £s)) A(s) =  0.

that is, s2 (I -  K d O  + s { K d -  KpO +  Kp =  0. (8.15)

We may choose K d =  diag [Koi], K p =  diag [I(pi], K di , Kpi > 0 ,  i —

1, 2, • • •, n, such that the closed-loop system becomes uncoupled, linear, and ex­

ponentially stable. Then, Eq. (8.15) becomes

s2 (1 -  I< D ii)  + s (I<Di ~ K p iQ  +  K vi =  0, i = 1, 2, • • •, n. (8.16)
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We can derive from Eq. (8.16) the least upper bound of £ for system stability:

( < i * { (min{ ^ ’ a U ) ’ i = 1' 2' <8-17>
This upper bound of £ can be viewed as a hard deadline with respect to system 

stability and used as an extra constraint on the selection of controller gains.

8.3.3 Q uantitative A nalysis w ith R espect to  System  Perform ance

In practice, we need not only to know the least upper bound of £ with respect 

to system stability, but also the quantitative performance changes caused by it. As 

stated before, the controller is designed under the assumption of £ =  0. If the 

controller gains are diagonal matrices, then Eq. (8.14) becomes

s 2 +  K Di s +  I<pi =  0, i = 1, 2, • • •, n. (8.18)

Comparing this with the standard form of a second order system s2+2 £; u>ni s +UJli ~  

0, we choose

I<Di =  2 Q ujni, Kpi =  u&, i =  1, 2, • • •, n, (8.19)

where Q and are the closed-loop damping ratio and the natural frequency of 

subsystem i, respectively.

We consider the relative displacement of the closed-loop system’s poles from their 

originally-designed positions as a result of the nonzero computing time delay. Let 

sa be the actual pole position which is moved from its desired position, sj,  due to 

the presence of £ > 0 . sj  and sa are given by Eqs. (8.18) and (8.16), respectively, as

~ ( K d , -  K p i {) ± j  /4  (1 -  K m  0  K „ i  ~  ( K d > -  I<pi f ) 2

2 (1 -  Km  (.)
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We define the maximum relative displacement of poles as the performance tolerance

  I &d.i &ai | o n >.a  =  max --------------- , (8.20)
’ &di

where crdi =  || Sd H2 =  y  Kpi, and

„ . „   I Kpi _ ^  _&ai — || Sa 112 — y 1 &ai _ &di-

Therefore, from Eqs. (8.20) and (8.19), if the performance tolerance a  is specified, 

we get
1

max 1 1
(1 -  a y2 Ci ^ni

max | — -----  if a  =  l,
O Ct wni I

if a ^ l ,
(8 .21 )

for i = 1, 2, • • •, n. This is the upper bound of £ with respect to the performance 

tolerance for the computed torque algorithm. That is, the computing time delay must 

satisfy Eq. (8.21) in order not to violate the specified performance tolerance. This 

upper bound can be viewed as a hard deadline with respect to system performance, 

and used as an index to select a CPU to implement the control algorithm.

The computed torque algorithm Eq. (8.11) is based on the assumption that the 

parameters of Eq. (8.8) are completely known. However, they are, in fact, unknown, 

or not known precisely. Some adaptive schemes may be used to estimate these 

parameters and then the computed torque algorithm or variations thereof [OS88]. If 

it is assumed that the estimators give the true values and a perfect tracking of tim e- 

varying parameters, then performance changes can be analyzed separately while 

figuring the time consumed by the estimators in the computing time delay. This 

implies that Eqs.(8.17) and (8.21) can also be used as an approximate analysis for 

adaptive control methods which are based on the computed torque algorithm. Since 

the parameter estimators and the adaptive algorithm require a longer computing time 

delay than non-adaptive ones, it is important to analyze the effects of computing time
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delay. To this end, in the next two sections, we will analyze the effects of computing 

tim e delay for both a knowledge-based coordinator and an NN-based coordinator 

for two robots holding an object. Unlike the single-robot control system treated in 

the previous section, those examples deal with a complex control system for which 

the system dynamic equations are either unknown or known only qualitatively.

8.4 R eal-T im e Performance Analysis of the Knowledge— 
Based Coordination System

In a knowledge-based or an NN-based control/coordination system, the system 

dynamic equations are usually unknown or known only qualitatively, and one can­

not describe the control actions mathematically. This implies that evaluation of 

the effects of computing time delay effects on such systems may depend heavily 

on simulations and/or experiments. Moreover, as was concluded in previous sec­

tions, loss of control outputs is equivalent to introduction of random disturbances. 

However, disturbance- and/or noise-rejection ability of a knowledge-based or an 

NN-based control/coordination system has not been addressed in most relevant lit­

erature. Therefore, we want to analyze the effects of both delay and loss problems 

for a knowledge-based and an NN-based control/coordination system. In this sec­

tion, the effects of computing time delay on system performance is analyzed for a 

knowledge-based coordination system developed in Chapter 5. The NN-based coor­

dinator developed in Chapter 7 will be investigated in next section.

The problem is to coordinate two 2-link robots holding a rigid object. The solu­

tion consists of two levels: the high level is a knowledge-based coordinator (KBC) 

and the low-level subsystems are two robots each with a separately designed servo 

controller. The basic configuration of this example is shown in Fig. 5.5. The Carte­



sian frame is fixed at the base of robot 1, and the trajectories of the object and the 

robots’ end-effectors are specified relative to this frame. We want to move the object 

forward and then backward in X  direction while keeping the height in Y  direction 

constant. The detail of the problem statement and the principle of the KBC are 

presented in Chapter 5.

In the example of two 2-link robots holding an object, each robot is position 

controlled with the computed torque algorithm. For such a control algorithm, an 

upper bound of computing time delay with respect to system stability has been 

derived in Eq. (8.17), and rewritten below as

I =  1' 2 ' ( a 2 2 )

For the position controller with the computed torque algorithm, obviously there are 

many choices of the controller gains to satisfy different performance requirements 

in addition to the conditions of system stability. However, the selection of the con­

troller gains must satisfy the condition of Eq. (8.22) concerning the computing time 

delay. In this coordination scheme, the KBC forms a high-level coordinator, and the 

internal structure and/or parameters of the low-level subsystems are not affected. 

Therefore, this upper bound can be used to approximately analyze the effects of 

computing time delay on the stability of multiple-system with the KBC.

The search process of the KBC is determined by the decision tree shown in Fig. 

3.2, and the modification to the system reference input is computed with Eq. (5.3). 

Then the average search speed is given by setting K  =  0.5. After the n-th iteration, 

the magnitude of modification to the reference input is
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In the worst case, the search will not be completed until

kr'l - Kl <« °r

where S > 0 is a pre-specified tolerance. Usually, the initial value is Cq =  0. There­

fore, the maximum number of iterations with the average search speed is given by

In |<io — frol -■ ln£n — (8.23)
In 2

For example, if a® =  —5, 6° =  5, =  0, K  =  0.5 and 6  =  0.001, then in the worst

case, the KBC needs 13 iterations (n = 13) to complete the search process. From 

Eq. (8.23), the maximum computing time may be estimated, which is then used to 

select the controller gains and satisfy the condition Eq. (8.22).

Let the cost function of two 2-link robots holding an object be defined by

J  =  E  (E J (*) E '(k) +  * ? (* )  J M * ) ) . (8-24)
k=1

where B , ( k )  = ! ( / , ( * )  -  f 2 (k)) and B e(k) = ( f u (k) -  f, (k)) + ( f M(k) -  f 2 (k))

are the internal force and external force error, respectively.

According to the robot dynamic parameters, three groups of controller gains are 

designed and listed in Table 8.1. The sampling interval is Ts = 10 ms.  For the 

first group Kpi = 157.90, Koi  = 18.85, the upper bound of the computing time 

delay is 53.0 ms.  This implies that the system can tolerate a delay of 5Ts. The 

cost functions corresponding to different delays are plotted in Fig. 8.2. The system 

becomes unstable if 63^ extra delays are introduced. So, in this case, the delay 

problem will never affect the system stability. Fig. 8.3 shows the cost functions using 

the second group of controller gains K vi — 986.96, K m  — 47.12 for different delays. 

The upper bound of the computing time delay is 21.2 ms.  In our simulation, the 

system was shown to become unstable if two sampling-interval delays are introduced.
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C on tro ller  ga in s Closed-loop system Upper bound of £ 

(ms)Kpi K m damping ratio £ natural frequency u>n

157.90 18.85 0.75 2 x27r(rad/s) 53.0

986.96 47.12 0.75 5 x27r(rad/s) 21.2

3947.84 94.25 0.75 10 x2ir(rad/s) 10.6

Table 8.1: Tested controller gains and the upper bounds of computing time delay.

If the third group of controller gains (K pi = 3947.84, =  94.25) are used, then

the upper bound of the computing time delay is reduced to 10.6 m s. Because the 

sampling interval is Ts =  10 ms, the computing time delay will greatly affect the 

system performance. The cost functions corresponding to different computing time 

delays are plotted in Fig. 8.4. The system becomes unstable at £ =  7ms. Obviously, 

this group of controller gains cannot be used due to the potential problem caused 

by the computing time delay. Therefore, we conclude that the selection of controller 

gains should not only satisfy the desired system responses but also the upper bound 

of computing time delay — Eq. (8.22). From Figs. 8.2 -  8.4, we also conclude that 

the system performance is improved by adding the KBC for different computing 

time delays. Note that the KBC is designed only to improve the system performance 

(more precisely, to reduce the internal force); we cannot rely on the KBC if the 

original system becomes unstable.

The loss problem is also simulated for the coordination of two 2-link robots 

holding an object. In the simulation, ten consecutive outputs are lost after the 

object reached the maximum or the minimum velocity. The controller gains are 

K pi — 157.90 and K m  =  18.85. The simulation results are summarized in Table 8.2.
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Cost function

without the KBC with the KBC

no output loss 92.584 13.228

lose 10 outputs at the 

point of maximum velocity 92.670 13.224

lose 10 outputs at the 

point of minimum velocity 92.678 13.218

Table 8.2: The cost functions with different output losses for the KBC.

These results indicate that the KBC is not sensitive to the loss problem, agreeing 

with the observation in [SC88]: PID -type controllers are not sensitive to the loss 

problem.

8.5 R eal-T im e Performance A nalysis o f the N N —Based Co­
ordination System

One of the advantages of NNs is that parallel processing can be easily imple­

mented. By distributing the computational burden to all nodes, the effects of the 

delay problem on system performance can be reduced. However, as a controller or 

coordinator, the numbers of the nodes at each layer may not be as large as those 

in such applications as pattern recognition and image processing. So, the NN-based 

controller or coordinator may be implemented in software, and thus the computing 

time delay may become significant, as shown in the example below. Moreover, it is 

also true that the loss problem may affect the system performance as discussed in 

Section 8.1. In what follows, the NNBC developed in Chapter 7 is evaluated for both 

the delay and the loss problems.
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Computation Multiplication

(M )

Addition

(A)

Division

(D)

Exponential

(E)

HIDDEN layer N i N Nr (iV +  1) Nr Nr

OUTPUT layer N 2 Nr N 2 (Nr + 1) n 2 n 2

weights from 

HIDDEN to 

OUTPUT layer

4 N i N 2 3 Nr N 2 0 0

weights from 

INPUT to 

HIDDEN layer

(4 +  N 2) N  Nr (1 +  N 2) N  Nr 0 0

thresholds N r + N 2 Nr + N 2 0 0

total

M  = 5 N  N r+ 5  Nr N 2 + N  Nr N 2 + Nr + N 2 

A = 2 N  N r + 2 N r + 2  N 2 + 4 Nr N 2 + N  Nr N 2 

D  — Nr ~b N 2 and E  =  Nr T N 2

Table 8.3: The computational requirement of a three-layer perceptron.

We must consider the computational requirement of a three-layer perceptron 

with the standard BP algorithm in order to obtain quantitative knowledge about the 

computational requirement. The details of the standard BP algorithm can be found, 

for example, in [RM86], and thus omitted here. Suppose there are N  input nodes, 

N \ hidden nodes, and 7V2 output nodes, and each node performs scalar operations 

only. The computational requirement is given in Table 8.3. For example, when 

N  =  4, N i =  15, and AT2 =  1, the computation required is 451 multiplicative, 272 

additive, 16 divisional, and 16 exponential operations. In the NNBC proposed in
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Chapter 7, each node has the ability to perform vector operations. For the example 

of coordinating two 2-link robots holding an object, the dimension of the vector is 

four. This implies that the computational requirement is at least four times the 

above figure for the neural network part alone. Therefore, the computational burden 

is significant if the neural network is implemented in software.

Similar to the evaluation of the KBC, using the same cost function Eq. (8.24), 

three groups of controller gains in Table 8.1 are evaluated. Fig. 8.5 shows the 

results using the first group controller gains: K vi =  157.90, Koi — 18.85. W ithout 

the NNBC, the upper bound is still 53 ms. However, compared with Fig. 8.2, we 

conclude that the NNBC is more prone to be unstable than the KBC as a result 

of computing time delay. Note that the unstability in Figs. 8.2 and 8.5 will never 

occur, since the computing time delay always less than one sampling interval. The 

cost functions for the second and third groups of controller gains are plotted in Figs. 

8.6 and 8.7. The performance of the NNBC is not degraded due to the computing 

time delays as long as the two-robot system is still stable in the presence of the 

computing time delay. Similar to the KBC, the NNBC is used to improve the system 

performance, but not to stabilize an unstable multiple-system.

The NNBC is also tested for the loss problem. The simulation arrangement is the 

same as that for KBC, that is, ten control outputs are lost after the object reached 

the maximum or the minimum velocity. The controller gains are K pi — 157.90 and 

Kpi = 18.85, and the results are presented in Table 8.4. These results indicate that 

the NNBC is not sensitive to the loss problem either. This implies that the weights 

of the NN for this example may not necessarily have to be updated in every sampling 

interval.
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Cost function

without the NNBC with the NNBC

no output loss 92.584 0.641

lose 10 outputs at the 

point of maximum velocity 92.670 0.652

lose 10 outputs at the 

point of minimum velocity 92.678 0.659

Table 8.4: The cost function with different output losses for the NNBC.

8.6 Summary

The increasing use of digital computers to implement real-tim e controllers has 

made it essential to carefully study the effects of computing time delay on the stability 

and performance of controlled systems. This computing time delay is different from 

the usual system time delay; it is a random delay resulting from the execution of 

control programs on a digital computer.

The effects of computing time delay on control system performance are classified 

into delay and loss problems, which are then analyzed for both general and special 

cases. A generic criterion is derived for the qualitative analysis of the delay problem. 

Since any quantitative analysis requires the detailed knowledge of the controlled 

system and the control algorithm to be used, we have chosen a prototypical, real-time 

control system with a commonly-used control algorithm — a robot control system 

with the computed torque algorithms — to give a detailed account of computing 

time delay effects. For such a system, the upper bounds of computing time delay 

for system stability and performance are derived as an extra constraint on controller



189

design and selection of CPUs to implement the control algorithm.

Both the knowledge-based and the NN-based coordinator are evaluated for the 

delay and loss problem via simulation. Since the internal structure and/or parameters 

of the low-level subsystems are not affected by adding the coordinators, the servo 

controllers of the subsystems are designed separately from, and independently of, the 

others. Therefore, the upper bounds of computing time delay are still valid even when 

two such subsystems cooperate. Moreover, the maximum number of iterations with 

an average search speed is derived and can be used to estimate the computation time 

required for the KBC. Both the qualitative and quantitative analyses of the robot 

control/coordination system have demonstrated how system performance is affected 

by the computing time delay and how a given system can be evaluated based on the 

computing time delay.

By adding the coordinator, the system performance is improved even under the 

effect of computing time delay, as long as the coordinated subsystems are stable in 

the presence of computing time delay. The coordinator cannot be used to stabilize 

an unstable multiple-system. Moreover, for coordinating two 2-link robots holding 

an object, both KBC and NNBC are shown to be not sensitive to the loss problem.
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Figure 8.2: Performance of the KBC with the 1st group of gains.

200 o without the KBC 
□ with the KBC unstable180

160

140

■a 120

20 □-

delay (ms)

Figure 8.3: Performance of the KBC with the 2nd group of gains.

200
unstableo without the KBC 

□ with the KBC

 1— i— i— i— i— i— ■— i— i— i— i— i— ■— i— i— i— i— i— i— ■— i— r —i— r ~ i — i
0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6  6.5

delay (ms)

Figure 8.4: Performance of the KBC with the 3rd group of gains.
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Figure 8.7: Performance of the NNBC with the 3rd group of gains.



C H A PTER  IX

CONCLUSION

Focusing on the coordination of multiple systems, two practical and general de­

signs have been developed: a knowledge-based coordinator (KBC) and an NN-based 

coordinator (NNBC). The basic principles we followed are (1) in a hierarchical struc­

ture; the higher the level is the more intelligence it has for decision making, but 

the less precision with which it knows about the internal structure and parameters 

of lower levels, and (2) different levels should be independent of each other in the 

sense that the internal structure and parameters are not affected by adding other 

levels. W ith either of the proposed coordinators, the coordinated system forms a 

hierarchical structure in which the high level is the coordinator and the low level is 

the coordinated subsystems. By adding either of the coordinators, the two princi­

ples are satisfied. This implies that some commercially-designed servo controllers 

may be directly coordinated for some tasks which require multiple-system coopera­

tion. Considering the implementation of a control algorithm on digital computers, 

the effects of computing time delay has also been analyzed in this dissertation. For 

a robot control system, the upper bounds of computing time delay are derived as 

extra constraints on the control system design. Both the KBC and the NNBC are 

evaluated in terms of computing time delay.
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The KBC combines the techniques of intelligent control and neural networks. 

The low-level subsystems are viewed as a mapping from the system reference inputs 

to the system outputs. In order not to interfere in the internal structure and/or 

parameters of the low-level subsystems, the only action that the coordinator takes is 

to issue a sequence of appropriate reference inputs. The basic idea is to estimate the 

effects of the reference inputs using a predictor and to modify them through a search 

in a knowledge base in order to achieve the desired performance. A general-purpose, 

MIMO predictor has been designed using neural networks. By introducing the pre­

dictor, the knowledge base for multiple-system coordination is greatly simplified, 

and each reference input is evaluated before its actual application. The NN-based 

predictor deals with the unknown parameters and/or time-varying properties of the 

coordinated multiple-system, while the KBC emphasizes logical reasoning and deci­

sion making.

The NNBC is designed based on the property that a multilayer perceptron can be 

used to approximate any continuous mapping. The basic structure of the NNBC is 

a multilayer perceptron. The outputs of the NNBC are the coordination commands 

to the low-level subsystems, that is, the outputs of the NN are the control variables 

of the low-level subsystems. NNs are usually trained by using the output errors of 

the network. However, unlike the indirect control schemes such as those proposed 

in [NP90], when an NN is used to control a plant directly, the output errors of the 

network are unknown, since the desired control actions are unknown. Therefore, 

in designing the NNBC, one of the key problems is to develop an efficient training 

algorithm. We want to train the NNBC by using the output errors of the controlled 

plant, instead of using the unknown output error of the NN. A simple training 

algorithm has been developed which enables the NN to be trained by the output
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errors of the controlled plant. In this way, the proposed algorithm enhances the 

NN’s ability to handle control applications.

The effects of computing time delay on the stability and performance of controlled 

systems have been carefully studied for both a general robot control system and the 

coordinators developed in this dissertation. The effects of the computing time delay 

are classified into delay and loss problems. We concluded that the delay problem 

affects the control system through a permanently acting perturbation, while the loss 

problem is equivalent to random disturbances. For qualitative analysis of the delay 

problem, a generic criterion is derived in terms of system stability. For quantitative 

analysis, upper bounds of computing time delay on system stability and performance 

are derived for a robot control system with the computed torque algorithm. These 

upper bounds can be used as extra constraints on controller design and CPU selection 

to implement the control algorithm. Both the KBC and NNBC are evaluated in 

terms of the delay problem and the loss problem via simulation. Since the internal 

structure and/or parameters of the low-level subsystems are not affected by adding 

the coordinators, the upper bounds of computing time delay still hold when two such 

subsystems work cooperately. This is the basis of evaluation for both the KBC and 

NNBC.

The main contributions of this dissertation are summarized as follows:

1. A KBC has been developed by combining the techniques of intelligent control 

and neural networks. Using an NN-based predictor, the design of the knowl­

edge base for multiple-system coordination is simplified. The KBC emphasizes 

logical reasoning, while the ability of learning.mainly relies on the NN.

2. A direct adaptive control and coordination scheme is developed using neural 

networks. A simple training algorithm is proposed based on the BP algorithm.
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This algorithm solved a major problem of neural networks in some control 

applications in which the output errors of the network are unavailable for on­

line training.

3. As a high-level coordinator, by adding either of the KBC or NNBC the co­

ordination system forms a hierarchical structure. Therefore, some industrial 

robots with independently and commercially designed servo controllers could 

be coordinated to perform more sophisticated tasks than originally intended.

4. On-line collision avoidance of multiple robots working in a common workspace 

can be accomplished by a simple method, without imposing any constraint on 

path planning, trajectory planning, and design of servo controllers.

5. By using either the KBC or the NNBC, we open a new way to solve the problem 

of coordinating multiple robots holding an object.

6. Replacing a conventional controller, the NN-based controller overcomes the 

negative effects of a long system response delay, nonlinear elements with dead 

zone and/or saturation, and process noises in a class of industrial process con­

trol systems.

7. The NN-based predictor alone can be used as a general-purpose predictor for 

many industrial applications.

8. The theory of performance evaluation on real-tim e computer control systems 

is extended. The computing time delay problem and the control output loss 

problem are defined, and their effects on system performance are analyzed in 

detail. For a certain type of robot control systems, the upper bounds of the 

computing time delay are derived which can be used as an extra constraint on 

controller design and CPU selection to implement a control algorithm.
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The future work of this research includes:

1. Extend the KBC to coordinate more than two robots in a common workspace 

to avoid collision.

2. Investigate the application of the general-purpose predictor in intelligent deci­

sion support systems.

3. Develop a method to determine the number of hidden nodes when designing a 

NN-based controller.

4. Extend the NNBC to coordinate two multiple-link robots.



A P P E N D IX
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A P P E N D IX  A

SIMULATION OF TWO 2-LINK ROBOTS 
HOLDING AN OBJECT

A l.  K inem atics and D ynam ics o f a 2-L ink R obot 

D irect K inem atics

TReferring to Fig. 3.6, when the joint position q = [qi, <72] is specified, the 

position of the end-effector is given by

P x  —  L i  c \  +  L 2  C12 

Py =  L \  S \  +  L 2 S \2 ,

where L{ is the length of link i ,

C{ =  cos<7;, s,- =  sin<7i, i =  1, 2, and

c12 =  cos(^i +  q2), S12 = sm(qi +  q2).

Inverse K inem atics

Given the position of the end-effector (P x , P y ), the joint positions are computed 

as follows:

p
(1). compute 0 =  a rc tan —

, , ,  . „ , L l - L \ - ( P *  + P l)
(2). compute — arccos 1

2 Li JpT+pI
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(3). compute q\ = 0 — 0i,

(4). compute <72 =  arccos
■p i + p ;  -  l \ -  l \ '

2 L\ L 2

Jacobian M atrix

J EE

d P x d P x

dqi dq2

d  Py d  Py

J - 1 =
1

L\ L2 s 2

-(Li si +  L 2 S12) — L 2 S12

L\ ci +  L 2 C12 L 2 C12

. dqi dq2

L 2 C12 L 2 Si2

—( L i  Ci 4- L 2 C12) —{ L i  Si +  L 2 S12)

—Li Ci cji — L 2 Ci2 (qi +  q2) —L 2 ci2 (q\ +  q2)

L i  si <71 — L 2 S12 (<71 +  q2) —L 2 s i 2 (qi +  q2)

D ynam ics

The dynamic equation of a robotic manipulator in joint space, in general form, is

H (q )  q  +  C(g, q )  q  +  G(g) +  JT /  =  r , (A.l)

where q , r , f  are the joint position, joint torque, and the force exerted on the end- 

effector, respectively. H(g) is the inertia matrix, C ( g ,  q) q  represents the Coriolis 

and centrifugal forces, G ( q )  represents the gravitational force, and J is the Jacobian 

matrix. For a 2~link robot, we have q  = [<71, q2]T , r  =  [ri, r2]T, and /  =  [f x, f y]T. 

Then each term of Eq. (A .l) is given as

H (q )  =
miLci +  m 2(Li +  L +  2 L i L c2c2) +  A +  I 2, m 2L iL c2c2 +  Tn2L ^2 +  I 2 

m 2 Li Lc2 C2 +  m 2 L + I 21 m 2 L%2 +  I2

C{q,  q) =
—2 m 2 Li Lc2 S2 q2, —m 2 Li L c2 s2 q2

m 2 Li Lc2 s 2 <71, 0
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World coordinates

Figure A.l: Basic configuration of the simulated system.

G(q) =
ni l  L ci g c\ +  vn,2 g ( L c2 c\2 +  L \  ci) 

m 2 L c2 g  ci2

rrii, L ci and /,■ are the mass, mass center and moment of inertial of link i, respectively. 

g  is the gravitational acceleration.

A 2. S im u la tion  of Two 2 -L m k  R o b o ts  H old ing  an O b jec t

In the mechanism of two 2-link robots holding an object, it is assumed that 

there is no relative motion between the end-effectors and the object. The object 

is called the main body of the mechanism because the position of every link in the 

mechanism can be determined by given the position of the main body [Wal86]. The 

basic configuration is shown in Fig. A.l. Let v  — P  be, the velocity of the object, 

then the motion of the object is described by

m v -  f x -  f 2 =
0

-m g
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where /,• is the force exerted by robot i, i — 1, 2. in is the mass of the object and 

g is the gravitational acceleration. Referring to Eq. (A .l), the force constrained 

dynamic equation of robot i in joint space is

H,■(?,■) qi +  C i{qi, q{) q{ +  G;(q,) +  J  J  =  r {

Then the simulation procedures are listed below.

1. Given: the acceleration of the object v .

Compute: the velocity of the object v  by integration.

2. Given: the velocity of the object v .

Compute: the position of the object P  by integration.

3. Given: the position of the object P .

Compute: the positions of the end-effectors

end-effector 1: P i  =  P ,

• Tend-effector 2: P 2 =  P  — [base.distance, 0] .

4. Given: the position of the end-effectors P i  and P 2.
/TV

Compute: the joint positions of the two robots -qx = [qn, qi2] and q2 =
j i

[<7215 Q22] by inverse kinematics.

5. Given: the joint accelerations q1 and q2-

Compute: the joint velocities q t and q2 by integration.

6. Given: the joint velocity qL and position qn i =  1, 2 .

Compute: the robots’ dynamic parameters H ;(</,), C i(q{, q,), G,-(qf), Jaco­

bian matrices J , and its derivative j ; ,  i =  1, 2.
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7. Given: the joint velocity g;, position g, and joint torque r,-, i =  1, 2 . 

Compute:

K i  = Ti --  C, qt - G i , r, = -j. 9i, i =

and form the equation A X  = JB, where

Ho 0 0 —12 —12 V

0 H! 0 J f  0 Q i

A = 0 0 h 2 0 J l 9 X  = 92

- I 2 J i 0 0 0 /1

. 0 J2 0 0 J * .

m  0 1 0
, and I 2 =

0 m 0 1

[0, - m  g]

K 1

B  = K 2 , Ho

r  i 

r 2

8. Solve X  from A X  = B  to get the accelerations of the object and joints, and 

the forces exerted on the object.

9. Compute the controlled joint torque T ; ,  2 =  1, 2.

10. Go to Step 1.
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