INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms international
A Bell & Howell intormation Company

300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313:761-4700 800.521-0600

Order Number 9308350

A study on the automatic path planning problem for various
workspaces

Jun, Sungtaeg, Ph.D.

The University of Michigan, 1992

UM

300N, Zeeb Rd.
Ann Arbor, M1 48106

A STUDY ON THE AUTOMATIC
PATH PLANNING PROBLEM FOR
VARIOUS WORKSPACES

by
Sungtaeg Jun

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Information and Control Engineering)
in The University of Michigan
1992

Doctoral Committee:

Professor Kang G. Shin, Chairperson

Assistant Professor Edmund H. Durfee
Assistant Research Scientist Dr. Jun Ni
Associate Professor Michael W. Walker

RULES REGARDING THE USE OF
MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations sub-
mitted to The University of Michigan and made available through
University Microfilms International or The University of Michigan are
open for inspection, but they are to be used only with due regard for the
rights of the author. Extensive copying of the dissertation or publication
of material in excess of standard copyright limits, whether or not the
dissertation has been copyrighted, must have been approved by the
author as well as by the Dean of the Graduate School. Proper credit must
be given to the author if any material from the dissertation is used in
subsequent written or published work.

© Sungtaeg Jun 1992
All Rights Reserved

To My Wife Dongmin

ACKNOWLEDGEMENTS

In preparing this thesis, I have received advice, encouragement, and support from
many individuals. I have my highest regards for each one of them and thank them
all. Especially, I would like to acknowledge those who have contributed directly to
the successful completion of this work.

I would like to thank my advisor Professor Kang G. Shin for his consistent guid-
ance, encouragement, faith in my ability, and financial support. His guidance kept
me on the right track, his encouragement alleviated my frustrations, his faith in my
ability provided constant strength, and his financial support has been critical for
undertaking this research. Without him, I certainly would not have finished this
work. I am indebted to Professor Michael Walker for his invaluable support for this
thesis work. I also wish to thank the other members of my doctoral committee, Dr.
Jun Ni and Professor Edmund Durfee, for their support in reading and commenting
on this dissertation.

I would like to acknowledge my fellow students in the Ph. D. program in Electrical
Engineering and Computer Science at the University of Michigan, Ann Arbor, for
their assistance. I am extremely thankful to S. Bartlett and J. H. Lee for helping
me prepare this thesis. X. Cui, D. M. Kim, and J. Dionese gave me much needed
encouragement while preparing this thesis. Finally, I thank my family for their moral

and financial support.

i1

TABLE OF CONTENTS

DEDICATION e e e e e e e ii

ACKNOWLEDGEMENTS oo, iil

LIST OF FIGURES it e e vi

LIST OF TABLES s viii
CHAPTER

I. INTRODUCTION e e e e 1

II. LITERATURE SURVEY 7

2.1 Theoretical Solutions, 8

2.2 Heuristic Solutions 000, 12

IIT. ON THE LADDER PROBLEM 16

3.1 Introduction e 16

3.2 Definition of the Reachability Graph 17

3.3 Construction of a Reachability Graph 23

3.4 The Minimum Complexity Bound of a Path Planner 33

3.5 Summary e e e e e 38

IV. DOMINANCE GRAPH AND ITS APPLICATIONS 40

4.1 Introduction L o 0., 40

4.2 Problem Statement 0000000 41

4.3 Partitioning the Workspace 43

4.3.1 Properties of Partitioned Regions 48

4.3.2 Workspace Representation 87

4.4 An Example Workspace 64

4.5 SUMMAary . . .« o v o e e e e e e e e e e 66

V. A PROBABILITY FIELD APPROACH TO ROBOT PATH

PLANNING e 68

51 Introduction o o0 o o 68

5.2 Terminology i e 70

5.3 Definition of Probability Field 71

54 Experimental Results L0000, 81

5.5 Summary L e e e e e e e e 84

VI. CONCLUSION e e 86
BIBLIOGRAPHY s e 88

LIST OF FIGURES

Figure
1.1 A typical hierarchy based automatic task planner. 2
3.1 Representation of a vertex and its neighboring vertices. 18
3.2 A simple example of an edge blockinga path. 20
3.3 Three different types of connections between two nodes. 22
3.4 An example of background edges. oo, 24
3.5 The maximum allowable length of the line segment on a vertex. .. 26
3.6 Distance functionof v. Lo L 0oL 28
3.7 Two edges in the opposite direction of an obstacle vertex. 29
3.8 A sample RG with the addition of the origin and the destination. . 32
3.9 An example with origin and destination. 33
3.10 A position of the ladder and its extension. 34
3.11 The region formed by a PSLG generated by anedge. 35
3.12 Two otherwise identical workspaces with two different codings. . . . 36
3.13 Effect of short guide line. 0 0. 39
4.1 Partitioning of the workspace into regions. 45
4.2 An example of undetected boundaries. 48
4.3 Dominance relation between the regions and its effect on the search. 51
4.4 Typical shapeof aregionin3D. 35

Vi

4.5

4.6

4.7

4.8

4.9

5.1

Generation of 3D regions.o oL oL oL
DG and MDG. e
Projections of asearchpoint.
Regions separated by an obstacle outside their RODs.
A sample workspace with various obstacles.
Fxample 1 of workspace being transformed into probability fields.

The probability field data obtained from Example 1..
IExample 2 of workspace being transformed into probability fields.

The probability field data obtained from Example 2.

Vit

)

75

(i

78

LIST OF TABLES

Table
4.1 Statisticsof regions.o Lo o oL 67
5.1 Simulation results without adjusting the search direction. 81
5.2 Simulation results while adjusting search direction with clearance. . 82
5.3 Simulation results while adjusting search direction with ¢;;. 83
5.4 Simulation results using the example in Figs. 5.1 and 5.3. 84

viii

CHAPTER 1

INTRODUCTION

With advances in technology in flexible manufacturing [74, 73] such as CAD/CAM,
automatic task planning has become increasingly important over the last decade.
The applications of this technique are diverse. Some of the most notable applica-
tions are automatic path generation for mechanical manipulators [46, 47, 83, 43|
and/or autonomous vehicles [81, 26], automatic channel routing in VLSI design [54],
and computer networks [12].

Typically, automatic task planning is performed in the hierarchical manner. Let’s
consider a hierarchy that implements a flexible manufacturing system. Fig. 1.1 shows
a part of such hierarchy. In this example, an assembly process consists of a set of
tasks T = {{1,t,...,t,} where each t; represents the movement of a mechanical ma-
nipulator from one place to another while performing certain operations with its end
effector. Planning the movement is carried out by an automatic path planner. Exe-
cution of the movement plan is carried out in the trajectory planning level by adding
timing information. As in the case of most hierarchical planning, the automatic path
planner receives necessary information from the task planner while providing infor-
mation necessary to the trajectory planner. In this particular example, the path

planner is the middle level of three levels in the hierarchy. As it turns out, path

|

Task Planner

|

Path Planner -
Environment

,]\ l Information

Trajectory Planner/
PID controller

||

Figure 1.1: A typical hierarchy based automatic task planner.

planning is usually a low-level task, yet it requires a lot of work [71]. There have
been significant progresses at the level below the path-planning level, the trajectory
planner, for example by minimizing time [32] or energy consumption [33].

Being in a hierarchy, the importance and the correctness of the role of an auto-
matic path planner is significant, because the other levels of flexible manufacturing
rely on the information provided by the automatic path planning-level. The insuf-
ficient advancement at such an important level is one of the major roadblocks in
achieving the goal of flexible manufacturing.

As an alternative, many of real world applications have adopted manual path
planning. That is, a human guides manipulators from one location to another while
recording their position and orientation. Though the use of manual path planning
eliminates the difficulty of automatic path planning, it creates two new problems:

1) consistency and 2) flexibility. First, there is a consistency problem due to the

variance of humans’ approaches and skills. Humans are very good at heuristics but
differ greatly depending on their background. Furthermore, a human may select the
use of different heuristics at different times depending on his/her emotional status.
This does not necessarily mean that all heuristics are bad. However, unlike the case
of the automatic path planning done by a computer, it is not easy to reproduce the
knowledge of a good human. Secondly, there is a flexibility problem with the use of
manual path planning. Unlike computers, humans are not good at providing many
alternate paths beyond a certain limit. This can limit the flexibility of the next level
of the hierarchy, i.e., the automatic task planning, due to the lack of alternatives
provided by the path planning level.

Though not related to flexible manufacturing directly, there are other areas whose
automation is limited by the lack of an efficient automatic path planner. For example,
the use of robots may be necessary due to hazards (e.g., nuclear dump site) and the
difficulty of human access (e.g., space [78] and/or deep sea exploration [16]).

For the reasons stated above, we need efficient automatic path planners. This is
also an area where the limitations of conventional use of the computers are clearly
shown. Traditionally, computers are designed to follow the programs provided by a
human. Though almost all humans can move their able bodies, they have a difficult
time explaining their reasoning. This is due to the fact that a human does not reason
about moving his body. Even creatures such as bugs that are seemingly unintelligent
can move their able bodies without colliding with any obstacles. This may have been
achieved by nature or through learning or the combination of both.

Initial research efforts have focussed on theoretical approaches. This may have
been caused by the lack of learning mechanism such as neural nets [34, 27]. Schwartz

and Sharir gave an excellent survey on theoretical approaches [71]. McDermott gave a

quite cynical, but nonetheless, useful survey in [52] concentrating mostly on heuristic
approaches.

One of the biggest roadblocks in achieving the general solution of this problem
is its intractability. Reif has proven that certain 3D motion planning problems are
PSPACE-hard [65]. Later, Canny proved that any shortest path planning in 3D
is NP-complete. Since many robot movements other than mobile robots are 3D,
the problem remains. Even for the case of a mobile robot, while moving from one
location to another is 2D, the operation it performs at its destination may or may
not be 3D or higher dimension.

Another problem associated with automatic path planning is the means of obtain-
ing the environment information. In some applications, the environment information
is explicitly given while others require the gathering of such information through sen-
sors such as a camera [2, 66]. In many early solutions, exact environment knowledge
is assumed due to the lack of advancement in sensor technology. This is valid when
environment is set up so that exact information can be given to the robot in many
manufacturing situations. However, even under these situations, the environment
can change due to the existence of other moving robots and/or unexpected intrud-
ers. Hopcroft et al. [21] studied the theoretical basis of multiple moving robot
environments. Lumelsky studied many cases where the environment is unknown
[51, 48] or the sensor has a limited range [50].

In this dissertation, we have addressed three different environments, one 2D and
two 3D environments where exact information is assumed, and we present algorithms
for each specific environment. First, the classical ladder problem has been addressed
in Chapter 3. The problem has been studied by many researchers as the simplest

form of the Mover’s problem [22]. Its minimum bound of the worst-case computa-

(W

tional complexity is known to be 2(n?). Leven and Sharir proposed the most efficient
algorithin known so far, with O(n? logn) time complexity using a free-space decom-
position with trapezoids [40]. In Chapter 3, we propose an O(n?logn) algorithm
for this problem using Reachability Graph based on the connectivity within a set of
selected ladder positions that are critical to the path planning of the ladder. In addi-
tion, we have shown that the actual minimum bound of the worst-case computation
of this problem is Q(n?logn) instead of Q(n?). This proves that our algorithm as
well as Leven and Sharir’s algorithm is computationally optimal.

Chapter 4 addresses the problem of a point path planning in a digitized 3 dimen-
sional workspace. Although the shortest path planning of a point in a k-dimensional
space is proven to be NP-Complete for k > 3, it is possible to find the shortest path
in a restricted environment. Recti-linear visibility is defined in a digitized workspace.
Under a digitized workspace, we have defined an equivalence relation, denoted by
~, based on recti-linear visibility. Being an equivalence relation, ~ partitions the
workspace into a set of equivalent classes, called regions. It is shown that these
regions are related by dominance relations. Upon forming a graph on the basis of
this relation, it is shown that the recti-linear shortest path can be found fast thanks
to regionalization instead of searching individual cells.

In some cases, this regionalization produces too many regions due to the frag-
mentation of the workspace. This happens when the workspace contains many small
obstacles and or obstacles with many slanted edges. In Chapter 5, the path plan-
ning problem for such an environment is addressed. It is shown that our algorithm
provides fast solutions using a heuristic measure called as the probability field. The
probability field is defined using the probability that each cell of a digitized workspace

becomes a destination. A formula for memoryless probability has been presented and

6

examples based on this are analyzed. Finally, this dissertation concludes with Chap-

ter 6.

CHAPTER II

LITERATURE SURVEY

As mentioned in the previous chapter, automatic path planning is the problem
of finding a path from one location to another. Though we have limited the problem
to geometric path planning, we have to mention some of the basic solutions used in
other aspects of the problem. First, we have to transform a geometric object into
symbolic constraints so that computers can manipulate it. In its most symbolic form,
path planning is performed in a graph, i.e., graph search.

For graph search problems, Moore [55] has suggested an algorithm to find the
shortest path between two vertices in the graph. It is well known as the Breadth
First Search (BFS) technique. The limitation of the BFS is that it can solve the
shortest path planning problem for only graphs with unique length edges. Later,
Dijstra [15] has suggested a O(n?) algorithm for a graph with non-unique length
edges. Katoh et al. have proposed an algorithm to find the k shortest paths in [28]
accommodating repetitive queries. The lower bound for computing the shortest path
for every pair of the nodes in a graph has been proven to be O(n?logn) in [84].

It is difficult to apply these graph search algorithms directly to our problem due
to the fact that they do not consider the presence of the obstacles or the volume of the

moving object. However, many efforts have been made to transform the geometric

~1

S

problem into a graph search problem by eliminating the effect of the volume of
the moving object and the obstacles. Udupa [83] has used the configuration space
approach in mechanical manipulator motion planning where the size of a moving
object can be reduced to a point representing its configuration variables instead
of cartesian positions of the mechanical manipulator. Later, Lozano-Perez refined
the notation and a more general algorithm to obtain the configuration space for a
polygonal object moving amidst polygonal obstacles [44]. Khatib has proposed an
artificial field approach [31] where the destination generates attracting forces while
an obstacle generates repelling forces. This approach is extremely useful for many
applications in the arca of mobile robot navigation because we can generate an
artificial field as sensors detect obstacles. This approach is inherently heuristic and
has become the basic idea for many heuristic applications. By contrast, Tarski’s
Theorem of real closed field [80] has been the base of many theoretical works [9,
68, 36]. Using these basic tools, the earliest attempts in solving the automatic path

planning problem were made to find the shortest path in a given environment.
2.1 Theoretical Solutions

Lee and Preparata [38] have proposed an O(nlogn) time algorithm to find the
shortest path between two points inside a polygon. They have used the Delaunay
triangulation technique [13]. Later, Guibas et al. have improved the algorithm to
handle repetitive queries in [17, 13].

The L, shortest path, sometimes known as the Manhattan path, has been studied
by DeRezende, Lee, and Wu [14] in the presence of orthogonal barriers. Their solu-
tion is based on the BFS. The Fuclidean shortest path, L, shortest path, has been

proposed in [38] using the Shortest Path Map (SPM). In the SPM, the obstacles are

limited to vertical lines. Consider a point A and a vertical line BC in the workspace.
Then, there are two different regions in the workspace: (1) the region that is visible

from A and (2) the region that is not. For any point D in (2), the shortest path

between A and D is either ABD or ACD. That is, (2) is further divided into two
regions. Any vertical line inside a region will further divide the workspace. Thus, the
entire workspace is divided into several regions. The limitation of the SPM is that
it only accepts vertical lines as obstacles. For a more general situation, the visibility
graph (VG) has been used in (10, 45, 11, 75]. Unlike the SPM where the obstacles
are limited to orthogonal barricers, the VG assumes the obstacles to be polygons. The
VG is based on the observation that when two points are not visible from each other,
the shortest path between them contains at least one vertex of an obstacle. Hence,
the distances between all the visible pairs of vertices of the obstacles are calculated
a priori and transformed into a graph. The actual search for the path is carried out
using the Dijstra’s graph search algorithm on this graph.

Clackson et al. [11] have extended the definition of visibility graph to L,-metric
system and proposed an O(nlog®n) time algorithm to construct the L; visibility
graph. They also applied the same algorithm to construct a 3D L, visibility graph.
However, they failed to show the actual application of the 3D visibility graph in the
shortest path planning problem.

Shortest path planning for a moving disc was developed by Chew in [10]. The
algorithm first converts the obstacles into a configuration space and constructs the
visibility graph based on the configuration space. The shortest path was searched
using a graph search algorithm on this graph. The overall complexity of the algorithm
is O(n? logn).

Later, Canny [9] proved that any shortest path planning in 3D is NP-Complete

10

and proposed the roadmap algorithm which is a one dimensional subset of the config-
uration space of a robot manipulator using the generalized (multivariable) resultant
for a system of polynomials and achieved single exponential time complexity. The
roadmap algorithm has achicved an exponential speedup over an existing algorithm
[36] which has a double exponential growth in time with the number of variables.
Due to this excessive computational requirement, we consider solutions to a simpler
problem, i.e., Find Path Problem (FPP), known as the Generalized Mover’s Problem
[22].

Most FPP algorithms depend on the model of a moving object and/or its envi-
ronment. The simplest form of a moving object is a point. As stated before, the goal
of reducing a moving object with some physical volume to a point is achieved by the
configuration space approach. After reducing the moving object we may apply some
of known algorithms such as the visibility graph or regionalization to obtain a path.

The next simplest form of modeling a moving object is a disc. O’Dunlaing and
Yap [59] developed an algorithm that detects the existence of the path while moving
a disc amidst polygonal barriers. Their algorithm is to transform the workspace into
a Voronoi diagram where each vertex of the diagram is represented by its coordinates
and each edge of the diagram by a parabolic function. For each edge of the diagram,
its minimum clearance from the nearest obstacle edge is precalculated to determine
whether the disc can be slid through. Path planning is performed using a depth-first
search on this Voronoi diagram. Overall complexity of the algorithm is O(n log n).

The main advantage of using the Voronoi diagram path planning is the safety of
the generated paths. The path generated using the Voronoi diagram always move
the disc through the middle of two obstacle edges. In contrast, the paths generated

using the visibility graph usually touches a surface or vertex of an obstacle. Though

11

it can find somewhat a safer path, the resulting path can be very long. Suh and Shin
[79] have proposed an algorithm that finds the minimum weighted distance-clearance
using a Voronoi diagram and dynamic programming.

Moving a line segment has been extensively studied by Schwartz and Sharir [68,
69]. Their algorithm converts the workspace to a map of critical curves. The critical
curves are defined as an area in which the line segment can move with only limited
motion. They classified the critical curves into three different models according to
the motions allowed in the area. Upon identifying all the critical curves the algorithm

works as follows:

1. Find the intersection points of all the critical curves with each other and with

the walls.
2. Sort the intersection points along each critical curve.
3. Find the crossing map according to crossing rules.

Schwartz and Sharir [69] implemented the same algorithm in 3D with O(n®logn)
time complexity. Later, e and O’Rourke [29] improved the algorithm so as to make
it have O(n®logn) upper-bound complexity and O(n*) lower-bound computational
complexity.

Shortly after that, O’Dunlaing et al. proposed O(n?lognlog® n) algorithm using
a generalized Voronoi diagram. This was promptly superseded by Leven and Sharir
who proposed an O(n?logn) algorithm using workspace decomposition with trape-
zoids [40]. Sifrony and Sharir [76] proposed another algorithm to solve the ladder
problem. Although it has the same computational complexity of O(n?log n) as Leven
and Sharir’s algorithm, it improves the actual computation time under sparse obsta-

cle positioning. The minimum bound of the worst-case computation time known so

far is 2(n?) as shown by O’Rourke in [61]. However, o algorithm as yet has achieved
this minimum bound.

As for a more general moving object, Lozano-Perez and Wesley studied this prob-
lem and proposed an O(n®) algorithm for moving a convex polygon [45]. Initially,
this algorithm was limited to translational movements of the convex polygon. Later
Brooks and Lozano-Perez improved the algorithm and proposed a hierarchical sub-
division algorithm which allows the rotation of a moving object (7). We will discuss
more about this latter work in the following section, as the algorithm is more or less
heuristic.

Leven and Sharir [42] used a generalized Voronoi diagram'to obtain an O(n logn)
algorithm to solve the path planning problem for purely translational movements of
a convex polygon amidst polygonal obstacles. Later, Leven and Sharir [41] showed
the number of free critical contacts to be O(knA;(kn)log kn), where k is the number
of edges of the moving polygon, and A,(n) is an almost linear function of n. By
combining these two results, Kedem and Sharir [30] obtained an O(n?\,(n)logn)
algorithm to solve the path planning problem fer moving convex polygons.

As for motion planning of multiple moving objects, Schwartz extended his initial
work [68] on the ladder problem and proposed an O(n®) algorithm for two moving
discs [70]. Hopcroft, Schwartz, and Sharir [21] proved the PSPACE-hardness of a
general solution for multiple moving discs while Spirakis and Yap [77] showed the

strong NP-hardness of the motion planning problem for eight or more moving discs.
2.2 Heuristic Solutions

While efforts on the theoretical aspect of path planning were successful with

varying degrees, other researchers emphasized the heuristic aspect of the problem

13

[5, 6, 24, 7, 87). This is mainly because of the lack of gencral solutions in 3D
workspace. To remedy the difficulties involving 3D, there have been attempts to
convert the free space into somewhat manageable form so as to make the FPP easier.
Brooks [5, 6] proposed a generalized cone to represent the free space while the Octree
representation [39] was used by others [23, 26]. Though the Octree is quite useful
for representing 3D objects, it does require a general search algorithm to construct
a path. In [26], Kambhampati and Davis used the A* algorithm to construct a path
for a mobile robot. Since the search was not efficient, they have proposed a pruning
method according to the grayness! of a subtree.

After their work that limits the mobility of the moving polygon to translation
[45], Brooks and Lozano-Perez proposed a hierarchical subdivision algorithm [7]. Un-
like the previous work, the subdivision algorithm allows not only translation but also
rotation of the moving polygon. However, the subdivision algorithm is still heuris-
tic since the number of recursive subdivisions is limited until a certain accuracy is
achieved. Later, Zhu and Latombe [87] improved the algorithm using constraint
reformulation and a new hierarchical search with failure recording to achieve signif-
icantly faster computation.

Another useful method of workspace representation is the vector field approach
proposed in [62]. It transforms the workspace information into a field of vectors
pointing to the correct directions to travel. The major problem of this method is
the precomputation of the vector field of the entire workspace and the vast amount
of information to be stored. To remedy this problem, Miller and Slack revised the
algorithm to dynamically compute the vector field [53].

Khatib [31] proposed an artificial potential field Approach where the workspace

'Portion of a subtree that is occupied by the obstacles.

14

is transformed to a mathematical field so that obstacles generate repelling forces and
the destination generates attracting forces. This method is quite useful for real-time
applications because a robot can simply follow the most attractive line and is often
used in mobile robot motion planning (81, 82, 35]. It is shown that the artificial
potential field approach has the drawback of getting into local minima [35, 24].
Borenstein and Koren [4] proposed a vector-force field algorithm by integrating two
known concepts: certainty grids for obstacle representation [56], and potential fields
for navigation. However, it does not solve the problem completely because a certainty
grid is the representation of inaccurate sensory data about obstacles.

A gradient-field approach proposed by Payton [63, 64] deals with this problem by
calculating the cost of each grid cell of a digital map. The cost of each cell is based
on the score obtained by applying a search algorithm such as A* [19], or Dijkstra’s
algorithm [15]. Though the gradient-field approach is useful in a known environ-
ment, 1t cannot deal with a changing environment efficiently due to its excessive
computational requirements. Zhao [85] proposed an algorithm that can deal with
both known and unknown environments using a heuristic-search method (recovery
algorithm) based on the Ax algorithm. It was shown that the efficiency of Zhao's
algorithm largely depends on the scale factor of the map.

In many cases, it is very difficult for a path planner to know its exact surroundings,
often due to the existence of other moving robots [72], or the sudden change of the
environment caused by errors and/or intruders. In some cases, the environment
is too large to be modeled. The most attractive means of gathering environment
information are vision, tactile sensors, and/or range finders. The survey of this area
is omitted as the topic is beyond the scope of this dissertation.

Lumelsky has worked extensively on automatic path planning in an unknown

workspace. In [51], Lumelsky and Stepanov introduced two new algorithms, bugl
and bug2, which search for the path of a mobile robot in an unknown territory. In
[48], Lumelsky showed that the above work can also be applied to mechanical manip-
ulators after proper modification. Later, he [49] compared the path lengths generated
by bugl and bug2 with those generated by traditional maze search algorithms [60]
while showing the effect of the range of sensors in [50]. In [67], Sankaranarayanan
and Vidyasagar introduced algl by improving bug2 by showing and removing the

condition where bug2 may go into an infinite loop.

CHAPTER III

ON THE LADDER PROBLEM

3.1 Introduction

This chapter addresses the problem of moving a ladder in 2D (called the ladder
problem) amidst polygonal obstacles. The ladder problem is to find a continuous
motion path of a ladder from an initial position to a final position without violating
a set of geometric constraints imposed by the polygonal obstacles. We assume that
both the ladder and the polygons are rigid bodies and do not allow bending or
penetration. The problem has been studied by many researchers [68, 40] as one
of the simplest form of the General Mover’s Problem. In [68], the free space is
partitioned into several 3D manifolds of free space called critical curves. By forming
a connectivity graph among the critical curves, the free space is decomposed into a
set of adjacent connected cells. This solution has O(n®) worst-case time complexity
where n is the number of edges of the polygon obstacles. Another approach to
this problem has been proposed in [59] using a retraction technique. It solves the
problem by retracting the free space into 1-dimensional subspace called a generalized
Voronoi diagram [57, 58]. It was shown that the algorithm can be implemented in
O(n?logn logn) time complexity. Later, an improved algorithm has been proposed

in [40] by decomposing the free space with trapezoids. The resulting computational

16

17

complexity is reduced to O(n? logn).

In this chapter, we present an algorithm which decomposes the free space based on
some ladder positions that are critical to path planning. Upon forming a graph using
these positions, Reachability Graph (RG), we can decompose the entire workspace
based on a finite number of critical positions. It is shown that our algorithm runs at
the computational complexity of O(n? logn) where n is the total number of vertices
of the obstacles. This is the same computational complexity achieved in [40] and
is very close to the theoretically minimum of Q(n?) shown in [58]). This theoretical
minimum is based on the n?a(n) nodes obtained from the Voronoi diagram. Later in
this chapter, we will prove that this minimum is not achievable with any non-heuristic
motion planner. Specifically, it will be shown that the minimum bound of a non-
heuristic motion planner for the ladder problem has the computational complexity
of Q(n?logn). This in turn proves the optimality of both our algorithm and the one
proposed in [538] for two different types of motion planner.

This chapter is organized as follows. In the following section, we introduce the
environment and the terminologies used in our problem formulation and solution,
and formally define the RG. Section 3.3 presents an algorithm necessary to construct
the RG and the analysis of the algorithm together with an example. In Section
3.4, we will discuss the ladder problem in general and provide an analysis of the
minimum bound of the worst-case computational complexity of the ladder problem.

This chapter concludes with Section 3.5.

3.2 Definition of the Reachability Graph

Before defining the RG, we will briefly describe the environment and the termi-

nologies used in this chapter. Let’s consider a ladder AjAy in a 2D workspace. One

18

Figure 3.1: Representation of a vertex and its neighboring vertices.

end, A;, of the ladder is marked as its reference point. The workspace is cluttered
with polygonal obstacles which consist of a set of vertices B = {b;,bo,...,b,} and
edges connecting these vertices. Notice that these vertices also include the bound-
aries of the workspace. We assume all the polygons to be simple, i.e., there are only
two edges meeting at each vertex. This assumption should not reduce the general-
ity of our algorithm as any complex polygon can be represented by a set of simple
polygons. We denote cw(b;) to be the clockwise vertex of b; that shares an edge with
b;. Similarly, ccw(b;) denotes the counter-clockwise vertex of b;. An edge e; refers to
the edge connecting b; and cw(b;). In the example shown in Fig. 3.1, cw(b;) denotes
b, while ccw(b,) denotes by. Also, ¢; denotes the line segment bycw(by), i.e., bybs.
An edge e; also defines an inequality predicate f. () where f, (z) < 0 represents a
point & that is located on the obstacle side of e;. Otherwise, the point z is said to
be on the free side of e¢;. The same point is said to be inside of the obstacle if the
point is completely surrounded by a set of edges and is on the obstacle sides of all
the obstacle edges surrounding it.

A position ¢ = {¢,,¢9} of the ladder A, A; represents the location (c,) of its

reference point (A;) and the orientation! (c¢g) of the ladder. The dual of a position

lthe angle between A; 4. and the horizontal line

19
¢ = {¢p, ca} is referred to as d*(c) is {c}, cp} where

c, = cp+ Ricy) | A1 Az |

69 = —Cq

where R(cy) is a rotation matrix and | A;A; | is the length of the ladder. Basically,
the dual of a position represents the same line segment expressed using the other
end, A;, of the ladder as its reference point. We use A;(c) and A,(c) as the respective
positions of A; and A; when the ladder is at position ¢. The ladder at a position
¢ corresponds to a line segment @yaz where a; = Ay(c) and a2 = Az(c). The line
segment corresponding to the ladder located at ¢ is denoted by I(¢).

A position c of the ladder is said to be frce when the corresponding line segment
aja; neither intersects, nor stays completely inside of, any polygon obstacle. Col-
lectively, the set of all free spaces are referred to as FS (free space). FS was shown
in [ShSw83] to be three dimensional manifolds. A path of the ladder is defined as a
contiguous sequence of positions in F'S that the ladder will go through. In particu-
lar, a position of the ladder is said to be on a vertex v when a part of the ladder is
touching v. Similarly, the ladder is said to be on an obstacle edge when a part of the
ladder is touching the edge. When two obstacle vertices « and v can be connected
by a straight line without intersecting any other obstacle edges, the two vertices are
said to be wvisible from each other and such a relation is denoted as uVv or vVu.

Let’s consider a simple movement of the ladder (see Fig. 3.2). The visibility
between the origin and destination positions, ¢, and aj, of A, is blocked by obstacle
edges ¢, €3, €4, and e;. Among these edges, €; is the closest to the position (a,)
of A,. Ignoring all other obstacle edges, the only possible way for the ladder to go

around the edge €, is to pass through the extension of either ajv; or ajv,. We refer

Figure 3.2: A simple example of an edge blocking a path.

the motion that passes through the extension of a}v; (¢jv;) to as clearing the vertex
v1 (v2). Had we chosen to clear vy, any subsequent movements should clear either
vy or vs to avoid the edge e4. Suppose v, and vy are chosen as the vertices to be
cleared. If we do not consider the other part of the ladder, the shortest path for A,
to clear both vertices is to follow the straight line between v, and v4. As the ladder
is a rigid object, the other part of the ladder also has to clear both v; and v4 in order
for A; to clear v; and vy. Here, the line segment T7v; is said to be a guide line for
this particular pair of the origin and destination, a; and .

Literally speaking, any visible pair of obstacle vertices can form a guide line for a

21

certain combination of the origin and destination. However, some of the guide lines
are not available as certain ladder positions lining up with the guide lines are not
free of obstacles. Also, the ladder may not move from one guide line to another due
to the surrounding obstacles. For example, in Fig. 3.2, 307 is not valid a guide line
because the short distance between the two vertices forbids for the ladder to line up
with 7373. On the other hand, the ladder lined up with 7375 needs non-trivial motion
to move to a position that lines up with v306. The Reachability Graph (RG) is based
on the graph representing the availability of such guide lines and their connectivity.

More precisely, the RG is defined as follows.

Definition 1 The RG is a graph {N, E} such that
NClLxVEECNXxxN

where I, = {1,2} is the set of the ladder’s two ends and V is the set of obstacle

vertices. There is a node n = {¢,vj, v} € N when
1. v; is within the line of sight (i.e., visible) from vy,

2. if 1 =0, c = {vj,\, 5} is a free position of the ladder where M, ., is the

orientation of the line connecting v; and vy, or
3. ifi =2, d*({vj, Ay, 0, }) is a free position of the ladder.
There is an edge between the two nodes ny = {i,vj,vr} and ny = {¢',v},v;} when
1. i #4,v; = v} and v = v}, or

2. either v; = v} or vx = v and there is a path for the ladder to follow while

staying on the obstacle vertex v;.0

22

(b))

Figure

3.3: Three different ty

Pes of connectjops between two nodes

23

A node of the RG represents a position of the ladder at the guide line formed by
two visible obstacle vertices, provided the position is free from obstacles.

There are three types of edges in the RG (see Fig. 3.3). They are:

e Edges corresponding to straight line paths along the guide line. (Type I edge

in Fig. 3.3(a).)

e Edges corresponding to sliding motion paths between two positions in the op-
posite sides of a vertex on which the line segments are located. (Type II edge

in Fig. 3.3(b).)

o Edges corresponding to rotational paths between two neighboring guide lines

sharing an obstacle vertex. (Type III edge in Fig. 3.3(c).)

By the definition of the RG, each node has at most 5 edges. They are: one type
[edge, two type II edges and two type III edges. The existence of a type I edge is
guaranteed by the mere existence of the two nodes connected by the edge. However,
type Il and type IIl edges may or may not exist depending on the surroﬁnding
obstacles. In the next section, we will describe the factors that determine nodes and

their edges to form a reachability graph.
3.3 Construction of a Reachability Graph

All vertices are assumed to be doubly-linked with those vertices with which they
form obstacle edges. Since polygons are assumed to be simple polygons, each vertex
is linked with two other vertices. For convenienée of representation, we denote the
two vertices that form obstacle edges with a vertex v as cw(v) and ccw(v).

First, we need to obtain the set of all visible edges from each obstacle vertex. In

some cases, only part of an edge is visible from the vertex. In other cases, none of

24

Figure 3.4: An example of background edges.

the vertices of the visible edge is visible from the vertex due to the overlapping with
next visible edges. Therefore, we not only have to obtain all pairs of visible vertices
but also have to get all pairs of edges which are partially visible. We will call such
edges background edges. In the example of Fig. 3.4, the edge 7705 is a background
edge from v;’s standpoint as neither v; nor wvg is visible from v; while part of this
edge, wWw, is visible from v. Node {1, v,,v4} may or may not exist depending on the
length of the ladder and the distance between v, and u. Same can be said between
v; and w. We need to know all the background edges to determine whether or not
any particular position is free.

As there already exist many known algorithms to obtain such visible edges, we
will use one of them. One may find more detailed algorithms and a good survey of
such algorithms in [75]. We assume that such an algorithm returns a doubly-linked
list of visible edges, Visible_Edge_List, for each given vertex. The list is sorted by

polar angle using v, as the origin of the polar coordinates.

25

Using a vertex v’s list of visible edges, we now compute the distance between
each visible edge and the vertex v. Let pip; be a visible edge from v and 6, 57;(0) be
the distance between the visible edge p;p; and v at angle 0. Then, é,55;(0) can be
computed using

d(pipy:v)
s=-(0) = si"(ﬂp—zf’\n.',p,) be [)‘vypn)‘v,p,]
nhpipy -

00 otherwise.

Then, the distance to any visible edge from v at angle § becomes

6,(0) = 7)%& 6,,,,,—..,-,-1—

where L is the Visible_Edge_List.

Using this distance function §,(8), we can now determine the existence of a node

in the RG as follows.

Theorem 1 There erists a node n = {1,v,v;} in the RG if and only if
d(v,v;) < 8y(Ay,), d(A1, A2) < 6y(Ap)

where d(v,v;) is the distance between v and v;.

Proof: The condition d(v,v;) < 6,(A,,,) is the definition of a visible vertex while
the second condition defines the position corresponding to the node that represents
a free space. By the definition of a RG, the node n and its dual n¥ = {1,v;,v} are

valid members of the node set of the RG.

Corollary 1 If there exists a node n = {1,v,v;} in the RG, there also exists a node

n* = {2,v,v;} in the RG.

One can always determine whether or not there exists an edge between two nodes

as in the definition of RG. As mentioned in the previous section, there are three types

26

Figure 3.5: The maximum allowable length of the line segment on a vertex.

of edges. The existence of Type I edges is guaranteed by the existence of the nodes
connected by the edges. Type 11 and Type III edges can be obtained using 6,(8).
According to the definition of RG, an edge between two nodes exists when there is a
continuous path between the two positions represented by the nodes while the ladder
remains on v. This means that there should be a free space available for the ladder
lying at all angles between its orientations at the two positions. One can determine
whether such positions exist or not by checking the following function. Let [,(8) be
the maximum length of a line segment on vertex v at angle 6 (see Fig. 3.5). Then,

[,(8) becomes

1,(0) = 6,(0) + 6,(0 — 7).

The condition for the existence of a continuous path of the ladder on v at an
angle in [0y,0,] is

. . < 2 a1
oex[éllilozllv(()) <| A1Ax |.

Fig. 3.6 is the plot of é,(0) and [,(0) for the example in Fig. 3.4. Since [,(0) as well

27

as 6,(0) is a combination of several functions, the infimum may occur at the infimum
of each function within its range. The infimum of é,, 5%;(#) occurs only at one of the

following orientations

8 = A,,, or
/\,,,,,J or

= Ay, + T if (Ao, +7) € Ao, s Aviw,)-

We denote the above three angles as Agg;(v). Then, the connection between

{1, v,0;} and {1,v,v;} exists when

1,(0) <| Ay Az | for 0 € Avwz(v) U Av(v)

UkUI€EZ

where = is the set of all edges in the opposite side of 7;7;. From now on, we refer
Avw;(v) to be as the set of critical angles of v from v’s standpoint.

Using the set of critical angles, we now describe our algorithm Scan that actually
constructs the RG. For each obstacle vertex, Scan computes all the nodes of the RG
by obtaining all the guidelines generated by the obstacle vertex. This can be achieved
by checking all possible guide lines that can be generated by the vertex. That is,
Scan must check all the obstacle vertices visible from the vertex and determine
whether the line connecting the two vertices is a valid guide line or not.

Suppose v; i1s the obstacle vertex Scan is currently working on. First, Scan
needs to compute the set of all visible obstacle vertices. This has been studied
extensively by several researchers [43, 75, 1], so their results will be used by Scan.
Let Visible_Edge_List of v; be the set of all obstacle vertices visible from v;, sorted
by their polar angle with v; as their reference point.

Next, the algorithm scans Visible_Edge_List until it finds the edge that is on

the opposite side of the first vertex of the list in v;’s view (see Fig. 3.7). This is done

28

w\/ v\,,\

distance

(o] 90 180 270 360

angle

Figure 3.6: Distance function of v.

29

Figure 3.7: Two edges in the opposite direction of an obstacle vertex.

in step 2 and step 3 of Scan. In step 2, the two pointers ' and B are initialized to
point to the first edge in Visible_Edge_List. In step 3, Scan advances F to point
to the next edge in Visible_Edge_List while leaving B to the first edge until F is
opposite direction of B in v;’s view.

Then, Scan first determines whether or not a particular visibl'e line is a valid
guide line or not by comparing the length of the ladder, | A;A; |, with the distance,
1,;(0), between the two edges F' and B. where 0 is the set of critical angles due to F
and B. If it is a valid guide line, Scan generates the corresponding nodes of the RG
and connects them accordingly. Notice that two nodes are generated so that Scan
can accommodate the dual of each ladder position. This procedure continues while
advancing I and B alternately until B points to the first edge of Visible_Edge_List
again.

Procedure Scan(v;)

1. Sort the element of Visible_Edge_List of v; by their polar angles.

30

2. Assign I' and B to the first edge of Visible Edge_List.
3. While \,,;_s — A\, B~ < m do F := RLINK(F) end
4. While RLINK(F) # START
(4a) if A\, pms > A\y,B—E + 7 then
if 1,,(0) >| A;A; | for 0 € ArN Ap
Determine visible vertices w and « for F — S and F — E.
Connect {1,v;,w} and {1,v;,z}.
Connect {2,v;,w} and {2,v;,z}.
(4b) else
if 1,,(0) >| A1 Ay | for 0 € ArN Ap
Determine visible vertices w and z for ' — S and B — S.
Connect {1,v;,w} and {2,v;,2}.
Connect {1,v;,,w} and {2,v;,z}.
(4¢) if Ay r_s > Avp—s + 7 then F := RLINK(F)

(4d) else B := RLINK(B).

Now, we describe some of the characteristics of the algorithm Scan and the graph,

RG, it generates.

Theorem 2 The computational complexity of the algorithm Scan is O(nlogn) where

n is the total number of edges in the workspace.

Proof : Each of the steps in the algorithm Scan involves only comparisons and
arithmetic operations. All steps except for Step 1 are the linear processing of an
n-element list. In Step 1, a list of length n needs to be sorted. Hence, the time
complexity of Step 1 is O(nlog n). In Step 4, we need to check at most n edges, and

there are at most 6 positions to check hefore determining the connectivity. Therefore,

31

the complexity of Step 4 is O(n). So, the overall complexity is O(nlogn). B

Since there are n vertices, we need to call Scan n times. Therefore, the complexity
of the overall algorithm is O(n?logn).

Let’s consider the example workspace in Fig. 3.9. A part of the reachability graph
generated for this example is shown in Fig. 3.8. Due to the complexity of the graph,
the figure shows only those nodes related to b, and bs. In this example, there is no
Type III edge involving b; and bs in the RG. Basically, Type I and Type II edges al-
ways generate two symmetric nodes corresponding to the dual of the ladder position.
This results in two identical subgraphs in the RG. Depending on the arrangement of
the obstacles, these two subgraphs may or may not be connected. However, a Type
IIT edge always connects two nodes, one from each subgraph. Without any Type III
edge, the RG shown in Fig. 3.8 is not connected, implying the existence of certain
origin and destination pairs that cannot be connected.

Suppose a specific origin and destination pair is given and we want to move a
ladder from {a, b} to {c,d} in the example workspace of Fig. 3.9. Using the algorithm
described in Section 3, we can coistruct the RG. In addition to the graph obtained
from the obstacles, we add four temporary vertices to the workspace as shown in
Fig. 3.4. Basically, these four vertices are the positions of A; and A, at the origin
and those at the destination. In this example, we added temporary vertices a, b, c,
and d. After adding these vertices, we can compute the added nodes of the RG using
the algorithm Scan. Upon construction of the RG, we may use any graph search

algorithm to determine the path between the origin and destination.
Corollary 2 The addition of temporary vertices can be computed in O(nlogn) time.

Proof: Since each additional vertex requires O(n log n) time complexity, adding four

32

212 242 262 232
112 | 1427 162 ¢ 1327
rbor T 7
B I
I IR
I A

(R N S S . S S S
| 121 | 124 T | 126 123
L J— [—O)
221 224 225T | 226 223

|

254 251] 252 253 256

o ‘ o o D
[@ N O o o
154 151 152 153 156

Type I edge

******* Type Il edge

— e e e Type Il edge

Figure 3.8: A sample RG with the addition of the origin and the destination.

33

b2

Figure 3.9: An example with origin and destination.

more vertices can be done with additional O(nlogn) time complexity. Therefore,
overall complexity remains to be O(n?logn). 1

After adding the origin and destination to the graph, we can obtain a path be-
tween any origin and destination in O(n?logn) time.

In the following section, we will prove the correctness of our algorithm and discuss

the minimum complexity bound of the ladder problem in general.

3.4 The Minimum Complexity Bound of a Path Planner

Let’s consider a ladder at some position ¢ and its straight-line extension, denoted
by e(c). The position ¢ is in free space when ¢(c) intersects obstacle edges outside
the ladder (see Fig. 3.10). Using this observation, Leven and Sharir labeled a free
space with s(c) = {e;, ¢;} where ¢; and ¢; are two obstacle edges closest to the ladder

among those obstacle edges that intersect the extension of the ladder. Let P; be the

Figure 3.10: A position of the ladder and its extension.

set of all free spaces such that
P; = {c: s(c) = {ei,e;} for some e;}.

Obviously, any two obstacle edges ¢; and €; can form a region of free space labeled
with {e;,e;} as long as some part of e; is within the line of sight from a part of
ei. Then, P; can be represented by a Planar Straight Line Graph (PSLG) which
consists of obstacle edges. In the example shown in Fig. 3.11, P; is represented by
€2€3€6€5€7€3€y.

A PSLG forming P; for some obstacle edge e; is characterized by the following

lemma.

Lemma 1 Let e; be an obstacle edge. Then, the length of the PSLG formed by P; is

Q(n) and P; can be any one of Q(n™) possible PSLGs.

Proof: The proof of the length of the PSLG is straightforward and left to readers.

One extreme example is shown in Fig. 3.11, where P; contains all edges in the

35

//_7 € ~

Figure 3.11: The region formed by a PSLG generated by an edge.

workspace except e; itself. Furthermore, there is a certain edge, es, which appeared
more than once in the sequence. The total number of possible PSLGs corresponds
to the number of possible words whose length is ©(n) over the alphabet of size n.
Thus, there are 2(n™) different PSLGs that an obstacle edge can be associated with.
n

Next, we will show the total number of different PSLGs that a given workspace

can have.

Lemma 2 Let ¢; and e; two obstacle edges in a workspace then their PSLGSs, P; and
P;, may or may not contain any common edge and the order of common edges, if

any, in P; does not affect that in P;.

Proof: We will show two workspaces that are almost identical but have different
PSLGs. In the examples in Fig. 3.12(a) and Fig. 3.12(b), P; contains a substring
ezerezesey. However, P; contains a substring eseqe; for the example in Fig. 3.12(a)

and eye e5 for that in IFig. 3.12(b). That is, the positions of e5 in the PSLG codings

36

(b)

Figure 3.12: Two otherwise identical workspaces with two different codings.

are different for otherwise identical workspaces. Also, note that es may not even
appear in P; at all, had the length of €5 been a little shorter. This proves that the
PSLG of one edge does not affect those of other edges.

Using Lemmas 1 and 2, we now prove the worst-case computational complexity

of the ladder problem.

2 . v - . . .
Theorem 3 There are Q(n™) possible PSLGSs for « workspace consisting of n obsta-

cle edges and any non-heuristic path planning algorithm requirves Q(n®logn) steps.

37

Proof: According to Lemmas 1 and 2, therc are n independent PSLGs each with
2(n™) possible combinations. Hence, there are (n™) x Q(n") x ... x (n") PSLGs.
That is, there are a total of Q(n™") different PSLGs with which a workspace can be
represented. Suppose there is a non-heuristic path planner that generates a path
using the description of workspace, origin, and destination. Being non-heuristic, the
planner should always find a path if any. Consider the use of the path planner for two
workspaces with two different PSLG codings, P = P, P,--- P, and P'= P|P;--- P,.
Suppose P and P’ are identical except P, and P/ where P, has an edge ¢; while P
does not. Any non-heuristic path planner should recognize the difference between
P and P’ or it will generate identical paths for both workspaces. Without knowing
whether the ladder position with label {ex,¢;} is free or not, the path planner has
to always avoid such a position. However, it is not possible to entirely avoid such
positions as a certain pair of origin and destination may require the path to include
some of them (e.g., the origin or the destination may start from such a position).
To differentiate all the workspaces with different PSLGs, the planner requires at
least log. Q(n™) comparison steps, provided it can make only ¢ comparisons at a
time. By taking the logarithm inside of the arguments of €, the planner needs at
least Q(log(n™)) = Q(n?logn) comparisons. Hence, the ladder problem requires
Q(n?log n) complexity. §

Now, we will prove the correctness of the proposed algorithm by showing that
the RG has the same power in representing the workspace as the connectivity graph

(CG) used in [40].

Lemma 3 Let G = {V,E} be the RG and G' = {V',E'} be the CG whose nodes
consist of the trapezoids described in [{0]. Then, for every v € V, there exists a

v' € V' such that the ladder position corresponding to v is one of the parallel edges

38
of the trapczoid represented by o',

The proof is straightforward as both the guide lines used in the RG and one of
the parallel edges of each trapezoid of the CG are generated by the visibility lines
connecting two obstacle vertices. The converse of the lemma is not true as there are
trapezoids in the CG which do not have corresponding guide lines in the RG. The
effects of such trapezoids without the corresponding guidelines can be described by

the following lemma.

Lemma 4 Let D be the difference between the vertex set of the RG and the CG.
Then, for cvery d € D and any path of the ladder that passes through the trapezoid
corresponding to d, therc is an alternative path of the ladder that passes through

another trapezoid that has a corresponding guide line in the CG.

Proof: Scan does not generate any node when the distance between two obstacle
vertices are shorter than the length of the ladder. For example, in Fig. 3.13, Scan
does not generate any node corresponding to e; because ¢ is shorter than the ladder.
By contrast, the CG should contain a node corresponding to ¢; as the length of e,
can be longer than that of the ladder. However, any path that passes through the
trapezoid described by ¢; and ¢,, can be represented by the guide line represented
by e,. i1

Based on Lemmas 3 and 4, we can conclude that the RG has the same power as

the CG in representing the workspace.

3.5 Summary

One of the main advantages of using the RG over the CG is that the size of

the RG is much smaller than that of the CG. Hence, the actual search time can

39

Figure 3.13: Effect of short guide line.

be reduced. This is particularly true when the workspace is crowded with obstacles
separated by short distances.

As the computational complexity of the RG is the same as the theoretical min-
imum of the general ladder problem, using the RG is an computationally optimal
approach to our ladder problem. Note that there may be more efficient algorithms
under some additional restrictions to the obstacles. For example, we may find a more
efficient algorithm for a workspace where the distances between the closest obsta-
cle edges exceed a certain value. Though these restrictions may be too severe for its

general applicability, such an algorithm may fare very well in actual implementations.

CHAPTER IV

DOMINANCE GRAPH AND ITS
APPLICATIONS

4.1 Introduction

The most popular solution to the shortest path planning problem (SPPP) hinges
on the visibility graph (VG). The VG method is based on the observation that
when two points in a plane are not visible from each other, the shortest path always
contain one or more vertices of the obstacle in the plane. Based on this observation,
the workspace is transformed into a graph in which the distances between all pairs
of mutually visible vertices are precalculated. The optimal solution can then be
obtained using the Dijkstra’s graph search algorithm [15].

Though the VG is very useful in 2D, it is very difficult to use in higher dimensional
spaces. lor example, when two points are not visible from each other in 3D, the
shortest path between them should pass through one or more edges of the obstacles
instead of their vertices. Consequently, it is difficult to represent a 3D workspace with
a graph. Moreover, unlike the case of vertices, the shortest paths passing through
edges are not unique. For example, in 2D the length of the shortest path between
two points, A and B, passing through a third point C is AC + CB. In 3D, the

length of the shortest path between the two points passing through an edge c is not

40

41

usually the sum of the distance between A and ¢ and that between B and ¢, implying
the difficulty in using Dijkstra’s graph scarch algorithm. This difficulty has led to
the development of heuristic, application-specific approaches, such as the ones in
[31, 23].

We shall introduce the L; wvisibility between two points in a digitized workspace,
based on which we can derive dominance relations between certain partitions of
the workspace. These dominance relations show some useful properties that can be
utilized to solve the SPPP.

The chapter is organized as follows. Section 4.2 states the SPPP formally. In
Section 4.3 we define L, visiblity and demonstrate how it partitions the workspace. In
Section 4.3.1, the properties of a partitioned workspace are examined. Section 4.3.2
presents a graph representation of the workspace based on which an SPP solution
algorithm is derived. Section 4.4 presents an example and simuilation results. The

chapter concludes with Section 4.5.
4.2 Problem Statement

Consider the problem of moving an object in a workspace cluttered with obstacles.
We want to find a path, or determine a set of points, for the object to traverse from
a starting point (origin) to an end point (destination) without colliding with any
obstacle in the workspace. There are two sources of difficulty associated with this
problem: (i) an infinite number of paths exist for each given origin—destination pair,
and (ii) it is in general difficult to represent obstacles of arbitrary shape in the
workspace. One way of circumventing these sources of difficulty is to divide the

workspace into a finite number of cells!. Such division not only reduces the infinite

YA cell is a square in 2D and a cube in 3D.

4192

4

number of possible paths to a finite number of paths, but also allows each obstacle
to be represented by the set of cells it occupies.

Let a three dimensional workspace be divided into £ x m x n identical cells. Ac-
cording to the CSA [44], the object to be moved can be shrunk to a point by growing
obstacles. In what follows, cells are represented as o, p,q,... when their locations
need not be specified, as 0;jk, Pemn, abe, - - - when their locations need to be specified,
and as v, v, v3,... when a sequence of cells needs to be specified. Informally, the
goal of a path planner is to find a path formed by a sequence of neighboring free
(unoccupied) cells from the origin to the destination while minimizing a certain path
cost.

The most commonly used cost is path length. In a Euclidean space E?, the L,~
distance, d,(x,y), between two points, * = (z1,®2,...,24) and y = (y1,¥2,---,¥d),

is defined as:
do(z,y) = (Jar—n P+ |aa—y2 P +...4 | 2a—ya |P)?, where 1 < p < o0
doo(l‘vy) = max(| Iy — I’l T2 — Y2 lv--'almd_yd I)
Though there exist an infinite number of L,~metrics, only three of them have
significance for path planning: L), L,, and L. The advantage of using L.—metric

over Li— or Lo,— metric is its ability of describing the object’s traversal distance. On

the other hand, L;- and L.~ metrics have the following advantages:

e The paths generated under L,~ or L.~ metric are usually safer? than those

under Ly—metric.

o L. —metric (or Lj—metric) contains more accurate information concerning the

minimum number of search steps required from the current location to the

p ..
“By ‘safer’, we mean that the minimum and average clearance from obstacles are greater.

13
destination than any other metrics.

e The length of a path in a digitized space is the same as the path in the corre-

sponding continuous space when L;- or L,— metric is used.

We will limit our discussion to L;—metric only, since, as shown in [37], any problem
in Lj—metric space can be transformed into an equivalent problem in L, -metric
space with a simple change of coordinate system. The cost of a path P, denoted by
C(P), is the length of P measured in Li—-metric. Two cells are said to be neighbors if
they are physically adjacent. Since all the cells are identical in size, the L;~distance
between the centers of any two neighboring cells are identical and will be treated as
unit distance. (i.e., Two cells « and b are adjacent if di(a,b) = 1.

The path planning problem can now be stated formally as follows: For given two
points, x and y, and a set, O, of cells that are occupied by obstacles, find a sequence,

P = vyv;...v,, of neighboring cells such that
TEVL, Y EV, i (vi,vi1) =1L, €O forl1 <i:<n-—1,
while minimizing n.
4.3 Partitioning the Workspace
It is necessary to define the following terms for the clarity of presentation.

Definition 2 In L,-metric space, a ccll v is said to be visible from a cell w, denoted

by vRw, if there exists a sequence P = vovy .. .0y, (v,w) of free cells such that
Vo = U, Vg (v,w) = W, dl(vi—la Ui) = 1’ and (ll(vivvdl(v,w)) = dl(vaw)_i) 1 S 2 S dl(v9w))

where dy(u,v) is the Ly-distance between u and v. Otherwise, v ts said to be not

visible from w, denoted by v Ruw.

44

Definition 3 For any two adjacent cells, a set, N = {7?rj,7l;,n;,n;,nz+,n;}, is
called the sct of neighbor operators if
nt(vik) = vemn =>Ll=i+1l,m=jn=k

n;(vijk):vl’mn :ezi—l,N’I,:j,n:k

ny (Vijk) = Vegmn => (=i, m=3,n=%k—1.

and a set, O C N, is called the orthogonal set of neighbor operators if they always

generale the neighbors in orthogonal divections of a cell, e.g., {n},n;,nt}.

Definition 4 For any two free® cells, v and w, in the workspace, v is said to be

visible from w if there caists an orthogonal set, O, of neighbor operators such that
P = vgvy ... 04, (0,w) Where vo = v, V4, (4,0) = W, v; = n(viy) for some n € O,

and O 1is called the generating operator set of P. The dual of O, denoted by O*, is

the generating operator set of the reverse sequence of P, i.e., V4, (v,w)Vd; (v,w)-1 - - - Vo

Using the above definition of visibility, the dominance relation between cells and

that between two sets of cells are defined as follows.

Definition 5 For any two cells w and v in a workspace W, u is said to dominate v,
denoted by u >, v, iff wRv — wRu, YV w e W. Similarly, for any two sets, A and
B, of cells in W, A is said to dominate B, denoted by A >, B, iff for any v € B,

Ju € A such that u >, v.

Having defined the dominance relation between cells, the equal relation is defined

as follows.

3A cell is said to be free if it does not intersect any obstacle.

Rs R

o " "
- <
(k»)

Figure 4.1: Partitioning of the workspace into regions.

Definition 6 For any fwo cells v and v, u is said to be equal to v, denoted by

un~cv, iffu>.vand v >, u.

Notice that the relation ~. is an equivalence relation? and its central importance
is that it induces a partition of the workspace. That is, the relation ~. divides the
workspace into several sets of cells such that © € R(v) — S(u) = S(v), where R(v) is
a partition containing v and S(u) the set of all the cells that are not visible from u.
Such a set will henceforth be referred to as a region. In the 2D example of Fig. 4.1,
any cell in R, is visible from any other cell in the entire workspace except for those
in Ry. Similarly, no cell in Ry is visible from any cell in Rg U Ro U Ry;.

There are several ways of obtaining regions. In case of 2D space, a border of
the regions is formed by projecting the edges of obstacles along = and y directions,
as shown in Fig. 1.1. The following procedure, P1, is used to determine the total

number of cells visible from a given cell. Since total numbers of cells visible from

41t is reflexive, symmetric, and transitive.

46

two equivalent cells are same, P1 can be used to partition the workspace under the
assumption that no two neighboring regions have the same number of visible cells.
(This assumption can be relaxed trivially as we shall see shortly.) Informally, the
procedure works as follows. All the cells visible from a given cell, v, of the workspace
are obtained and expressed with an indicator vector I, i.e., I(z) = 1 (0) if a cell =
is free (occupied by an obstacle). Starting with a cell v of distance 0 (i.e., itself),
one can determine all the visible cells of distance 1 from v. Using a recursion, one
can then calculate all the cells visible from v of distance 2,3,... K, where K is the
maximum possible distance between any two cells in the workspace. In most cases,
K is three times the resolution of cach axis. After determining all the cells visible
from a given cell v, the total number, N(v), of cells visible from v is obtained from

the vector 1.

Procedure P1

For every cell v in the workspace 1V
if v is a free cell
begin
initialize /(w) « 0 for all w € W
I(v) 1
fori=1to K
begin
Generate D;(v) which is the set of cells of distance ¢ from v.

for every w € D;(v)

I(w) — max I(v
uED._l(U)nDl(W) ()

end
N(v) « Y I(w)
weW
end
end{P1}

The output of P1, N, is a matrix that contains the total number of cells visible
from each cell v. According to P1, if the number of cells visible from any two
cells next to each other is different, then the two cells belong to different regions.
Another notable fact is that all the boundaries of a region are perpendicular to one
or more principal axes. Therefore, the vertices, edges, and surfaces of regions can be

determined from N as follows:

3
1. For any vertex, 5% # 0.

2. For any edge parallel with z-axis, g—:dﬁu # 0. Similarly, edges parallel with x-axis

or y-axis can be obtained.

3. For the surfaces that are perpendicular to x-axis, % # 0. Similarly, other

surfaces can be determined.

P1 cannot detect the boundary between two adjacent regions when the total
number of visible cells for the two regions happens to be the same (see Fig. 4.2).
Such undetected boundaries can be casily recovered by extending some of detected
boundaries. In Fig. 4.2, the boundary BC' can be recovered later by extending either
AB or C'D.

By partitioning the workspace based on the relation ~, the path planning prob-

lem can be divided into the following two subproblems.

48

1
]
]
'
J
]
'
]
B I I e e T T R T T NN e,
]
!
1
]
r
1
1
i
1

Figure 4.2: An example of undetected boundaries.

Subproblem 1 (Inter-Region) Find a sequence, P = R,R, R, ... R Ry, of regions
such that R, is the region that contains the origin and R, the region that contains

the destination.

Subproblem 2 (Intra-Region) Find a path to traverse within each region in the

sequence found from Subproblem 1.

4.3.1 Properties of Partitioned Regions

Before describing the properties of a partitioned region, it is necessary to define

the following term.

Definition 7 Search between two nodes is said to be Free Of Backtracking (FOB) if

depth-first search can always find the shortest path between them without backtracking.

If we know a priori the search between certain two nodes to be FOB, search

efficiency can be improved greatly. However, it is very difficult, if not impossible, to

19

know this before the actual scarch takes place. The following lemma provides one

useful instance of FOB.

Lemma 1 (Random-Path) For any two cells u and v such that u >, v, the short-

est path between u and v is FOB if the search started from v.

Proof: Let Di(v) be a set such that Di(v) = {u: di(u,v) = k}, and w be a cell
such that w € Dy(v) N Dg, (4,v)-1(v). If no such w exists, v is not visible from u. This
is impossible however, because v is always visible from itself, and thus, v should be
visible from wu by the definition of dominance. Thus, there always exists at least one
cell, say wy. such that w; € Dy(v) N Dy, (u,uy-1(v). Since wy is visible from v, it is
also visible from u by the definition of dominance. That is, there always exists a cell

wy such that

wy € Dy(v) ﬂ D, (w])ﬂ Dy, (uv)-2(u).

Similarly, for any w;-, there always exists w; € Dy(w;-y) such that

w; € Di(v) N Dy, (uvy=i(v) for i = 2,3, ..., dy(u,v). B

Corollary 3 For any u and v such that u ~. v, the shortest path between them is

FOB regardless of the search dircction used.

According to Corollary 1, Subproblem Intra-Region can be solved trivially, i.e.,
the shortest path between two cells in the same region can be constructed by depth-
first search. Furthermore, the shortest path between any two cells with dominance
relation can be constructed by depth-first search without backtracking. In Fig. 4.3a,
any cell in Ry dominates all other cells in the workspace. Consider the construction
of a path from a cell p € Iy to a cell ¢ € Ro. Fig. 4.3b shows some of decision points

during the search. Without knowing p ~¢ ¢, the search would start from p. The

search may proceed towards « or h. If a is chosen, any subsequent search will end
up with ¢ or g and then fail. Even if h is chosen, the subsequent search may fail by
choosing k instead of ¢ as the next point. To remedy this problem, many algorithms
are based on breadth-first scarch [59, 14] or best-first search [26, 15]. Hence, the
computational complexity of these algorithms is O(n?) for 2D and O(n®) for 3D,
where n is the number of decision points.

By contrast, if the search had started from g, there are still two directions to
choose from: one towards j and the other towards m. However, the search proceeding
towards m subsequently finds the shortest path between p and q; so does the search
proceeding towards j. The absence of backtracking guarantees the success of depth-
first search for a shortest path, thus resulting in computational complexity O(n). It
is necessary to have at least a 100 x 100 resolution to achieve acceptable accuracy.
With the discretization resolution of 100 x 100 for 2D (100 x 100 x 100 for 3D), use
of the dominance relation is shown to improve the search efficiency by a factor of 2
for 2D (4 for 3D) when the time taken to decide among several available directions
is not considered.

We now want to show how to determine the dominance relation between regions,
and how to construct a path between regions with the dominance relation between
them. To determine the dominance relation between regions, it is first necessary to

understand the shape of each region.

Theorem 4 (2D case) Let v and w be two orthogonal neighbors® of a free cell u

such that v ~. w. Then, u ~. v.

®An orthogonal neighbor of a node is the neighbor obtained as a result of applying an orthogonal
operator to the node.

p h k
|
a
i m
b d
e
c J q
(a)

(b)

Figure 4.3: Dominance relation between the regions and its effect on the search.

Proof: Since v,w € D;(u), there are four possible cases to consider: v =
nt(u), w=nf(u);v=n}t(u), w=n,(u);v=n;(u), w=nt(u)v=n;(u), w=
Since one can prove the theorem similarly for all these four cases, it is sufficient to
deal with one of them; we have chosen the first case. That is, we want to show both
v >, u and u >, v when v = n}(u) and w = n}(u).

Consider the case of v >, u first. Let r be any cell visible from u, then there
exists at least a sequence uujus . .. ug, (4 r)-17 Of free cells by the definition of visibility.
Since u; € Dy(u), uy should be the neighbor of u in the positive/negative direction
of x—axis or y—axis.

e When u; = n}(u), r is visible from v because u; = v.

e When u; = n;“(u), r 1s visible from w because u; = w.

e When wy = n(u), r is visible {from v because there exists a sequence
VUULUZ « .+« Ud, (u,r) =17

e When u; = ny (u), r is visible from w because there exists a sequence

WUUIUY .« .« . Ud, () =17

Therefore, any cell visible from u is also visible from either v or w; so is from v and
w because v ~, w. Thus, v >, u, i.e.,, v,w >, u.

Now we want to show u >. v. Let p be any cell visible from both v and w.
Then, there exists at least a sequence P, = vv1v;...04,(vp)-1p Of free cells. By the
definition of visibility, there should be four possible generating operator sets, O, of
P,.

¢ When O = {nj,nj}, UVVLVg . .. V4, (vp)—1P Will be the shortest path from u to

p because v = n}(u). Hence, p is also visible from wu.

e When O = {nj,n;}, UVVIVy . . . V4, (v,p)-1P Will be the shortest path from u to

p because v = n}(u). Thus, p is also visible from u.

e When O = {n_, n;}, there exists at least one sequence wwyw; . . . wg, (w,p)-1P Of
free cells between w and p because p is visible from w. Then, p can be reached

from u via the sequence uww w; . .. Wy, (w,p)-1P because w = nj(u)

¢ When O = {n_,n;}, if P, consists of the cells obtained using the operator
n; then v; = u (because there is a unique n;(v) = u) else let vy be the first
cell such that n; (vg-1). Since vy is visible from w, there exists a sequence
P, = ww w;...wvr of free cells which can be obtained using the operator

n, . Since n;(w) = w; = u, and thus, uw; ... WrVKVE41 ... Vg, (v,p)—1P I8 a valid

sequence for visibility, i.e., p is visible from .

Therefore, u >. v. §

Theorem 1 states an important fact that the shape of a region in 2D is always

rectangular.

Corollary 4 (3D case) Let v, w, and 2 be three orthogonal neighbors of a free

cell, u, such that v ~. w and v ~. 2. Then u ~, v.

Corollary 5 In 2D space, there exists a rectangle that contains all the connected

cells in the same region but no cells from other regions.

Corollary 6 In 3D space, there exists a rectangloid that contains all the cells in the

same region and may also contain other embedded rectangloids.

Corollary 3 provides valuable information on the whereabout of neighboring re-

gions in 2D. 1t should be noted that neighboring regions of a region are always found

o4

alongside its edges. Furthermore, the shortest path between two cells in neighboring
regions passes through the projection of one of the two cells to an edge between the
two regions. Any other path that does not pass through the projection will have the
same or longer length. Note that there are four edges in a rectangle, and thus, there
are at most four projections for each region as some of its edges may be occupied by
obstacles. (See Rs in Fig. 4.1.)

Unlike the 2D case, Corollary 4 implies a region in 3D to have an arbitrary shape
(see Fig. 4.4.) This is due to the fact that one orthogonal neighbor of a cell may
belong to a region different {from the one that the other two € orthogonal neighbors
belong to. Due to this irregular shape of region, it is very difficult to represent a
region in 3D. One method of representing a 3D object is to enumerate its vertices,
edges, and surfaces. This representation method is not attractive because of the
difficulty in determining whether or not a cell belongs to a certain region. Moreover,
enumerating all the members associated with a region could be costly due to the
existence of a large number of cells in the region. The following lemma provides an

important property of such an irregular region.

Lemma 2 Let vji and vempn be any two cells such that vijx ~c Vemn. For any cell
Vopq Such that min(i,{) < o < maa(1, (), min(j,m) < p < maz(j,m), min(k,n) <

g < max(k,n), v,,Ruik tmplies vij >c Vopg.

Proof: For any cell u such that uRv,,,, there exists a path corresponding to the
sequence of cells, P = ww01w, ... Wy, (u,00,)-1Vopq» generated by a set of orthogonal
neighbor operators. Since (VuuRv,,, = uRviji) = vijx >c Vopg, let us suppose
u Mvir. Let w; be the cell such that w; Rv;jx and n be a neighbor operator such

that n(wi,) = w; for some cell w;4y. Since vy, Rviji, there exists a generating set

There are at most three orthogonal neighbors of a cell in 3D

99

--1"

Figure 4.4: Typical shape of a region in 3D.

O: of operators for a shortest path Py from vepg to vijx. Then, {n} U O, is not a
set of orthogonal neighbors because u Rv;jk. Since vijx ~¢ Vemn and vopeRv; i, there
exists a generating set O, for a shortest path P; from v,y t0 Ygmn. Then, {n} U O,
should be an orthogonal set of neighbor operators because O, is the dual of O,. This
implies that w;Rvsmn, contradicting the fact that vijx ~c vemn. Thus, uRRv;;x and
Vijk >c Vopg. B

The above lemma implies that when v,,, is not visible from v;;; and vemy, it is
completely isolated from the rectangloid formed by v;;x and vemn. This is because
all other cells within such a rectangloid are dominated by v;jx and vemyn, and thus,
those cells not visible from v;j and v, are not visible from all other cells in the
rectangloid either. In other words, any cell v that is visible from both v;jx and vepg
is located outside the rectangloid. Therefore, the shortest path between v;jr and vop,

should contain at least one cell outside the rectangloid.

Corollary 7 For the smallest rectangloid containing a given cell u and for all the
cells v such that v ~, u, uRw = u >, w for all cells w inside this rectangloid. Such

a rectangloid is called the Rectangloid of Dominance (ROD) of u.

Since the shape of region and/or ROD is a rectangloid, it is sufficient to represent
the member cells in the region with the two extreme points (Zmin,Ymin, Zmin) and
(Tmazs Ymars Tmazr). Whether a cell belongs to a region or not can easily be checked
by comparing its location with these two points of the region or ROD. These two
points will henceforth be called the range of region R and denoted by ry,;,(R) and

rmaz (). Using the range, the cover relation is defined as follows.

It
-J

Definition 8 For any two regions I8y and Ry, Ry is said to cover Ry, denoted by

R, b R,, when

rmin(Rl) S rmin(R2)> rmaJ:(R2) S rma:c(Rl)aRl ?é R2-

4.3.2 Workspace Representation

Dominance relations among regions can be represented as a graph and so can the

workspace.

Definition 9 The workspace is represented as a digraph, G = (V, E), where V is
the set of rcgions and E is the sel of edges such that 3 an edge e from Ry € V to

Ry, € V if and only if Ry b R,.

There are two sources of difficulty to obtain the dominance graph (DG): (i) it is
difficult to check the dominance relation between all pairs of regions due to the large
number of possible combinations, and (ii) it is difficult to describe a 3D region due
to its irregular shape.

To circumvent these difficulties, a modified dominance graph (MDG) is defined

as follows.

Definition 10 The MDG is a digraph, MDG = (V,E'), where V is the set of
regions and E' is the set of edges such that 3 an edge e from Ry € V to R, € V if

and only if Ry b R2, Ry # Ry, and there is no R € V such that Ry &> R and R b R,.

Notice that a MDG contains partial information on the dominance relation for
a given workspace. Especially, £’ =) for 2D as shown in Corollary 3. A similar
example can also be found in Fig. 4.3. Though Ry dominates all other regions in the

workspace, it will not be shown in the MDG. However, this will not cause any problem

58

since the main purpose of MDG is to find a shortest path in 3D. Fig. 4.5 shows an
example workspace with two obstacles and the same workspace after partition. Then,
the workspace is converted into DG and MDG as shown as in Fig. 4.6. Notice that
most of the dominance relations in DG are shown in MDG except those of two regions
{(0,0,0),(18,15,2)} and {(19,0,0),(20,15,2)}. This is due to the limited range of
those two regions.

We have shown that the shortest path can be found with depth-first search when a
dominance relation exists between the origin and destination. In some cases, however,
no dominance relation may exist between a given pair of origin and destination.
Consider the problem of finding a shortest path between two cells u and v such that
u p.vand v p. u. Let R(u) be a region containing the cell u. The shortest path
between u and v should contain at least a cell from one of the regions next to R(u).
Such regions will henceforth be called bordering regions of R(u). The closest cell that
belongs to a bordering region of R(u) can be found by projecting u to its borders.
There exist at most 4 projections in 2 and 6 projections in 3D because the shape of
region (and ROD) is rectangular (see Fig. 4.7.). Suppose the shortest path P(u,v)
between « and v passes through R(w), one of R(u)’s bordering regions where w is

the projection of w. Then one of the following cases is true.
1. w is visible from wu.
2. w 1s not visible from u.
3. w is occupied by an obstacle.

In Case 1, P(u,v) can be obtained by concatenating P(u,w) and P(w,v) in L;-

metric. Note that P(u,w) is a straight-line segment between u and w; otherwise, w

59

E N
—
()

7y, 7

124011

&

180,

Figure 4.5: Generation of 3D regions.

60

DG

{(0,0,0), (20,20,20)}

{10,0,0),(18,15,2) {(19,0,0),(20,15,2) }

o) o O o) 0o o) 0o

{(8,6,2),(12,10,10)} {(8,0,100,(12,6,11)} {(8,10,11),(12,10,20)}
{(8,6,0),(12,10,2)) {(12,6,10),(20,10,11)}

{(0,6,10), (12,6,11}} {(8,10,10),(12,20,11)}

MDG

{(0,0,0),(20,20,20)}

19,0,0), (20,15,2)
{(0,0,0), (18,1 { ! !

O O o) o) 0] o) 0
8,6,2),(12,10,10
; X {(8,0,10),(12,6,11)) {(8,10,11),(12,10,20)}
£8,6,00,(12,10,2)) ((12,6,10), (20,10,11))

{(0,6,10),(12,6,11)} {(8,10,10), (12,20,11} }

Figure 4.6: DG and MDG.

Figure 4.7: Projections of a scarch point.

cannot be visible from u. Case 2 cannot be true since no cell in R(w) can be visible
from « and R(w) is not next to R(u).

Fig. 4.8 shows an example of Case 3. Among 4 projections a, b, ¢, and d of a cell
u, b and ¢ are occupied by an obstacle. Unlike b, we may have to find a replacement
cell z € R(c) for ¢ that is closest to u but not inside the obstacle. Finding such a
cell may be difficult as, in many cases, such a cell is not unique in 3D. It should be
noted that we need a replacement for ¢ only when shortest path should pass through
the border of R(u) and R(c). For example, it is not necessary to find a replacement
for ¢ when the destination is ¢ as the shortest path can pass d. On the contrary, the
shortest path between u and f should pass through the common border of R(u) and
R(c). That is the case when R(u), R(c), and R(f) are separated by obstacles that
are located completely outside R(u) U R(c) U R(f). Such obstacles do not interfere
with the path between « and [and can thus be ignored. In other words, construction
of P(u, f) is FOB when starting from u.

The following algorithm constructs a shortest path between u and v for the general

case. Informally, after initialization, the algorithin examines the MDG to see whether

62

Ooe
T
<
<
<
<
<
3

e e e e e = --- v

v
by v v v
v Y v
e v v

v v Y

-D.------;.---_-----
a

Figure 4.8: Regions separated by an obstacle outside their RODs.

63

there exists any dominance relation between the current cell (initially, the origin) and
the destination. If there is, the algorithm constructs the path using depth-first search.
Otherwise, a set T of projections of the current cell is obtained. For each member of
T, check whether it is occupied by obstacle or not. If it is occupied, check whether
construction of a path between the destination and the current cell is FOB or not.
If so, the algorithm stops after constructing the path. Otherwise, that projection is
deleted from T', the remaining members of T are added to S, the set of cells yet to be
examined, and the best cell is added to U, the set of examined cells. Then, we choose
the most attractive cell (the closest cell to the destination) in S as the current cell
and the procedure repeats itself until path construction is completed or S becomes

empty. What we said above can be summarized in algorithm form as follows.

1. Let Best ;= u, P(u,Best)=nil, S:=0, T :=0 and U := 0.

o

. If Best >, v then construct P(Best,v) and go to Step 8.

3. If v >, Best then construct P(Best,v) and go to Step 8.

=N

. T := { Projections of Best } — S§. For every w € T,
If w is occupied by an obstacle then try to construct P(Best,v)
using depth-first search.
If path construction is successful then go to Step 8. Else T := T — {w}.

else P(u,w) := concat(P(u, |current_cell), P(Best,w)).
5. 8:=85UT, S:= 85— {Best} and U := U U {Best}.
6. Let Best be such that mingeses(length(P(u, Best)) + di(Best,v)).

7. Go to Step 2.

64

8. P(u,v):= concat(P(u, Best), P(Best,v)).

The computational complexity from Step 2 to Step 4 is O(n) where n is the
resolution of the workspace, i.e., the number of cells in each axis. As the algorithm
stops when either path is found or S is empty, the maximum number of iterations
from Step 2 to Step 5 occurs when S is empty. That is, the maximum number of
iterations is identical to the total number of regions, m, and the overall complexity
becomes O(mn). Since the total number of regions can be as high as the total
number of cells (i.e., m = O(n?)), the overall complexity can be as high as O(n*).
This overall complexity is deceiving as the total number of regions is much smaller
than the total number of cells (i.e., m << n3). Since RODs, rather than individual

regions, are searched, search efficiency is also improved.
4.4 An Example Workspace

In this section, we consider an example workspace cluttered with various shapes
of obstacles as shown in Fig. 4.9. Specifically, the effects of various orientations of
an obstacle on workspace partitioning are described and a typical path in such an
environment 1s also constructed.

The workspace is digitized as a 32x32x 32 grid. The resulting MDG has statistics
as shown in Table 4.1. Region sizes vary from one to several thousand cells. Most
one-cell regions are due to the pyramid sl;ape obstacle K. Diagonal edges in K,
usually divide the workspace into small regions. However, diagonal edges in K, do
not contribute to the fragmentation of the workspace at all. Due to these one—cell
regions, the median region size is 2 while the mean region size is 71.6.

According to our simulation based on 1,000 randomly selected origin—destination

pairs, the average number of regions searched is less than three. For 63.6% of the

65

f
]
i
Kn H
H
i
Ka
7 Ko
Ke g '
'
I A
.................. 3 ;-'........., .. H e,
AN M) F IR R ...,
______ .’ H
AR TP v H
. H
.
K .
/ .
K . H
g .
.
’
v
v
.
’
.
’

Figure 4.9: A sample workspace with various obstacles.

66

cases considered, there exists a dominance relation between the region containing the
origin and that containing the destination, thus requiring no region to be searched
at all. This is mainly due to the fact that the largest region dominates all the
other regions and requires no regions to be examined, and on the average, either
the origin or the destination lies in the largest region for approximately 50% of the
time. Furthermore, only one region needs to be searched for 28.2% of the time. This
implies that we need to search less than two regions for 91.8% of the time.

The fragmentation has little effect on path construction, i.e., the probability of
the destination or origin falling in a one-cell region is iess than 0.01. Even in the
case when the origin falls in a one-cell region, the number of regions to be searched
is very small if the destination belongs to a larger region by changing the search
direction. For the source-destination pair (A, B) in Fig. 4.9, the total number of
regions examined is zero since there exists a dominance relation between A and B
even though B falls in a one-cell region. The worst-case occurs when both the origin
and destination fall in one-cell regions and are placed on opposite side of K3, shown
as C' and D in Fig. 4.9, respectively. In such a case, the total number of regions
searched can be as high as 200. However, the probability of such a case occurring is

less than 0.0001.
4.5 Summary

In this chapter, we presented a new method of partitioning the workspace using
L,-visibility. It was shown that the optimal path with respect to L;-metric between
two partitioned regions can be obtained easily if a dominance relation exists between
them. When no such relation exists between the origin and the destination, we have

presented an O(mn) algorithm. Our path planner is shown to find an optimal solution

67

Total number of cells 32,768

Total number of cells occupied by obstacles || 3,550
Total number of free cells 29,218

Total number of regions 408

Size of the largest region 8,857

Size of the smallest region 1

Median region size 2

Mean region size 71.6

Avg. number of regions examined 2.23

Table 4.1: Statistics of regions.

for the digitized workspace. Though the workspace with polyhedral obstacles are
regarded as a more general solution, many workspace configurations are obtained
in digitized form and our algorithm provides a very efficient solution in such an
environment.

This chapter focussed on the shortest path planning in 3D. Unlike other ap-
proaches, our method does not depend on any particular geometry. Since each region
1s represented with two ~xtreme points or inequality predicates, our algorithm can

be extended to & Dimensional space for & > 4 without much difficulty.

CHAPTER V

A PROBABILITY FIELD APPROACH TO
ROBOT PATH PLANNING

5.1 Introduction

One of the major factors to be considered in automatic path planning is obsta-
cle information. In many circumstances, it is not easy to obtain accurate obstacle
information. This may be due to the existence of moving obstacle (8], or a huge-size
environment [86]. The latter is usually the case of mobile robot path planning [26]
where the environment is usually huge compared to the size of the robot and often
includes other mobile robots. In such environments, it is not wise to use algorithms
based on the structure of obstacles such as [25, 3] because these algorithms require
precise knowledge of the obstacles in the workspace.

Some of the most popular algorithms in such environments are based on the
potential field approach [31, 20]. The potential field approach is based on the map
generated by the superposition of imaginary forces: repulsive forces generated from
obstacles and attractive forces generated from goals/destinations. Superposition
of imaginary forces make it possible to dynamically generate each force. Another
advantage of the potential field approach is the use of field data to directly control

actions during navigation. It is shown, however, that this approach has the drawback

63

69

of getting into local minima [35]. To remedy this drawback, Borenstein and Koren [4]
proposed vector-force field algorithm by integrating two known concepts: certainty
grids for obstacle representation [56], and potential fields for navigation. However, it
does not solve the problem completely because a certainty grid is the representation
of inaccurate sensory data about obstacles.

A gradient-field approach proposed by Payton [63, 64] deals with this problem by
calculating the cost of each grid cell of a digital map. The cost of each cell is based
on the score obtained by applying a scarch algorithm such as A* [19], or Dijkstra’s
algorithm [15]. Since the gradient-field approach is useful only in a known envi-
ronment, it cannot deal with changing environments efficiently due to the excessive
computational requirements. Zhao [85] proposed an algorithm that can deal with
both known and unknown environments using a heuristic-search method (recovery
algorithm) based on the Ax algorithm. It was shown that the efficiency of Zhao’s
algorithm largely depends on the scale factor of the map.

When a local minimum is encountered during the search, there are basically two
solutions depending on the search strategy used:

(i) Path runs sideways or backward trying to find the position closer to the destination
(Hill-Climbing).

(ii) Backtrack to a position which was generated before and neighbors at least one
unexplored free position that is closer to the destination (Best-First).

In each of these cases, the search will either increase the path length or waste a
certain number of steps.

Our main strategy is to minimize the number of times a search has to backtrack,
1.e., the search meets a local minima, or a deadend. For this purpose, we defined

two events 1) a digitized cell is a local minima and 2) a digitized cell may lead to a

70

local minima in subsequent moves. By formulating the probability of these events,
we form a map of probability field and present an algorithm utilizing the field data.
In contrast to the previous gradient-field approaches, the probability field is based
on the recursive definition of the event when a cell leads to a deadend. It is shown
that our algorithm converges very quickly and very computationally efficient.

This chapter is organized as follows. Section 5.2 describes the terminology used
along with a formal definition of the deadend. Section 5.3 describes the definition
of a probability field and necessary formula to compute the probability fields. We
also present there an algorithm that computes the probability field. In Section 5.4,
we consider two sample workspaces and analyze the effects of the probability field
as compared to other information such as the distance from obstacles using several

search strategies. This chapter concludes with Section 5.5.

5.2 Terminology

For a given destination, a position is said to be a deadend when (i) all of its
neighbors are occupied by obstacles, or (i) moving to any of its unoccupied neighbors
increases the path length. A position is said to meet a deadend when it is a deadend
or its chosen neighbor meets a deadend.

Since our algorithm is not limited to 2D workspace, the notations are based on a
3D workspace. We assume that a 3D workspace consists of [x m x n identical cubes.

In addition, we will use the following symbols throughout this chapter.
W : The set of all cubes in the workspace.
Waps ¢ The set of all cubes occupied (completely as well as partially) by obstacles.

vijk ¢ The (z,7,k)-th cube in the workspace.

71

Di(v) : The set of all cubes whose L, distance is I from a cube v.

‘A/g'jk : The set of destinations for which v;;x becomes a deadend. That is, ‘A/;'J‘k ={w:

u € Di(viji), di(u, w) = di(vije, w) — 1 = u € W}
Bijr : The event that v;jx becomes a deadend.
Cijk ¢ The event that the search meets a deadend if a cube v;;x is chosen.

f}’}c" : The event that v;;x precedes vy,,, on a path. These two cubes are not neces-

sarily neighbors to cach other on the path.
gijk: The probability that v;;, becomes a destination.
pijk ¢ The probability that v;;; becomes a deadend.

gijk : The probability that the search will meet a deadend later if the path passes

through v; ;.

5.3 Definition of Probability Field

Obviously, only those cubes that are adjacent to obstacles could be deadends.

The average probability that a point v;;; becomes a deadend is calculated by:

Pijk = Z Jimn-

Ulmnevuk

For example, if destinations are uniformly distributed throughout the workspace,

then
o 1
Tk = TW = W]

for all destinations in ‘A/,-]-k, where || is the cardinality of the set W. Then, the

probability of v;;x becoming a deadend is

Vil
— [Wobs]

‘)".'. = ;
Pk = T

72

The probability that a path containing v;;x meets a deadend can be calculated
by:
PCis]=P[U (R () Bimn)]

Vmn€W

Since a path consists of a sequence of successive neighboring points, we get
!
PlCil=PBin U { U RHEN R () Bima}l:
Umn €W Uopqul(Ui]k)

The event that a point becomes a deadend and the event that a point leads sub-

sequently to a deadend are mutually exclusive. Thus, the above equation becomes:

PlCix] = PBul+Pl U {C U fffﬂRi'Sq")ﬂBzmn}]

Vimn €V UO])qEDl(vl]k)

= px + PLU {C U RBENRZ) Bimn}

vmn €V 1’0;)q€N(U|'Jk)

= pijk + P| U U RfffﬂRi’;q")ﬂBlmn}]

UopqEN(UUk) Ulnlnev

= Pk + P[U {Rnogpkq (U Rlo':qntlmn))}]

UopqEN(U.]k) Ulmnev

= Ppijk + P[U ?fkqﬂcupq (5'1)

UOllqu(“uk)

Since the search algorithm always chooses only one neighbor at a time, the events

Ro”q’s for all v,,, € N(vijx) are mutually exclusive. Thus, Eq. (5.1) becomes:

P[Cijil = Pisk T LvepeeN(u,n) PIRIE N Copq

= I)UI‘ + ZUO;)qGN(Uuk P[Rlojpkqlcopq]P[COPQJ' (5'2)

It should be noted that R} depends on the search strategy used. For example,

in a blind search, R} is independent of Copy. When R is independent of Copy,
ok can be obtained by the same method used to calculate p;ji.

The most logical search strategy that utilizes the probabilities of meeting dead-

ends must choose a point least likely to lead to a deadend as long as such a choice

does not increase the path length. However, it is difficult to derive P[R{}!|Copy] in

73

Eq. (5.2) because Copg is unknown and depends on R(JY. Moreover, the path cost

depends on the probabilities of meeting deadends. To overcome these difficulties, it
is necessary to introduce a new event, denoted by CT%,, that v;;x will meet a deadend
in n steps. Then, Eq. (5.2) can be rewritten as:

Pijk ifn=1

PlC) = (5.3)
Pijk + LvopeeN(vizs) PIRRICE IP[Cy] ifn > 2.

ijk 1% opq

By using mathematical induction and Eq. '(5'3)’ P[D}] can be calculated for
any n > 2. Since D = limp—.oo DJjy, we can derive P[D;;] by applying Eq. (5.3)
recursively.

The path planner consists of two phases. In the first phase, the workspace infor-
mation is transformed into the probabilities of meeting deadends which are computed
off-line as discussed above. 2D examples of the output of the first phase using the
number of points in a path as the path cost are shown in Fig. 5.1 and Fig. 5.3. In
these examples, the workspace consists of 32 x 32 points and the neighbor of a point
in the workspace is defined as the set of all points that are horizontally, vertically,
and diagonally adjacent to the point. Since robot motions are usually performed
through rotary joints, diagonal movements are more natural than strict horizontal
and/or vertical movements in many cases. The destinations used in these examples
are assumed to be distributed uniformly’ over the entire workspace. 108 points in
Fig. 5.1 are occupied by the obstacles while 144 points in Fig. 5.3 are occupied by
the obstacles, i.e., more obstacles in [ig. 5.3 than in Fig. 5.1. The obstacle data is
shown on the left and P[D;j] at the right of these figures.

Upon receiving the workspace information, the first phase of the path planner is

to transform the obstacle data into the probabilities of meeting deadends using the

! Any other distributions can be assumed.

74

procedure Calc_Prob below.

Procedure Calc_Prob

. v

.o I k

1. Compute pjji for all vk € W using pijx = T =W Iob,l'

2. Initialize P*{Ci;k] := pisk, errvor = 0.001, and maz_error = oo.
J IR

3. Repeat 3a-c until maz_error < error.
3a. For all vijx € V, compute P*[R}{ | Copq] using P*[Copql, and

PCijk] := pijk + ZoopeeNuiye) P IRIR | Copg] P*[Copgl-

3b. Set maz_error := min(maz_error, maxy ev (| P(Cij) — P*[Ciji] |).

3c. Set P*[Cijx] = P[Ciji].

The second phase of the path planner is to convert each origin-destination pair
to a collision-free optimal path. The hill-climbing method is chosen as our search
strategy. The main advantage of the hill-climbing method is that it may converge
to a good solution very quickly. However, it may waste a great deal of the time
when a successor that leads to a local maximum or a deadend is chosen. Since our
algorithm is designed to choose a successor that is least likely to lead to a deadend,
this disadvantage of the hill climbing method is minimized.

Although our method chooses a point that will least likely lead to a deadend, it
may still lead to a deadend. Furthermore, there are some origin-destination pairs
that will always lead to deadends due to, for example, a large obstacle between them.
One way of dealing with this problem is to backtrack to an earlier point and choose
some other directions from there on. Decisions to be made in the backtracking are:
the length of backtrack (measured in the number of points/cubes to backtrack) and
the existence of a path without going sideways. The former is important because a
smaller number of backtracking steps will often lead to the same deadend, while a
larger number of backtracking steps will waste the search time and may also lead to

another deadend that the original path has already avoided. The latter presents a

75

..”“?
neteolde

L

B ==X
N LTI R aayy
P AT e LS

T e SIS
e P AU
e A ASH S A —

N A A Gy v b
e e ———en

’ S0 g S
M«.\l'.\.‘w\l"“.”u“w&%&&&&.«d&&&&.
oSS =)
vavoy il v e, o b b . 0 020
RN S AR
P NN S <
S SN =t
RN g
CREEETORAETA
SN
w‘,‘h" ()

Figure 5.1: Example 1 of workspace being transformed into probability fields.

\
0
4

)
3
<)
%

)

4
"
0
0’0
%
‘§

5
o:o
0¢0
O
%
O
s
S
A

Q)
/
()

’:
5
‘:
%
X
5
%
%

)
s
(7
%
%)
%9,
o
*’0
K
5’0
(¥
<
0¢¢
(7
%0

s
X
==
(ST
&
Sy}
0
S
ST
<)

3
X

4«#,:
<
99—y
=
/ &?
KX
SN
< XX)
Y
255
<X
ﬁ»
<

Figure 5.2: The probability field data obtained from example 1.

i‘i“%\
< \ I' >
A,
i i[i ?‘%‘:2:««3"‘
ey i R A\ N
S LSS AL S, 1!
¥ .?ié"" < :“ AN A ’.
v
& \

4

‘ sy \‘#‘0‘(i

Resosseonsed] I\ NS

] s
el Lo

" \

' "

)
\32
%S

”‘
=
XK
X
050

5

7
g

S
K
B
00000
(L0
!&’g’t’&
’§"h y
"\
=
7

'0;0
&
e
4
&
35

< T~ ?’)
T
(X
KK

9,

K
Ny,
N
O
9
"9

3969
<)
X
!

=
Aes—3%
0.’ 3
il
SO0,

0,0’0

%

Figure 5.3: Example 2 of workspace being transformed into probability fields.

(e

!
J 'v.
all‘
AN

(>

¥

X ARA
LKA
KRN
{ b“‘\

%
408
o
AAARRX A7
R
&wv\g.&&o
=%
\/

(3
BL—K

SRS X

<
R o

e
el

Figure 5.4: The probability field data obtained from example 2.

79

more critical problem than the former because the existence of a path can be verified
only after testing all combinations of points. According to our simulation results, our
method is shown to avoid deadends very well when there exists a path connecting the
origin and the destination without moving sideways. That is, if the first attempt to
find a path for a given origin-destination pair meets a deadend, the second attempt
usually ends up meeting a deadend again.

To remedy the above situation, we adopted the following backtracking policy. For
a partially constructed path P, = wvov;--: v, where v is the origin, vy the point

that becomes a deadend, and let ¢; be the probability of v; leading to a deadend.?

Step 1 Iind the first v} such that v! is a sibling of v; and ¢! < ¢i-1,for¢ = k—

1, k=2,--- 1. Set P; := wov;---vi_1v}.

Step 2 If no such point is found, set. P, := vgv; - -+ v;v70 where v* and ¢ are the first
p 1 1 t

pair of points such that @ is a child of v} and :—qu; is less than the projected

distance® between the destination and v} fori = k-1, k—2,...,0.

It should be noted that the path cost will increase when a backtrack point is not
found in Step 1.

Another key issue associated with the efficiency of any search method is the search
direction. Backward search is usually more efficient than forward search when there
are more initial states (i.e., origins) than final states (i.e., goals). Note that this usual
selection of search direction is not directly applicable to robot path planning, since
one and only one origin—-destination pair needs to be considered each time in robot

path planning. However, a simple modification in accordance with the following

2For notational convenience, we used a single, instead of triple, subscript to represent a point or
cube in the workspace.
3That is, the minimum number of points between v} and the destination in the absence of

obstacles.

S0

observation will make the usual sclection applicable to robot path planning: there
are more ways to reach a point when the probability of the point meeting a deadend
is small than when this probability is large. In other words, backward search is
more efficient than forward search when the destination has a higher probability of
meeting a deadend than the origin. Our experiments show that on the average, 30%
of deadends can be avoided by exchanging? the origin and the destination based on
their probabilities of meeting deadends.

The procedure Construct_Path described below constructs two paths each time:
FPATH starting from the origin and BPATH from the destination. Out of these two
paths, a path which is less probable to meet a deadend will be expanded first. The
search will continue to reduce the differences between the two paths, FPATH and
BPATH, until the two paths intersect.

Construct_Path

1. Initialize the origin with FORWARD and the destination with BACKWARD.

Set FPATH and BPATH to null sets.
2. Repeat 2a-d until FPATHNONBPATH # 0:
2a. Select a node which has a lower probability of meeting a deadend from
FORWARD or BACKWARD. Call that node CURRENT.

2b. Insert CURRENT to the corresponding set, FPATH or BPATH.

2c. Choose a successor of CURRENT from its neighbors. A node which mini-
mizes the path cost is selected as the successor. If there is more than one

node with the minimal path cost, a node which has the lowest probability

1Switching between backward search and forward search.

81

Heuristic L, L, Leo (1) qij

Avg. path length 23.41) 16.45| 1647 | 16.45| 16.47

Avg. # of node created 88.54 | 79.00 | 73.28 | 94.23 | 68.76

Avg. # of node examined || 123.54 | 117.47 | 124.56 | 138.18 | 115.59

MCFO 0.723 | 0.464 | 0.792 | 0.638 | 0.621

(1) : Simulation using Lo-metric while increasing clearance.

Table 5.1: Simulation results without adjusting the search direction.

of meeting a deadend is chosen as the successor. If there is no successor

for CURRENT, backtrack to an earlier node.

2d. Call the successor FORWARD or BACKWARD, depending on its prede-

Cessor.

5.4 Experimental Results

The procedure Construct_Path was simulated in a workspace composed of 32 x
32 points. First, the workspace is converted to the probability map shown in Fig. 5.1
and Fig. 5.3 using the procedure Calc_Prob. Origin—destination pairs are generated
using a uniform random number generator. As the safety measure of a path P, the

mean clearance from obstacle is defined as:

MCFO(P)= " min de(vi,v;).

neP vy €Vobas
Table 5.1 shows the results obtained from depth-first search using various heuristic
estimators. Each data is based on 100 origin-destination pairs. Note that there is a
10-20% increase in efliciency. Table 5.1 is obtained using the same experiments as

Table 5.2 except that the search direction has been decided from the dy, clearance

Heuristic Ly L, L, (1) dij

Avg. path length 2341 | 16.45] 1647 | 16.45 | 16.47

Avg. # of node created 80.70 | 74.31 | 68.01 | 94.23 | 61.98

Avg. # of node examined || 115.22 | 111.04 | 127.44 | 127.44 | 108.21

MCFO 0.726 | 0.464 | 0.793 [0.638 | 0.624

Table 5.2: Simulation results while adjusting search direction with clearance.

from the ncarest obstacle (minimum clearance) while Table 5.3 is the result of using
qi; to determine the search direction. Notice that every phase of the search improves
from Table 5.1 to Table 5.2 and from Table 5.2 to Table 5.3, while the quality of the
chosen path remains unchanged. This shows the importance of the search direction.
It also shows the superiority of ¢;; over minimum clearance. This is because minimum
clearance only provides the distance from nearest obstacle while there are many other
factors to be considered. Some of the factors are the size and orientation of each
obstacle, and number of obstacles within a close range. It is very difficult to consider
all this information at the same time because their influence is difficult to quantify.
Unlike minimum clearance, ¢;; increases not only when the obstacle is closer but also
when obstacle is larger or the number of obstacles increases.

The difference between [y- and L .- metrics can be explained as the difference in
metric systems. That is, any L,-metric algorithm can be transformed into L,-metric
algorithm [37] by transforming its coordination («,y) with a new coordination (z',y)

where

do= V2 +y)
yo= V2 —y).

83

Heuristic L, Ly qij

Avg. path length 16.45 | 16.47 | 16.47

Avg. # of node created 68.71 | 62.66 | 52.94

Avg. # of node examined || 106.94 | 112.18 | 99.34

MCFO 0.464 | 0.792 | 0.622

Table 5.3: Simulation results while adjusting search direction with ¢;;.

Hence, the resulting algorithm requires adjustments with a scale factor v/2. Though
the results are equivalent, it is better to select L.-metric in this example as the
computation time i1s a major factor.

The results of our path planner for two different workspaces are compared with
the optimal paths obtained using the A* algorithm. The heuristic used in the A*
algorithm is f(v) = g(v) + h(v), where g(v) is the actual distance from the origin to
the current point v and h(v) represents an estimated cost from v to the destination.
The estimated cost h(v) from v to the destination is obtained as h(v) = dy (v, w) —
Coo(V) Where ¢ (v) is the minimum clearance of v. In [26], Kambhampati and Davis
used this heuristic estimator to construct a path for a mobile robot. With limited
information given in [26], it is not feasible to compare their algorithm with our path
planner. Table 5.4 presents the experimental results of our path pianner and those
of A*. It was shown that our path planner improves the search time by one order of
magnitude at the cost of slight increase (1-2%) in path length.

Our algorithm usually finds the shortest path when it requires no or a small
number of sideway moves. However, it exhibited some difficulties when the shortest

path requires many sideway moves. This is due to the lack of a general solution to

84

Workspace Iig. 5.1 Fig. 5.3
Algorithm Al A2 Al A2
Avg. path length 16.47 | 16.41 || 17.14 | 16.58

Avg. # of node expansions || 18.27 | 57.45 || 20.39 | 78.47

Avg. # of backtracking 0.21 NA || 3.21 NA

Avg. CPU time 4.78 |1 53.86 || 6.92 | 86.73

A1l : Result using our path planner.

A2 : A* algorithm with L., heuristic.

Table 5.4: Simulation results using the example in Figs. 5.1 and 5.3.

avoid local minima with the depth-first search.
Attempts have been made to utilize our probability measure with the best search
algorithm such as the A* algorithim. However, the simulation has not shown much

improvements when the optimal path contains at least one sideway move. This can

be explained as follows:

1. To ensure the optimality of the path, the A* search has to check every deadend

when the optimal path contains at least one sideway move.

o

Since our probability measure is based on the probability of leading to a dead-
end when the hill-climbing method is applied, it does not reflect the probability

of meeting a deadend with the A* search.
5.5 Summary

In this chapter, we have developed an objective measure of describing the effects of

obstacles on collision-free robot path planning. This measure is then used for a search

v s
by |

method similar to the hill-climbing method. The hill-climbing method generates
solutions very fast if it does not encounter deadends. Although it is not possible
to avoid deadends completely during the search, we can minimize the probability of
encountering deadends based on the probability field developed here. Our simulation
has shown that the probability measure is more effective than the distance measure
which is often used in the potential field approach.

The main advantage of our algorithm will become more vivid if it is implemented
for a 3D environment. The complexity of conventional algorithms increases dramat-
ically when it is to be implemented for 3D (instead of 2D) problems. This is due
to the way the field data is computed. In contrast to the gradient-field algorithms
(63, 64, 85] which use the A™ algorithm to compute the cost of each cell, our algorithm
computes the field data using the recursive definition of a cell leading to a deadend.
This reduces the computational requirements considerably. Another advantage of
using a recursive computation of the field data is flexibility. By its definition, our
field data can be limited by a certain number of steps, k, thus computing the prob-
ability that a cell may lead to a deadend within &k steps. This is quite common in

real world applications where sensors have limited ranges.

CHAPTER VI

CONCLUSION

There are four major contributions in this thesis. First, it is shown that the
minimum bound of the worst-case computational complexity of the ladder problem
is Q(n?logn) instead of Q(n?) as known previously. Hence, both the algorithm RG
included in this thesis and Levin and Sharir’s work are indeed optimal rather than
suboptimal. The second contribution is the proposed algorithm using the RG in
Chapter 3. Though the RG has the same computational complexity as the previous
work [40], its actual computation time can be improved significantly due to the small
size of the graph. Its advantage is more visible when the workspace is crowded with
obstacles separated by short distances. The third contribution is the partitioning
algorithm of a discrete workspace. Though the worst-case performance of the algo-
rithm remains the same as previous approaches, the average running time can be
reduced by an order of the magnitude thanks to the grouping of points with similar
characteristics. The final contribution is the introduction of a new heuristic in the
probabilistic field. The probabilistic field is quite useful when the workspace parti-
tioning results in severe fragmentation of the workspace or the information for the
workspace is incomplete. Instead of relying on a graph generated a priori, the robot

can move on the best direction based on the information gathered so far.

~

87

The notion of dominance relation is another useful tool developed in this thesis.
Unlike many other approaches which view the relation between regions based on their
physical locations only, the dominance relation provides not only physical adjacency
but also master-slave relations based on their recti-linear visibility. This facilitates

the search for a path more efficiently by removing inefficient search steps.

BIBLIOGRAPHY

88

(1]

2]
3]

[4]

[5]

(6]

7]

(8]

[9]
[10]

[11]

[12]

BIBLIOGRAPHY

T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, “Visibility polygon
search and Eucledean shortest paths,” Proceedings 26th Symposium on Founda-
tions of Compuler Science, pp. 155-164, 1985.

D. H. Ballard and C. M. Brown, Computer Vision, Prentice Hall, 1982,

S. Bonner and R. B. Kelley, “A novel representation for planning 3-d collision-
free paths,” TELE Trans. on Systems, Man, and Cyber., vol. 20, no. 6, pp.
1337-1351, Nov./Dec. 1990.

J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile
robots,” IEEE Trans. on Systems, Man, and Cyber., vol. 19, no. 5, pp. 1179~
1187, Sep./Oct. 1989.

R. A. Brooks, “Planning collision-free motions for pick-and-place operations,”
Int’l Journal of Robotics Rescarch, vol. 2, pp. 19-44, 1983.

R. A. Brooks, “Solving the find-path problem by good representation of free
space,” IEEE Trans. on System Man Cybernatics, vol. 13, pp. 190-197, 1983.

R. A. Brooks and T. Lozano-Perez, “A subdivision algorithm in c-space for
findpath with rotation,” IEEE Trans. on System, Man, and Cybernetics, vol.
15, pp. 224-233, Mar. 1985.

S. J. Buckley, “Fast motion planning for multiple moving robots,” Proc. IEEE
Int. Conf. on Robotics and Automation, pp. 322-326, May 1989.

J. F. Canny, “The complexity of robot motion planning,” The MIT Press, 1988.

L. P. Chew, “Planning the shortest path for a disc in o(n?logn) time,” ACM
Proc. Symp. on Computational Geometry, pp. 214-220, Jun. 1987.

K. Clackson, S. Kapoor, and O. Vaidya, “Rectilinear shortest paths through
polygonal obstacles in o(n log®n) time,” ACM Proc. Symp. Computational Ge-
ometry, pp. 251-257, Jun. 1987.

J. Davis and S. Tufekei, “A decomposition algorithm for locating a shortest path
between two nodes in a network,” Networks, vol. 12, pp. 161-172, 1982.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

90

B. Delaunay, “Sur la sphere vide,” Bull. Acad. Sci. USSR(VII), pp. 793-800,
1934.

P. DeRezende, D. Lee, and Y. Wu, “Rectilinear shortest paths with rectangular
barriers,” ACM Proc. Symp. Compulalional Geometry, pp. 204-213, 1985.

E. W. Dijkstra, “A note on two problems in connection with graphs,” Nu-
merische Math., vol. 1, pp. 269-271, 1959.

K. R. Goheen and E. R. Jefferys, “The application of alternative modelling
techniques to ROV dynamics,” Proc. IEEE Intern. Conf. on Robotics and Au-
tomation, vol. 2, pp. 1302-1309, May 1990.

L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, “Linear time
algorithms for shortest path and visibility problems inside triangulated simple
polygons,” Algorithmica, vol. 2, pp. 209-233, 1987.

L. Guibas and J. Hershberger, “Optimal shortest path queries in a simple poly-
gon,” ACM Proc. Symp. on Computational Gcometry, pp. 50-63, 1987.

P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determi-
nation of minimum cost paths,” IEEE-SSC, vol. 4-2, pp. 100-107, 1968.

N. Hogan, “Impedance control: An approach to manipulation,” J. Dynamic
Systems, Measurement, and Control, vol. 107, pp. 1-24, Mar. 1985 1985.

J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of motion
planning for multiple independent objects: PSPACE hardness of the 'warehouse-
man’s problem’,” Int. J. Rob. Res., vol. 3 (4), pp. 76-88, 1984.

W. D. Howden, “The sofa problem,” Computer Journal, vol. 11, pp. 299-301,
Nov. 1968.

C. L. Jackins and S. L. Tanimoto, *Oct-trees and their use in representing three-
dimensional objects,” Proc. of Computer Graphics and Image Processing 14, pp.
249-270, 1980.

S. Jun and K. G. Shin, “A probablistic approach to collision-free robot path
planning,” Proc. Int. Conf. Robotics Automation, pp. 220-225, 1988.

S. Jun and K. G. Shin, “Automatic path planning in discretized workspaces
using dominance relation,” IFEE Trans. on Robotics and Automation, pp. 342-
350, June 1991.

S. Kambhampati and L. S. Davis, “Multiresolution path planning for mobile
robots,” IEEE Journal of Robotics and Automation, vol. RA-2, pp. 135-145,
Sep. 1986.

J. A. Kangas, T. K. Kohonen, and J. T. Laaksonen, “Variants of self-organizing
maps,” [IFEE Trans. on Neural Networks, vol. 1, no. 1, pp. 93-99, Mar. 1990.

[28]

[29]

[30]

[31]

32]

(33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

9]

N. Katoh, T. Ibaraki, and 1I. Mine, “An efficient algorithm for k shortest simple
paths,” Networks, vol. 12, pp. 411-427, 1982.

Y. Ke and J. O'Rourke, “Moving a ladder in three dimensions: upper and lower
bounds,” ACM Proc. Symp. Computational Geometry, pp. 136-146, Jun. 1987.

K. Kedem and M. Sharir, “An efficient motion planning algorithm for a convex
polygonal object in 2-dimensional polygonal space,” Tech. Rept. 253, Courant
Institute, New York University, New York, NY, Oct. 1986.

O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
IEEE Int'l. Conf. on Robotics and Automation, pp. 500-505, Mar. 1985.

B. K. Kim and K. G. Shin, “Minimum-time path planning for robot arms and
their dynamics,” IEEFE Trans. on Systems, Man, and Cyber., vol. SMC-15, no.
2, pp. 213-223, Mar./Apr. 1985.

B. K. Kim and K. G. Shin, “Suboptimal control of industrial manipulators with
a weighted minimum time-fuel criterion,” IEEE Trans. on Automatic Control,
vol. AC-30, no. 1, pp. 1-10, Jan. 1985.

T. K. Kohonen, “Self-organized formation of topologically correct feature maps,”
Bio. Cyb., vol. 43, pp. 59-69, 1932.

Y. Koren and J. Borenstein, “Potential field methods and their inherent lim-
itations for mobile robot navigation,” in Proc. of the IEEE Intern. Conf. on
Robotics and Automation, pp. 1398-1404, Washington, D.C., 1991, IEEE Com-

puter Society.

D. Kozen and C. Yap, “Algebraic cell decomposition in NC,” Proc. IEEE Symp.
on Found. of Comp. Sci., pp. 515--521, 1985.

D. T. Lee and C. K. Wong, “Voronoi diagrams in L;-(L-) metrics with 2-
dimensional storage applications,” SIAM J. Comput., vol. 9, pp. 200-211, 1980.

D. Lee and F. Preparata, “Euclidean shortest paths in the presence of rectilinear
barriers,” Networks, vol. 14, pp. 393-410, 1984.

H. Lee, “Spatial decomposition and its manipulation,” Ph.D. Dissertation, Dept.
Indust. Oper. Engr., Univ. of Michigan, 1988.

D. Leven and M. Sharir, “An efficient and simple motion planning algorithm for
a ladder moving in a two-dimensional space amidst polygonal barrier,” Journ.
Algorithms, vol. 8, pp. 192-215, 1987.

D. Leven and M. Sharir, “On the number of critical free contacts of a convex
polygonal object moving in 2-D polygonal space,” Discrete Comput. Geometry,
no. 2, pp. 255-270, 1987.

92

[42] D. Leven and M. Sharir, “Planning a purely translational motion for a con-
vex polygonal object moving in 2-D polygonal space using generalized voronoi
diagram,” Discrete Computational Geomelry, no. 2, pp. 9-31, 1987.

(43] T. Lozano-Perez, “Automatic planning of manipulator transfer movements,”
IEEE Trans. on System, Man, and Cybernetics, vol. 11-10, pp. 681-698, 1981.

[44] T. Lozano-Perez, “Spatial planning: A configuration space approach,” IEEE
Trans. on Comp., vol. 32-2, pp. 108-120, Feb. 1983.

[45] T. Lozano-Perez and M. Wesley, “An algorithm for planning collision-free paths
among polyhedra obstacles,” Comm. ACM, vol. 22-10, pp. 560-570, Oct. 1979.

[46] J. Luh and C. Campbell, “Minimum distance collision-free path planning for
industrial robots with a prismatic joint,” IEEE Trans. on Automatic Control,
vol. 29, pp. 675-680, 19841.

[47] J. Luh and C. Lin, “Approximate joint trajectories for control of industrial
robots along cartesian paths,” IFEE Trans. on System, Man, and Cybernetics,
vol. 14-3, pp. 444-450, 1984.

[48] V. Lumelsky, “Effect of kinematics on dynamic path planning for planar robot
arms moving amidst unknown obstacles,” 1EI'F Journal Robotics Automation,
vol. RA-3, pp. 207-223, 1987.

[49] V. Lumelsky, “A comparative study on the path length performance of maz-
searching and robot motion planning algorithms,” IEEE Trans. on Robotics
and Automation, vol. 7, no. 1, pp. 57-66, Feb. 1991.

[50] V. Lumelsky and T. Skewis, “Incorporating range sensing in the robot naviga-
tion function,” IELE Trans. on Systems, Man, and Cyb., vol. SMC-20, no. 5,
pp- 1058-1069, Sep./Oct. 1990.

[51] V. Lumelsky and A. Stepanov, “Path planning strategies for a point mobile au-
tomation moving amidst unknown obstacles of arbitrary shape,” Algorithmica,
vol. 2, pp. 403-430, 1987.

[62] D. McDrrmott, “Robot planning,” Al magazine, vol. 13, no. 2, pp. 55-79, sum-
mer 1992,

[53] D. Miller and M. G. Slack, “Global symbolic maps from local navigation,” in
Proc. of the Nineth National Conf. on Artificial Intelligency, pp. 750-755, Menlo
Park, Calif, 1990, American Assoc. for Artificial Intelligence.

[54] A. Mirzaian, *Channel routing in VLSL,” ACAM Symp. Theory of Computing,
pp. 101-107, 1984.

[55] E. Moore, “The shortest path through a maze,” Proc. Int. Symp. Switching Th.,
pp. 285-292, 1957.

93

[56] H. P. Moravec and A. Elfes, “Iligh-resolution maps from wide angle sonar,”
IEEE Conf. on Robotics and Automation, pp. 116-121, 1985.

[57] C. O’Dunlaing, M. Sharir, and C. K. Yap, “Generalized Voronoi diagrams for a
ladder, 1: Topological analysis,” Comm. Pure Applied Math., vol. 39, pp. 423-
483, 1986.

[58] C. O’Dunlaing, M. Sharir, and C. K. Yap, “Generalized Voronoi diagrams for
a ladder, II: Efficient construction of the diagram,” Algorithmica, vol. 2, pp.
27-59, 1987.

[59] C. O’Dunlaing and C. Yap, “A ‘retraction’ method for planning the motion of
a disc,” Journ. Algorithms, no. 6, pp. 104-111, 1985.

[60] O. Ore, Theory of Graphs, American Math. Society, Providence, RI, 1962.

[61] J. O’Rourke, “Lower bounds on moving a ladder,” Tech. Rept. 85/20, Dept. of
EECS, Johns Hopkins University, Baltimore, MD, 1985.

[62] D. Payton, “Exploiting plans as resources for action,” in Proc. of the Workshop
on Innovative Approaches to Planning, Scheduling, and Control, pp. 175-180,
San Mateo, Calif, 1990, Morgan Kaufmann.

[63] D. W. Payton, “Internal plans: A representation for action resources,” Robotics
and Autonomous Systems, vol. 6, pp. 89-103, 1990.

[64] D. W. Payton, J. K. Rosenblatt, and D. M. Keirsey, “Plan guided reaction,”
IEEE Trans. on Systems, Man, and Cyber., vol. 20, no. 6, pp. 1370-1382,
Nov./Dec. 1990.

[65] J. H. Reif, “Complexity of the mover’s problem an generalizations,” in Proc.
29th Ann. IEEE Symp. on Found. of Comp. Sci., pp. 421-427, 1979.

[66] D. A. Rosenthal, An Inquiry Driven Vision System Based on Visual and Con-
ceptual Hierarchics, UMI Research Press, Ann Arbor, Michigan, 1981.

[67] A. Sankaranarayanan and M. Vidyasagar, “A new path planning algorithm for
moving a point object amidst unknown obstacles in a plane,” in Proc. IEEFE
Intern. Conf. on Robotics and Automation, pp. 1930-1936, Cincinnati, Ohio,
1990, IEEE Computer Society.

[68]) J. T. Schwartz and M. Sharir, “On the piano movers’ problem i. the case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers,” Com-
munications on Pure and Applied Mathematics, vol. XXXV, pp. 345-398, 1983.

[69] J. T. Schwartz and M. Sharir, *On the piano movers’ problem ii. : The case of
a rod moving in three-dimensional space amidst polygonal obstacles,” Commu-
nications on Pure and Applied Mathematics, vol. XXXVII, pp. 815-848, 1984.

[70]

[71]

[72]

(73]

[74]

[75]

(76]

[77]

(78]

[79]
[80]
[81]

[82]

94

J. Schwartz, “On the piano movers’ problem : lii. coordinating the motion of
several independent bodies ; the special case of circular bodies moving amidst
polygonal barriers,” IJRR, vol. 2-3, pp. 46-75, 1983.

J. Schwartz and M. Sharir, “A survey of motion planning and related geometric
algorithms,” in Special Volume on Geometric Reasoning, Artificial Intelligence:
An International Journal, number 1-3, pp. 157-170. North-Holland, Amstecr-
dam, Dec 1988.

K. G. Shin and X. Cui, “Collision avoidance in a multiple-robot system using
intelligent control and neural networks,” Proc. IEEE Conf. on Decision and
Control, pp. 130-135, Dec. 1991.

K. G. Shin and M. E. Epstein, “Communication primitives for a distributed
multi-robot system,” Proc. Int. Conf. -Robotics and Automation, pp. 910-917,
Mar. 1985.

K. G. Shin, M. E. Epstein, and R. A. Volz, “A module architecture for an
integrated multi-robot system,” Technical Report RSD-TR-10-84, Robot Sys-
tems Division, Center for Rescarch in Integrated Manufacturing, University of
Michigan, Jul. 1934.

S. Y. Shin, Visibility in the Plane and its Related Problems, Ph.d. dissertation,
Dept. Indust. Oper. Engr., Univ. of Michigan, 1986.

S. Sifrony and M. Sharir, “An efficient motion planning algorithm for a rod
moving in two-dimensional polygonal space,” Algorithmica, vol. 2, pp. 367-402,
1987.

P. Spirakis and K. Yap, “Strong np-hardness of moving many (n > 8) discs,”
Information Processing Letters, vol. 19, pp. 55-59, 1984.

N. Sreenath, “Nonlincar control of multibody systems in shape space,” Proc.
IEEFE Intern. Conf. on Robotics and Automation, vol. 3, pp. 1776-1781, May
1990.

S. H. Suh and K. G. Shin, “Robot path planning with a weighed distance-safety,”
Proc. 20-th Conf. on Decision and Control, pp. 634-641, 1987.

A. Tarski, A Decision Mecthod for Elementary Algebra and Geometry, Univ. of
Calif. Press, Berkeley, second ed. edition, 1951.

C. Thorpe, “Path relaxation: Path planning for a mobile robot,” Proc. of the
National Conference on Artificial Intelligence, Aug. 1984.

C. Thorpe, M. H. Hebert, 1. Kanade, and S. Shafer, “Vision and navigation
for the carnegie-mellon navlab,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 10, no. 3, pp. 362-373, 1988.

[83] S. M. Udupa, “Collision detection and avoidance in computer controller manip-
ulators,” 5th Int. Joint Conf. Artificial Intelligence, pp. 737-748, 1977.

(84] A. Yao, D. Avis, and R. Rivest, “An w(n?logn) lower bound to the shortest
paths problem,” ACM Symp. Theory of Computing, vol. 11, pp. 11-17, 1979.

[85] Y. Zhao, Theoretical and Experimental Studies of Mobile-Robot Navigation, Phd.
thesis, Univ. of Michigan, 1991.

[86] Y. Zhao and T. E. Weymouth, “An adaptive route-guidance algorithm for intel-
ligent vehicle-highway systems,” Proc. American Control Conference, pp. 2568-
2573, Nov. 1991.

[87] D. Zhu and J. Latombe, “New heuristic algorithms for efficient hierarchical path
planning,” IEEE Trans. on Robotics and Automation, vol. 7, No. 1, pp. 9-20,
Feb. 1991.

