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C H A PTER  I

INTRO D U C TIO N

W ith  advances in technology in flexible m anu fac tu r in g  [74, 73] such as C A D /C A M , 

a u to m a t ic  task  p lann ing  has becom e increasingly im p o r tan t  over th e  last decade. 

T h e  app lications  of th is  techn ique  are diverse. Some of the  m o s t  no tab le  app lica­

tions a re  a u to m a tic  p a th  genera tion  for m echanical m an ip u la to rs  [46, 47, 83, 43] 

a n d /o r  au tonom ous vehicles [81, 26], a u to m a tic  channel rou ting  in VLSI design [54], 

and  co m p u te r  networks [12].

Typically , a u to m a tic  task  p lann ing  is perform ed in the  h ierarchical m an n er .  L e t’s 

consider a hierarchy th a t  im plem en ts  a  flexible m anufac tu r ing  system . Fig. 1.1 shows 

a  p a r t  of such hierarchy. In th is  exam ple , an  assem bly process consists of a  set of 

tasks T  =  { t i , t 2 , • • •, t n} w here each t, represents  th e  m ovem ent of a  m echan ica l m a ­

n ip u la to r  from one place to  an o th e r  while perfo rm ing  certa in  o p era t io n s  w ith  its end  

effector. P lann ing  th e  m ovem en t is carried  ou t by an au to m a tic  p a th  p lanner.  E xe­

cution  of the  m ovem ent p lan  is carried ou t in th e  t ra jec to ry  p lann ing  level by add ing  

tim ing  inform ation . As in th e  case of m ost hierarchical p lanning , the  a u to m a t ic  p a th  

p lanner  receives necessary in form ation  from the  task  p lanner while provid ing  infor­

m a tion  necessary to  the  tra jec to ry  p lanner. In th is  pa r t icu la r  exam ple , th e  p a th  

p lanner  is the  m idd le  level of th ree  levels in th e  hierarchy. As it tu rn s  o u t ,  p a th
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Figure 1.1: A typical hierarchy based a u to m a tic  task  p lanner.

p lann ing  is usually  a low-level task , yet it requires a  lot of work [71]. T h e re  have 

been significant progresses a t the  level below th e  p a th -p lan n in g  level, th e  t ra jec to ry  

p lanner,  for exam ple  by m inim izing  t im e  [32] or energy consum ption  [33].

Being in a hierarchy, th e  im p o rtan ce  and the  correctness of the  role of an  a u to ­

m a tic  pa th  p lanner is significant, because th e  o th e r  levels of flexible m anufac tu r ing  

rely on th e  inform ation  provided by the  au to m a tic  p a th  planning-level. T h e  insuf­

ficient ad vancem en t a t  such an im p o r tan t  level is one of th e  m a jo r  roadblocks in 

achieving the  goal of flexible m anufac tu ring .

As an a l te rna t ive ,  m any  of real world applications  have ad o p ted  m anua l p a th  

p lanning . T h a t  is, a  h um an  guides m an ipu la to rs  from one location to  an o th e r  while 

recording the ir  position and  o rien ta tion . T hough  th e  use of m anua l p a th  p lann ing  

e lim inates  the  difficulty of au to m a tic  p a th  p lanning , it c rea tes  two new problem s: 

1) consistency  and  2) flexibility.  F irs t,  th e re  is a consistency p rob lem  due  to  the



variance of h u m a n s ’ approaches and skills. H um ans  are  very good a t  heuris tics  b u t  

differ g rea tly  depending  on th e ir  background. F u rthe rm ore ,  a  h u m a n  m ay  select the  

use of different heuristics a t  different tim es depend ing  on h is /h e r  em o tiona l s ta tus.  

Th is  does not necessarily m ean  th a t  all heuristics are  bad . However, un like th e  case 

of th e  a u to m a tic  p a th  p lann ing  done by a  com pu te r ,  it is no t easy to  rep roduce  the  

knowledge of a  good hum an . Secondly, th e re  is a  flexibility p rob lem  w ith  th e  use of 

m an u a l p a th  p lanning. Unlike com puters ,  h um ans  are  no t good a t  provid ing  m any  

a l te rn a te  p a th s  beyond a  ce r ta in  lim it. This  can lim it th e  flexibility of th e  nex t level 

of th e  hierarchy, i.e., th e  a u to m a tic  task  p lanning , due  to  th e  lack of a l te rna tives  

provided by th e  p a th  p lann ing  level.

T hough  not rela ted  to  flexible m anufac tu r ing  directly, th e re  are  o th e r  areas whose 

a u to m a tio n  is lim ited  by the  lack of an efficient a u to m a t ic  p a th  p lanner.  For exam ple ,  

th e  use of robots  m ay be necessary due  to hazards  (e.g., nuclear d u m p  site) and  the  

difficulty of h u m a n  access (e.g., space [78] a n d /o r  deep  sea exp lo ra tion  [16]).

For th e  reasons s ta ted  above, we need efficient a u to m a t ic  p a th  p lanners .  T h is  is 

also an  a rea  w here the  l im ita tions  of conventional use of th e  com p u te rs  are  clearly 

shown. T raditionally , com pu ters  are designed to  follow th e  p rog ram s provided  by a 

hum an . T hough  a lm ost all h um ans  can move the ir  able  bodies, th ey  have a  difficult 

t im e  explain ing  the ir  reasoning. This is due to  the  fact th a t  a  h u m a n  does no t reason 

ab o u t  m oving his body. Even crea tu res  such as bugs th a t  are  seem ingly  unin te ll igent 

can m ove the ir  able  bodies w i th o u t  colliding w ith  any obstacles. T h is  m ay  have been 

achieved by n a tu re  or th rough  learning or th e  com bination  of bo th .

In itial research efforts have focussed on theore tica l approaches. T h is  m ay  have 

been caused by th e  lack of learning mec han ism  such as neural ne ts  [34, 27]. Schw artz 

and  Sharir  gave an excellent survey on theore tica l approaches  [71]. M cD erm o tt  gave a
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qu ite  cynical, b u t  nonetheless, useful survey in [52] concen tra ting  m os tly  on heuris t ic  

approaches.

O ne of th e  biggest roadblocks in achieving the  general solution of th is p rob lem  

is its in trac tab ili ty .  Reif has proven th a t  ce r ta in  3D m otion  p lann ing  p rob lem s are  

P S P A C E -h a rd  [65]. Later, C anny  proved t h a t  any sho rtes t  p a th  p lann ing  in 3D 

is N P-com ple te .  Since m any  ro b o t m ovem ents  o th e r  th a n  m obile  robo ts  a re  3D, 

th e  p rob lem  rem ains. Even for th e  case of a  m obile  robo t,  while m oving  from  one 

location to  an o th e r  is 2D, the  ope ra t ion  it perfo rm s a t  its  d es tina tion  m ay  or m ay  

no t be  3D or higher dimension.

A no ther  p rob lem  associated w ith  a u to m a t ic  p a th  p lann ing  is th e  m eans  of o b ta in ­

ing th e  env ironm en t inform ation. In some app lications , the  en v ironm en t in form ation  

is explicitly  given while o thers  requ ire  th e  ga the r ing  of such in fo rm ation  th ro u g h  sen­

sors such as a  cam era  [2, 66]. In m any  early solutions, exac t en v iro n m en t knowledge 

is assum ed due  to th e  lack of advancem en t in sensor technology. T h is  is valid when 

env ironm en t is set up so th a t  exac t in form ation  can be  given to  th e  robo t in m any  

m an u fac tu r in g  s itua tions . However, even un d er  these  s itua tions , th e  env ironm en t 

can change due  to  th e  existence of o th e r  m oving robots  a n d /o r  unexpec ted  in t ru d ­

ers. Hopcroft et al. [21] s tud ied  the  theore tica l basis of m u lt ip le  m oving  robo t 

env ironm ents .  Lum elsky s tud ied  m any  cases where the  en v ironm en t is unknow n 

[51, 48] or th e  sensor has a  lim ited  range [50].

In th is  d isserta t ion , we have addressed  th re e  different env ironm en ts ,  one 2D and 

two 3D env ironm en ts  w here exac t in form ation  is assum ed, and  we p resen t a lgori thm s 

for each specific env ironm ent.  F irs t ,  th e  classical ladder p roblem  has been  addressed 

in C h a p te r  3. T h e  problem  has been studied  by m any  researchers as th e  s im plest 

form of the  M over’s problem  [22]. Its m in im u m  bound  of th e  worst-case c o m p u ta ­



tional com plexity  is known to be Q ( n 2). Leven and  Sharir  p roposed  th e  m os t efficient 

a lgori thm  known so far, w ith  0(??2 log??) t im e  com plex ity  using a  free-space decom ­

position w ith  trapezo ids  [40]. In C h ap te r  3, we propose an  0 { n 2 \o g n )  a lgo ri thm  

for th is  p roblem  using Reachabili ty Graph based on th e  connec tiv i ty  w ith in  a  se t of 

selected ladder positions th a t  are  critica l to  th e  p a th  p lann ing  of th e  ladder. In add i­

tion, we have shown th a t  the  ac tua l m in im u m  bound  of th e  w orst-case c o m p u ta tio n  

of th is p rob lem  is f ! (n 2 log??) ins tead  of 0 (? i2). T h is  proves th a t  ou r a lgo ri thm  as 

well as Leven and  S h ar ir ’s a lgo ri thm  is co m p u ta tio n a lly  op tim al.

C h a p te r  1 addresses the  problem  of a  poin t p a th  p lann ing  in a  dig itized 3 d im en­

sional workspace. A lthough th e  shortes t  p a th  p lann ing  of a  po in t in a  fc-dimensional 

space is proven to  be N P -C o m p le te  for k > 3, it  is possible to  find th e  sh o r te s t  p a th  

in a  res tr ic ted  env ironm ent.  Recti-linear visibility is defined in a  d igitized workspace. 

U nder  a  digitized workspace, we have defined an  equivalence re la tion , deno ted  by 

~ ,  based on recti- linear visibility. Being an equivalence re la tion , ~  p a r t i t io n s  th e  

w orkspace into a set of equivalen t classes, called regions.  I t is shown th a t  these 

regions are  re la ted  by dom inance  relations. U pon form ing a  g raph  on th e  basis of 

th is  rela tion, it is shown th a t  th e  recti- linear shortes t  p a th  can be found fast thanks  

to  regionalization ins tead  of searching individual cells.

In som e cases, th is  regionalization produces  too m any  regions due  to  th e  frag­

m e n ta tio n  of th e  workspace. T h is  happens  when th e  w orkspace con ta ins  m an y  small 

obstacles  and  or obstacles w ith m any  s lan ted  edges. In C h a p te r  5, th e  p a th  p la n ­

n ing  problem  for such an env ironm en t is addressed . It is shown t h a t  ou r  a lgo ri thm  

provides fast solutions using a  heuris tic  m easure  called as th e  probability field.  T h e  

p robab il i ty  field is defined using th e  p robability  th a t  each cell of a  d igitized workspace 

becom es a des tina tion . A form ula for m em oryless p robab il i ty  has been  p resen ted  and
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exam ples  based on th is  are analyzed. Finally, th is d isserta t ion  concludes w ith  C h ap ­

te r  6.



C H A PTER  II

LITERATURE SURVEY

As m en tioned  in th e  previous chap te r ,  a u to m a tic  p a th  p lann ing  is th e  p rob lem  

of finding a p a th  from one location to  ano ther .  T hough  we have lim ited  th e  p rob lem  

to  geom etric  p a th  p lanning , we have to  m en tion  som e of th e  basic so lutions used in 

o th e r  aspec ts  of the  problem . F irs t,  we have to  tran sfo rm  a  geom etric  o b jec t in to  

sym bolic  cons tra in ts  so th a t  com puters  can m a n ip u la te  it. In its m os t sym bolic  form, 

p a th  p lann ing  is perform ed in a  graph , i.e., g raph  search.

For g raph  search p roblem s, Moore [55] has suggested an a lgo ri thm  to  find the  

sho rtes t  p a th  between two vertices in th e  graph . It is well know n as th e  Breadth  

First  Search  (B FS) technique. T h e  l im ita tion  of th e  BFS is th a t  it can solve the  

sho rtes t  p a th  p lann ing  p roblem  for only g raphs w ith  un ique  length  edges. Later, 

D ijs tra  [15] has suggested a  0 ( n 2) a lgo ri thm  for a  g raph  w ith  non-un ique  leng th  

edges. I<atoh et al. have proposed an a lgorithm  to find th e  k  sho rtes t  p a th s  in [28] 

acco m m o d a tin g  repe t i t ive  queries. T h e  lower bound  for c o m p u tin g  th e  sho rtes t  p a th  

for every  pair  of the  nodes in a graph  has been proven to  be  O ( n 2logn) in [84].

It is difficult to  app ly  these  graph search a lgorithm s d irec tly  to  ou r  p rob lem  due  

to  the  fact th a t  they  do not consider the  presence of th e  obstacles  or th e  volum e of th e  

moving ob jec t.  However, m any  efforts have been m ad e  to  transfo rm  th e  geom etric
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problem  in to  a graph  search problem  by e lim inating  the  effect of th e  volum e of 

th e  moving o b jec t and the  obstacles. U dupa [83] has used th e  configuration space 

approach  in m echanical m a n ip u la to r  m otion  p lann ing  where th e  size of a  moving 

ob jec t can be reduced  to  a point represen ting  its configuration variables ins tead  

of cartesian  positions of the  m echanical m an ipu la to r .  Later, Lozano-Perez refined 

th e  no ta tion  and  a  m ore  general a lgori thm  to  ob ta in  th e  configuration space for a 

polygonal o b jec t m oving am id s t  polygonal obstacles [44]. K h a t ib  has proposed an 

artificial field approach  [31] w here the  des tina tion  genera tes  a t t r a c t in g  forces while 

an obstacle  genera tes  repelling forces. This approach  is ex trem ely  useful for m any  

app lications  in the  area of mobile robot navigation because we can genera te  an 

artificial field as sensors d e tec t  obstacles. This approach  is inheren tly  heuris tic  and  

has becom e th e  basic idea for m any  heuris tic  applications. By con tra s t ,  T arsk i’s 

T heo rem  of real closed field [80] has been the  base of m any  theore tica l works [9, 

68, 36]. Using these basic tools, the  earliest a t te m p ts  in solving th e  a u to m a t ic  p a th  

p lann ing  problem  were m ade  to  find the  shortes t  p a th  in a  given env ironm en t.

2.1 Theoretical Solutions

Lee and  P re p a ra ta  [38] have proposed an O ( n lo g n )  t im e  a lgo ri thm  to  find the  

shortes t  p a th  between two poin ts  inside a polygon. They have used th e  Delaunay  

triangulation  techn ique  [13]. Later, G uibas et al. have im proved th e  a lgo ri thm  to  

hand le  rep e t i t iv e  queries in [17, 18].

T h e  L\  sho rtes t  pa th ,  som etim es known as the  Manhat tan  p a th ,  has been s tud ied  

by D eRezende, Lee, and  Wu [14] in the  presence of orthogonal barriers. T h e ir  solu­

tion  is based on th e  BFS. T h e  Euclidean  sho rtes t  p a th ,  L 2 sho rtes t  p a th ,  has been 

proposed in [38] using the  Shor tes t  Path Map  (SPM ). In the  SPM , th e  obstacles are



9

lim ited  to  vertical lines. Consider a point A  and  a  vertical line B C  in th e  workspace. 

T h en ,  th e re  are  two different regions in the  workspace: (1) th e  region th a t  is visible 

from A  and  (2) th e  region th a t  is not. For any po in t D  in (2), th e  shortes t  p a th  

betw een A  and  D  is e i the r  A B D  or A C D .  T h a t  is, (2) is fu r th e r  d iv ided  in to  two 

regions. Any vertical line inside a region will fu r th e r  d ivide th e  workspace. T hus , th e  

en t ire  w orkspace is divided in to  several regions. T h e  l im ita t io n  of th e  S P M  is th a t  

it only  accep ts  vertical lines as obstacles. For a  m ore  general s i tu a tio n ,  th e  visibility 

g raph  (V G) has been  used in [10, 45, 11, 75]. Unlike th e  SPM  w here  th e  obstacles 

are  lim ited  to  orthogonal barriers, the VG assum es the  obstacles  to  be polygons. T h e  

VG is based on th e  observation th a t  when two points a re  no t visible from each o ther,  

th e  sho rtes t  p a th  between th em  contains a t  least one vertex  of an  obstacle . Hence, 

th e  d is tances  betw een all th e  visible pairs  of vertices of th e  obstacles  a re  calcu la ted  

a pr ior i  and  transfo rm ed  into a graph. T h e  ac tua l search for th e  p a th  is carried  ou t 

using th e  D i js t ra ’s graph  search a lgorithm  on th is graph .

Clackson et al. [11] have ex tended  the  definition of visibility g raph  to  T i-m e tr ic  

system  and  proposed an 0 [ n  log2 ??) t im e  a lgo ri thm  to co n s tru c t  th e  L\  visibility 

g raph . T hey  also applied  the  sam e a lgori thm  to  co ns truc t a 3D L \  v isibility  graph . 

However, they  failed to  show th e  actual app lica tion  of th e  3D visibility  g raph  in the  

sho rtes t  p a th  p lann ing  problem .

Shortes t  p a th  p lann ing  for a  moving disc was developed by Chew  in [10]. T h e  

a lgo ri thm  first converts th e  obstacles into a  configuration space and  cons truc ts  the  

visibility g raph  based on th e  configuration space. T h e  shortes t  p a th  was searched 

using a  g raph  search a lgo ri thm  on this graph . T h e  overall com plex ity  of th e  a lgori thm  

is 0 ( n 2 log n).

Later, C anny  [9] proved th a t  any shortes t  p a th  p lann ing  in 3D is N P -C o m p le te



i n

and  proposed th e  roadmap  a lg o ri th m  which is a one dim ensional subse t of th e  config­

u ra tion  space of a robo t m a n ip u la to r  using th e  generalized (m ultiva riab le )  re su ltan t  

for a sy stem  of polynom ials  and  achieved single exponen tia l  t im e  com plexity . T h e  

ro ad m a p  a lgo ri thm  has achieved an exponentia l speedup  over an  ex isting  a lgori thm  

[36] which has a  double exponen tia l  g row th  in t im e  w ith  th e  n u m b e r  of variables. 

Due to  th is  excessive c o m p u ta t io n a l  requ irem en t ,  we consider solutions to  a  s im pler 

prob lem , i.e., F ind  P a th  P rob lem  (F P P ) ,  known as th e  Generalized M over 's  Problem  

[22].

M ost F P P  a lgo ri thm s depend  on the  model of a m oving  o b jec t  a n d /o r  its envi­

ronm ent.  T h e  s im ples t form of a moving o b jec t  is a point. As s ta te d  before, th e  goal 

of reducing  a m oving  ob jec t with some physical volum e to  a  po in t is achieved by the  

configuration space approach . A fter reducing th e  m oving o b jec t we m ay  app ly  some 

of known a lgo ri thm s such as th e  visibility graph  or regionalization to  o b ta in  a  p a th .

T h e  n ex t  s im plest form of m odeling  a m oving o b jec t  is a disc. O ’D unlaing  and  

Yap [59] developed an  a lgo ri thm  th a t  de tec ts  th e  existence of th e  p a th  while moving 

a  disc am id s t  polygonal barriers. T he ir  a lgo ri thm  is to  transfo rm  th e  w orkspace in to  

a  Voronoi d iag ram  w here each vertex  of the  d iag ram  is rep resen ted  by its coord ina tes  

and each edge of th e  d iag ram  by a parabolic  function. For each edge of th e  d iag ram , 

its m in im u m  clearance from th e  nearest obs tac le  edge is p reca lcu la ted  to  d e te rm in e  

w hether  th e  disc can be  slid th rough . P a th  p lann ing  is perfo rm ed  using a  dep th-firs t 

search on th is  Voronoi d iag ram . Overall com plex ity  of th e  a lgo ri thm  is O ( n lo g n ) .

T h e  m a in  advan tage  of using th e  Voronoi d iag ram  p a th  p lann ing  is th e  safety of 

th e  g enera ted  pa ths .  T h e  p a th  genera ted  using th e  Voronoi d iag ram  always m ove 

the  disc th ro u g h  th e  m idd le  of two obstacle  edges. In con tra s t ,  th e  p a th s  genera ted  

using the  visibility g raph  usually  touches a surface or vertex  of an  obstacle . T hough



it can find som ew hat a  safer p a th ,  the  resu lting  p a th  can be very long. Suh and  Shin 

[79] have proposed an a lgo ri thm  th a t  finds th e  m in im u m  weighted d is tance-clearance 

using a  Voronoi d iag ram  and  dynam ic  program m ing .

M oving a  line segm ent has been extensively s tud ied  by Schw artz  and  Sharir  [68, 

69]. T h e ir  a lgo ri thm  converts the  workspace to  a  m a p  of critica l curves. T h e  critical 

curves are  defined as an area in which the  line segm ent can m ove w ith  only  lim ited  

m otion . T hey  classified th e  critica l curves in to  th ree  different m odels  accord ing  to  

th e  m otions  allowed in th e  area . U pon identifying all th e  critica l curves th e  a lgori thm  

works as follows:

1. F ind  th e  in tersection points  of all the  critical curves w ith  each o th e r  and  with 

th e  walls.

2. Sort th e  in tersection po in ts  along each critical curve.

3. F ind  th e  crossing m a p  according to  crossing rules.

Schw artz  and S harir  [69] im plem en ted  the  sam e algo ri thm  in 3D with 0 ( n 8 log n) 

t im e  com plexity . Later, Ke and  O ’Rourke [29] im proved the  a lgo ri thm  so as to  m ake 

it  have 0 ( n b lo g »?.) u p per-bound  com plexity  and  0 ( n 4) low er-bound com pu ta tio n a l  

com plexity.

Shortly  afte r th a t ,  O ’D unlaing  et al. proposed 0 ( n 2 log n  log* n )  a lgo ri thm  using 

a  generalized Voronoi d iag ram . This  was p ro m p tly  superseded  by Leven and  Sharir  

w ho proposed  an 0 (rc2 lo g n )  a lgorithm  using workspace decom position  w ith  trape- 

zoids [40]. Sifrony and  Sharir  [76] proposed ano ther  a lgo ri thm  to  solve th e  ladder 

prob lem . A lthough it has the  sam e com pu ta tio n a l  com plexity  of 0 ( n 2 log n )  as Leven 

and  S h a r ir ’s a lgo ri thm , it im proves th e  ac tua l c o m p u ta tio n  t im e  u n d e r  sparse  o b s ta ­

cle positioning. T h e  m in im u m  bound of the  worst-case co m p u ta t io n  t im e  know n so
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far is f1(f)2) as shown by O ’R ourke in [61]. However, no a lgo ri thm  as ye t  has achieved 

th is  m in im u m  bound.

As for a  m ore  general m oving  ob jec t ,  Lozano-Perez and  Wesley s tud ied  th is  p ro b ­

lem and proposed an 0 ( n 3) a lgo ri thm  for m oving a  convex polygon [45]. Initially, 

th is  a lgo ri thm  was lim ited  to  trans la tiona l m ovem ents  of th e  convex polygon. L ater  

Brooks and Lozano-Perez im proved  th e  a lgorithm  and  proposed  a  hierarchical sub­

division  a lgo ri thm  which allows the  ro ta t ion  of a  m oving o b jec t  [7]. W e will discuss 

m ore  ab o u t th is  la t te r  work in th e  following section, as th e  a lgo ri thm  is m ore  o r  less 

heuristic .

Leven and  Sharir  [42] used a  generalized Voronoi d iag ram  to  o b ta in  an  0 ( n  log n) 

a lgo ri thm  to  solve the  p a th  p lann ing  p roblem  for purely  tran s la t io n a l  m ovem en ts  of 

a  convex polygon am id s t  polygonal obstacles. Later, Leven and  S harir  [41] showed 

th e  n u m b e r  of free critical con tac ts  to  be 0 { k n \ s (kn )  log k n ), w here k is the  n u m b e r  

of edges of th e  moving polygon, and As(??) is an a lm ost linear function  of n.  By 

com bin ing  these  two results ,  K edem  and Sharir  [30] o b ta in ed  an 0 ( n 2As(n )  log n) 

a lgo ri thm  to  solve the  p a th  p lann ing  prob lem  for m oving convex polygons.

As for m otion  p lann ing  of m u ltip le  moving ob jects ,  Schw artz  e x ten d ed  his initial 

work [68] on th e  ladder p rob lem  and proposed an 0 ( n 3) a lgo ri thm  for two m oving 

discs [70]. Hopcroft, Schw artz , and  Sharir  [21] proved th e  P S P A C E -h a rd n ess  of a  

general so lution for m ultip le  m oving discs while Spirakis and  Yap [77] showed the  

s trong  N P-hardness  of th e  m otion  p lann ing  p roblem  for e ight or m ore  m oving  discs.

2.2 H euristic Solutions

W hile efforts on the  theore tica l aspect of p a th  p lann ing  were successful w ith 

varying degrees, o the r  researchers em phasized  the  heuris t ic  aspec t of th e  p rob lem
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[5, 6, 24, 7, 87]. T h is  is m ain ly  because  of the  lack of general solutions in 3D 

workspace. To rem edy  the  difficulties involving 3D, th e re  have been a t te m p ts  to  

convert th e  free space in to  som ew hat m anageab le  form so as to  m ake  th e  F P P  easier. 

Brooks [5, 6] p roposed  a  generalized cone to  represen t th e  free space while th e  O ctree  

rep resen ta t ion  [39] was used by o thers  [23, 26]. T ho u g h  th e  O ctree  is qu ite  useful 

for represen ting  3D ob jects ,  it does requ ire  a  general search a lgo ri thm  to  construc t 

a  p a th .  In [26], K a m b h a m p a ti  and  Davis used th e  A “ a lgo ri thm  to  co ns truc t a  p a th  

for a  m obile  robo t.  Since th e  search was no t efficient, they  have proposed a  p run ing  

m e th o d  according to  th e  g rayness1 of a sub tree .

A fter the ir  work th a t  lim its  the  m obility  of the  m oving polygon to  trans la t ion  

[45], Brooks and  Lozano-Perez proposed a  hierarchical subdivision a lgo ri thm  [7]. U n­

like the  previous work, th e  subdivision a lgori thm  allows not only tran s la t io n  b u t  also 

ro ta t ion  of the  m oving polygon. However, the  subdivision a lgo ri thm  is still heuris­

tic  since the  n u m b e r  of recursive subdivisions is lim ited  until  a  ce r ta in  accuracy  is 

achieved. L a te r ,  Zhu and  L a to m b e  [87] im proved th e  a lgo ri thm  using constraint  

re formulation  and  a  new hierarchical search w ith  failure recording to  achieve signif­

ican tly  faster co m p u ta tio n .

A no th e r  useful m e th o d  of workspace rep resen ta tion  is the  vector field approach  

proposed in [62]. It transfo rm s th e  workspace in form ation  in to  a  field of vectors 

po in ting  to th e  correct d irec tions to  travel. T h e  m a jo r  p rob lem  of th is  m e th o d  is 

th e  p reco m p u ta t io n  of th e  vector field of the  en tire  w orkspace and  th e  vast am o u n t  

of in form ation  to  be stored. To rem edy this p rob lem , Miller and  Slack revised the  

a lgori thm  to  dynam ica lly  co m p u te  th e  vector field [53].

K h a tib  [31] proposed an artificial po ten tia l  field A pproach  w here th e  w orkspace 

P o r tio n  o f a subtree that is occupied by the obstacles.
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is transfo rm ed  to  a m a th em a tic a l  field so th a t  obstacles g enera te  repelling forces and  

th e  des tina tion  genera tes  a t t r a c t in g  forces. T h is  m e th o d  is qu ite  useful for rea l- t im e 

app lications because  a  robo t can s im ply  follow the  m ost a t t r a c t iv e  line and  is often 

used in m obile robo t m otion  p lann ing  [81, 82, 35]. I t  is shown th a t  th e  artificial 

po ten tia l  field approach  has th e  draw back of g e t ting  in to  local m in im a  [35, 24]. 

B orenste in  and  Koren [4] proposed a  vector-force field a lgo ri thm  by in teg ra ting  two 

know n concepts: ce r ta in ty  grids for obstacle  rep resen ta tion  [56], and  p o ten tia l  fields 

for navigation. However, it does not solve th e  p rob lem  com ple te ly  because  a  ce r ta in ty  

grid is the  represen ta tion  of inaccu ra te  sensory d a ta  ab o u t  obstacles.

A gradient-field  approach  proposed by P ay ton  [63, 64] deals w ith  th is  p rob lem  by 

calcu la ting  th e  cost of each grid cell of a  d ig ita l m ap . T h e  cost of each  cell is based  

on th e  score ob ta ined  by app ly ing  a  search a lgori thm  such as A* [19], or D ijk s tra ’s 

a lgo ri thm  [15]. T hough  the  gradient-field  approach  is useful in a  know n environ­

m e n t ,  it  canno t deal w ith  a changing env ironm en t efficiently due  to  its excessive 

c o m p u ta tio n a l  requirem ents. Zhao [85] proposed an a lgo ri thm  th a t  can deal w ith  

b o th  known and unknow n env ironm en ts  using a heuris tic-search  m e th o d  (recovery 

a lgori thm ) based on the  A * a lgorithm . It was shown th a t  th e  efficiency of Z hao ’s 

a lgo ri thm  largely depends on th e  scale factor of the  m ap .

In m any  cases, it is very difficult for a  p a th  p lanner  to  know its exac t su rroundings, 

o ften  due to  th e  existence of o th e r  moving robots  [72], or th e  sudden  change of th e  

env ironm en t caused by errors  a n d /o r  in truders .  In som e cases, th e  env ironm en t 

is too  large to  be  m odeled. T h e  m ost a t t ra c t iv e  m eans  of ga the r ing  env ironm en t 

in form ation  are  vision, tac ti le  sensors, a n d /o r  range finders. T h e  survey of th is  a rea  

is o m it te d  as the  topic is beyond the  scope of this d isserta tion .

Lum elsky has worked extensively  on au to m a tic  p a th  p lann ing  in an  unknow n



workspace. In [51], Lum elsky and S tepanov in troduced  two new a lgori thm s, b u g l  

and  b u g 2 ,  which search for th e  p a th  of a m obile robo t in an  unknow n terr ito ry . In 

[48], Lum elsky showed th a t  th e  above work can also be  applied  to  m echan ica l m a n ip ­

u la to rs  a f te r  p roper modification. Later, he [49] com pared  th e  p a th  leng ths  genera ted  

by b u g l  and  b u g 2  w ith  those  genera ted  by t rad i t io n a l  m aze  search a lgo ri thm s  [60] 

while showing th e  effect of th e  range  of sensors in [50]. In [67], S ank aran a ray an an  

and  V idyasagar in troduced  a l g l  by im proving  b u g 2  by showing and  rem oving  the  

condition  w here b u g 2  m ay go into an  infinite loop.



C H A PTER  III

ON THE LADDER PROBLEM

3.1 Introduction

T his  ch ap te r  addresses th e  p roblem  of m oving a  ladder in 2D (called th e  ladder  

problem)  am ids t polygonal obstacles. T he  ladder p rob lem  is to  find a  continuous 

m otion  p a th  of a ladder from an initial position to  a final position w ithou t v iolating 

a  set of geom etric  constra in ts  im posed by the  polygonal obstacles. W e assum e th a t  

bo th  th e  ladder and  the  polygons are  rigid bodies and  do  no t  allow bend ing  or 

p en e tra t io n .  T h e  p roblem  has been s tud ied  by m any  researchers  [6 8 , 40] as one 

of th e  s im plest form of th e  General M o v e r ’s P rob lem . In [6 8 ], th e  free space is 

p a r t i t io n ed  in to  several 3D m anifolds of free space called critical curves.  By form ing 

a connectiv ity  g raph  am ong th e  critical curves, th e  free space is decom posed  in to  a  

set of ad jacen t  connected cells. T h is  solution has 0 ( n 5) worst-case t im e  com plexity  

w here n  is th e  n u m b e r  of edges of the  polygon obstacles. A n o th e r  approach  to  

th is  p rob lem  has been proposed in [59] using a  retraction  techn ique. I t  solves the  

p rob lem  by re tra c tin g  the  free space into 1 -dim ensional subspace called a  generalized 

Voronoi diagram  [57, 58]. It was shown th a t  the  a lgo ri thm  can be im p lem en ted  in 

0 ( n 2 log n log //) t im e  com plexity . Later, an im proved a lgori thm  has been  proposed 

in [40] by decom posing the  free space w ith  trapezoids. T h e  i-esu lting  c o m p u ta tio n a l

16
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com plex ity  is reduced  to  0 ( ? ? 2 log??).

In til is chap ter ,  we present an algorit hm  which decom poses th e  free space based on 

some ladder  positions th a t  are  critical to  p a th  p lanning . U pon form ing a  g raph  using 

these  positions, Reachabil i ty Graph  (R G ), we can  decom pose th e  en t ire  workspace 

based on a finite n u m b e r  of critica l positions. It is shown th a t  ou r  a lgo ri thm  runs  a t  

th e  co m p u ta tio n a l  com plex ity  of 0 (ii2 lo g n )  w here n  is the  to ta l  n u m b e r  of vertices 

of th e  obstacles. T h is  is the  sam e co m p u ta tio n a l  com plexity  achieved in [40] and  

is very close to th e  theore tica lly  m in im u m  of Cl(n2) shown in [58]. T h is  theore tica l 

m in im u m  is based on the  ??2 o(??) nodes ob ta ined  from th e  Voronoi d iagram . L a te r  in 

th is  chap te r ,  we will prove th a t  th is  m in im u m  is not achievable w ith  any  non-heuris tic  

m otion  p lanner.  Specifically, it will be shown th a t  th e  m in im u m  bou n d  of a  non­

heuris tic  m otion  p lanner  for th e  ladder p rob lem  has th e  co m p u ta tio n a l  com plexity  

of f l ( n 2 log??). T h is  in tu rn  proves the  o p t im a li ty  of b o th  our a lgo ri thm  and  th e  one 

proposed in [58] for two different types of m otion  p lanner.

This  chap te r  is organized as follows. In th e  following section, we in troduce  the  

en v ironm en t and  the  term inologies used in our p rob lem  form ula tion  and  solution, 

and  form ally  define the  RG. Section 3.3 presents  an a lgori thm  necessary  to  cons truc t 

the  RG and  the  analysis of the  a lgori thm  toge ther  w ith  an  exam ple . In Section 

3.4, we will discuss the  ladder problem  in general and  provide an  analysis of the  

m in im u m  bound of the  w orst-case com pu ta tio n a l  com plexity  of th e  ladder  p rob lem . 

T h is  c h ap te r  concludes w ith  Section 3.5.

3.2 Definition of the Reachability Graph

Before defining the  RG , we will briefly describe th e  env ironm en t and  th e  te rm i­

nologies used in th is chap ter. L e t’s consider a ladder A \ A 2 in a  ‘2D workspace. O ne
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b i

b 3

F igu re  3.1: R epresen ta tion  of a  vertex  and  its neighboring  vertices.

end , i4i, of th e  ladder is m ark ed  as its reference point. T h e  w orkspace is c lu tte red  

w ith  polygonal obstacles which consist of a set of vertices B  =  {6 j, 6 2 , . . . ,  &„} and  

edges connec ting  these vertices. Notice th a t  these  vertices also inc lude th e  bou n d ­

aries of th e  workspace. We assum e all th e  polygons to  be sim ple, i.e., th e re  are  only 

tw o edges m e e tin g  a t  each vertex . This assum ption  should no t reduce  th e  general­

ity  of ou r a lgo ri thm  as any com plex polygon can be represen ted  by a  set of simple 

polygons. W e deno te  cw(bj)  to  be the  clockwise vertex  of 6 , th a t  shares an  edge with 

b{. S imilarly, ccw(b{) denotes th e  counter-clockwise vertex  of 6 j. A n  edge refers to  

th e  edge connec ting  6 , and cw(bi).  In th e  exam ple  shown in Fig. 3.1, cw(b\)  denotes 

62 while ccw(bi)  denotes k j. Also, cj denotes th e  line segm ent b \c w (b \ ), i.e., 6 2 -

A n edge e, also defines an inequality  p red ica te  f e>{:v) where f ei( x )  <  0 represents  a  

p o in t x  th a t  is located on th e  obstacle side  of e,. O therw ise , th e  po in t x  is said to  

be  on th e  free side of e,-. T h e  sam e point is said to  be inside  of th e  obs tac le  if the  

po in t is com plete ly  su rrounded  by a  set of edges and is on th e  obs tac le  sides of all 

th e  obstacle  edges su rround ing  it.

A position c =  {cv ,cg} of th e  ladder A i A ?  represents  th e  loca tion  (cp) of its

reference p o in t  (A j)  and th e  o r ien ta t io n 1 ( e g )  of the  ladder. T h e  dual  of a  position 

Hhe angle between A i A ?  and the horizontal line
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c =  {cp,cp}  is referred to  as d*(c) is {e'p,c'0} where

c 'p = cv K ( cd) I A 1A 2 | 

c'g =  — Cg

w here R(cg)  is a ro ta t io n  m a tr ix  and  | ^4j^42 | is th e  leng th  of th e  ladder. Basically, 

th e  dual of a position represen ts  th e  sam e line segm ent expressed using th e  o the r  

end , A i ,  of th e  ladder as its reference point. We use A\{c )  and  A 2 (c) as the  respective 

positions  of A \  and  A 2 when the  ladder is a t position c. T h e  ladder a t  a  position 

c corresponds to  a line segm ent a 1 a 2 where oj =  A\{c)  and  a 2 =  v42 (c). T h e  line 

segm en t corresponding  to  th e  ladder located a t c is deno ted  by /(c).

A position c of th e  ladder is said to  be free  when th e  corresponding  line segm ent 

a j a 2 n e i ther  in tersects , nor s tays com plete ly  inside of, any polygon obstacle. Col­

lectively, th e  set of all free spaces are  referred to  as FS (free space). FS was shown 

in [ShSw83] to  be th ree  d im ensional manifolds. A p a th  of th e  ladder  is defined as a  

contiguous sequence of positions in FS th a t  th e  ladder will go th rough . In p a r t ic u ­

lar, a  position of th e  ladder is said to  be on a  vertex v  when a  p a r t  of th e  ladder is 

touch ing  v. Similarly, th e  ladder is said to  be on an obstacle edge when a  p a r t  of the  

ladder  is touching  the  edge. W hen  two obstacle  vertices it and  v  can be connected 

by a s tra igh t  line w ithou t in te rsec ting  any o th e r  obstacle  edges, th e  two vertices are 

said to  be visible from each o th e r  and such a relation is deno ted  as u V v  or v V u .

L e t’s consider a s im ple m ovem en t of th e  ladder (see Fig. 3.2). T h e  visibility 

betw een the  origin and  des tina tion  positions, aj and a\,  of A i  is blocked by obstacle  

edges t'i, C3 , e4, and  e5. A m ong these edges, ej is the  closest to  th e  position  (a j)  

of A \ .  Ignoring all o th e r  obstacle  edges, the  only possible way for th e  ladder  to  go 

a round  the  edge c l i2  is to  pass th rough  the  ex tension  of e i the r  a \v \  or  a \ v 2. We refer



Figure  3.2: A s im ple  exam ple  of an edge blocking a  p a th .

th e  m otion  th a t  passes th rough  the  extension of a \v \  (a\i>2 ) to  as clearing th e  vertex  

V\ (u2)- H ad we chosen to  clear t>i, any subsequen t m ovem ents  should  clear e i the r  

v 4 or v 5 to  avoid th e  edge e4. Suppose and  v 4 are  chosen as th e  vertices to  be 

cleared. If we do not consider th e  o the r  p a r t  of th e  ladder, th e  shortes t  p a th  for A \  

to  clear b o th  vertices is to  follow the  s tra igh t line between iq and  v4. As  th e  ladder 

is a  rigid ob jec t ,  the  o th e r  p a r t  of the  ladder also has to  clear bo th  tq and  v4 in order  

for Ai  to  clear and  v4. Here, the  line segm ent is said to  be a  guide  line for 

th is  pa r t icu la r  pa ir  of the  origin and  destina tion , a\ and a\.

Literally  speaking, any visible pair of obstacle  vertices can form a  guide line for a
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cer ta in  com bina tion  of the  origin and  des tina tion . However, som e of th e  guide lines 

are  no t available as certa in  ladder positions lining up  w ith  th e  guide lines are  not 

free of obstacles. Also, the  lad d e r  m ay  not m ove from one guide line to  an o th e r  due 

to  th e  su rround ing  obstacles. For exam ple , in Fig. 3.2, V3 U4 is no t valid a  guide line 

because  th e  short d is tance  be tw een  th e  two vertices forbids for th e  ladde r  to  line up  

w ith  U3 F4 . On th e  o th e r  h an d ,  th e  ladder lined up  w ith  U3 U5 needs non-tr iv ia l m otion  

to  m ove to  a position th a t  lines up  w ith  v$vq. T h e  R eachab il i ty  G raph  (R G ) is based 

on th e  g rap h  rep resen ting  th e  availability  of such guide lines an d  th e ir  connectivity . 

M ore precisely, the  RG is defined as follows.

D e f i n i t i o n  1  The R G  is a graph  {N ,  E )  such that

N  C h  x V 2, E c N  x N

where / 2 =  {1 , 2 } is the set o f  the ladder’s  two ends and V  is the set  o f  obstacle 

vertices. There is a node n  =  { i, Vj, Vk} £ N  when

1 . Vj is within the line o f  sight (i.e., visible) f r o m  vk,

2 . i f  i =  0 , c =  {cj, \ V],vk} is a free posit ion o f  the ladder where \ V],vk is the 

orienta t ion o f  the line connecting Vj and Vk, or

3. i f  i =  2 , d*({vj ,  }) is a free posit ion o f  the ladder.

There is an edge between the two nodes  « j  =  {i , Vj , } and  ;i2 =  {?', t>', u}.} when

1 . i 7  ̂ i ' , v j  =  v'k and Vk — v'-, or

2 . e i ther Vj = v'} or i>k =  and  there is a path f o r  the ladder to fol low while

staying on the obstacle vertex v j .O
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A node  of th e  RG represen ts  a position of th e  ladder a t  th e  guide  line form ed by 

tw o visible obstacle  vertices, provided the  position is free from obstacles.

T h ere  are  th ree  types  of edges in th e  RG (see Fig. 3.3). T hey  are:

•  Edges corresponding  to  s tra igh t  line p a th s  along th e  guide line. (T y p e  I edge 

in Fig. 3 .3(a).)

•  Edges corresponding  to  sliding m otion  p a th s  betw een two positions in th e  op­

posite  sides of a vertex  on which th e  line segm ents  a re  located . (T y p e  II edge 

in Fig. 3.3(b).)

•  Edges corresponding  to  ro ta t io n a l  p a th s  betw een tw o neighboring  guide  lines 

sharing  an obstacle  vertex . (T ype  III edge in Fig. 3.3(c).)

By th e  definition of th e  RG , each node has a t  m ost 5 edges. T h ey  are: one type  

I edge, two type  II edges and tw o type  III edges. T h e  ex istence  of a  ty p e  I edge  is 

g u a ran teed  by th e  m ere  ex istence of th e  two nodes connec ted  by th e  edge. However, 

ty p e  II and  ty p e  III edges m ay  or m ay  no t ex ist depend ing  on th e  su rround ing  

obstacles. In the  nex t section, we will describe th e  factors th a t  d e te rm in e  nodes and  

th e ir  edges to  form a  reachab ili ty  graph.

3.3 Construction of a Reachability Graph

All vertices are  assum ed to  be  doubly-linked w ith  those  vertices w ith  which they  

form obstacle  edges. Since polygons are  assum ed  to  be s im ple  polygons, each  vertex  

is linked w ith  two o th e r  vertices. For convenience of rep resen ta tion , we d en o te  th e  

two vertices th a t  form obstacle  edges w ith  a  vertex  v  as ciu(v)  and  ccw(v).

Firs t ,  we need to  ob ta in  the  set of all visible edges from  each obs tac le  vertex . In 

som e cases, only p a r t  of an  edge is visible from th e  vertex. In o th e r  cases, none of
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Figure  3.4: An exam ple  of background  edges.

th e  vertices of the  visible edge is visible from the  vertex  due  to  th e  overlapping  w ith  

n ex t  visible edges. Therefore, we not only have to  ob ta in  all pairs  of visible vertices 

b u t  also have to  get all pairs  of edges which are  p a r t ia l ly  visible. W e will call such 

edges background edges. In th e  exam ple  of Fig. 3.4, th e  edge vfUg is a  background  

edge from i ^ ’s s tan d p o in t  as ne ither  e, nor vq is visible from  V\ while p a r t  of th is 

edge, uw,  is visible from v. N ode m ay or m ay no t ex ist depend ing  on the

leng th  of th e  ladder and th e  d is tance  between v\  and  u. S am e can be  said between 

V\ and  w. We need to  know all th e  background edges to  d e te rm in e  w h e th e r  or not 

any  p a r t icu la r  position  is free.

As th e re  a lready  exist m an y  known algori thm s to  o b ta in  such visible edges, we 

will use one of th em . O ne m ay find m ore  deta iled  a lgori thm s and  a  good survey of 

such a lgori thm s in [75]. We assum e th a t  such an a lgo ri thm  re tu rn s  a  doubly-linked 

list of visible edges, V is ib le _ E d g e _ L i s t ,  for each given vertex . T h e  list is so rted  by 

po la r  angle using i>i as th e  origin of th e  polar coord inates.



25

Using a  vertex  u ’s list of visible edges, we now co m p u te  th e  d is tance  betw een 

each visible edge and  th e  vertex  v. Let pip] be a  visible edge from v  and  bVtp-p-(0) be 

th e  d is tance  betw een the  visible edge pip]  and  v  a t  angle 0. T h en ,  8 v<jr^-{6 ) can be 

co m p u ted  using

'  d(PiP}<v)
^ v , p , p , ( 0 )  —

<HP.PjWJ Q a  \ \  \  1Sm(6- \ PiiPj) U ^  lAv,Pi,Av,Pj\

oo otherwise.

T hen ,  th e  d is tance  to  any visible edge from  v  a t  angle 6  becom es

6 V(6 ) =  _min SVt¥7pJ
p,p3eL

w here L  is the  Visible_Edge_List.

Using th is d is tance  function <5>v(0), we can now d e te rm in e  th e  ex istence of a  node 

in the  RG as follows.

Theorem  1 There exists a node n =  { l, o, e,} in the R G  i f  and  only i f

d(v,V{)  ^  Sv(\v,v, ^(-^l i ^ 2 ) — )

where d(v,i>i) is the distance between v and v l .

Proof: T h e  condition  d(v,  V{) < 6 V( \ v<Vt) is the  definition of a  visible vertex  while 

the  second condition defines th e  position corresponding  to  th e  node  th a t  represents  

a  free space. By th e  definition of a RG, the  node n  and  its dual n* =  { l,u ,- ,u}  are  

valid m em bers  of th e  node set of the  RG. I

Corollary 1 I f  there exists a node n — {1  , e , e,-} in the RG ,  there also exists a node

n" =  {2 , D, (!,} in the RG.

O ne can always de te rm ine  w hether  or not there  exists  an edge betw een two nodes 

as in th e  definition of RG. As m entioned  in the  previous section, th e re  a re  th ree  types



Figure  3.5: T h e  m a x im u m  allowable length  of th e  line segm ent on a  vertex.

of edges. T h e  existence of T y p e  I edges is g u a ran teed  by th e  ex istence  of th e  nodes 

connec ted  by th e  edges. T y p e  II and T ype  III edges can be o b ta in ed  using 6„(0). 

According to  th e  definition of RG, an edge betw een two nodes exists  w hen th e re  is a  

continuous pa th  between the  two positions represen ted  by th e  nodes while th e  ladder  

rem ains  on v. T h is  m eans th a t  the re  should be a free space available for th e  ladder 

lying a t  all angles between its o rien ta tions  a t  the  two positions. O ne  can d e te rm in e  

w hether  such positions exist or no t by checking the  following function . Let lv{9) be 

th e  m a x im u m  length  of a line segm ent on vertex  v  a t  angle 9 (see Fig. 3.5). T h en ,  

lv(9) becom es

U O )  = 6 V{0 ) + 6 U{ 0  -  ir).

T h e  condition  for the  ex istence of a continuous p a th  of th e  ladder  on v  a t  an  

angle in [0 \, 0 2) is

inf I J O ) < 1  A i A 2 I .

Fig. 3.6 is the  p lo t of Sv(9) and  lv(0) for the  exam ple  in Fig. 3.4. Since lv(9) as well
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as Sv(0 ) is a com binat ion of several functions, th e  infim um  m ay  occur a t  th e  infim um  

of each function w ith in  its range. The infimum of 8 , , ^ uj(d) occurs  only  a t  one of th e  

following or ien ta tions

0 =  A„,„, or 

=  K,v} or

— T  7T if +  7r) € [Av,^, AV|-il;y].

We deno te  the  above th ree  angles as Avroj(v). T hen ,  th e  connection  betw een 

{l,u,i> ,} and  {l,u ,i> j}  exists  when

L(0 )  < |  A }A 2 | for 0  €  U  A ^ ( u )
vkvi

w here E  is the  set of all edges in the  opposite  side of TifuJ. F rom  now on, we refer 

A t^ j(u )  to be as the  set of critica l angles of VjTij from v's  s tan d p o in t .

Using the  set of critical angles, we now describe our a lgo ri thm  Scan th a t  ac tua lly  

cons truc ts  the  RG. For each obstacle  vertex , Scan com putes  all th e  nodes of th e  RG 

by ob ta in ing  all th e  guidelines genera ted  by the  obstacle  vertex. T h is  can b e  achieved 

by checking all possible guide lines th a t  can be genera ted  by th e  vertex . T h a t  is, 

Scan m u st check all the  obstacle  vertices visible from th e  vertex  and  d e te rm in e  

w hether  th e  line connecting  th e  two vertices is a valid guide line or not.

Suppose t>, is th e  obstacle  vertex Scan is curren tly  working on. F irs t ,  Scan  

needs to  co m p u te  th e  set of all visible obstacle  vertices. T h is  has been s tud ied  

ex tensively  by several researchers [43, 75, 1 ], so th e ir  resu lts  will be used by Scan. 

Let V is ib le _ E d g e _ L i s t  of o, be the  set of all obstacle  vertices visible from  u,-, sorted  

by the ir  polar angle w ith  v, as the ir  reference point.

N ext, the  a lgo ri thm  scans V is ib le _ E d g e _ L i s t  un til  it finds th e  edge th a t  is on 

th e  opposite  side of the  first vertex of the  list in e , ’s view (see Fig. 3.7). T h is  is done
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Figure  3.6: D is tance function of v.
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{<jjS&w<s,v£v, S'XvC' ĵAs

V

Figure  3.7: Tw o edges in th e  opposite  d irec tion  of an  obs tac le  vertex.

in s tep  2 and s tep  3 of S c a n .  In s tep  2, the two po in ters  F  an d  B  a re  initia lized to  

po in t to  the  first edge in V is ib le _ E d g e _ L is t .  In s tep  3, S c a n  advances F  to  poin t 

to  the  nex t edge in V is ib le _ E d g e _ L i s t  while leaving B  to  th e  first edge until  F  is 

opposite  d irec tion  of B  in n ,’s view.

T h en ,  S c a n  first d e te rm in es  w hether  or not a  p a r t icu la r  visible line is a  valid 

guide  line or no t  by com paring  th e  length of th e  ladder,  | A i A 2 |, w ith  th e  d is tance, 

/„,.(*), betw een th e  two edges F  and  / i .  where 0 is th e  set of crit ica l angles due  to  F  

and  B .  If it is a valid guide line, S c a n  generates th e  co rresponding  nodes of th e  RG 

and  connects  th e m  accordingly. N otice th a t  two nodes are  g en e ra ted  so th a t  S c a n  

can  acc o m m o d a te  the  dual of each ladder position. T h is  p rocedu re  continues while 

advanc ing  F  and  B  a l te rn a te ly  until  B  points to th e  first edge of Visible_Edge_List 

again.

P rocedu re  Scan(r>,)

1 . Sort th e  e lem en t of V is ib le _ E d g e _ L i s t  of e, by the ir  po la r  angles.
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2. Assign F and  B to  th e  first edge of V isib le  _Edge_List.

3. W h ile  A„.|r_ 5  -  AVtB^ E <  tt do F :=  R L IN K (F )  end

4. W h ile  R L IN K (F )  /  ST A R T

(4a) if A„,/r_s  >  \ V,B-+E +  v  then

if  lv,(0 ) > |  A j A 2 | for 0  €  A f  H Ab

D ete rm ine  visible vertices w  and  x  for F  —► S  and  F  —+ E .

C onnect {l,u,-,tu} and  { l , r \ , x } .

C onnect {2 ,n t, w )  and  {2 ,u ,,  a:}.

(4b) else

if  lv,{0) > |  A \ A 2 | for 0  €  Ayr C Ag

D eterm ine  visible vertices w  and  x  for F  —> S  and  B  —> S.

C onnect { l ,u ,vw }  and {2 , e,, .r}.

C onnect «»} and {2 , e,, ;r}.

(4c) i f  AViF^ s  > K , b - s  + n then  F :=  R L IN K (F )

(4d) else B :=  R L IN K (B ).

Now, we describe som e of th e  charac teris tics  of th e  a lgo ri thm  Scan and the graph, 

RG, it generates .

T heorem  2 The comp utat ional  complexity o f  the algorithm  Scan is 0 { n  log n) where 

n is the total n umber o f  edges in the workspace.

P ro o f : Each of th e  steps in the  a lgori thm  Scan involves only comparisons and 

a r i th m e t ic  operations . All s teps excep t for Step 1 are  th e  linear processing of an 

n-elem ent list. In S tep  1, a list of length  ?? needs to be sorted . Hence, the time 

com plexity  of S tep  1 is 0 { n  log n).  In Step 4, we need to  check a t  m os t 77 edges, and  

th e re  are a t  m ost 6  positions to  check before d e te rm in in g  the  connectiv ity . Therefore,
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th e  com plex ity  of S tep  4 is 0 ( n ) .  So, the  overall com plex ity  is O ( n lo g n ) .  I

Since th e re  are  n  vertices, we need to call S c a n  n  tim es. Therefore , th e  com plexity  

of th e  overall a lgo ri thm  is O ( n 2 lo g n ) .

L e t’s consider th e  ex am p le  workspace in Fig. 3.9. A p a r t  of th e  reachab ili ty  graph 

genera ted  for th is  exam ple  is shown in Fig. 3.8. D ue to  th e  com plex ity  of th e  graph, 

th e  figure shows only those nodes re la ted  to  b2 and  6 5 . In th is  exam ple , th e re  is no 

T y p e  III edge involving b2 and  b5 in th e  RG. Basically, T y p e  I and  T y p e  II edges al­

ways genera te  two sy m m e tr ic  nodes corresponding  to  the  dual of th e  ladder  position. 

T h is  results  in two identical subgraphs  in th e  RG. D epending  on th e  a r ran g em en t of 

th e  obstacles, these  two subgraphs  m ay or m ay  no t be connected . However, a  T ype 

III edge always connects  two nodes, one from each subgraph . W i th o u t  any T y p e  III 

edge, th e  RG shown in Fig. 3.8 is not connected , im ply ing  th e  ex istence  of certain  

origin and  d es tina tion  pairs th a t  canno t be connected.

Suppose a  specific origin and  des tina tion  pair  is given and  we w ant to  move a  

ladder  from {a, b) to  {c, d } in the  exam ple  w orkspace of Fig. 3.9. Using th e  algorithm  

described in Section 3, we can cons truc t th e  RG. In add ition  to  th e  g raph  ob ta ined  

from the  obstacles, we add  four te m p o ra ry  vertices to  th e  w orkspace as shown in 

Fig. 3.4. Basically, these four vertices are  the  positions of A \  and  A 2 a t  th e  origin 

and  those a t th e  destina tion . In th is  exam ple , we added  te m p o ra ry  vertices a,b,  c, 

and  d. A fter  add ing  these vertices, we can co m p u te  the  added  nodes of th e  RG using 

th e  a lgori thm  S c a n .  Upon construction  of the  RG , we m ay  use any  g raph  search 

a lgo ri thm  to d e te rm in e  the  p a th  between th e  origin and  des tina tion .

C o r o l l a r y  2  The addit ion o f  temporary  vertices can be computed  in 0 ( n  log n) time.

P r o o f : Since each add itional vertex  requires 0 ( n  log n) t im e  com plexity , add ing  four



32

212 242 262 2320<N 
0----------------

r*H 142 Y
° 1

125

162 ?
°  1

! !
I 1

132 ?

? 1 
1 1 
! 1 
1 1 
1 d

1 121 I 124 1 | 126 1O- -o-

221 224 225
r r

123
-o- - o

226 223

254 251
o  --------- o

252 253 256
o o -

1 54  151

o

152
O-

153 156

---------------------- Type I edge

------------------------ Type II edge

— — — — — — Type III edge

Figure  3.8: A sam ple  RG w ith  th e  add ition  of th e  origin an d  th e  des tina tion .
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Figure  3.9: An exam ple  with origin and des tina tion .

m ore  vertices can be done with add itional O (? r lo g n )  t im e  com plexity . Therefore, 

overall com plex ity  rem ains  to  be 0 (n 2 lo g n ) .  I

A fter adding  th e  origin and des tina tion  to  th e  graph , we can  o b ta in  a  p a th  be­

tween any origin and  des tina tion  in 0 ( ? ? 2 log ??.) tim e.

In th e  following section, we will prove th e  correctness of our a lgo ri thm  and  discuss 

th e  m in im um  com plexity  bound  of the  ladder problem  in general.

3.4 The M inimum Com plexity Bound of a Path Planner

L e t’s consider a ladder a t  som e position c and  its s tra igh t- line  ex tension , denoted  

by e(c). T h e  position c is in free space when e(e) in tersects  obs tac le  edges ou ts ide  

th e  ladder (see Fig. 3.10). Using this observation, Leven and  Sharir  labeled a  free 

space w ith  s(c) =  {e,, ej}  w here e, and  ej a re  two obstacle  edges closest to  th e  ladder 

am ong  those obstacle  edges th a t  in tersect the  extension  of th e  ladder. Let P, be the
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Figure  3.10: A position of the  ladder and  its ex tension , 

set of all free spaces such th a t

Pi = {c : s(c) — {e , , ej}  for som e ej} .

Obviously, any two obstacle  edges et and ej can form a  region of free space labeled 

w ith  {e,-, ej}  as long as some p a r t  of ej is w ith in  th e  line of sight from  a  p a r t  of 

e t . T hen ,  P, can be represen ted  by a P lan a r  S tra igh t  Line G rap h  (PSLG ) which 

consists of obstacle  edges. In the  exam ple  shown in Fig. 3.11, Pi  is represen ted  by

e2e3eee5e7e3e4.

A PSLG  forming Pi for som e obstacle  edge e, is charac terized  by th e  following 

lem m a.

L e m m a  1  Let  e, be an obstacle edge. Then,  the length o f  the P S L G  fo r m e d  by Pi is 

f l (n )  and Pi can be any  one o f  f i(n " )  possible P SL G s .

P r o o f :  T h e  proof of the  length of the  PSLG is s tra igh tfo rw ard  and  left to  readers . 

O ne e x tre m e  exam ple  is shown in Fig. 3.11, w here Pi con ta ins  all edges in th e
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Figure  3.11: T h e  region formed by a PSLG  g enera ted  by an  edge.

w orkspace except. c.\ itself. F u rtherm ore ,  th e re  is a  ce rta in  edge, e3, which appeared  

m ore  th a n  once in th e  secjuence. T h e  to ta l  n u m b er  of possible PS L G s corresponds 

to  the  n u m b er  of possible words whose length  is f l (n )  over th e  a lp h ab e t  of size n. 

T h u s ,  th e re  are f l ( n n ) different PSLG s th a t  an obstacle  edge can  be associa ted  w ith . 

■

N ext, we will show th e  to ta l  num ber  of different PSLG s th a t  a  given workspace 

can  have.

L e m m a  2  Let e, and ej two obstacle edges in a workspace then their  P S LG s ,  Pj and  

P j , m ay  or  m a y  not contain any  common edge and the order o f  co m m o n  edges, i f  

any,  in Pj does not affect that in Pj .

P r o o f :  We will show two workspaces th a t  are  a lm ost identica l b u t  have  different 

PSLG s. In the  exam ples  in Fig. 3.12(a) and  Fig. 3.12(b), Pj conta ins a  substr ing  

e 2 e ie 3 e5 e4 . However, Pj con ta ins  a  substr ing  e5 e2ei for th e  exam ple  in Fig. 3.12(a) 

an d  e2 e1e 5 for th a t  in Fig. 3.12(b). T h a t  is, th e  positions of e5 in th e  P SL G  codings
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(a)

(b)

F igure  3.12: Tw o o therw ise identical workspaces with two different codings.

are  different, for o therw ise identical workspaces. Also, no te  th a t  e$ m ay  not even 

ap p ea r  in Pj a t  all, had  th e  length  of e5 been a  l i tt le  shorter.  T h is  proves th a t  th e  

PSLG  of one edge does not affect those of o the r  edges. I

Using L em m as 1 and  2, we now prove the  worst-case co m p u ta tio n a l  com plex ity  

of the  ladder problem .

T h e o r e m  3 There are Q (n u~) possible P S L G s  fo r  a workspace consisting o f  n  obsta­

cle edges and any  non-heurist ic  path planning algorithm requires f2( n 2 lo g n )  steps.
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Proof: According to  L em m as 1 and  2, the re  are  n  ind ep en d en t PSL G s each w ith  

f i ( n n ) possible com binations. Hence, th e re  are  fi(rcn ) x i l ( n n ) x  . . .  x  H (n n ) PSLGs. 

T h a t  is, th e re  are  a  to ta l of f2(n"2) different PSLG s w ith  which a  w orkspace can be 

represen ted . Suppose th e re  is a  non-heuris tic  p a th  p lan n er  th a t  genera tes  a  p a th  

using th e  descrip tion  of workspace, origin, and  des tina tion . Being  non-heuris tic ,  the  

p lanner  should always find a  p a th  if any. Consider th e  use of th e  p a th  p la n n e r  for two 

w orkspaces w ith  two different PSLG  codings, P  =  P 1P2 • • ■ Pn and  P '  =  P / P J ' '  ‘ Ph- 

Suppose P  and  P '  are  identical except Pk and  P/. w here P* has an  edge e/ while P^ 

does not. Any non-heuris tic  p a th  p lanner  should recognize th e  difference betw een 

P  and P '  or it will genera te  identical p a th s  for bo th  workspaces. W i th o u t  knowing 

w h e th e r  th e  ladder position w ith  label {e^.,e/} is free or not, th e  p a th  p lan n er  has 

to  always avoid such a position. However, it is no t possible to  en tire ly  avoid such 

positions as a  ce rta in  pair of origin and  des tina tion  m ay require  th e  p a th  to  include 

som e of th e m  (e.g., the  origin or the  des tina tion  m ay  s ta r t  from  such a  position). 

To d ifferen tiate  all th e  workspaces with different PSLG s, th e  p lanner  requires  a t  

least logc f l ( n n ) com parison steps, provided it can m ake  only c com parisons a t  a  

t im e. By tak ing  th e  logarithm  inside of the  a rg u m en ts  of f I, th e  p lanner  needs a t  

least f i( log(/d l2)) =  H (» 2 lo g » )  com parisons. Hence, the  ladder  p rob lem  requires 

n (??2 log n ) com plexity. I

Now, we will prove th e  correctness of the  proposed a lgo ri thm  by showing th a t  

th e  RG has the  sam e power in represen ting  th e  w orkspace as th e  connec tiv i ty  g raph  

(C G ) used in [40].

L e m m a  3 Let G  =  { V , E }  be the R G  and G'  =  { V ' , E ' }  be the C G  whose nodes  

consist o f  the trapezoids described in [J,0]. Then,  f o r  every v £  V , there exists a 

v'  £ V  such that the ladder posit ion corresponding to v  is one o f  the parallel edges
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o f  the trapezoid represented by v ' .

T h e  proof is s tra igh tforw ard  as bo th  th e  guide lines used in th e  RG  and  one of 

th e  paralle l edges of each trapezo id  of th e  CG  are genera ted  by th e  visibility lines 

connec ting  two obstacle  vertices. T h e  converse of th e  le m m a  is no t  t ru e  as th e re  are 

trapezo ids  in th e  CG which do not have corresponding  guide lines in th e  RG. T h e  

effects of such trapezo ids  w ith o u t th e  corresponding  guidelines can  b e  described  by 

th e  following lem m a.

L e m m a  4 Let D  be the difference between the vertex set o f  the R G  and  the CG.  

Then,  f o r  every el €  D  and any  path o f  the ladder that passes through the trapezoid  

corresponding to el, there is an al ternative path o f  the ladder that passes through 

another  trapezoid that has a corresponding guide line in the CG.

Proof: S c a n  does not g enera te  any node when the  d is tance  betw een tw o obstacle  

vertices are  sho rte r  th an  the  length of th e  ladder. For exam ple ,  in Fig. 3.13, Scan  

does not g enera te  any node corresponding  to e/ because  e/ is sh o r te r  th a n  th e  ladder. 

By con tra s t ,  th e  CG should contain  a node corresponding  to  e/ as th e  leng th  of em 

can be longer th an  th a t  of th e  ladder. However, any  p a th  th a t  passes th ro u g h  the  

trapezo id  described  by e/ and  e,n can be represen ted  by th e  guide  line represen ted  

by e„. ■

Based on L em m as 3 and 4, we can conclude th a t  th e  RG has  th e  sam e power as 

th e  CG in rep resen ting  th e  workspace.

3.5 Summary

O ne of th e  m ain  advan tages  of using the  RG over th e  CG is th a t  th e  size of 

th e  RG is m uch sm aller th an  th a t  of th e  CG. Hence, th e  ac tu a l  search t im e  can
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Figure 3.13: Effect of short guide line.

be reduced . T h is  is p a r ticu la r ly  t ru e  w hen th e  workspace is crow ded w ith  obstacles 

s ep a ra ted  by short  d istances.

As th e  co m p u ta tio n a l  com plexity  of the  RG is the  sam e as th e  theore tica l m in ­

im u m  of th e  general ladder problem , using the  RG is an  c o m p u ta tio n a lly  op tim al 

approach  to  our ladder problem . N ote th a t  th e re  m ay be  m ore efficient a lgorithm s 

un d er  som e add itional res tr ic tions  to  th e  obstacles. For exam ple , we m a y  find a  m ore 

efficient a lgo ri thm  for a  workspace where th e  distances betw een th e  closest o b s ta ­

cle edges exceed a  certa in  value. T hough  these  res tric tions  m ay  be  to o  severe for its 

general applicability , such an a lgorithm  may fare very well in ac tua l im p lem en ta tions .



C H A PT E R  IV

D O M IN A N C E G R A PH  A N D  ITS 
APPLICATIONS

4.1 Introduction

T h e  m ost p opu la r  solution to  the  shortes t  p a th  p lann ing  p rob lem  (S P P P )  hinges 

on th e  visibility g raph  (V G). T h e  VG m e th o d  is based on th e  observation  th a t  

when two poin ts  in a  p lane are  not visible from each o the r,  th e  shortes t  p a th  always 

con ta in  one or m ore  vertices of the  obstacle  in th e  plane. B ased on th is  observation , 

th e  w orkspace is transfo rm ed  in to  a  graph  in which th e  d is tances  between all pairs 

of m u tu a l ly  visible vertices a re  p reca lcu la ted . T h e  o p t im a l  solution can th e n  be 

o b ta in ed  using the  D ijk s tra ’s g raph  search a lgori thm  [15].

T hough  the  VG is very useful in 2D, it is very difficult to  use in higher d im ensional 

spaces. For exam ple , when two poin ts  are  no t visible from  each o th e r  in 3D, th e  

sho rtes t  p a th  betw een th e m  should  pass th rough  one or m ore  edges of the  obstacles  

in s tead  of the ir  vertices. Consequently , it is difficult to  rep resen t a  3D w orkspace w ith  

a  graph . M oreover, unlike th e  case of vertices, the  sho rtes t  p a th s  passing th rough  

edges are  not unique. For exam ple , in 2D the  length of th e  shortes t  p a th  betw een 

two points, A  and  B ,  passing th rough  a  th ird  poin t C  is A C  +  C B .  In 3D, th e  

length  of th e  shortes t  p a th  betw een th e  two po in ts  passing th ro u g h  an edge c is no t

-10
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usually  th e  sum  of th e  d is tance  betw een A  and  c and  th a t  betw een B  an d  c, im ply ing  

th e  difficulty in using D ijk s tra ’s graph  search a lgo ri thm . T his  difficulty has  led to  

th e  developm ent of heuris tic , application-specific  approaches, such as th e  ones in 

[31, 23].

We shall in troduce  th e  L\ visibility betw een tw o po in ts  in a  d ig itized  workspace, 

based  on which we can derive dom inance  rela tions betw een cer ta in  p a r t i t ions  of 

th e  workspace. T hese  dom inance  rela tions show som e useful p roperties  th a t  can be 

utilized  to  solve th e  S P P P .

T h e  ch ap te r  is organized as follows. Section 4.2 s ta te s  th e  S P P P  formally. In 

Section 4.3 we define L\  visiblity and d e m o n s tra te  how it p a r t i t io n s  th e  workspace. In 

Section 4.3.1, the  p roperties  of a p ar ti t ioned  workspace are  exam ined .  Section 4.3.2 

presen ts  a g raph  rep resen ta tion  of th e  w orkspace based on which an  S P P  solution 

a lgo ri thm  is derived. Section 4.4 presents  an exam ple  and  s im uila t ion  results. T h e  

ch ap te r  concludes w ith  Section 4.5.

4.2 Problem  Statem ent

Consider th e  p rob lem  of moving an o b jec t in a w orkspace c lu tte re d  w ith  obstacles.

We w ant to  find a p a th ,  or d e te rm in e  a set of points, for th e  o b jec t  to  traverse  from

a  s ta r t in g  po in t (origin) to an  end poin t (des tina tion )  w ithou t colliding w ith  any

obstac le  in the  workspace. T h ere  are  two sources of difficulty assoc ia ted  w ith  this

p rob lem : (i) an infinite n u m b e r  of p a th s  exist for each given o r ig in -d es t in a t io n  pair,

and  (ii) it is in general difficult to  represen t obstacles  of a rb i t ra ry  sh ap e  in th e

workspace. O ne way of c ircum venting  these sources of difficulty is to  d ivide the

w orkspace into a finite n u m b er  of cells1. Such division not only reduces th e  infinite

! A cell is a square in '2D and a cube in 3D.
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n u m b e r  of possible p a th s  to  a  finite n um ber  of pa th s ,  b u t  also allows each obstacle  

to  be represented  by th e  set of cells it occupies.

Let a  th ree  d im ensional w orkspace be divided in to  £ x m  x  n  iden tica l cells. Ac­

cording to  th e  CSA [44], th e  o b jec t to  be m oved can be  sh runk  to  a  po in t by growing 

obstacles. In w h a t follows, cells a re  represen ted  as o ,p ,  q , . . .  w hen th e ir  locations 

need not be specified, as Oijk,pcmn, Qabo ■ ■ ■ when the ir  locations need  to  be  specified, 

and  as i q , u 2 ,i>3 , . . .  w hen a sequence of cells needs to  be  specified. Informally, th e  

goal of a  p a th  p lanner  is to  find a  p a th  form ed by a  sequence of neighboring  free 

(unoccupied) cells from the  origin to  th e  des tina tion  while m in im iz ing  a ce r ta in  p a th  

cost.

T h e  m ost com m only  used cost is p a th  length. In a  Euclidean  space E d, th e  L p~ 

d is tance, dp( x , y ) ,  between two points, x  =  (x.\, x 2, . . . ,  x d) and  y  =  (3/1 , y 2, . . . ,  yd), 

is defined as:

d Pi x i V)  =  (I *1 “  2/i I7' +  I x 2 ~  2/2 |p +  • • • +  I -I'd ~  Vd |p) 1/p, w h e re  1 <  p  <  00 

doo(x,  y )  =  m a x ( |  xj  -  y x |, | x 2 - y 2 |, • • • ,  | x d -  y d |).

T hough  th e re  exist an infinite n um ber  of Lp-m e tr ic s ,  only th re e  of th e m  have 

significance for p a th  planning: L 1 , L 2, and  L ^ .  T h e  advan tage  of using Z ^ m e t r i c  

over L \ -  or L <*,- m e tr ic  is its ab ility  of describing the  o b je c t ’s traversa l d is tance. O n 

th e  o th e r  hand ,  L \ -  and  L a0-  m etrics  have th e  following advantages:

•  T h e  p a th s  genera ted  un d er  L \ -  or L <*,- m e tr ic  are  usually  safer2 th a n  those 

under  L 2 -m e tr ic .

•  Z/oo-metric (or Z ^ -m etr ic )  conta ins m ore accu ra te  in form ation  concerning th e

m in im u m  n um ber  of search steps required from th e  cu rren t  location  to  th e

2By ‘safer’, we mean that the minimum and average clearance from obstacles are greater.
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d es tina tion  th a n  any o th e r  m etrics.

•  T h e  length  of a  p a th  in a digitized space is th e  sam e as the  p a th  in th e  corre­

sponding  continuous space when L \ -  or Loo- m e tr ic  is used.

We will lim it our discussion to  L i -m e t r i c  only, since, as shown in [37], any  p roblem  

in L \ -m e t r ic  space can be  transfo rm ed  in to  an equ ivalen t p rob lem  in Loo-m etric  

space w ith  a  s im ple change of coord ina te  system . T h e  cost of  a  p a th  P , d eno ted  by 

C ( P ) ,  is the  length  of P  m easured  in L i -m e tr ic .  Tw o cells a re  said to  be  neighbors  if 

they  are  physically ad jacen t .  Since all the  cells are  identical in size, th e  L j -d is ta n c e  

betw een th e  centers  of any two neighboring cells a re  identical and will be  t r e a te d  as 

unit  distance,  (i.e., Tw o cells a and b are ad jacen t if d\{a ,b )  =  1.

T h e  p a th  p lann ing  p rob lem  can now be s ta ted  form ally  as follows: For given two 

poin ts , .r and y,  and  a  set, O,  of cells th a t  a re  occupied by obstacles , find a  sequence, 

P  =  V\V2 . . .  of neighboring  cells such th a t

x  e  v i , y e  v n , r/i( e;, n1+1) =  1 , u, ^  O  for 1 <  i <  n  — 1 ,

while m inim izing  n.

4.3 Partitioning the Workspace

It is necessary to  define th e  following te rm s  for th e  c larity  of p resen ta tion .

D efin it io n  2 In L\  -m e t r i c  space, a cell v is said to be visible f r o m  a cell w,  denoted  

by vlftio, i f  there exists a sequence P  = v0v\ . . .  v j ^ ViW) o f  free cells such that

Vo = V, vJl(VtW) -  w, di(vj- i, i>i) =  1, and d i ( v i , v dliViW)) =  d 1( v , w ) - i ,  1 < i  <

where d \ ( u , v )  is the L \ -d i s ta n c e  between u and v.  Otherwise,  v is said to be no t 

visible fr om  w, denoted by v fRw.



Definition 3 For any two adjacent cells, a set, N  = {?? +, nx , , ny , n f , n z }, is 

called the set o f  neighbor opera to rs  i f

n t ( v i j k )  =  V t m n  = >  t  =  i  +  1 , r n  =  j ,  n =  k  

n x ( V i j k )  =  V t m n  = >  £  =  i, -  \ ,  Til =  j ,  H  =  k

n {Vi j k)  =  V t m n  = >  £ =  i ,  m  =  j , n  =  k  -  1.

and a set, 0  C N ,  is called the  orthogonal set  o f  neighbor operators i f  they  always  

generate the neighbors in orthogonal direct ions o f  a cell, e.g., n ~ ,  n f }.

D efin it io n  4 For any two free3 cells, v and w,  in the workspace, v is sa id  to be

visible f r o m  w i f  there exists an orthogonal set, O, o f  neighbor operators such that

P  =  i>0 i>i . . .  v(il(v<w) where v0 = v, vdl{l,tW) = w, ly =  n(u,-_1) f o r  som e  n  e  O,

and O is called the genera ting  opera to r  set o f  P .  The dual  o f  O,  denoted by O*, is

the  g e n e r a t i n g  o p e r a t o r  se t  o f  the rev e r se  sequen ce  o f  P ,  i .e . ,  •■•Vq.

Using the  above definition of visibility, the  dominance  re la tion  betw een cells and  

th a t  betw een two sets of cells are defined as follows.

D efin it ion  5 For any two cells u and v in a workspace W , u is sa id  to domina te  v,  

denoted by u > c if, i f f  ivifiv —> wdtu,  V w 6  W . Similarly,  f o r  any  two sets,  A  and  

B ,  o f  cells in W ,  A  is said to dominate  B , denoted by A  > 3 B ,  i f f  f o r  any  v  €  B ,

3u  €  A  such that u > c v.

H aving defined the  dom inance  rela tion  betw een cells, the  equal re la tion  is defined 

as follows.

A cell is said to be f ree if  it does not intersect any obstacle.
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Figure  4.1: P a r t i t io n in g  of th e  workspace in to  regions.

D e f i n i t i o n  6  For any  two cells u and v,  u is said to be equal to v,  denoted by

u ~ c v, i f f  u > c v and v > c u.

N otice th a t  th e  rela tion is an equivalence re la tion 4 and  its  cen tra l im p o rtan ce

is th a t  it induces a  pa r t i t ion  of the  workspace. T h a t  is, th e  re la tion  ~ c divides th e

w orkspace into several sets of cells such th a t  u €  R (v )  —> S ( u )  =  *S'(u), where R ( v )  is

a  p a r t i t io n  conta in ing  v  and  S ( u )  th e  set of all th e  cells th a t  a re  no t visible from  u.

Such a set will henceforth  be referred to  as a  region. In th e  2D exam ple  of Fig. 4.1,

any  cell in R \  is visible from any o th e r  cell in the  en tire  w orkspace except for those

in Similarly, no cell in / ? 2 is visible from any cell in i ?8 U -^ 9  U •

T h e re  are  several ways of ob ta in ing  regions. In case of 2D space, a  bo rder  of

th e  regions is form ed by pro jec ting  the  edges of obstacles along x  and  y  d irections,

as shown in Fig. 4.1. T h e  following procedure, P i ,  is used to  de te rm ine  th e  to ta l

n u m b e r  of cells visible from a given cell. Since to ta l  num bers  of cells visible from

4It is reflexive, sym m etr ic ,  and transitive.



two equ ivalen t cells are  sam e, P i  can be used to  pa r t i t ion  th e  w orkspace under  th e  

assum ption  th a t  no two neighboring regions have th e  sam e n u m b e r  of visible cells. 

(This  assu m p tio n  can be relaxed tr iv ially  as we shall see shortly .)  Informally, th e  

p rocedu re  works as follows. All the  cells visible from a given cell, u, of th e  workspace 

are  o b ta in ed  and  expressed w ith  an ind ica to r  vector / ,  i.e., I ( x )  =  1 (0 ) if a  cell x  

is free (occupied by an obstacle). S ta r t in g  w ith  a  cell v  of d is tance  0 (i.e., itself), 

one can d e te rm in e  all th e  visible cells of d is tance  1 from v.  Using a  recursion, one 

can then  ca lcu la te  all th e  cells visible from v  of d is tance  2 , 3 , . . .  A', w here K  is th e  

m a x im u m  possible d is tance  between any two cells in the  workspace. In m os t cases, 

K  is th ree  t im es  th e  resolution of each axis. A fter d e te rm in in g  all th e  cells visible 

from a given cell v,  th e  to ta l num ber,  N ( v ) ,  of cells visible from  v  is o b ta in ed  from 

th e  vector I .

P rocedu re  P I

For every cell v in the  workspace IF 

i f  v  is a fi ee cell 

b e g i n

initia lize  I( io)  <— 0 for all to G IF

/ ( v)  <- 1

f o r  i =  1 t o  K

b e g i n

G en e ra te  D{(v)  which is the  set of cells of d is tance  i from  v.  

for every iu €  D ,(v )
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e n d

y v ( > . ) £  / ( ,„ )
wew

e n d  

e n d { P l }

T h e  o u tp u t  of P i ,  N ,  is a  m a tr ix  th a t  contains th e  to ta l  n u m b e r  of cells visible 

from each cell v. According to  P i ,  if th e  n u m b e r  of cells visible from  any two 

cells nex t to  each o th e r  is different, then  th e  two cells belong to  different regions. 

A n o th e r  no tab le  fact is th a t  all the  boundaries  of a region are  p e rpend icu la r  to  one 

or m ore  principal axes. Therefore , the  vertices, edges, and  surfaces of regions can be 

d e te rm in ed  from N  as follows:

1. For any vertex , ^  0-

2. For any edge parallel w ith  z-axis, ^  0. Similarly, edges parallel w ith  x-axis 

or y-axis can be ob ta ined .

3. For the  surfaces th a t  a re  perpend icu la r  to  x-axis, /  0. Similarly, o the r  

surfaces can be de term ined .

P I  canno t d e tec t  the  boundary  between two ad jacen t regions when th e  to tal 

n u m b e r  of visible cells for the  two regions happens  to  be th e  sam e  (see Fig. 4.2). 

Such u n d e tec te d  boundaries  can be easily recovered by ex tend ing  som e of de tec ted  

boundaries. In Fig. 4.2, the  boundary  B C  can be recovered la te r  by ex tend ing  e i ther  

A B  or C D .

By p ar t i t io n in g  th e  workspace based on the  rela tion  ~ c, th e  p a th  p lann ing  p rob­

lem  can be divided in to  the  following two subproblem s.
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Figure  4.2: An exam ple  of u n d e tec te d  boundaries.

S u b p r o b l e m  1 ( I n t e r - R e g i o n )  F ind a  sequence, P  = R 0R i R 2 . . .  R k R d > of regions 

such th a t  R 0 is th e  region th a t  contains the  origin and  R j  th e  region th a t  contains 

the  des tina tion .

S u b p r o b l e m  2 ( I n t r a - R e g i o n )  F ind a  pa th  to  traverse  w ith in  each region in the  

sequence found from S ubprob lem  1.

4 .3 .1  P r o p e r t i e s  o f  P a r t i t i o n e d  R e g i o n s

Before describ ing th e  p roperties  of a  p ar ti t ioned  region, it is necessary  to  define 

the  following te rm .

D e f i n i t i o n  7 Search between two nodes is said to be Free Of B ack track ing  (FO B)  i f  

depth-f irst search can always f i n d  the shortest  path between them without  backtracking.

If we know a priori  the  search between certa in  two nodes to  be  F O B , search 

efficiency can be im proved greatly. However, it is very difficult, if no t im possible, to
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know this before the  ac tua l search takes place. T h e  following le m m a  provides one 

useful in s tance  of FO B .

L em m a 1 (R an d om -P ath ) For any two cells u and  v such th a t  u  > c v , th e  sho rt­

est p a th  between u and  v  is F O B  if the  search s ta r te d  from v .

Proof: Let Dk(v) be a  se t such th a t  Dk{v) =  {u  : d j ( u , v )  =  &}, an d  re b e  a  cell 

such th a t  w  G D\(v)  fl  If no such tv exists, v  is no t visible from  u.  This

is im possib le  however, because  v  is always visible from itself, and  thus , v  should  be 

visible from u by the  definition of dom inance. Thus, th e re  always ex ists  a t  least one 

cell, say W\. such th a t  W\ G D i(<>) fl /),/,(u,„)~i(*’)• Since Wj is visible from v ,  it is 

also visible from u by th e  definition of dom inance. T h a t  is, th e re  always exists  a  cell 

u >2 such th a t

w 2 G />2( n ) p |  D 1( u > , ) p ) D (il(U)U)_ 2(u ) .

Similarly, for any i v ^ i  the re  always exists re, G D i(ru ,_ i)  such th a t  

Wi G D i ( v ) n D dl(u,v)-i(v)  for i =  2, 3 , . . .  , d j ( u ,u ) .  ■

Corollary 3 For any  u and v such that u ~ c v,  the shortes t  path between them is 

F O B  regardless o f  the search direction used.

According to  Corollary 1 , S ubprob lem  Intra-R egion can be solved trivially, i.e., 

th e  shortes t pa th  between two cells in the  sam e region can be co n s tru c ted  by depth- 

first search. F u rtherm ore ,  the  shortes t  p a th  betw een any two cells w ith  dom inance  

re la tion  can be cons truc ted  by depth-first search w ithou t back track ing . In Fig. 4.3a, 

any cell in Rq  dom ina tes  all o th e r  cells in the  workspace. Consider th e  cons truc tion  

of a  p a th  from a cell p  G Ro to  a cell ry Rq. Fig. 4.3b shows som e of decision points 

du ring  th e  search. W ith o u t  knowing p ~ c </, the  search would s ta r t  from  p. T h e
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search m ay  proceed tow ards a or h. If a is chosen, any subsequen t search will end 

up  w ith  e or g and  th en  fail. Even if h is chosen, the  subsequen t search m ay fail by 

choosing k  ins tead  of i as the  nex t point. To rem edy  this p rob lem , m an y  a lgorithm s 

are  based on b read th -f irs t  search [59, 14] or best-first search [26, 15]. Hence, the  

co m p u ta tio n a l  com plexity  of these  a lgorithm s is 0 ( n 2) for 2D an d  0 ( n 3) for 3D, 

w here n  is th e  n u m b e r  of decision points.

By con tra s t ,  if th e  search had s ta r te d  from <7 , th e re  a re  still two direc tions to  

choose from: one tow ards j  and  th e  o th e r  tow ards in. However, th e  search proceeding 

tow ards  ??? subsequently  finds the  shortes t  p a th  between p  and q ; so does the  search 

proceeding  tow ards j .  T h e  absence of back track ing  guaran tees  th e  success of depth- 

first search for a shortes t  p a th ,  thus  resulting in co m p u ta tio n a l  com plex ity  0 ( n ) .  It 

is necessary to have a t  least a 1 0 0  x 1 0 0  resolution to  achieve accep tab le  accuracy. 

W ith  the  d iscre tiza tion  resolution of 100 x 100 for 2D (100 x 100 x 100 for 3D), use 

of th e  d om inance  relation is shown to  im prove the  search efficiency by a  factor of 2  

for 2D (4 for 3D) when the  t im e  taken to decide am ong  several available directions 

is no t considered.

We now w ant to  show how to  d e te rm in e  the  dom inance  rela tion  betw een regions, 

and  how to  co n s tru c t  a  p a th  between regions w ith the  dom inance  re la tion  between 

th em . To d e te rm in e  the  dom inance  relation between regions, it is first necessary to 

u n d e rs ta n d  the  shape  of each region.

T h e o r e m  4 (2 D  c a s e )  Let v  and  u> be two orthogonal neighbors5 of a  free cell u

such th a t  v  ~ c w. T hen ,  u ~ c v.

5An orthogonal neighbor o f  a node is t he neighbor obt ained as a result o f  apply ing  an orthogonal  
operator to the node.
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Figure  4.3: D om inance rela tion  betw een th e  regions and  its effect on  th e  search.
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P r o o f :  Since v , w  €  D i ( u ) ,  the re  are four possible cases to  consider: v  =  

n + (u ) ,  tv =  n+ (u ) ;  v =  n + (u ) ,  to =  u =  u> =  n+(ti) ;  v = n ~ ( u ) ,  w  =

n ~ (u ) .

Since one can prove th e  th eo rem  sim ilarly  for all these  four cases, i t  is sufficient to  

deal w ith  one of them ; we have chosen th e  first case. T h a t  is, we w an t to  show bo th

v > c u  and  u > c v  when v = n+ (u)  and  ru = n + (u).

Consider the  case of v > c u  first. Let r be any  cell visible from  u, th e n  the re  

exists  a t  least a  sequence u u \ u 2 . . .  «d,(u,r)- i^  of free cells by th e  defin ition of visibility. 

Since u-i €  D \( u ) ,  iii should be  the  neighbor of u in th e  p o s it iv e /n eg a tiv e  d irection 

of x -ax is  or y -ax is .

•  W hen  U\ — n+(u) ,  r is visible from v because u\ — v.

•  W hen  u i =  n+ (?/), r is visible from iv because  uj — tv.

•  W hen  U\ =  n ~ ( u ) ,  r  is visible from v because  th e re  exists  a  sequence

VUUiU2 . • • »d,(u,r)-l»'.

•  W hen  ti\ =  n ~ (u ) ,  r is visible from tv because  th e re  exists  a  sequence 

WUU1U2 ■ ■ ■ Udl(u,r)-\r.

Therefore , any  cell visible from u is also visible from e i the r  v  or w; so is from  v  and

w  because v ~ c w.  T hus , v > c u, i.e., e, w > c u.

Now we w ant to  show u > c v. Let p be any cell visible from  b o th  v  and  w.

T h en , th e re  exists  a t  least a sequence Pv — v v \ v 2 ■.. v dl(v<p)^ ip  of free cells. By the

definition of visibility, the re  should be four possible genera ting  o p e ra to r  sets , O, of 

P v

•  W hen  O  =  {n+,n+  }, mn>iv2 . . .  V d ^ v ^ - i P  will be th e  sh o r te s t  p a th  from  u  to  

p  because  v  =  n+(tt).  Hence, p is also visible from u.



•  W hen  O  =  { n t i n y }> u v v i v i  ■ ■. Vdi(v,P) - \P  will be th e  sho rtes t  p a th  from u  to  

p because v = n+(u).  T hus ,  p is also visible from  u.

•  W hen  0  — {«* , }, th e re  exists  a t  least one sequence \vw\W2 . . .  Wd^wrf - iP  of 

free cells betw een w  and  p  because  p  is visible from w.  T h en ,  p  can  be  reached 

from u  v ia  the  sequence UWW1W2 . . .  w ^ w ^ - i P  because  w  =  n + (u ) .

•  W hen  0  =  { ,  n.~ }, if Pv consists of th e  cells ob ta ined  using th e  opera to r  

n~  then  v\ = u  (because  th e re  is a  un ique  n ~ ( v )  =  u ) else le t Vk be  th e  first 

cell such th a t  n~(vk~  1 ). Since is visible from w,  th e re  exists  a  sequence 

Pw = wivi 1 0 2 . .  ■ WkVk of free cells which can be ob ta ined  using th e  o p era to r  

n ~ . Since n ~ (w )  =  zoi — u, and  thus, uiv2 • • .WkVkVk+i . .  •Vdl (VtP)~\P is a  valid 

sequence for visibility, i.e., p is visible from u.

Therefore , u > c v.  I

T h eo rem  1 s ta tes  an  im p o r ta n t  fact th a t  th e  sh ap e  of a  region in 2D is always 

rec tangular .

C o r o l l a r y  4 (3 D  c a s e )  Let v, w , and x  be th ree  orthogonal neighbors of a  free 

cell, u, such th a t  v ~ c w  and  v ~ c x.  T hen  u  ~ c v.

C o r o l l a r y  5 In 2D  space, there exists a rectangle that contains all the connected  

cells in the same region but no cells f r o m  other regions.

C o r o l l a r y  6  In 3D space, there exists a rectangloid that, contains all the cells in the 

same region and m ay  also contain other embedded rectangloids.

Corollary 3 provides valuable in form ation  on th e  w hereabou t of neighboring  re­

gions in 2D. It should be no ted  th a t  neighboring regions of a  region are  always found
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alongside its edges. F u rthe rm ore ,  th e  shortes t  p a th  betw een two cells in neighboring 

regions passes th rough  th e  p ro jec tion  of one of th e  two cells to  an  edge betw een the  

two regions. A ny o th e r  p a th  th a t  does not pass th rough  th e  p ro jec tion  will have the  

sam e or longer length . N ote  th a t  th e re  are four edges in a  rec tang le ,  an d  thus ,  th e re  

are  a t  m os t four p ro jec tions  for each region as som e of its  edges m a y  be  occupied  by 

obstacles. (See R 5 in Fig. 4.1.)

Unlike th e  2D case, Corollary 4 implies a  region in 3D to  have an  a rb i t ra ry  shape 

(see Fig. 4.4.) T h is  is due to  the  fact th a t  one o rthogonal neighbor of a  cell m ay 

belong to  a region different from the  one th a t  the  o th e r  two 6  o rthogonal neighbors 

belong to. Due to  th is irregular shape  of region, it is very  difficult to  rep resen t a  

region in 3D. O ne m e th o d  of representing  a 3D o b jec t is to  e n u m e ra te  its vertices, 

edges, and  surfaces. This  rep resen ta tion  m e th o d  is no t  a t t r a c t iv e  because  of th e  

difficulty in d e te rm in ing  w h e th e r  or not a  cell belongs to  a  ce r ta in  region. Moreover, 

en u m era t in g  all th e  m em bers  associated w ith  a  region could be  costly  due  to  the  

ex istence of a large n um ber of cells in the  region. T h e  following le m m a  provides an 

im p o r ta n t  p ro p e r ty  of such an irregular region.

L e m m a  2  Let and vemn be any two cells such that V{jk ~ c V(mn . For  any  cell 

v opq such that m i .n ( i , l )  <  o < m a x( i ,C ) ,  m i n ( j , m )  <  p < m a x ( j , m ), m i n ( k , n )  <  

q  <  m a x { k , n ) ,  v o p q ^ V i j k  implies  e  i j k  > c  V o p i i  ■

P r o o f :  For any  cell u such th a t  u$tvopi], th e re  exists  a  p a th  corresponding  to  the

sequence of cells, P x =  uio\W2 ■. . w ^ ( u<Vot>q) - \Vopq, g enera ted  by a  set of orthogonal

neighbor operato rs .  Since (Vu %vopq => u3fh>,^.) Vijk > c v opq, let us suppose

u /ftvijk- Let tt», be the  cell such th a t  u>, /Rvjjk and  n  be a  neighbor o p e ra to r  such

th a t  n( ivi+1 ) =  Wi for some cell u;,+ i. Since v opq^tvijk, th e re  exists  a  genera ting  set

6There are at m ost  three orthogonal neighbors o f  a cell in 3D
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Figure 4.4: T ypical shape of a  region in 3D.
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0 \  of opera to rs  for a shortes t  p a th  1\  from vopq to  T hen ,  {72} U 0 \  is no t a 

set of orthogonal neighbors because  u  /Stvi jk .  Since v ^ k  ~ c Vtmn  and  v opq$ l v i j k ,  the re  

exists  a  genera ting  set O 2 for a shortes t p a th  P2 from v opq to  V(m n . T hen , {n} U O 2 

should be an orthogonal set of neighbor opera to rs  because 0 \  is th e  dual of O 2 . This  

im plies th a t  Wi$tv(mn, con trad ic ting  the  fact th a t  ~ c V(mn. T hus , uffivijk and

I'ljh ^ c  Vopq- ^

T h e  above le m m a  implies th a t  when vopq is no t visible from  v^k  and  vtmn,  i t  is 

com plete ly  isolated from the  rectangloid form ed by and  V(m n . T his  is because 

all o th e r  cells w ith in  such a rectangloid  are dom ina ted  by and  vemn, and  thus, 

those cells not visible from and vfmn are  not visible from all o th e r  cells in the  

rectangloid  either. In o the r  words, any cell v th a t  is visible from b o th  and  vopq 

is located ou ts ide  the  rectangloid. Therefore, the  sho rtes t  p a th  betw een V{jk and  vopq 

should  contain  a t  least one cell ou tside th e  rectangloid.

C o r o l l a r y  7 For the smallest rectangloid containing a given cell u and  f o r  all the 

cells v such that v ~ c u, u$tw => u > c w fo r  all cells w inside this rectangloid. Such  

a rectangloid is called the Rectangloid  of D om inance (R O D )  o f  u.

Since the  shape  of region a n d /o r  RO D  is a rectangloid , it is sufficient to  represen t 

th e  m em b er  cells in the  region with the  two ex tre m e  points  ( x min , y min , z min) and 

{xmar, yrnur, Zmax)- W h e th e r  a cell belongs to  a  region or not can easily be  checked 

by com paring  its location with these two points  of th e  region or RO D . T hese  two 

po in ts  will henceforth  be called the  range of region R  and  deno ted  by r mm(R ) and  

i'max{fi)- Using the  range, the  cover  re la tion is defined as follows.



D e f i n i t i o n  8  For any  I wo regions R y  and R 2, R y  is sa id  to cover R 2 , denoted by 

R y  t> R 2 , when

l ' m i n ( R l )  ^  ’̂m t n ( f ? 2 ) )  ^ m a x ( ^ 2 ) — ^max  ( 7 2 l ) , / 2 i  ^  R-2'

4 .3 .2  W o r k s p a c e  R e p r e s e n t a t i o n

D om inance  rela tions am ong  regions can be  represen ted  as a  g rap h  and  so can  the  

workspace.

D e f i n i t i o n  9 The workspace is represented as a digraph, G  =  ( V , E ) ,  where V  is 

the set o f  regions and E  is the set o f  edges such that 3  an edge e f r o m  R y  £  V  to 

R 2 €  V  i f  and only i f  Ry  t> R 2 .

T h ere  are  two sources ol' difficulty to  ob ta in  th e  d om inance  g raph  (D G ): (i) i t  is 

difficult to  check th e  d om inance  relation between all pairs of regions due  to  th e  large 

n u m b e r  of possible com binations , and (ii) it is difficult to  describe  a  3D region due 

to  its irregu lar  shape.

To c ircum vent these  difficulties, a  modified dom inance  g rap h  (M D G ) is defined 

as follows.

D e f i n i t i o n  1 0  The M D G  is a digraph, M D G  =  ( V , E ') ,  where V  is the set  o f  

regions and E '  is the set o f  edges such that  3 an edge e f r o m  R y  £  V  to R 2 £  V  i f  

and only i f  R y  >  R 2 , R y  /  R 2 , and there is no R  £  V  such that  R y  t> R  and  R  t> 722-

N otice th a t  a M DG  contains  partia l in form ation  on th e  dom in an ce  re la tion  for 

a  given workspace. Especially, E '  =  0 for 2D as shown in C orollary  3. A s im ilar 

exam ple  can also be found in Fig. 4.3. T hough  R q d om ina tes  all o th e r  regions in th e  

w orkspace, it will no t be shown in the  M DG . However, th is  will no t cause any  p rob lem



since the  m ain  purpose  of M D G  is to find a  shortes t  p a th  in 3D. Fig. 4.5 shows an 

exam ple  workspace with two obstacles  and th e  sam e workspace a f te r  p a r t i t ion .  T hen , 

th e  w orkspace is converted  in to  DG and M D G  as shown as in Fig. 4.6. N otice th a t  

m os t of th e  dom inance  re la tions  in DG are  shown in M D G  excep t those  of two regions 

{(0 , 0 , 0 ), (1 8 ,15 ,2 )}  and { (1 9 ,0 ,0 ) ,  (2 0 ,15 ,2 )} .  T h is  is due  to  th e  lim ited  range of 

those  two regions.

W e have shown th a t  th e  sh o r te s t  p a th  can be  found w ith  dep th -f irs t  search w hen a 

d om inance  rela tion  exists  betw een th e  origin and  destina tion . In som e cases, however, 

no d om inance  rela tion m ay exist between a  given pair  of origin an d  destina tion . 

Consider the  p roblem  of finding a shortes t  p a th  between two cells u  and  v  such th a t  

u ~y>c v and v ^ c u. Let /?(?/) be a region con ta in ing  th e  cell u. T h e  sho rtes t  p a th  

betw een u and  v should conta in  a t  least a cell from one of th e  regions nex t to  R (u ) .  

Such regions will henceforth  be called bordering regions of R (u ) .  T h e  closest cell th a t  

belongs to  a  bordering  region of R{u)  can be  found by p ro jec ting  u  to  its borders. 

T h e re  exist at, m ost 4 pro jec tions  in 2D and 6  p ro jec tions in 3D because  th e  shape  of 

region (and  R O D ) is rec tangu la r  (see Fig. 4.7.). Suppose th e  sho rtes t  p a th  P ( u , v )  

betw een u and v passes th rough  R (w ) ,  one of R ( u Y s bordering  regions w here w  is 

th e  p ro jec tion  of a. T hen  one of the  following cases is true.

1 . w  is visible from u.

2 . w is not visible from n.

3. w is occupied by an obstacle.

In Case 1 , P ( u , v )  can be ob ta ined  by conca tena ting  P ( u , w )  an d  P ( w , v ) in L \ -  

m e tr ic .  N ote  th a t  P ( u , w )  is a s tra igh t- line  segm ent between u and  w,  o therw ise, w



Figure  4.5: G eneration  of 3D regions.
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DG

{ ( 0 , 0 , 0 ) , ( 2 0 , 2 0 , 2 0 ) )

{ ( 0 , 0 , 0 ) , ( 1 8 , 1 5 , 2 ) { ( 1 9 , 0 , 0 ) , ( 2 0 , 1 5 , 2 )  )

{ ( 8 , 6 , 2 ) , ( 1 2 , 1 0 , 1 0 ) ) ( ( 8 , 0 , 1 0 ) , ( 1 2 , 6 , 1 1 )} ( ( 8 , 1 0 , 1 1 ) , ( 1 2 , 1 0 , 2 0 ) )  

{ (8 , 6 , 0 ) ,  ( 1 2 , 1 0 , 2 ) ) ( ( 1 2 , 6 , 1 0 ) , ( 2 0 , 10 , 1 1 ) )

( ( 0 , 6 , 1 0 ) ,  ( 1 2 , 6 , 1 1 ) )  ( ( 8 , 1 0 , 1 0 ) , ( 1 2 , 2 0 , 1 1 ) )

MDG

( ( 0 , 0 , 0 ) , ( 2 0 , 2 0 , 2 0 ) )

( ( 1 9 , 0 , 0 ) , ( 2 0 , 1 5 , 2 ) )
( ( 0 , 0 , 0 ) ,  (18,  ] X 2 )

( ( 8 , 0 , 1 0 ) , ( 1 2 , 6 , 1 1 ) )  ( ( 8 , 1 0 , 1 1 ) ,  ( 1 2 , 1 0 , 2 0 ) )  

( ( 8 , 6 , 0 ) ,  ( 1 2 , 1 0 , 2 ) } { ( 1 2 , 6 , 1 0 ) , ( 2 0 , 1 0 , 1 1 ) }

( ( 0 , 6 , 1 0 ) ,  ( 1 2 , 6 , 1 1 ) )  ( ( 8 , 1 0 , 1 0 ) , ( 1 2 , 2 0 , 1 1 ) )

Figure  4.6: DG and  M DG.
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Figure  4.7: P ro jec tions  of a  search point.

canno t be visible from «. Case 2 cannot be tru e  since no cell in R ( w )  can be visible 

from u and  R(iu)  is no t nex t to  R.(u).

Fig. 4.8 shows an exam ple  of Case 3. A m ong 4 pro jec tions a , 6 , c, and  d  of a  cell 

u,  b and  c are  occupied by an obstacle. Unlike b, we m ay  have to  find a  rep lacem ent 

cell x  G R{c)  for c th a t  is closest to  u b u t  no t inside th e  obstacle. F ind ing  such a  

cell m ay  be difficult as, in m any  cases, such a  cell is no t un ique  in 3D. It should be 

no ted  th a t  we need a rep lacem en t for c only when shortes t  p a th  should pass th rough  

th e  border of R (u )  and  R{c).  For exam ple , it is not necessary to  find a  rep lacem ent 

for c when th e  des tina tion  is e as the  shortes t  p a th  can pass d. On th e  contrary , the  

sho rtes t  p a th  betw een u and  /  should pass th rough  the  com m on  bo rder  of R (u )  and  

R(c) .  T h a t  is th e  case when R {u ) ,  /?(c), and  R ( f )  are  sepa ra ted  by obstacles  th a t  

are  located  com plete ly  ou ts ide  R (u )  U R(c)  U R ( f ) .  Such obstacles  do no t interfere 

w ith  the  p a th  between u and /  and  can thus  be ignored. In o th e r  words, construc tion  

of P ( u ,  f )  is FO B  when s ta r t in g  from u.

T h e  following a lgori thm  construc ts  a sho rtes t  p a th  betw een u and  v  for th e  general 

case. Informally, afte r in itia liza tion , the  a lgori thm  exam ines  th e  M D G  to  see w hether
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Figure 4.8: Regions separa ted  by an obstacle  ou ts ide  th e ir  RO D s.



6.3

th e re  exists  any dom inance  rela tion between the  cu rren t  cell (initially, th e  origin) and 

th e  des tina tion . If th e re  is, th e  a lgorithm  construc ts  the  p a th  using dep th -f irs t  search. 

O therw ise , a set T  of p ro jec tions of the  cu rren t  cell is ob ta ined .  For each m e m b e r  of 

T ,  check w h e th e r  it is occupied by obstacle  or not. If it is occupied , check w hether  

construc tion  of a p a th  betw een th e  d es tina tion  and  th e  cu rren t  cell is F O B  or not. 

If so, the  a lgori thm  stops a fte r  cons truc ting  th e  pa th .  O therw ise , th a t  p ro jec tion  is 

dele ted  from T , th e  rem ain ing  m em bers  of T  are  added  to  S', th e  set of cells yet to  be 

exam ined , and  th e  best cell is added  to  U,  th e  set of exam ined  cells. T h en ,  we choose 

th e  m ost a t t r a c t iv e  cell ( the  closest cell to  th e  d es tina tion )  in S  as th e  cu rren t  cell 

and  th e  p rocedure  repea ts  itself until p a th  cons truc tion  is com ple ted  or S  becom es 

em pty . VVhat we said above can be sum m arized  in a lgori thm  form as follows.

1. Let B e s t  :=  u, P ( n ,  B e s t )  — nil, S  :=  0, T  : =  0 and  U  : =  0.

2. If B e s t  > c v  th en  co ns truc t P ( B e s t , v )  and  go to  S tep  8 .

3. If v > c B e s t  then  co ns truc t P ( B e s t , v )  and  go to  S tep  8 .

4. T  { P ro jec tions  of B e s t  } — S .  For every w €  T ,

If w  is occupied by an obstacle  then  try  to co ns truc t P ( B e s t , v ) 

using depth-firs t search.

If p a th  cons truc tion  is successful then  go to  S tep  8 . Else T  :— T  — {w}. 

else P ( u , w ) :=  concat(P(?<, \current -ceH),  P ( B e s t ,  w)) .

5. S  := S  U T ,  S  :=  S  -  { B e s t }  and  V  :=  U  U { B e s t } .

6 . Let B e s t  be such th a t  m infles«=.s(lpngth(P(i/, B e s t ) )  +  d i ( B e s t ,  v)) .

7. C o  to  S tep  2.
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8 . P ( u , v )  concn t (P (u ,  B e s t ) ,  P ( B e s t ,  v)).

T h e  co m p u ta tio n a l  com plex ity  from Step 2 to  S tep  4 is 0 ( n ) w here n  is the  

resolution of th e  workspace, i.e., th e  n u m b er  of cells in each axis. As th e  a lgo ri thm  

stops when e i the r  p a th  is found or S  is em pty , the  m a x im u m  n u m b e r  of ite ra tions  

from S tep  2  to  S tep  5 occurs when S  is em pty. T h a t  is, th e  m a x im u m  n u m b e r  of 

ite ra tions  is identica l to th e  to ta l  n u m b er  of regions, m , and  th e  overall com plex ity  

becom es O ( m n ) .  Since the  to ta l  n u m b e r  of regions can be  as high as th e  to ta l  

n u m b e r  of cells (i.e., m  = 0 ( n 3)), the  overall com plexity  can  b e  as high as 0 ( n 4). 

T h is  overall com plexity  is deceiving as th e  to ta l  n u m b e r  of regions is m uch  sm aller 

th a n  th e  to ta l  n u m b e r  of cells (i.e., m  «  n 3). Since RO D s, r a th e r  th a n  indiv idual 

regions, are  searched, search efficiency is also improved.

4.4 An Example Workspace

In th is  section, we consider an exam ple  workspace c lu tte re d  w ith  various shapes 

of obstacles  as shown in Fig. 4.9. Specifically, the  effects of various o r ien ta tions  of 

an  obstacle  on workspace p a r t i t io n in g  are described and  a  typ ica l p a th  in such an 

env ironm en t is also construc ted .

T h e  workspace is digitized as a  32 x 32 x 32 grid. T h e  resu lt ing  M D G  has  s ta t is t ic s  

as shown in Table 4.1. Region sizes vary from one to  several th o u san d  cells. M ost 

one-ce ll regions are  due to  th e  pyram id  shape  obstacle  A V  Diagonal edges in A^ 

usually  d iv ide  the  workspace in to  small regions. However, d iagonal edges in K \  do 

not c o n tr ib u te  to  th e  f ragm enta tion  of th e  workspace a t  all. D ue  to  these  one-cell 

regions, th e  m edian  region size is 2  while the  m ean region size is 71.6.

A ccording to ou r s im ulation  based on 1,000 random ly  selected o r ig in -des t ina t ion  

pairs, th e  average n u m b er  of regions searched is less th a n  th ree .  For 63.6% of th e
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Figure 4.9: A sam ple  workspace w ith various obstacles.
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cases considered, th e re  exists a dom inance  rela tion  betw een th e  region con ta in ing  th e  

origin and  th a t  con ta in ing  th e  destina tion , thus  requiring  no region to  be  searched 

a t  all. T h is  is m ain ly  due to  th e  fact th a t  th e  largest region dom in a tes  all th e  

o th e r  regions and requires no regions to  be exam ined , and  on th e  average, e i the r  

th e  origin or the  destination  lies in the  largest region for app ro x im a te ly  50% of the  

t im e. F u rthe rm ore ,  only one region needs to  be searched for 28.2% of th e  tim e. This  

implies th a t  we need to  search less th a n  two regions for 91.8% of th e  tim e.

T h e  f ragm en ta tion  has l i t t le  effect on p a th  cons truc tion , i.e., th e  p robab il i ty  of 

th e  des tina tion  or origin falling in a  one-ce ll region is less th a n  0.01. Even in th e  

case when th e  origin falls in a one-cell region, th e  n u m b e r  of regions to  be  searched 

is very small if the  des tina tion  belongs to  a  larger region by changing  th e  search 

d irection . For th e  source-destination  pair { A , B )  in Fig. 4.9, th e  to ta l  n u m b e r  of 

regions ex am ined  is zero since the re  exists  a  dom inance  rela tion  betw een A  and  B  

even though  B  falls in a one-cell region. T h e  worst-case occurs when b o th  th e  origin 

and  des tina tion  fall in one-cell regions and  are  placed on opposite  side of K 2, shown 

as C  and D  in Fig. 4.9, respectively. In such a case, th e  to ta l  n u m b e r  of regions 

searched can be as high as 200. However, the  p robab ility  of such a  case occurring  is 

less th a n  0 .0 0 0 1 .

4.5 Summary

In th is chap te r ,  we presented  a new m e th o d  of part i t io n in g  th e  w orkspace using 

Ti-visibility . It was shown th a t  the  op tim al p a th  w ith  respect to  T j-m e tr ic  betw een 

two p a r t i t io n ed  regions can be ob ta ined  easily if a dom inance  re la tion  exists  betw een 

th em . W hen  no such relation exists  between th e  origin and  th e  des t ina tion ,  we have 

p resen ted  an O (n in )  a lgori thm . O ur p a th  p lanner  is shown to  find an o p t im a l  solution
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Total n um ber  of cells 32,768

Total n u m b e r  of cells occupied by obstacles 3,550

Total n u m b e r  of free cells 29,218

Total n u m b er  of regions 408

Size of th e  largest region 8,857

Size of the  sm allest region 1

M edian region size 2

M ean region size 71.6

Avg. n u m b e r  of regions exam ined 2.23

Table 4.1: S ta tis tics  of regions.

for the  digitized workspace. T hough  the  workspace with po lyhedra l obstacles are 

regarded  as a m ore general solution, m any  workspace configurations are  ob ta ined  

in digitized form and our a lgorithm  provides a  very efficient so lu tion  in such an 

env ironm en t.

This  chap te r  focussed on the  shortes t  p a th  p lann ing  in 3D. Unlike o th e r  a p ­

proaches, our m e thod  does not depend on any p a r t icu la r  geom etry . Since each region 

is represen ted  with two r x trem e  points  or inequality  p redicates , ou r  a lgo ri thm  can 

be ex tended  to  k  D im ensional space for k > 4 w ithou t m uch difficulty.



C H A PTER  V

A PRO BABILITY  FIELD A PPR O A C H  TO 
ROBOT PATH PLA N N IN G

5.1 Introduction

O ne of the  m a jo r  factors to  be considered in a u to m a t ic  p a th  p lann ing  is o b s ta ­

cle in form ation . In m any  c ircum stances, it is not easy  to  o b ta in  acc u ra te  obstacle  

in form ation . T h is  m ay be due  to the  ex istence of m oving obstacle  [8 ], or a  huge-size 

e n v ironm en t [8 6 ]. T h e  la t te r  is usually the  case of m obile  robo t p a th  p lann ing  [26] 

w here th e  env ironm en t is usually  huge com pared  to  th e  size of the  robo t and  often 

includes o th e r  mobile robots. In such env ironm ents ,  it is no t wise to  use a lgori thm s 

based on the  s t ru c tu re  of obstacles  such as [25, 3] because  these a lgori thm s require  

precise knowledge of the  obstacles  in the  workspace.

Som e of the  m ost popu la r  a lgorithm s in such env ironm en ts  are  based on th e  

po ten tia l  field approach  [31, 20]. T h e  po ten tia l  field approach  is based  on th e  m a p  

genera ted  by th e  superposition  of im ag inary  forces: repulsive forces g enera ted  from 

obstacles  and  a t t ra c t iv e  forces genera ted  from goa ls /des tina tions .  Superposition  

of im ag inary  forces m ake it possible to  dynam ically  genera te  each force. A no ther  

advan tage  of the  po ten tia l  field approach  is the  use of field d a ta  to  d irec tly  control 

actions du ring  navigation. It is shown, however, th a t  th is  approach  has th e  draw back

68
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of g e t t in g  in to  local m in im a [35]. To rem edy  th is  draw back, B orenste in  and  Koren [4] 

proposed  vector-force field a lgori thm  by in teg ra ting  two know n concepts: ce r ta in ty  

grids for obstacle  rep resen ta tion  [56], and  po ten tia l  fields for navigation . However, it 

does not solve th e  p rob lem  com plete ly  because  a  ce r ta in ty  grid  is th e  rep resen ta tion  

of in accu ra te  sensory d a ta  ab o u t  obstacles.

A gradient-field  approach  proposed by P ay ton  [63, 64] deals w ith  th is  p rob lem  by 

calcu la ting  th e  cost of each grid cell of a  digital m ap . T h e  cost of each cell is based 

on th e  score o b ta in ed  by app ly ing  a search a lgori thm  such as A * [19], or D ijk s tra ’s 

a lgo ri thm  [15]. Since the  gradient-field approach  is useful only  in a  known envi­

ro n m en t ,  it canno t deal with changing env ironm ents  efficiently due  to  th e  excessive 

co m p u ta tio n a l  requ irem ents .  Zhao [85] proposed an a lgo ri thm  th a t  can deal w ith  

b o th  known and  unknow n env ironm en ts  using a heuris tic-search  m e th o d  (recovery 

a lgori thm ) based on th e  A*  a lgori thm . It was shown th a t  th e  efficiency of Z hao’s 

a lgo ri thm  largely depends  on the  scale factor of the  m ap.

W hen  a local m in im u m  is encoun tered  du ring  the  search, th e re  are  basically two 

solutions depend ing  on the  search s tra tegy  used:

(i) P a th  runs  sideways or backw ard try ing  to  find the  position closer to  th e  des tina tion  

(Hill-Clim bing).

(ii) B ack track  to  a position which was genera ted  before and  neighbors a t  least one 

unexplored  free position th a t  is closer to the  des tina tion  (B est-F irs t) .

In each of these  cases, the  search will e i the r  increase th e  p a th  leng th  or w aste a 

ce r ta in  n u m b e r  of steps.

O u r  m a in  s tra tegy  is to m inim ize  the  n um ber  of t im es a  search has to  back track , 

i.e., th e  search m eets  a  local m in im a, or a  deadend . For th is  purpose , we defined 

two events  1 ) a d igitized cell is a local m in im a  and  2 ) a  dig itized cell m ay  lead to  a
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local m in im a  in subsequen t moves. By fo rm ula ting  the  p robab il i ty  of these  events, 

we form a  m a p  of p robab ility  field and  present an a lgori thm  utiliz ing th e  field da ta .  

In con tra s t  to  the  previous gradient-field  approaches, th e  p robab il i ty  field is based 

on th e  recursive definition of th e  event when a  cell leads to  a  deadend . I t  is shown 

th a t  ou r a lgo ri thm  converges very quickly and very com pu ta tio n a lly  efficient.

This  c h ap te r  is organized as follows. Section 5.2 describes th e  te rm ino logy  used 

along w ith  a  formal definition of th e  deadend. Section 5.3 describes th e  definition 

of a  p robab il i ty  field and  necessary form ula to  co m p u te  th e  p robab il i ty  fields. We 

also p resen t th e re  an a lgori thm  th a t  com putes  th e  p robab ility  field. In Section 5.4, 

we consider two sam ple  workspaces and analyze the  effects of th e  p robab il i ty  field 

as com pared  to  o th e r  in form ation  such as the  d is tance  from obstacles  using several 

search strateg ies. T h is  ch ap te r  concludes w ith Section 5.5.

5.2 Terminology

For a  given des tina tion , a  position is said to  be a deadend  w hen (i) all of its 

neighbors are  occupied by obstacles, or (ii) moving to  any of its unoccupied  neighbors 

increases th e  p a th  length . A position is said to  meet a deadend  w hen it is a  deadend  

or its chosen neighbor m eets  a  deadend.

Since ou r a lgo ri thm  is not lim ited  to  2D workspace, th e  n o ta tions  are  based  on a 

3D workspace. We assum e th a t  a  3D workspace consists of I x m  x n  identical cubes. 

In add ition , we will use the  following symbols th ro u g h o u t this chap te r .

W  : T h e  set of all cubes in th e  workspace.

W 0ba : T h e  set of all cubes occupied (com plete ly  as well as partia lly )  by obstacles. 

V{jk : T h e  ( i , j , k )-th cube  in th e  workspace.



D i ( v ) : T h e  set of all cubes whose L \  d is tance  is I from a  cube  v.

Vijk : T h e  set of des tina tions  for which Vijk becom es a deadend . T h a t  is, Vijk =  {u> : 

u e  D i(v i j k ) ,  d \ ( u , w )  =  di(vi jk , iu)  -  1 => u £  W obs}.

Bijk  : T h e  event th a t  v tJk becom es a deadend.

Cijk : T h e  event th a t  th e  search m eets  a  d eadend  if a  cube  Vijk is chosen.

/i-jk1 : T h e  even t th a t  v t]k p recedes u/mn on a  p a th .  T hese  tw o cubes are  n o t  neces­

sarily neighbors to  each o the r  on th e  path .

gijk'- T h e  p robab il i ty  th a t  v tJk becom es a des tina tion .

Pijk : T h e  p robab il i ty  th a t  v tJk becom es a deadend .

qijk : T h e  p robab il i ty  th a t  the  search will m eet a  deadend  la te r  if th e  p a th  passes

th rough  v^k.

5.3 Definition of Probability Field

Obviously, only those cubes th a t  are  ad jacen t  to  obstacles  could be deadends. 

T h e  average p robab il i ty  th a t  a po in t vijk becom es a deadend  is ca lcu la ted  by:

Pijk — 'y ] Sir/in •
v l m n  €

For exam ple , if des tina tions  are uniform ly  d is tr ib u ted  th ro u g h o u t th e  workspace, 

th en

1

(J‘jk |IT | -  |ITo6s|

for all des tina tions  in Vijk,  where |IT | is th e  ca rd ina li ty  of th e  set W . T h en ,  the

probability of becoming a deadend is
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T h e  p robab il i ty  th a t  a  p a th  con ta in ing  n p t  m ee ts  a  d eadend  can b e  ca lcu la ted

by:

p{c,iu}=p\ u (fltrn *<.»«)]•
Since a  p a th  consists of a sequence of successive neighboring po in ts ,  we get

p\c,Jk\ = p[Bilk u  {( u
v o p q £ D \ ( v i j k )

T h e  event th a t  a  po in t becom es a  deadend  and  th e  event th a t  a  po in t leads sub­

sequen tly  to  a  deadend  are  m u tu a l ly  exclusive. T hus ,  the  above equa tion  becomes:

P K v i  =  p{B,l t \ + p [  u  «  u  * 3 r n * s r  > n * ~ } i
v o p q  { v t j k  )

=  p.*  +  p\  u  {( u
Vopq e N ( v, j k )

=  pm +  pi  u  {( u  * s ; n o n « - ) ]
m u

=  pm +  pi  u  < ^ U (  u  « ; n « - » } ]
V o p q €  N ( v , j k ) VI r u n

= Pm + P\ U  ( ^ ’ f l  <?„„)]. (5.1)
V o p q  € N { v t j k  )

Since th e  search a lgorithm  always chooses only one neighbor a t  a  t im e , th e  events 

K g l ' s  for all Vopq €  N ( v  ijk) a re  m u tua lly  exclusive. T hus , Eq. (5.1) becomes:

P[Cm  1 = Pm + C\c °nl

= Pm + P lR m \ c ^ \ p l ^ , l  (5.2)

It should be noted  th a t  R °^l depends on th e  search s tra teg y  used. For exam ple , 

in a  b lind  search, R°™ is independen t of C op(]. W hen  is in d e p en d en t of Copq, 

R°j% can  be ob ta ined  by the  sam e m e th o d  used to  ca lcu la te  p^k.

T h e  m ost logical search s tra teg y  th a t  utilizes th e  p robab ilit ies  of m ee tin g  d ead ­

ends m u s t  choose a  poin t least likely to lead to a  deadend  as long as such a  choice 

does no t increase the  p a th  length. However, it is difficult to  derive T*[./?°j^|C0pg] in



Eq. (5.2) because  C opq is unknow n and  depends  on R°jk - M oreover, the  p a th  cost 

depends  on th e  probabilit ies  of m eeting  deadends. To overcom e these  difficulties, it 

is necessary to  in troduce  a  new event, deno ted  by C-jk , th a t  V{jk will m ee t  a  deadend  

in n  steps. T hen ,  Eq. (5.2) can  be rew rit ten  as:

Puk if n  =  1
J’ l q j t 1] =  |  (5.3)

. P i*  +  P K %\CZpq]p l C Z j  if n >  2.

By using m a th e m a tic a l  induc tion  and Eq. (5.3), P [ D ^ k] can be  ca lcu la ted  for

any n  >  2. Since D{jk =  l im , , . .^  D^-k , we can derive P[D{jk] by app ly ing  Eq. (5.3)

recursively.

T h e  p a th  p lanner  consists of two phases. In the  first phase, th e  w orkspace infor­

m a tion  is t ransfo rm ed  in to  the  probabilities  of m ee ting  deadends  which are  co m p u ted  

off-line as discussed above. 2D exam ples of th e  o u tp u t  of th e  first phase  using th e  

n u m b e r  of poin ts  in a  p a th  as the  p a th  cost are  shown in Fig. 5.1 and  Fig. 5.3. In 

these  exam ples , th e  w orkspace consists of 32 x 32 po in ts  and  th e  neighbor of a  poin t 

in th e  workspace is defined as the  set of all points  th a t  are  horizontally , vertically, 

and  diagonally  ad jacen t to  th e  point. Since robot m otions  are  usually  perform ed  

th ro u g h  ro ta ry  jo ints , diagonal m ovem ents  are m ore  n a tu ra l  th a n  s tr ic t  horizontal 

a n d /o r  vertical m ovem ents  in m any  cases. T h e  des tina tions  used in these  exam ples  

a re  assum ed to  be d is tr ib u ted  un ifo rm ly 1 over th e  en tire  workspace. 108 poin ts  in 

Fig. 5.1 are  occupied by th e  obstacles while 144 poin ts  in Fig. 5.3 a re  occupied by 

th e  obstacles, i.e., m ore obstacles  in Fig. 5.3 th a n  in Fig. 5.1. T h e  obstacle  d a ta  is 

shown on the  left and  P[Dijk] a t  the  right of these  figures.

U pon receiving th e  w orkspace inform ation , th e  first phase  of th e  p a th  p lanner  is

to  transfo rm  th e  obstacle  d a ta  into th e  probabilit ies  of m ee ting  deadends  using th e

*Any other d istr ib u tion s can be assum ed.
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procedure  C alc_Prob below.

P rocedu re  Calc_Prob

1. C o m p u te  pijk for all v ijk G W  using ptjk =  y-̂ j

2 . In itia lize P*[CX3k] •— Pijk , error  0 .0 0 1 , and m a x . e r r o r  :=  oo.

3. R ep ea t  3a-c until  m a x . e r r o r  <  error.
3a.. For all v xj k G P ,  co m p u te  P*[R°jk | C opq] using P*[Copq], and

PIG,*] := py* +  I C„p,]P-[C op,].
3b. Set m a x . e r r o r  := m in (?nax.error,  max„..fcey ( I P (Ci jk )  — P*[Cijk\ | )•

3c. Set P - [ C ijk] :=  P [ C ijk].

T h e  second phase of the  p a th  p lanner  is to  convert each orig in -destina tion  pair  

to  a collision-free op tim al p a th .  T h e  hill-climbing m e th o d  is chosen as ou r  search 

s trategy. T h e  m ain  advan tage  of th e  hill-climbing m e th o d  is th a t  it m a y  converge 

to  a  good solution very quickly. However, it m ay w aste  a  g rea t  deal of th e  t im e  

w hen a successor th a t  leads to  a local m ax im um  or a  deadend  is chosen. Since our 

a lgo ri thm  is designed to  choose a  successor th a t  is least likely to  lead to  a  deadend , 

th is  d isadvan tage  of the  hill clim bing m e thod  is m inim ized.

A lthough  our m e th o d  chooses a po in t th a t  will least likely lead to  a  deadend , it 

m ay  still lead to  a deadend . F u rtherm ore ,  th e re  are  som e o r ig in -destina tion  pairs 

th a t  will always lead to  deadends  due to, for exam ple ,  a  large obs tac le  betw een them . 

O ne way of dealing w ith th is p roblem  is to  back track  to  an  earlier  po in t and  choose 

som e o th e r  d irections from th e re  on. Decisions to  be  m a d e  in th e  back track ing  are: 

th e  length  of back track  (m easured  in the  n um ber  of p o in ts /cu b es  to  back track)  and  

th e  ex istence of a p a th  w ithou t going sideways. T h e  form er is im p o r ta n t  because  a 

sm alle r  n u m b er  of back track ing  steps will often lead to  th e  sam e deadend , while a 

larger n u m b e r  of back track ing  steps will waste the  search t im e  and  m ay  also lead to  

an o th e r  deadend  th a t  the  original p a th  has already  avoided. T h e  la t te r  p resen ts  a
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Figure 5.1: Example 1 of workspace being transformed into probability fields.
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Figure 5.2: The probability field data obtained from exam ple 1.
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Figure 5.3: Example 2 of workspace being transformed into probability fields.



Figure 5.4: The probability field data obtained from example 2.
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m ore critical p rob lem  th an  th e  form er because  the  existence of a  p a th  can be  verified 

only afte r  tes t ing  all com binations  of poin ts. A ccording to  our s im ula tion  results ,  our 

m e th o d  is shown to  avoid deadends  very well w hen th e re  exists  a  p a th  connec ting  th e  

origin and  th e  des t in a tio n  w ith o u t  m oving sideways. T h a t  is, if th e  first a t t e m p t  to  

find a  p a th  for a  given o r ig in -d es t in a t io n  pair  m eets  a  deadend , th e  second a t te m p t  

usually  ends up  m eeting  a  d eadend  again.

To rem edy  th e  above s i tua tion ,  we adop ted  th e  following back track ing  policy. For 

a  p a r t ia l ly  cons tru c ted  p a th  P^ =  uo^i • • • v k, w here Vo is th e  origin, u* th e  po in t 

th a t  becom es a  deadend , and let <y, be th e  p robab il i ty  of u, leading to  a  d e a d e n d . 2

Step 1 Find  the  first ut- such th a t  c- is a sibling of u, and  q[ < 9 , - 1 , for i — k  — 

1, k — 2, • • ■ , 1. Set Pi :=  cod  • ■ • d - i ^ -

Step 2 If 110 such point is found, set P{ vQv\ • ■ • ViV*v w here v * and  v  a re  th e  first

A 1 — (J*
pair  of po in ts  such th a t  v  is a  child of v* and  is less th a n  th e  p ro jec ted

d is tance 3 betw een the  d es tina tion  and  v* for i =  k  — 1 , k — 2 , • • •, 0 .

I t should  be no ted  th a t  the p a th  cost will increase when a  back track  po in t is not 

found in S tep  1.

A n o th e r  key issue associated  with the  efficiency of any  search m e th o d  is th e  search 

direc tion . B ackw ard search is usually m ore  efficient th a n  forward search when the re  

are  m ore  initia l s ta te s  (i.e., origins) than  final s ta te s  (i.e., goals). N ote  th a t  th is usual 

selection of search direction is not d irec tly  applicable  to  robo t p a th  p lann ing , since 

one and  only one o r ig in -des t ina t ion  pair  needs to  be considered each t im e  in robot

p a th  planning . However, a s im ple  m odification in accordance w ith  th e  following

2For n o ta tion a l conven ience, we used a single, instead  o f  trip le, subscript to  represent a p o in t or 
cube in the w orkspace.

3T h a t  is, the m in im u m  num ber o f  p o in ts betw een v ’ and the d estin a tion  in th e  absence of 
ob stacles.
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observation will m ake  the  usual selection applicable  to robot p a th  p lanning: there  

are  m ore  ways to reach a po in t when the  p robab il i ty  of the  po in t m ee ting  a  deadend 

is small th a n  when th is  p robab il i ty  is large. In o th e r  words, backw ard  search is 

m ore  efficient th a n  forward search when th e  des tina tion  has a  h igher p robab il i ty  of 

m ee ting  a  deadend  th a n  the  origin. O ur experim en ts  show th a t  on th e  average, 30% 

of deadends  can be avoided by exchanging 4 the  origin and  th e  d es tina tion  based on 

the ir  p robab ilit ies  of m ee ting  deadends.

T h e  p rocedure  C o n s t r u c t . P a t h  described below construc ts  two p a th s  each time: 

F P A T II  s ta r t in g  from th e  origin and  BPA TH  from th e  destina tion . O u t  of these  two 

pa th s ,  a  p a th  which is less p robab le  to m ee t a deadend  will be expanded  first. T he  

search will continue to  reduce the  differences between the  two p a th s ,  F P A T H  and  

B PA T H , until the  two pa th s  intersect.

C o n s t r u c t _ P a t h

1. In itia lize the  origin with  FO R W A R D  and  the  des tina tion  w ith  B A C K W A R D .

Set F PA T H  and B PA TH  to  null sets.

2. R ep ea t  2a-d until  F P A T I I  f] 13P A T I I  /  0:

2 a. Select a node which has a lower p robab ility  of m ee tin g  a  deadend  from 

FO R W A R D  or B A C K W A R D . Call th a t  node C U R R E N T .

2 b .  Insert C U R R E N T  to the  corresponding  set, F P A T H  or  BPA TH.

2 c. Choose a  successor of C U R R E N T  from its neighbors. A node which m in i­

mizes the  pa th  cost is selected as the  successor. If th e re  is m ore  th a n  one

node with th e  m in im al pa th  cost, a node which has the  lowest p robability

^Sw itch ing betw een backward searcli and forward search.
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H euristic Ly l 2 Too (1)

Avg. p a th  length 23.41 16.45 16.47 16.45 16.47

Avg. #  of node crea ted 88.54 79.00 73.28 94.23 68.76

Avg. #  of node  exam ined 123.54 117.47 124.56 138.18 115.59

M C F O 0.723 0.464 0.792 0.638 0.621

(1) : S im ula tion  using X2_rnetric  while increasing clearance.

T ab le  5.1: S im ulation  results  w ithou t ad ju s t in g  th e  search d irection .

of m ee ting  a deadend is chosen as th e  successor. If th e re  is no successor 

for C U R R E N T , back track  to  an earlier  node.

2d. Call th e  successor FO R W A R D  or B A C K W A R D , depend ing  on its p rede­

cessor.

5.4 Experimental Results

T h e  procedure  C o n s t r u c t _ P a t h  was s im u la ted  in a  workspace com posed  of 32 x 

32 points. F irs t ,  th e  workspace is converted  to  th e  p robab il i ty  m a p  shown in Fig. 5.1 

and  Fig. 5.3 using th e  procedure  C a l c _ P r o b .  O r ig in -d es tin a tio n  pairs a re  genera ted  

using a  uniform  ran d o m  n um ber  genera tor. As th e  safety m easure  of a  p a th  P ,  the  

mean clearance f r o m  obstacle is defined as:

M C F O ( P ) — V '  m in drA(v , , Vj). 
v , e r v>eVob3

T able 5.1 shows th e  results  ob ta ined  from dep th-f irs t search using various heuris tic  

es tim ato rs .  Each d a ta  is based on 100 o r ig in -des t ina t ion  pairs. N ote  th a t  th e re  is a  

10-20% increase in efficiency. Table 5.1 is ob ta ined  using the  sam e exp er im en ts  as 

Table 5.2 excep t th a t  the  search d irection has been decided from th e  d ^  clearance
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H euristic Lx l 2 Loo (1) 9H

Avg. p a th  length 23.41 16.45 16.47 16.45 16.47

Avg. #  of node crea ted 80.70 74.31 68.01 94.23 61.98

Avg. #  of node exam ined 115.22 111.04 127.44 127.44 108.21

M C F O 0.726 0.464 0.793 0.638 0.624

T ab le  5.2: S im ula tion  resu lts  while ad ju s t ing  search direc tion  w ith  clearance.

from th e  nearest  obstacle  (m in im um  clearance) while Table 5.3 is th e  resu lt of using 

qij to  d e te rm in e  the  search direction. Notice th a t  every phase of th e  search improves 

from Table 5.1 to Table 5.2 and from Table 5.2 to Table  5.3, while th e  quality  of the  

chosen p a th  rem ains  unchanged. This  shows the  im p o r tan ce  of th e  search direction. 

It also shows th e  superiority  of <y,j over m in im um  clearance. T h is  is because  m in im um  

clearance only provides the  d is tance  from nearest obstacle  while th e re  a re  m any  o ther  

factors to  be considered. Some of the  factors are  th e  size and  o r ien ta tion  of each 

obstacle , and  n um ber  of obstacles w ithin  a close range. It is very difficult to  consider 

all th is  in form ation  a t  the  sam e tim e  because the ir  influence is difficult to  quantify. 

Unlike m in im u m  clearance, <yt ) increases not only when the  obstacle  is closer b u t  also 

when obstacle  is larger or th e  n um ber of obstacles increases.

T h e  difference betw een L\-  and  L,x,- m etr ics  can be exp la ined  as th e  difference in 

m e tr ic  system s. T h a t  is, any /^ -m e t r ic  a lgori thm  can be transfo rm ed  in to  Loo-metric 

a lgo ri thm  [37] by transfo rm ing  its coord ina tion  (.r,?/) w ith  a  new coord ina tion  (x ' , y ) 

w here

.c' =  \/2(.r  + ; / )  

y' -  \ / 2 (x  — (/).
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H euristic l 2 T<x> 90

Avg. p a th  length 16.45 16.47 16.47

Avg. #  of node  created 68.71 62.66 52.94

Avg. #  of node exam ined 106.94 112.18 99.34

M C F O 0.464 0.792 0.622

Table 5.3: S im ulation  results  while ad ju s t ing  search direc tion  w ith  </,j.

Hence, th e  resu lting  algorit hm  requires ad ju s tm en ts  w ith a scale factor \ /2 .  T hough 

the  resu lts  are  equivalent,  it is b e t te r  to  select L ,^ -m etric  in th is  exam ple  as the  

co m p u ta tio n  tim e  is a m a jo r  factor.

T h e  results  of our p a th  p lanner for two different workspaces are  com pared  w ith 

th e  o p tim a l p a th s  ob ta ined  using the  .4* a lgorithm . T h e  heuris tic  used in th e  A * 

a lgo ri thm  is f ( v )  =  g(v)  +  h{v),  where g{v)  is th e  ac tua l d is tance  from the  origin to  

th e  cu rren t  po in t v  and h(v)  represents  an e s t im a ted  cost from v  to  th e  destina tion . 

T h e  es t im a ted  cost h(v)  from v to the des tina tion  is ob ta ined  as h(v )  =  d ^ v ^ w )  — 

w here (v ) is the  m in im um  clearance of v. In [26], K a m b h a m p a t i  and  Davis 

used this heuris tic  e s t im a to r  to  construc t a p a th  for a m obile robo t.  W ith  lim ited  

in form ation  given in [26], it  is not feasible to  com pare  the ir  a lgo ri thm  w ith  ou r  p a th  

p lanner. Table 5.4 p resen ts  the  experim enta l results  of our p a th  p lanner  and  those 

of A*. It was shown th a t  our p a th  p lanner im proves th e  search t im e  by one order  of 

m a g n itu d e  a t  th e  cost of slight increase (1-2% ) in p a th  length.

O ur a lgori thm  usually finds the  shortest p a th  when it requires no or a  small 

n u m b e r  of sideway moves. However, it exh ib ited  some difficulties w hen th e  shortes t  

p a th  requires m any  sideway moves. This is due to  th e  lack of a  general solution to
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W orkspace Fig. 5.1 Fig. 5.3

A lgorithm A l A2 A l A2

Avg. p a th  length 16.47 16.41 17.14 16.58

Avg. #  of node expansions 18.27 57.45 20.39 78.47

Avg. #  of back track ing 0.21 NA 3.21 NA

Avg. C P U  tim e 4.78 53.86 6.92 86.73

A l  : R esu lt  using our pa th  p lanner.

A2 : A* a lgo ri thm  w ith  L heuristic .

T able 5.4: S im ulation  results  using th e  exam ple  in Figs. 5.1 and  5.3.

avoid local minima, w ith  the  depth-firs t search.

A tte m p ts  have been m a d e  to  utilize our p robab ility  m easure  w ith  th e  bes t search 

a lgo ri thm  such as the  A* a lgori thm . However, the  s im ula tion  has not shown m uch 

im provem ents  w hen th e  o p tim a l pa th  conta ins a t  least one sideway move. T his  can 

be expla ined  as follows:

1. To ensure  th e  o p tim a li ty  of the  p a th ,  the  A * search has to  check every deadend 

when the  op tim a l pa th  contains a t  least one sideway move.

2. Since our p robab ility  m easure  is based on the  p robab il i ty  of leading to  a  dead ­

end  w hen th e  hill-climbing m e thod  is applied , it does not reflect th e  p robab ility  

of m ee ting  a deadend  w ith  the  A* search.

5.5 Sum m ary

In th is  chap ter ,  we have developed an ob jec tive  m easure  of describ ing  th e  effects of 

obstacles  on collision-free robo t p a th  p lanning. This  m easure  is then  used for a  search



m ethod  s im ilar to  the  hill-climbing m ethod . T he  hill-climbing m e th o d  generates  

solutions very fast if it does not encoun ter  deadends. A lthough  it is no t possible 

to  avoid deadends com plete ly  during  the  search, we can m in im ize  th e  p robab il i ty  of 

encoun tering  deadends based on th e  p robab ility  field developed here. O ur sim ulation  

has shown th a t  th e  p robab il i ty  m easure  is m ore  effective th a n  th e  d is tance  m easure  

which is often used in th e  po ten tia l  field approach.

T h e  m ain  advan tage  of ou r  algorithm  will becom e m ore vivid if it is im plem en ted  

for a  3D env ironm ent.  T h e  com plexity  of conventional a lgo ri thm s increases d r a m a t ­

ically when it is to be im plem ented  for 3D (instead  of 2D) problem s. T h is  is due 

to  th e  way the  field d a ta  is com puted . In con tras t  to  th e  gradient-field  a lgorithm s 

[63, 64, 85] which use the  A* a lgorithm  to co m p u te  the  cost of each cell, our a lgori thm  

com putes  th e  field d a ta  using the  recursive definition of a  cell leading  to  a  deadend. 

This  reduces the  com pu ta tiona l  requ irem ents  considerably. A n o th e r  advan tage  of 

using a  recursive co m p u ta tio n  of the  field d a ta  is flexibility. By its definition, our 

field d a ta  can be lim ited  by a certain  n um ber  of s teps, k,  th u s  c o m p u tin g  th e  p rob­

ability  th a t  a  cell m ay lead to  a deadend within k  s teps. T h is  is qu ite  com m on in 

real world applications  w here sensors have lim ited  ranges.
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CONCLUSION

T h ere  are four m a jo r  con tr ibu tions  in th is  thesis. F irs t,  it  is shown th a t  the  

m in im um  bound of the  w orst-case co m p u ta tio n a l  com plexity  of th e  ladder  p roblem  

is Cl(n2 log n)  in s tead  of Q ( n 2) as known previously. Hence, b o th  th e  a lgo ri thm  RG 

inc luded  in th is thesis and Levin and  S h a r ir ’s work are  indeed o p t im a l  r a th e r  th a n  

subop tim a l.  T h e  second con tr ibu tion  is the  proposed a lgori thm  using th e  RG in 

C h a p te r  3. T hough  the  RG has the  sam e co m p u ta tio n a l  com plexity  as th e  previous 

work [40], its ac tua l co m p u ta tio n  tim e  can be im proved significantly d u e  to  th e  small 

size of th e  graph . Its advan tage  is m ore visible when the  w orkspace is crow ded w ith  

obstacles  sep a ra ted  by short d istances. T h e  th i rd  con tr ibu tion  is th e  p a r t i t io n in g  

a lgo ri thm  of a d iscre te  workspace. T hough  th e  worst-case p e rfo rm ance  of th e  algo­

r i th m  rem ains  th e  sam e as previous approaches, th e  average ru n n in g  t im e  can be 

reduced by an o rder  of the  m a g n itu d e  thanks  to  th e  grouping of po in ts  w ith  sim ilar 

characteris tics . T h e  final con tr ibu tion  is the  in troduc tion  of a  new  heuris t ic  in the  

probab ilis tic  field. T h e  probabilis tic  field is qu ite  useful when th e  w orkspace p a r t i ­

tion ing  results  in severe f ragm en ta tion  of the  workspace or th e  in fo rm ation  for the  

w orkspace is incom plete . Ins tead  of relying on a  g raph  genera ted  a p r i o r i , th e  robot 

can m ove on the  best d irection based on the  inform ation  ga thered  so far.

86
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T h e  notion of dom inance  relation is a n o th e r  useful tool developed in th is  thesis. 

U nlike m any  o th e r  approaches  which view th e  rela tion  betw een regions based on the ir  

physical locations only, th e  dom inance  rela tion  provides no t  only  physical ad jacency  

b u t  also m aster-slave rela tions based on th e ir  rec ti- linear visibility. T h is  facilita tes  

th e  search for a  p a th  m ore  efficiently by rem oving  inefficient search steps.
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