INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upen the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfitms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, M1 48106-1346 USA
313:761-4700 800.521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Order Number 9308362

Generation of synthetic workloads for distributed real-time
computing systems

Kiskis, Daniel Lee, Ph.D.

The University of Michigan, 1992

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENERATION OF SYNTHETIC WORKLOADS FOR
DISTRIBUTED REAL-TIME COMPUTING SYSTEMS

by

Daniel Lee Kiskis

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1992

Doctoral Committee:

Professor Kang G. Shin, Chair

Assistant Professor Atul Prakash
Assistant Professor Chinya V. Ravishankar
Assistant Professor Stuart Sechrest
Professor Daniel Teichroew

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RULES REGARDING THE USE OF
MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations sub-
mitted to The University of Michigan and made available through
University Microfilms International or The University of Michigan are
open for inspection, but they are to be used only with due regard for the
rights of the author. Extensive copying of the dissertation or publication
of material in excess of standard copyright limits, whether or not the
dissertation has been copyrighted, must have been approved by the
author as well as by the Dean of the Graduate School. Proper credit must
be given to the author if any material from the dissertation is used in
subsequent written or published work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Daniel Lee Kiskis 1992
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

First, I must thank Prof. Kang Shin for believing in me from the start and for
supporting and encouraging me since. He gave me the freedom to follow my own path
and gave me direction and kept me focused when I needed it. I could not have hoped
for a more dedicated or more caring advisor. I would like to thank the remainder of my
doctoral committee, Professors Atul Prakash, Chinya Ravishankar, Stuart Sechrest, and
Daniel Teichroew for their constructive criticisms on this dissertation.

I would like to thank the National Aeronautics and Space Administration for
supporting me under grant NAG-1-496.

For their positive influences on this dissertation and its author, I want to thank
the following people. Prof. John Meyer for being an excellent teacher and for showing me
the value of precision, accuracy, and rigor in performance evaluation. Prof. Michael Walker
and Joseph Dionese for providing me with the source code for the robot controller and for
showing me how to make the robot arm move.

Dilip Kandlur for letting me work on the early version of HARTOS, thus instilling
in me an appreciation of the need for synthetic workloads to evaluate such systems. Paul
Dodd for developing HMON, a real-time monitor, without which the experiments in Chap-
ter 7 could not have been performed. Lup-Houh Ng for help in collecting the library of
synthetic operations. Dave Musliner for proofreading this dissertation and providing many
useful criticisms, and for developing go and bibdb, two tools that made the writing of this
dissertation much easier. Jim Dolter for technical discussions and for keeping us supplied
with the most up-to-date software possible. The past and present members of the Real-
Time Computing Laboratory for encouragement and insight. B. J. Monaghan for taking
care of our paperwork and for keeping us supplied with candy, coffee, and friendship.

Marty Stytz for getting me involved in CSEG and for being around when I needed
to blow off during the early years of my graduate work. Phil MacKenzie for being there
when I needed to wing some ’bee. Tom Makowski and Brad Bruno, my former roommates,
for making sure I came home from work occasionally.

Gary Clark and Tim Householder, my long-time friends, for helping me through

the hard times and helping me celebrate the good times. Rajalakshii Subramanian for her

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constant support, encouragement, and patience, and for making it all worthwhile. Finally,
and most importantly, I want to thank my family. They gave me the strength to follow my

dreams. Without them, this dissertation would not have been possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

DEDICATION it e e e e e s e e s e ii

ACKNOWLEDGEMENTS ittt ie v iii

LIST OF TABLES e i e i s e e vii

LIST OF FIGURES e e e e e e e e e viil

LIST OF APPENDICES i i it i ix
CHAPTER

1 INTRODUCTION ittt it i, 1

1.1 Research Objectives, 3

1.2 Outline of the Dissertation 5

2 PRELIMINARIES i i 6

2.1 Properties of synthetic workloads 6

2.2 Background e 7

2.3 SUMMATY o e et e e e e e e e e e e e e 10

3 MODELING REAL-TIME WORKLOADS 12

3.1 Imtroduction e 12

3.2 Model Design Issues e e 13

3.3 The Workload Model 15

3.4 Summary and Conclusions 19

4 SYNTHETIC WORKLOAD SPECIFICATION LANGUAGE .. 20

4.1 Introduction e e e 20
4.2 Specification of Synthetic Workloads 21
4.3 SW specification files 25
4.4 Synthetic Workload Generation. 39
4.5 Summary e e e e e e e e e e e e e e e 39
5 THE SYNTHETIC WORKLOAD 42
5.1 Introduction e e e 42
5.2 The Synthetic Workload 43
5.3 Driver Overhead e 50
5.4 Summary and Conclusions 0 ..., 51

6 REPRESENTATIVENESS OF THE SYNTHETIC WORKLOAD 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Introduction @ i i i i e e e e e e e e e e 53

6.2 Target System L e e e e 56
6.3 Representativeness Experiments 62
6.4 Experimental Results, 65
6.5 Summary and Discussion 0. 68

7 USING THE SYNTHETIC WORKLOAD FOR PERFORMANCE

EVALUATION it e e e e e e s e e e e 71

7.1 Introduction i e e e e 71

7.2 Target System L e e e 72

7.3 Experimental Design oo 7

7.4 Synthetic Workload Specification L. 78

7.5 Experimental Results 83

7.6 Summary and Conclusions, 90

8 CONCLUSIONSttt e et e e e s et e 92

8.1 Research Contributions 92

8.2 TFuture Directions e e 94
APPENDICES e e e e 98
BIBLIOGRAPHY e 125

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table
4.1
4.2
4.3
4.4
6.1
6.2
6.3
6.4
6.5
7.1

7.2
7.3
7.4

LIST OF TABLES

Transformation parameters.ot
Store parameters. v v it i e e e e e e e e e e e e e e e
Terminator PArameterS. . « « « « v v v v v et o e e e e e e e e
Experiment parameters.o e e e e
Synthetic operations used in the robot control synthetic workload
Command script used to control therobot
Task execution time histogram.
Task execution time cumulative distribution functions.
Task execution time cumulative distribution functions.

Results for response time: mean 7, standard deviation s,, and mean of the
transformed datalni. e

Effects for the multiplicative model for ¢..
Percentage of t’s variation explained by eacheffect.

Results for the percentage of lost messages: mean 717, standard deviation s,
and mean of the transformed datalnm.

Effects for the multiplicative model form.

Percentage of m’s variation explained by each effect.

vii

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure
3.1
4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
5.1
5.2
5.3
6.1
6.2
6.3
7.1
7.2
7.3
7.4
7.5

LIST OF FIGURES

Model components L e e e e e
Example of simple INPUT and OUTPUT specification.

An object template with different INPUT and OUTPUT specifications for each
instance. e e e e e

Object templates for connected objects, complete specification.
Object templates for connected objects, simplified specification.
Specification of IO numbers. L. L o o
Function definition format. L.
INPUT and OUTPUT specification in the function file.
LOOP construct. oL e e
SWITCH construct. o i i e it e e
Synthetic Workload Generation.,
Data flow model for the SW processes on a single processor.
Root process structure. Lo o oo
Function structure. L e e
The robot control environment
Flowchart for thelevelO task.
Dataflow diagram of robot control software
HARTS node architecture and operating environment.
Wrapped hexagonal mesh with nineteen nodes.
Monitor data collection. L oo o
Producer-Consumer model for workload.

Workload (4, 1, 10, 10). Producer tasks on RT'CL6 with corresponding con-
sumer tasks. L. L e e e e e

viit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF APPENDICES

Appendix
A SWSL GRAMMAR e e e 98
B ROBOT CONTROL SW SPECIFICATION: GRAPHFILE 103
C ROBOT CONTROL SYNTHETIC WORKLOAD SPECIFICATION: EX-
PERIMENT FILE e e e 107
D ROBOT CONTROL SYNTHETIC WORKLOAD SPECIFICATION: FUNC-
TION FILE o e e e s e e e e e 108
E ROBOT CONTROL SYNTHETIC WORKLOAD SPECIFICATION: IN-
CLUDED FILE “VXWORKS.CONSTANTS” 115
F ROBOT CONTROL SYNTHETIC WORKLOAD SPECIFICATION: IN-
CLUDED FILE “RT_I0” i it e e e 116
G ROBOT CONTROL SYNTHETIC WORKLOAD SPECIFICATION: IN-
CLUDED FILE “SERVER.IO” 117
H WORKLOAD (4,1,10,10): GRAPH FILE 118
I WORKLOAD (4,1,10,10): FUNCTION FILE 123
J WORKLOAD (4,1,10,10): EXPERIMENT FILE 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

All computer systems have performance requirements that must be met. However,
real-time systems have performance constraints that are especially stringent compared to
those for non-real-time systems. Real-time applications include controlling such critical
systems as nuclear reactors and aircraft. The time-critical nature of these applications
demands that the real-time computer system provide a sufficiently high level of performance.
The ability of the system to provide this performance is determined through evaluation,
which may take a number of forms: analytic, simulation, or experimentation. Analytic
and simulation evaluations are important steps in the initial design of a system, because
they provide valuable estimates of its performance. Although they can be used to evaluate
various design issues, these techniques have limitations. Due to tractability constraints, they
use approximations that limit their accuracy. The actual performance can only be measured
through experimental evaluation of the target system. To experimentally evaluate a system,
it must be measured while executing an appropriate workload.

A workload is the collection of user inputs into a system. It consists of a set
of tasks, the tasks’ input data, and user commands. A workload produces demands for
the system’s resources; these demands are the workload characteristics. The performance
of a system is a function of its workload. The structure and behavior of the workload
directly affect the values of the performance indices that are measured during experiments.
Therefore, an understanding of the workload is essential if any meaning is to be placed on
the evaluation of the system.

There are two types of experimental evaluation. The first type is aimed at deter-
mining the performance under expected operating conditions. The target system is mea-
sured while executing a workload whicii is representative of the systemn’s actual or proposed
application workload. For this case, the actual application may be used as the workload, if
it is available. The second type of evaluation is aimed at characterizing the performance of

the system as a function of selected workload characteristics. For this type of evaluation, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

workload must exercise certain system components in user-specified ways. These workloads
are usually custom programs designed to produce specific demands on system resources.

A synthetic workload (SW) is useful for both types of evaluation. An SW is an
executable model of an actual workload. An SW reproduces the resource demands of the
workload at a user-specified level of abstraction. It is composed of a set of parameterized
synthetic tasks that are designed to use specific system resources. The synthetic tasks are
constructed using operations that represent the types of operations performed by the tasks
in the real workload, but they do not necessarily reproduce the exact sequence of operations,
nor do they process real data. Instead, they perform operations on fixed-valued or randomly-
generated data. For example, to model a floating-point intensive, signal-processing task in
a real workload, the SW might execute a number of floating point arithmetic operations on
a fixed data set. These operations will exercise the appropriate system hardware, say the
floating point coprocessor, to the same degree as the real workload. However, the SW re-
quires no signal data to process, and the code for the synthetic task may consist of a simple
loop containing a short sequence of floating point operations. To reproduce the behavior
of the signal-processing task, the loop is executed a number of times until the appropri-
ate number of operations is executed. The user does not have to produce correct input
data streams or complex algorithms to process the data. The user controls the workload
characteristics by adjusting the parameters of the task. SWs are useful for experimental
evaluations because they are flexible, their behavior is controllable and reproducible, and
they are generally more compact than real workloads.

For the first type of evaluation, the SW can be used when the actual application
software is unavailable, as is frequently the case when the target system is new or experi-
mental. For a new system, the software may still be in the design stage at the time when
the hardware and system software are ready to be evaluated. For experimental systems, a
specific application may not yet be determined for the system. In these cases, the SW can be
constructed based on the high-level requirements specification of the proposed workload or
based on a characterization of the types of workloads which compose the application domain
for the system. Even if the application workload is available, the SW may be preferable
because its behavior is reproducible. The behavior of the real workload may rely on system
inputs that may be impossible to reproduce exactly. Since the SW does not require real
system inputs, its behavior can be reproduced. The user can make the SW accurately re-
produce the workload characteristics of the actual workload by using the source code of the
workload as a blueprint for constructing the SW. Using an SW when an actual application

workload is available can have its disadvantages. First, since the SW must be constructed,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using it requires an additional cost, whereas the application software is already available
and using it requires no additional cost. Next, tuning the SW to accurately represent the
workload can be difficult and expensive. To achieve a high-level of accuracy, the user must
first collect a large amount of data to characterize the workload and then use this data to
tune the SW. Finally, the SW must be run on a dedicated target system. Therefore, an
otherwise operational system must be taken off-line to be evaluated using an SW. If the
actual application software is used as the workload, the system may be evaluated while it
is in operation [27].

For the second type of evaluation, the SW is an ideal tool to use. Because the
SW is parameterized, the user directly controls the workload characteristics whose effects
on system performance are being studied. Thus, various combinations of workload char-
acteristics may be produced by selecting the appropriate parameter values. The SW is
particularly useful for experiments using full factorial or partial factorial designs because
the different factors in the experiment can be controlled by specific parameters. The values
of the parameters will then represent the various levels of the factors. The SW is superior
to an actual workload for these types of evaluations. It is generally difficult to control spe-
cific characteristics of real workloads. To do so would require the user to identify exactly
which code segments produced the workload characteristics of interest and then change
the segments in such a manner as to produce the desired workload characteristics without
adversely disturbing other workload characteristics. These problems are avoided by using
an SW. The SW can be structured to localize the code which produces specific workload
characteristics. This code can be written such that it has no side effects on other workload

characteristics.

1.1 Research Objectives

In this dissertation, we study the design and implementation of SWs and tools for
generating SWs for distributed real-time systems. Since, for some studies, the SW is to be
representative of an actual application, we structure it like an actual application. To do
this, we have developed a model of real-time workloads upon which the structure of the SW
is based. The model describes the structure of the software which composes the workload.
It describes the interactions of tasks, data structures, and interfaces to the environment. It
also describes the internal structure of tasks with a degree of precision suitable to capture
the timing behavior of each task. Since the SW is an executable version of the workload

model, the accuracy of the model determines the representativeness of the SW.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For a distributed real-time system, an SW must be written for each processor.
Writing and debugging a large number of SWs is a tedious and error-prone undertaking,.
Clearly, the repetitious and algorithmic nature of the process of generating SWs make it
a candidate for automation. We have developed a synthetic workload generator (SWG)
that automatically translates a textual representation of the workload model into an ex-
ecutable SW for a distributed real-time system. Our synthetic workload specification lan-
guage (SWSL) contains a number of additional features including the ability to specify the
SW in the context of an experiment. A single SWSL specification can describe a series of
experiments where the parameters of the SW are different for each experiment.

We have designed and implemented an SWG that can compile SWSL specifications
and produce SWs with the specified characteristics. We have developed a generic SW driver
that controls the distributed SW as it executes on the target system. The driver is generic in
the sense that its structure does not depend on the SWSL specification. We have identified
and implemented the essential services that it must provide.

We also describe a set of experiments where we demonstrated the ability of the
SW to act as both types of workload. It is capable of producing representative resource
demands, and it has been used to produce specific, user-controlled resource demands for
the experimental evaluation of a distributed real-time system. These demonstrations were
performed on two different real-time computing systems, thus showing the generality of the
SW design.

In summary, the objectives of this dissertation are to
e Develop a model of distributed real-time workloads,
o Develop a synthetic workload specification language,
¢ Implement a synthetic workload generator,
o Implement a driver to support distributed execution of the synthetic workload,

¢ Demonstrate the ability of the synthetic workload to be representative of an actual

application, and

e Demonstrate the ability of the synthetic workload to produce specific, user-controlled

resource demands for use in experimentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Outline of the Dissertation

This dissertation is organized as follows. In Chapter 2, we discuss the important
properties of synthetic workloads and provide background information on the development
of SWs. Chapter 3 describes the workload model that is used by SWSL. SWSL is defined in
Chapter 4. The structure of the generic synthetic workload driver is discussed in Chapter 5.
In Chapter 6 we describe a set of experiments that were run to demonstrate the ability of
the synthetic workload generator to produce synthetic workloads that accurately represent
real workloads. Chapter 7 presents experiments designed to demonstrate the ability of
the synthetic workload generator to be used to generate synthetic workloads with specific
workload characteristics for experimental performance evaluation of a distributed real-time

system. Our conclusions are presented in Chapter 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

PRELIMINARIES

In this chapter we provide the context in which our research was performed. First,
we discuss the important properties that an SW should possess. Our goal was to optimize
these properties in our SW. Next, we present a background of SWs. We discuss the first SWs
for data processing systems and trace subsequent SW development with special emphasis
on SWs for distributed and real-time systems. We conclude the chapter with a summary
of the background and discuss our approach to the development of SWs for distributed

real-time systems.

2.1 Properties of synthetic workloads

To be useful for performance evaluation, an SW must possess a number of prop-
erties. The most important of these have been identified by Ferrari [24]. They are repre-
sentativeness, flexibility, simplicity of construction, compactness, low usage costs, system
independence, reproducibility, and compatibility. The following definitions are paraphrased
from [24].

Representativeness is another term for modeling accuracy. It is the measure of
how well the SW reflects the structure or behavior of the workload. Flexibilityis the ability
to alter the SW easily and inexpensively. Simplicity of construction refers to the cost and
complexity of gathering the necessary information in order to design and construct the
SW. It also refers the ease with which the user can specify and generate the SW. The
compactness of the SW is a measure of the amount of system resources required to specify
and use it. Compactness is generally proportional to cost and inversely proportional to
representativeness. A compact SW is usually less expensive to use but less representative
of the real workload. Representativeness requires that the SW contain more information
about the workload that it is modeling. System independence is necessary if the SW is to be

used to compare different systems or different versions of the same system. An SW should

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be representative of the workload regardless of the system on which it is executing. As an
aid to the performing of experiments, reproducibility is important. The degree to which the
behavior of the SW can be reproduced from experiment to experiment is a good indication
of the degree of control that the experimenter has over the SW. Finally, for the SW to be
usable, it must exhibit compatibility between the SW and the system. This means that the
SW must be made up of programs that can execute on the target system and effectively

exercise the system’s resources.

2.2 Background

A desire to implement these properties into a practical executable workload model
has motivated the development of several synthetic workloads. The first SW was developed
by Buchholz [10] for data processing systems. Buchholz’s SW consisted of a single synthetic
job. It was designed to model a commercial file update system common to business applica-
tions. Its inputs were a detail file and a master file. The SW would read a record from the
detail file and find the corresponding record in the master file. Then, it executed a compute
loop to simulate processing of the records. Finally, it wrote the updated master record. The
synthetic job was parameterized to allow it to model any of a number of jobs with similar
structure but different workload characteristics. The parameters included the number of
records in the detail and master files and the number of repetitions of the compute loop.
The job could be made to execute a number of times in succession with varying values for
tl;e parameters.

Buchholz’s idea was expanded by Wood and Forman [70], who created a synthetic
job stream composed of a collection of Buchholz’s synthetic jobs executing concurrently.
This job stream was an improvement over the sequential execution of jobs in that the inter-
actions between a number of jobs with differing workload characteristics could be modeled.
They also added parameters to the synthetic job to allow the user to specify how many
data files to be written when the compute loop had completed and to allow a number of
lines to be printed for each record updated. Sreenivasan and Kleinman [62] further refined
the synthetic job by adding parameters to specify the block size of the I/O buffers and the
size of the records. They then used multiple copies of the same job, each with different
parameter values, to create the desired workload. They also described a technique whereby
the characteristics of an actual workload may be used to determine the values of these
parameters. This technique was later adapted by Haring et al. [32], for the evaluation of a

mainframe computer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Schwetman and Brown {57] duplicated Wood and Forman’s system but added a
synthetic job generator. This generator was a program that submitted synthetic jobs to
the system in a manner designed to simulate the arrival patterns of jobs to the system in a
real workload. It also allowed the value of the workload parameters to be altered for each
Jjob. In order to increase the representativeness of the workloads being generated, Lucas [45]
proposed that a library of synthetic job modules be compiled. This library would contain
modules to represent the different types of jobs that are present in the workloads of general-
purpose systems. He gave examples of the types of modules that would be contained in the
library. The modules were chosen to measure different aspects of system operation, including
compiler attributes, operating system attributes, and program execution attributes.

This scheme was generalized in the APET system, which provided a language for
defining an SW [4]. APET modeled the workload as consisting of a set of phases. Each
phase was essentially a synthetic task. Phases ran concurrently and interacted with each
other. A phase was composed of a number of steps. Each step was a program function that
executed a specific workload operation. Each phase repeated in a cyclic pattern for a user-
specified period of time, and during each cycle the steps of a phase executed sequentially.
Parameters of the model allowed the user to select which phases and steps were to execute.
The operations supported by APET were restricted to CPU usage and file manipulation.

Walters [64] developed a system called SKET in which representative benchmark
kernels were constructed based on program flowcharts. Kernels for individual program
functions were chosen by the user and then compiled to produce performance formulae that
were used to derive performance data. A compiler to produce an executable benchmark
was proposed but not implemented.

Dujmovic [19] introduced the idea of monoresource synthetic programs. Each pro-
gram in the SW exercised a single resource continuously for the duration of its execution.
These programs were combined in proportions expected to accurately model the resource
usage of the modeled workload. The performance of the system was modeled as a linear
combination of the workload characteristics.

A high-level language description of an SW was developed by Singh and Segall [59,
60] for the Pegasus performance evaluation system. This language, called the B-language,
represented the workload as a UCLA graph, a form of dataflow graph. The user was able
to specify the structure and behavior of the workload at a high level. The language defined
tasks and their interactions. The internal structure of each task was specified as sequences
of operations and control constructs, such as branches and loops. It was intended that a

specification in the B-language be compiled by a synthetic workload generator (SWQG) to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

create the executable SW. The SWG for Pegasus was never implemented.

Advancements in modeling individual workload characteristics have also occurred.
For example, Babaoglu [3, 2] and Ferrari [25] developed techniques to allow an SW to
produce representative memory referencing patterns for virtual memory systems. Ferrari
has made a number of contributions in the development of SWs [23, 24, 26, 27, 28], including
the definition of representativeness that we use in Chapter 6 and the development of models
of workloads of interactive systems.

Calzarossa, Italiani, and Serazzi [11] focused on the static (structural) and dynamic
(execution) representativeness of the SW. They characterized the structure of a workload
according to the resource usage parameters. Then, they used clustering techniques to find
representative jobs from the workload. They modeled these jobs and reproduced their
execution behavior stochastically.

A number of SWs have been developed to act as terminal emulators [29, 8, 47].
These SWs generally emulated behaviors of clients in a client-server environment. They
were driven either stochastically or by traces.

All of the above SWs were developed for general-purpose computing systems. SWs
for real-time systems are scarce. One example was the SW for NASA’s Fault-Tolerant
Multiprocessor (FTMP) [21, 22]. FTMP’s SW was designed to exercise the system and
perform a limited number of timing measurements. It defined the workload as a number
of periodic tasks divided into three rate groups. A rate group was a collection of periodic
tasks with the same period which were invoked at the same time. The periods of the rate
groups were aligned at major cycle bounds. A major cycle was the least common multiple
of the lengths of the periods. Thus, at the beginning of each major cycle, all tasks were
invoked simultaneously. The deadline for each task was equal to the length of its period.
The usefulness of this SW was restricted by the fixed synthetic program structure, fixed
deadline policy, lack of aperiodic tasks, and few locations where timing data was collected.
This SW was ported to HARTS at the University of Michigan by Woodbury [71].

Support for SWs appeared in Scheduler 1-2-3, a schedulability analyzer developed
at Carnegie Mellon University {63]. Scheduler 1-2-3 was capable of producing workload
tables as a part of its schedulability analysis. The main workload parameters in the table
were the period, priority, and phase (alignment of periods) of the tasks. These tables could
be included into the SW that was used to evaluate the ART Real-Time Testbed. A similar
SW was used by Wendorf [67] to analyze the performance of real-time scheduling processor
running the Mach kernel.

Recently, two benchmarks for real-time systems have emerged. Benchmarks are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

SWs with no adjustable parameters and, thus, fixed behavior. The first is Rhealstone, a
proposed benchmark for real-time systems [40]. Rhealstone measures the performance of six
important functions of a real-time system: task switching time, preemption time, interrupt
latency time, semaphore shuffling time, deadlock breaking time, and datagram throughput
time. It was suggested in [40] that the performance of the system under a real workload
may be estimated by a linear combination of the measured values.

The second real-time benchmark is the Hartstone Distributed Benchmark [37].
Hartstone was created specifically to benchmark the communication performance of real-
time distributed systems. It provides quantitative measures of communication performance.
Its execution is composed of a series of experiments aimed at measuring system capacity.
The experiments successively increase the load on the system until it fails to provide the
required service.

Both of these benchmarks are useful for measuring certain aspects of real-time
system performance. However, as is the case with most benchmarks, the set of measured
performance indices is limited. There is no flexibility to measure other indices that may be
important to a given study. A fixed set of performance indices is insufficient for determining

the total performance of the system under a real workload.

2.3 Summary

Much work in SWs for non-real-time systems has been focused on data processing
systems. Most of the SWs were trivial extensions to Buchholz’s SW until Ferrari made
several significant contributions to the theory of SWs. He developed techniques for con-
structing SWs to model specific workloads and for evaluating the representativeness of the
SW. The most important developments in SW construction techniques were by Lucas, Wal-
ters, and Dujmovic. Lucas and Dujmovic refined the concept of synthetic operations stored
in libraries. Walters made the first advances in achieving representativeness by using the
program’s structure as a template for the SW’s structure. Singh and Segall applied a num-
ber of these techniques in creating the B-language for a distributed system. Unfortunately,
they never implemented an SWG to compile the B-language. All reported examples were
hand translated before execution. Thus, they were not able to show that their approach was
feasible in practice. They showed no correlation between UCLA graphs and actual software
structure, and no attempt was made to demonstrate representativeness.

Little progress has been made by others to apply these principles to the creation

of SWs for distributed real-time systems. The real-time SWs discussed above provide little

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

more than the ability to create periodic synthetic tasks. Singh and Segall [59] claimed
thet their SW could model real-time workloads. They presented an example that was
labeled as a real-time application. It consisted of a feedback loop for processing sensor
data. While this application resembled some components of real-time workloads, there
were no timing constraints specified, and no time-critical behavior was analyzed. At no
point was it demonstrated that the B-language contained explicit support for modeling
real-time applications or that the workload was representative of any real-time workload.
In this dissertation, we build upon this past work to create a tool for generating
SWs for distributed real-time systems. The characteristics and requirements of distributed
real-time systems require innovative applications of known features and the development
of new features in the design of SWs. For example, like Walters, we use the structure of
the software as a template for our SW, and, like Lucas and Dujmovic, we make use of a
library of synthetic operations. However, our SW must display the characteristics of real-
time software, and the library must contain operations common to real-time workloads. We
combine these features to produce a high-level language that can be used to specify SWs
easily and compactly. We pay particular attention to representativeness and, unlike the
developers of previous SWs, the requirements of experimental evaluation. The language
and the SWs generated are designed to make experimentation easier, and special attention

is paid to improving the statistical properties of the SW.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

MODELING REAL-TIME WORKLOADS

3.1 Introduction

Our workload model is intended to describe real-time workloads in sufficient detail
to be used as the basis for generating SWs. To be an accurate representation of the workload,
the model must capture all structural and behavioral details of the workload. The structure
and behavior of the workload directly affect the values of the performance indices that are
measured during experiments. Changes in the workload cause changes in the values of the
performance indices. It is by characterizing these changes that one evaluates the system.
The workload model provides a formalism that allows the user to express the connections
between the workload, its characteristics, and the measured performance indices.

A real-time system is a computing system where the value of a computation de-
pends not only on the logical correctness of the results, but also on the time at which the
results are produced. This definition describes a class of systems with characteristics that
set them and their workloads apart from general-purpose systems {37, 50, 42, 15, 13]. They
are usually embedded in a larger system that performs a particular function. The real-time
computing system serves as the controlling computer for this larger system. The real-time
system is designed to execute specific application software required to control the larger
system. All tasks are predefined and their parameters are usually known « priori. The
control activity consists of accepting frequent or continuously arriving inputs from sensors
and, in response, producing output to actuators and/or display devices. These responses
must occur soon enough after the input to meet the physical constraints of the system. The
system must also accept inputs at random times due to operator commands and excep-
tional conditions. The hardware of the system may be distributed, consisting of a number
of processors each connected to a variety of I/O devices. Distributed systems exhibit great
potential for high performance and high reliability, two properties that are essential for

real-time systems.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

To provide the required services, the real-time workload consists of a number of
periodic tasks which handle the periodic I/O associated with process control. There are
also sporadic tasks which execute in response to the aperiodic events. The requirements
of the system are such that the responses to inputs must occur within predetermined time
intervals, i.e., responses have deadlines. There may be a number of distinct states in which
the system operates. Tasks may behave differently depending on the state. Although some
of the tasks may execute independently, they will often be required to communicate with
one another and exchange data.

Previous approaches to modeling workloads consisted of capturing the behavior
of the workload using queueing networks or describing the workload in terms of a vector
quantifying the workload characteristics [24]. However, the properties of a real-time work-
load are not accurately modeled by a queueing network or as a simple vector of workload
characteristic values because these techniques model average case performance. Therefore,
they cannot capture the details of the timing characteristics of the workload. To model a
real-time workload, we must accurately describe the details of the workload that specifi-
cally influence the time-related aspects of the system. The model should express the tasks’
timing, resource usage, and interaction characteristics. The timing characteristics include
task execution times, deadlines, and scheduling parameters. The resource usage character-
istics should include access priorities, preemption policies, and the quantity of the resources
used along with the timing characteristics (e.g., pattern and duration) of that usage. Task
interactions include both direct communication and resource sharing. Since standard queue-
ing models and simple vectors of workload parameters are neither powerful nor expressive
enough to model real-time workloads, a different, more expressive model is needed.

This chapter describes a workload model with sufficient expressive power to de-
scribe real-time workloads. In Section 3.2, we discuss some issues that influence the model
design. We then describe the details of our model in Section 3.3 and conclude with Section

3.4.

3.2 Model Design Issues

We have constructed our model to accurately capture the structure and behavior
of areal-time workload. The workload is described in terms of a dataflow graph, a notation
commonly used to specify software for distributed real-time systems. The model is a gener-
alization of the rapid prototyping language PSDL developed by Lugqi, Berzins, and Yeh [48]

and three structured analysis (SA) notations: ESML [9], Ward and Mellor’s transformation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

schema [65], and the Boeing/Hatley notation [33]. These SA notations are commonly used
in CASE tools to specify and analyze the requirements and structure of real-time software.
The dataflow model captures the basic aspects of the workload, e.g., parallelism of tasks
and interactions between tasks, and allows for modeling at multiple levels of abstraction.
These features provide a generality which makes our model flexible and thus more widely
applicable. Thus, it is capable of modeling the features of a number of SA, rapid proto-
typing, and other notations, e.g., [52, 30, 49], and can be used to describe a wide range of
real-time workloads which have been specified using these notations. Our model extends
these notations to specify the timing and resource usage properties of the workload.

The model was based on SA and rapid prototyping notations for the following

reasons:

o At the time a prototype system is ready for evaluation, it is likely that the system
designers will only have a high level specification of the proposed application software,
i.e., the SA model. This model will generally be a good approximation of the structure
of the workload [33]. Thus, by using a similar model for our SW, we can produce
an SW which will closely approximate the structure and behavior of the proposed
software. The experimental evaluations performed using this SW will then provide
useful and meaningful results. Similarly, developers of experimental systems can make
use of published workload specifications, e.g., [46, 44, 51, 69], to produce representative

SWs to be used to evaluate their systems.

o Since the workload is modeled at a high level of abstraction, the model is system
independent. The model does not contain any information that is particular to a given
hardware architecture or operating system. Therefore, a workload specified using our

model is portable and may be used to comparatively evaluate different systems.

¢ As real-time software becomes more complex, the use of structured methods to de-
sign the software will become widespread. The design process will be supported by
computer-aided software engineering (CASE) tools [20, 53]. Our approach allows the
SWG to become an integral part of a CASE tool. A number of CASE tools use SA
and similar notations. Hence, high-level software designs created by CASE tools can
be translated to our model and used by the SWG to create SWs. The SWs thus
produced will be akin to a rapid prototype. The difference is that, while the rapid
prototype is aimed at demonstrating the functionality of the software from the user’s
viewpoint, the SW is aimed at demonstrating the resource utilization behavior of the

software from the system’s viewpoint.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

TRANSFORMATION
FLOWS

STORES Data
Continuously Available

>< Depletable B>

Intermittently Available
—_—

TERMINATOR Non-depletable

Control (Event)
Intermittont

Figure 3.1: Model components

¢ Using an common notation allows us to make use of existing off-line analysis and
simulation tools. A number of tools have been developed to execute and analyze SA
specifications directly [7, 56, 66] or indirectly by transforming the SA model into a
Petri net [54, 55]). The specification of the workload using our model can be trans-
formed into an SA specification or equivalent Petri net and then be used to derive

performance measurements using either simulation or analytic techniques.

3.3 The Workload Model

A real-time workload is defined as a 5-tuple, (7,5, R, F, D), where T is a set of
transformations, S is a set of stores, R is a set of terminalors, F is a set of flows, and D
is data. These workload objects will be described in detail in the following sections. The
graphical representation of all components are shown in Figure 3.1. These symbols are

taken directly from the graphical representation for ESML.

3.3.1 Transformations

The set of transformations T represents the work done by the workload. Trans-
formations encapsulate both the processing of data and the control logic of the workload.
We define T = {¢t | t = ({,0,p,¢,71,...,7n)} where I is the set of inputs, O is a set of
outputs, p is a processor identifier, ¢ is a function, and m,..., 7y are N system-specific
parameters where N is an integer whose value depends on the target system. The transfor-
mation receives data or control signals on its inputs, I, and produces data and/or control
signals on its outputs, O.

The behavior of the transformation is determined by the function ¢. The transfor-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

mation may represent any function for data processing and/or any control structure. The
combination of data flow and control in a single transformation is a generalization of the
SA and rapid prototyping notations. This control mechanism is more powerful than the
mechanisms defined for ESML and Singh and Segall’s B-language. It is capable of model-
ing control constructs such as state machines, control flows, and control transformations.
Thus, various mechanisms for specifying system state and state-dependent operations may
be modeled.

The p in the definition of t represents the assignment of a transformation to a
specific processor. All transformations are considered unique. Therefore, replicated trans-
formations in fault-tolerant systems are modeled individually.

The timing and selection of inputs and outputs are determined by the internal
structure and behavior of the transformation. Transformation behaviors are not restricted
to the model of “trigger, compute, produce output” which is common to dataflow specifica-
tions. Instead, transformations are free to perform inputs and outputs at any time during
their execution. Based on their internal logic, they are also able to select whether or not to
read a given input or produce a given output. This flexibility in defining task interactions
is necessary when specifying SWs for real-time systems. If the SW is to be representative
of real applications, the synthetic tasks must accurately reproduce the complex timing and
resource sharing dependencies between tasks. This accuracy can not be obtained from a
simple dataflow model [68]. It requires the more detailed specifications allowed by this
model.

The function specified by ¢ is defined based on the D-structures described by
Ledgard and Marcotty [41]. The set of D-structures is a small functionally-complete set
of control constructs for programs. They consist of simple operations, composition of D-
structures, a conditional control construct, and a loop construct. A simple operation is
any computation, system call, or input or output statement, etc. These are the smallest
units of execution in the model. Composition is the simple sequential execution of two
D-structures. For two D-structures s1 and s2, composition is represented as s1; s2. The
conditional control construct is the “if condition then s1 else s2” construct. The loop-
ing construct is the “while condition do s” construct. With these constructs, all other
contro! constructs may be realized [41].

The complete specification of a transformation depends on the system upon which
it is to be implemented. Different operating systems require different information to create
and schedule the implementation of the transformation. Therefore, the transformation

specification includes a number of system-specific parameters, m;. These parameters may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

include scheduling parameters, resource requirements, functions for exception handling,
etc. The number of 7; parameters, and thus the value of N, depends on the target system.
The model defines as many m; parameters as are needed to specify the implementation of

transformations on a given target system.

3.3.2 Stores

Stores model all objects which can contain data. These objects include data
structures, files, sockets, pipes, etc. A transformation passes data to another transformation
by placing the data in a store from which the other transformation reads the data. Formally,
wedefine S = {s|s = (I,0,p,m1,...,7n)} where I is the set of inputs, O is a set of outputs,
p is a set of processors, and m,..., Ty is a set of N system-specific parameters where NV
depends on the target system. The I, O, and p values have the same meaning as in the
definition of T'. The 7; values define parameters required to specify the implementation of
a data structure modeled by the store. They define its storage properties: e.g., element
size, storage policy, and access policy. S may be divided into two disjoint subsets such
that § = 55U S, where Sy is the set of depletable stores and 5, is the set of nondepletable
stores. Depletable stores represent objects such as stacks and queues where a data element
is removed from the store when it is read. A nondepletable store represents an object like
shared memory which retains the data value after a read. The reader receives a copy of the

data.

3.3.3 Terminators

Terminators serve as the interfaces between the workload and the environment.
We define R = R;U R,, where R; is the set of input terminators and R, is the set of output
terminators. R; = {r | r = (O,p,71,...,an)} and R, = {r | r = ({,p, 71,...,7N)} where
I is the set of inputs, O is a set of outputs, p is a set of processors, and 7y,..., 7N is a
set of N system-specific parameters. The I, O, and p values have the same meaning as in
the definition of T. The 7; values define parameters required to specify the characteristics
of the terminator. They specify the interface between the workload and the environment.
They define the type of the interface, the size of the data elements that it handles, and
the minimum sampling interval or minimum data acceptance interval. The R; and R,
terminators are referred to as sources and sinks, respectively. A source terminator represents
a point where data is received by the workload from an external object. Typical examples
of such objects are sensors and operator controls. Sink terminators represent locations

where data or control signals are sent to an external object by the workload. Actuators and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

displays are examples of external objects which may be represented by sink terminators.
Terminators may also be paired to represent resources such as external files or databases

which have both inputs and outputs.

3.3.4 Flows

Flows are used to connect objects. Thus, we define F' = {(s,d) | s,d € TUSUR]},
where s is the source of the flow and d is the flow’s destination. Flows are the paths used
to transfer data and control signals from one object to another. We define three types of
flows in SWSL: F' = F. U F; U F,, where F, and F; are two sets of value-bearing flows
and F is the set of non-value-bearing flows. The value-bearing flows are data flows. They
are distinguished according to whether the data values are continuously available (F,) or
intermittently available (F;), i.e., available only at discrete instances of time. These value-
bearing flows will be referred to as continuous data flows and intermittent (or discrete)
data flows, respectively. The non-value-bearing flows (F,) are event flows, and they carry

intermittently available signals.
3.3.5 Data

Data is defined as the unit of information in the system. We define D = {d | d =
(v,8)}. Each unit of data has a value, v, and a size, s.

3.3.6 Interconnection Rules

Construction of a workload using our model is based on the construction of one
using ESML [9]. The model construction rules are specified formally by the definitions of
the flow types:

F. C(T x S3)U(Sn x TYU(T X R,) U (R; x T).

Continuous data flows may be used in either direction between transformations and nonde-

pletable stores, and between transformations and terminators:
FEC(TxSYU(SegxTYU(T x R)U(R; xT).

Intermittent data flows may be used to connect transformations to any type of store, and
are used to connect depletable stores to transformations. They may also be used to connect

transformations and terminators in either direction:

F.C(TxTYU(T X R,)U(R; xT).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Event flows may be used to connect transformations with each other or to connect trans-
formations with terminators in either direction. There is only one additional rule which
cannot be defined using the notation above. It states that a transformation must have at
least one input and one output flow.

The above rules have some implicit consequences. First, a flow must have a trans-
formation at one or both ends. Transformations are the sole active components of the
workload. It is through the actions of transformations that data is moved through the
workload. Second, data flows may not be used to connect transformations directly. To
pass data from one transformation to another, the data must first be written to a store.
The receiving transformation then reads the data via a data flow. This data passing model
is accurate since, in real systems, any data passed between two tasks must be buffered
somewhere. This buffer may be in local, global, or system memory, but it always exists.
Therefore, we require that it be modeled. Third, signals have no value associated with
them. Therefore, they may not be kept in stores. Hence, event flows may not be inputs or

outputs of stores.

3.4 Summary and Conclusions

In this chapter, we have described our model of real-time workloads. The model
is general enough to describe a wide range of workload structures which might be used in
real-time systems without being overly restrictive. While the model is sufficiently expressive
to be used for many types of performance evaluations, it is designed particularly for the
specification of real-time SWs. For simplicity, ease of use, and added representativeness,
this model is based on SA notations currently being used for real-time software develop-
ment. By using an SA-based model, we simplify the modeling problem of translating high
level software specifications into SWSL. The users do not have to translate their software
specifications into a completely foreign, and possibly incompatible, model to make use of
the SW. Some translation is necessary because the model has been made more general to
avoid being tied to a given SA notation. lowever, the generality of the model improves
portability and makes the model compatible with a wider range of high-level system spec-
ification models. Since the model is based on actual software specifications, it accurately

models the structure and behavior of the actual workload.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

SYNTHETIC WORKLOAD SPECIFICATION
LANGUAGE

4.1 Introduction

In this chapter, we present the Synthetic Workload Specification Language, SWSL.
SWHSL is a language designed specifically to specify SWs. Its design was influenced by four
requirements. First, it should possess the desirable properties of SWs. These properties,
as listed in Section 2.1, are representativeness, flexibility, simplicity of construction, com-
pactness, low usage cost, system independence, reproducibility, and compatibility. As we
describe the various features of SWSL, we will discuss how each improves one or more of
these properties.

Second, SWs are to be used for the experimental evaluation of distributed real-
time systems. Therefore, SWSL should support the process of experimental evaluation. It
should allow the user to define experiments and should provide mechanisms to define SWs
with useful statistical properties.

Third, the SWs will execute on an embedded real-time systems. Due to the timing
requirements of the system, the SW must be able to execute without interactive interference
from the user. Therefore, the language must specify any workload characteristics that should
vary at run-time. These characteristics are compiled into the SW.

Fourth, an SWSL specification is compiled by a synthetic workload generator
(SWG). Therefore, as with any computer language, the syntax and semantics are designed
so they may be easily compiled and errors in the input files detected and located. The SWG
will be discuss in Section 4.4.

This chapter is organized as follows. In the next section, we discuss the important
issues in specifying SWs which are addressed by SWSL. In Section 4.3, we define SWSL.
Section 4.4 describes how SWSL is used by our SWG to produce SWs. We conclude with
Section 4.5.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

4.2 Specification of Synthetic Workloads

Before discussing the details of SWSL, we first present the underlying concepts of

its design. These concepts are driven by the requirements outlined in the previous section.

Abstraction

SWSL takes great advantage of the primary property of SWs: abstraction. SWs
are useful in experimental evaluation because they abstract out details of a workload and
produce only those resource demands which are required for a given evaluation. For example,
to evaluate the scheduling policy of a real-time operating system, each task in the SW might
abstract out the specific computations performed by a task in an actual workload and simply
reproduce the total amount of CPU time required for computation. SWSL uses abstraction
to achieve compactness and much of the simplicity of the SW specification.

If a task in the SW is not performing the actual computations of the workload,
it can not produce the correct results of the computation for use by other tasks. Those
tasks also abstract computation, so the value of the data is irrelevent. Therefore, the SW
also abstracts data. In the SW, only the size of the data is important, because we only
consider the resources required to store the data. The effect of data on the behavior of the
workload is modeled stochastically. An advantage of this abstraction is that the SW can
operate without requiring actual input data and tasks can produce the resource demands
due to computation without executing the exact algorithms from the modeled workload. A
disadvantage is that low-level, data-dependent behaviors of the workload are more difficult
to model using the SW. We provide mechanisms in SWSL to allow the user to model these
behaviors, but these mechanisms require greater programming effort by the user and more

information about the workload being modeled.

Representativeness

SWs specified by SWSL are based on the workload model described in Chapter 3.
By basing the SW on a workload model we improve the representativeness of the SW. To
measure representativeness, we use a performance-based metric. By this metric, an SW is
representative of a workload if the performance of the system (as measured by a set of per-
formance indices) while executing the SW is the same as the performance while executing
the workload [27]. However, “[e]xcept for certain cases ..., this definition of [representative-
ness] does not directly suggest a method for designing an artificial workload” [27]. Given

this observation, we use a structure-based method for constructing a representative SW.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

That is, the SW is specified and constructed such that its structure models that of the
workload. Other researchers [64, 4] have successfully produced sufficiently accurate and
flexible benchmark programs for uniprocessor systems by modeling the structure of the
actual workload. We expect the technique to be successful for distributed systems. The
structure-based representation is complemented by selecting the appropriate m; parameters
for each object and assigning appropriate values to the parameters. These parameters de-
termine the characteristics of the object as it is presented to the system. Parameters specify
the resource requirements and the time-dependent behavior of the objects. By providing
the SW with the same structure as the workload being modeled and by tuning the param-
eters which determine the behavior, we are able to produce a representative SW. The level
of representativeness may be measured by the performance-based metric. The ability of

SWSL to produce representative SWs is demonstrated in Chapter 6.

Flexibility

Flexibility is another important characteristic of SWSL. If SWSL is to be useful
for experimentation, it must be flexible. The user must be able to easily change the values
of specific workload characteristics. This ability requires that SWSL be able to produce
SWs with a wide range of resource requirements and behaviors. Flexibility within a narrow
range of behaviors is of limited benefit. Flexibility is provided primarily through the pa-
rameterization of the objects in the workload. All significant workload characteristics may
be controlled by changing the values of the proper parameters. In many cases, the user
can make significant changes to both the structure and the behavior of the workload by
changing a few parameter values. More importantly, the user can produce small, incremen-
tal changes to specific workload characteristics with little effort. Many evaluations involve
measuring the performance of the system for various values of a given workload character-
istic. Changing the value of a workload characteristic is generally as easy as changing the
value of one parameter.

SWSL does not restrict which behaviors and structures can be included in the
workload. SWSL was developed with a specific set of m; parameters needed to specify SWs
for the target systems available to us. The user can add or delete 7; parameters in the
specification of workload objects if those parameters are needed to specify the implementa-
tions of workload objects on their target system. In addition, the user can specify exact C
language code within the function for a given synthetic task. This feature would be used
to produce behaviors at a lower level than can be specified by SWSL.

Flexibility is also improved by taking advantage of the definition of transforma-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

tions in the workload model. For each transformation, the inputs, outputs, and function
are defined separately. In SWSL, the definitions of functions are decoupled from the defini-
tions of transformations. Therefore, the behavior of a transformation may be altered very
simply by specifying a different function for it to execute. The only requirement is that the
function operate on the same number and types of inputs and outputs as are defined for the
transformation. Furthermore, the functions executed by different transformations need not
be unique. A single function definition may suffice for a large number of transformations,

thus resulting in a more compact and easily constructed SW specification.

Object Templates

The workload model defines each object uniquely. SWSL makes the specification
of objects more compact by providing a simple mechanism whereby one can produce many
instances of an object from a single object template. All instances of the object will have
the same values of all the w; parameters. There are two uses for object templates. The
first is to specify an object which represents a member of a class of objects with similar
parameters. This technique is a common one in workload characterization [58] and has
been used often to specify SWs, e.g., [1]. A set of n parameters are selected to define
the important characteristics of the workload tasks. For each task, these parameters are
measured and the task is plotted in the n-dimensional space defined by the parameter vector.
A clustering analysis is performed to partition the tasks into groups with sufficiently similar
characteristics. Then, a small number of tasks from each group are selected to represent that
group. These representative tasks are used as templates. The number of instances of the
task that are produced is proportional to the size of the cluster being represented relative
to the size of the entire workload. This technique reduces the number of task specifications
that must be written and thus makes the workload specification more compact. The second
reason for using templates is to represent objects which are replicated for purposes of fault-
tolerance. In a fault-tolerant real-time system, multiple copies of an object will execute on
separate processors. They perform the same calculations and the results are combined via

voting. Using this technique, the system can mask a given number of faulty processors.

Support for Experimentation

Experimental design is supported through several SWSL design features. First,
we differentiate between the SW and the measurement mechanisms used to collect data
in the evaluation. The only function of the SW is to serve as the workload for the target

system; it does not provide any mechanisms for measuring performance. In this way, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

SW is different from a benchmark program, which not only exercises the system but also
measures the performance of the system while it is being exercised. The SW is designed
to work harmoniously with performance evaluation mechanisms. Therefore, the user is free
to choose any appropriate measurement mechanism. If a software monitor is being used
which must be executed as a user task, the monitor can be specified as the function for a
transformation. The monitor will be compiled into the SW and function normally on the
target system.

Second, the typical experiment using the SW consists of a number of runs, each
of which is composed of the following steps: the SW code is generated and compiled from
the specification; the executable code is downloaded to the target computer; the SW is
executed; measurements are made and data is collected. Most such experiments will be
aimed at measuring the performance of the system as a specific workload parameter (or set
of parameters) is varied. Under the above scenario, each run of the experiment would involve
repeating the set of steps listed above for each new value of the parameter(s). To reduce the
time required to perform such experiments, SWSL supports a multiple-run facility. For each
parameter of the SW, the user may specify a list of values. When the SW is first invoked,
the first value provided for each parameter is used. Once the run is completed, the SW
pauses to allow time for measurement mechanisms to be reset and initialized for the next
run. To begin the next run, it reinitializes and executes again. This time, it uses the next
value in the list for each parameter. The reinitialization between runs is necessary to insure
statistical independence of values measured in consecutive runs. The only state preserved
between runs is the run count. This facility reduces the time-consuming compilation and
downloading processes to a single compilation and download for a series of runs.

Specifying the parameters for all runs at compile time is preferred for use in real-
time systems. Changing parameters at run-time requires the presence of an agent which can
interpret user commands and make the appropriate changes to the system and application
data structures on the target machine. The interference caused by the agent would adversely
affect the timing characteristics of the executing SW. In addition, the agent would have to
be custom developed for each different target architecture, as it would have to make use
of the communication and system functions which are peculiar to each. This added effort
reduces the ease with which the SW can be ported to and used on a new system.

SWSL has additional mechanisms to support experimentation that have been ab-
sent in previous SWs: reproducible experiments, independence of events within a given
experiment, and statistically independent experiments [24, 34]. As described above, the

SW reinitializes the experiment between runs. In addition, it simulates data-dependent ac-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

tivities stochastically. Each such activity makes use of a separate random number generator
stream. This technique allows independent objects to exhibit reproducible, independent be-
havior. This feature is especially important when evaluating multiprocessor systems where
nondeterministic behavior is common. Sharing a random number stream would cause cor-

relation between actions that would be irreproducible in a nondeterministic environment.

4.3 SW specification files

The SW specification is divided among three different input files. The three files
specify the task graph, the experimental parameters, and the task functions, respectively.
Although each file has its own particular syntax, there are some constructs that are common
to all the files. The SWSL files are divided into sections. The two common sections are the
EXTERNS! and the CONSTANTS. The graph and function files have an EXTERNS section, and
all files have a CONSTANTS section. The EXTERNS section is used to declare functions and
objects that are defined outside that file. These include task functions (declared as type
FUNC), synthetic operations (OPER), random number generators for specific distributions
(DIST), and the identifiers for the processors on which the objects are to be located (PROC).
Task functions are defined in the functions file and transformations are defined in the graph
file. Therefore, functions are considered external to the graph file and are required to
be declared in the graph file’s EXTERNS section. Both the synthetic operations and the
distributions come from libraries which are linked with the SW during compilation. The
processor identifiers are used by the SWG to designate which executable files are to be
downloaded to which processors. The CONSTANTS section contains definitions of constants.
The use of constants is common in programming languages, e.g., C. It is especially important
when specifying SWs since it allows the user to localize changes to parameter values.

The programs that make up the SW are synthetic. They do not perform useful
calculations; they do not process real data. Hence, data is redefined to have a single
parameter, size. Data values are ignored. The effects of data values on the behavior of a real
workload are simulated stochastically. SWSL uses a library of random number generators for
different distributions. A call to a distribution function, with appropriate parameters, may
be used as the value to many workload parameters. It may also be used as the loop count
for the looping construct in the task function specifications (See Section 4.3.3). At run-time,
the value will take on the value calculated dynamically by the distribution function.

In addition to these features, SWSL contains some basic language constructs that

'In this dissertation, all SWSL keywords will be given in uppercase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

enhance its ability to specify complex workloads. Comments and an “include” facility
are supported to allow users to document and organize files according to their own style.
SWSL supports simple arithmetic expressions where operands are scalars, constants, or
distributions. Expressions may be used anywhere a numeric value is required, e.g., as

values for parameters.

4.3.1 Graph file

The graph file describes the task level structure of the SW in terms of the work-
load model. It defines the transformations, stores, and terminators, along with their pa-
rameters. The graph file is divided into EXTERNS, CONSTANTS, OBJECTS, and DEFINITIONS
sections. The various workload objects are declared in the OBJECTS section and defined in
the DEFINITIONS section. An object is defined by listing its parameters with their values
in the following format.

<object name> [
<parameter list>

I
The <parameter list> is the series of definitions of parameter values. This list
defines the m;, ¢, I, O, and p parameters for the objects. These parameters are discussed

in the following sections.

The 7; Parameters

Each #; parameter is specified using the following format.

<parameter keyword> = <value; >, <value;>, ..., <value, > ;

Where <parameter keyword> is the parameter name, and <value;> is the value that the
parameter is to take on for the i-th run. If fewer values are listed than the number of runs,
then the last value in the list will be used for its corresponding run and all subsequent runs.
One important use of this feature is for compactly specifying parameter values that remain
constant across runs. For example, if the period of a task is always 10 milliseconds and
there are seven runs in the experiment, then the PERIOD parameter of the corresponding

transformation may be defined as

PERIOD = 10;

instead of

PERIOD = 10, 10, 10, 10, 10, 10, 10;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Parameter Name Description
START_TIME Time at which the transformation is first invoked.

PERIOD The period of a periodic transformation.

SPORADIC The function that returns the time between invocations for a
sporadic transformation.

DEADLINE The deadline of the transformation, either a scalar value or
distribution name.

PRIORITY The priority of the transformation. Required when the target
system uses priority-based task scheduling.

ACTIVE Indicates whether the transformation executes during each
run.

NAME String to be used to identify the transformation to the system.

Table 4.1: Transformation parameters.

Parameter Name Description

TYPE The type of the store: DEPLETABLE or NONDEPLETABLE.

ELEMENT_SIZE The size (in bytes) of each element in the store.

CAPACITY The storage capacity of the store measured in number of
elements.

ACCESS The access policy for the store.

POLICY The storage policy for a depletable store, e.g., FIFO, LIFO, or
PRIORITY.

NAME String to be used toidentify the transformation to the system.

Table 4.2: Store parameters.

All time values in SWSL are measured in milliseconds. Therefore, no indication of time
unit is necessary in the specification.

The 7; parameters for transformations, stores, and terminators are shown in Ta-
bles 4.1, 4.2, 4.3, respectively. Transformation parameters indicate the transformation’s
scheduling requirements. The store parameters specify the type of data in the store and the
access methods to be used. Stores represent all information repositories and data channels.
Thus, the parameters have been selected such that they are orthogonal, and combinations
of values may be used to represent different storage objects. Similarly, for terminators, we
have chosen parameters to allow a range of terminator types.

The selection of m; parameters is not fixed. We selected these parameters to spec-

ify the system-dependent characteristics of real-time workloads on HARTS?. HARTS is

2HARTS is the target system for which the SW was first developed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Parameter Name Description

TYPE The type of the terminator: SOURCE or SINK.

ELEMENT._SIZE The size (in bytes) of each element generated or accepted by
the terminator. May be a constant or variable value.

START.TIME Time at which the terminator becomes operational.

RATE The time between data arrivals at a source terminator or the
minimum time between data acceptances for a sink termina-
tor. Either a constant value or a value taken from a specified

distribution.
ACCESS The access policy for the terminator.
NAME String to be used toidentify the transformation to the system.

Table 4.3: Terminator parameters.

discussed in Chapter 7. If required, parameters may be added to the language by updating
the list of recognized parameters in the SWG source code. However, the selection of param-
eters will generally be fixed for a given installation of the SWG. New parameters are not

added dynamically simply by adding them to the parameter list in the SWSL specification.

The ¢ Function

The ¢ functions for transformations are declared using the FUNCTION parameter
keyword followed by the list of names of the functions to be executed in each run. These

functions are defined in the functions file.

The I, O, and p Parameters

Specifications of I, O, and p for each object use the parameters INPUT, OUTPUT,
and PROCESSOR, respectively. To form a dataflow graph, the objects in the workload must
be connected by flows. A flow is specified implicitly using the OUTPUT parameter of the
source object and the INPUT parameter of the destination object. Each INPUT, OUTPUT
pair denotes a separate connection between the objects. In software specification languages
such as ESML [9], the Ward/Mellor transformation schema {65], and PSDL {48], all trans-
formations must be connected by flows to other objects. A transformation that does not
receive data from other objects is useless; it can not do useful work. In contrast, in the SW,
no transformation does useful work. All transformations only behave like they are doing
something useful; they do not operate on real data. Therefore, we do not require that a
transformation be connected to other objects. In some cases, the user may want to define a

task that executes independently of other tasks. An example of this case is when specifying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

SWs to study scheduling algorithms without considering task interactions. The workload
would consist of a number of independent tasks whose only workload characteristic was the
amount of CPU time required. For this case we do not require that the INPUT and QUTPUT
parameters be defined. However, in most cases the user will be interested in the effects of
task interactions on system performance. Hence, most transformations will be connected
to others and will have INPUT and OUTPUT parameters assigned to them.

The two parameters for flows are flow type and the size of the data elements
which pass along the flow. Because of the model construction rules (see Section 3.3.6)
we can always determine the element size for a data flow from the components that it is
connecting. A data flow must be attached at one end to either a store or a terminator, each
of which has an ELEMENT_SIZE parameter. Hence, the flow can inherit this parameter from
the object. Event flows carry no data, and thus require no size specification. Since the data
element size can always be determined for a flow, we only need to be able to specify the type
of the flow in the SWSL specification. Since flows only have a single parameter, it would be
cumbersome to require that each flow be specified using the object definition notation which
is used for the other components. Thus, we include the flow type into the specification of
the INPUT and OUTPUT parameters for objects. Hence, the INPUTS and OUTPUTS serve a dual
purpose. They declare the inputs and outputs of the object and define the flows that are

attached to them. The format for the value of these parameters is

<connected object> : <flow_type>.

The flow types are DISCRETE, CONTINUOUS, and EVENT, corresponding to intermittent data

flows, continuous data flows, and event flows, respectively.

Object templates

An object template is specified by using the PROCESSOR parameter in conjunction
with the INPUT and OUTPUT parameters. The PROCESSOR parameter defines the processor(s)
to which the object is assigned. By providing multiple values for the parameter, the user
specifies that an instance of an object is to be assigned to each of a number of processors.
Each instance of the object will be assigned the same w; parameter values. The INPUT and
QUTPUT parameters will differ depending on the objects to which the copies of the object
are connected. The connectivity of these objects is defined by using a special syntax for the
INPUT and OUTPUT parameters. In the following discussion, the object for which the inputs
and outputs are being defined will be referred to as the current object. The objects to which

it is connected by flows from the inputs and outputs will be referred to as the connected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

objects.

Transformation inputs and outputs are mapped one-to-one and in-order to function
inputs and outputs (see the discussion of the functions file below). Therefore, the order in
which inputs and outputs are specified is important. Furthermore, since SWSL supports
object templates, the connected object may be one of many instances of an object. Hence,
to accurately specify the connected object for an OUTPUT, for example, requires four pieces
of information: the name of the connected object, the processor on which it is located,
which INPUT of the connected object defines the other end of this flow, and the flow type.
Since the current object specification may also be a template, the specification of inputs
and outputs is somewhat complex. However, simple, compact specifications are possible in

most cases. The formats for INPUT and OUTPUT specifications are as follows.

<object name> [

INPUT = <object; 1> : <flow type; 1> | ... | <objecty > : <flow type; ,> ;
OUTPUT = <objecty;> : <flow types;> | ... | <objecty ,> : <flow type;,>;
PROCESSOR = <processor name;>, ..., <pProcessor name,>;

J;
This specification shows a single INPUT and a single OUTPUT within the context of an object
definition. Multiple INPUTs and OUTPUTSs can be defined by using multiple INPUT and OUTPUT
statements. Fach <object; j> specifies to which object the current object is connected by

this INPUT or OUTPUT. The connected object specification has the following syntax.

<object name>.<processor>.<io number>

<object name> is the name of the connected object. <processor> is the name of
a processor on which the connected object is located. The <io number> indicates to which
INPUT or OUTPUT of the connected object this OUTPUT or INPUT is connected, respectively.
INPUTs and OUTPUTs are numbered separately, beginning at 1.

If the current object is a template, vertical bars (|) separate specifications for the
same INPUT or OUTPUT on different copies of the object. These specifications correspond
positionwise to processor specifications in the PROCESSOR parameter list. That is, the jth
entry in each INPUT and OUTPUT list is the specification for that INPUT or OUTPUT on the
copy of that object located on the jth processor listed in the PROCESSOR list.

A simplified version of the INPUT and OUTPUT specification syntax may be used
in most cases. The SWG can infer the connections given the simplified syntax. This
specification scheme may be made clearer by looking at several examples.

In the simplest case, the INPUT and OUTPUT parameters describe the connections

between nontemplate objects, as illustrated in Figure 4.1, This figure shows the object task

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

task [

INPUT = thermometer : DISCRETE;
OUTPUT = adj_temp : EVENT;
OUTPUT = temperature : DISCRETE;
PROCESSOR = rtclll;

l;
Figure 4.1: Example of simple INPUT and OUTPUT specification.

which is located on a processor labeled rtcli1. Itsinput is a discrete flow from thermometer
and its outputs are an event flow to adj.temp and a discrete flow to temperature. The
connected objects are not templates, so the name is sufficient for identification.

In the next case, the current object is a template and is connected to nontemplate
objects. Identical copies of the object are to be placed on each processor listed in the
PROCESSOR parameter list. There are two subcases to consider. In the first subcase, all
copies of the object are to have the same INPUT and OUTPUT specifications. Then, it is
sufficient to specify the INPUTs and QUTPUTs as in Figure 4.1. The SWG will copy the INPUT
and OUTPUT specifications to all copies of the object. Note that the connected objects would
have to specify connections to each copy of the current object.

In the second subcase, the INPUTs or OUTPUTs differ between the copies, as shown
in Figure 4.2. The instances of the object template are highlighted. The user must specify
different INPUTs and OUTPUTs for each copy. This example shows task as an object that
has copies executing on both processors rtcli1 and rtcl21. The copy on rtclil has the
same INPUT and OUTPUT specifications as the object in Figure 4.1. The copy on rtcl21 has
its input from gyro and its outputs are stabilize and pitch. All of the m; parameters
would be exactly the same on both copies of object.

The next case involves specifying templates for objects whose instances are con-
nected. This case is shown in Figure 4.3. In this case, the name of the connected object
must specify the processor where the specific connected object is located. In this example,
the output of the copy of taskl on rtclii is the copy of task2 on rtcl31. The output of
the copy of task! on rtcl2t is the copy of task2 on rtcl41l. The INPUT specification of
task?2 reflect the connection from the viewpoint of task2.

It is assumed that the relationship between taskl and task2 in this example
will be typical for object templates. That is, the connection between the first instances
of the objects, i.c., taskl on rtclil and task2 on rtcl3i, will hold for all subsequent

instances of the objects, i.e., taskl on rtcl21 will be connected to task2 on rtcl4i, etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

processor rncl011 processor ricl021
thermometer
~
~
-~
sty X

S

task [

INPUT = thermometer : DISCRETE | gyro : DISCRETE;
OUTPUT = adjtemp : EVENT | stabilize : EVENT;
OUTPUT = temperature : DISCRETE | pitch : DISCRETE;
PROCESSOR. = rtclll, rtci21;

l;

Figure 4.2: An object template with different INPUT and OUTPUT specifications for each
instance.

Hence, there is a simplified notation that may be used in this case. Figure 4.4 shows an
alternate specification of the connection between taski and task?2 that is equivalent to the
specification in I'igure 4.3. This notation allows quite large SWs to be defined with a very
compact specification. A subgraph of nontemplate objects is defined and then processor
labels are added to the PROCESSOR parameters for all the objects in the subgraph to produce
a subgraph of templates. The subgraph of templates specifies multiple, identical subgraphs,
but the objects in the subgraph will have different processor assignments. The INPUTs and
QUTPUTs need not be altered in the specification.

In general, if there are more processors defined for an object (say object1) than
there are |-separated entries in an INPUT or OUTPUT specification, then the SWG will fill
in the remaining entries in the following manner. If the jth entry in an INPUT or OUTPUT
list is a flow to object2 on processor proc;, where proc; is the ith entry in the PROCESSCR
parameter list of object2, then the 741 entry of the INPUT or OUTPUT list will be to object2
on processor procy; il 7 < n or proc; if i = n.

Next, we must handle the case where two objects are connected by multiple flows
of the same type. The default is for the SWG to map the INPUTs to OUTPUTSs of each flow
type in the order of occurrence. However, in some cases one wants to change the order

of the mapping. This may be required to connect properly with the INPUTs and OUTPUTs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

processor ricl011 processor ricl021

processor rtcl031 pracessor rtcl041 4

taskl |
OUTPUT = task2.rtcl31 : EVENT | task2.rtcl41 : EVENT;
PROCESSOR = rtclll, rtcl2l;

l;

task2[
INPUT = taskl.rtclll : EVENT | taskl.rtcl2l : EVENT;
PROCESSOR = rtcl3l, rtcldl;

)i

Figure 4.3: Object templates for connected objects, complete specification.

taskl |
OUTPUT = task2: EVENT;
PROCESSOR = rtclll, rtcl21;

l;
task?2]

INPUT = taskl : EVENT;
PROCESSOR = rtcl3l, rtcld1;

I;

Figure 4.4: Object templates for connected objects, simplified specification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

processor rnicl011 processor ricl021

>< sensor

taskl [

OUTPUT = task2.rtcl21.3: EVENT;
OUTPUT = task2.rtcl21.2: EVENT;
PROCESSOR = rtclll;

l;

task?2]

INPUT = sensor.rtcl21 : DISCRETE;
INPUT = taskl.rtcll1.2 : EVENT;
INPUT = taskl..1: EVENT;
PROCESSOR = rtcl21;

It

Figure 4.5: Specification of 10 numbers.

ordering imposed on the transformation by its function. To accomplish this geal, we make
use of the <io number> field in the INPUT or OUTPUT specification. The <io number> is
the index of the INPUT or OUTPUT of the connected object. The indices begin at 1 and are
numbered separately for INPUTs and OUTPUTs. An example of this notation is shown in
Figures 4.5. This example shows three things. First, the inputs of task2 are numbered
starting at 1. Therefore, the first output of taski maps to input 3 of task2. Second, the
OUTPUT assignments for taskl are specified to “cross over”; the first output event from
task1 is the second input event for task2 and the second output event from task1 is the
first input event for task2. Third, as shown in the third INPUT definition for task2, the

processor value for task1 need not be specified if it may be determined as described above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Parameter Name Description

TIMING Defines whether the time limit should be used to terminate
the experiment. Value is either TRUE or FALSE.

TIMELIMIT Defines the maximum duration of the experiment.

SEED Defines the initial seeds of the random number generator
streams.

SEED_RESET Contains one value for each value in the SEED parameter
list. Denotes if the corresponding random number generator
is to be reset to the specified seed value at the beginning of
each run. Value is either TRUE or FALSE.

Table 4.4: Experiment parameters.

4.3.2 Experiment file

The experiment file defines the experimental parameters. It is divided into two
sections: the CONSTANTS section and the PARAMETERS section. In the CONSTANTS section of
the experiment file, the user may set the value of the Runs constant. The Runs constant
defines the number of runs for the experiment. It defaults to 1, but the user may assign it
a higher value to produce an SW with multiple runs. The PARAMETERS section contains one
entry for each processor on which the SW is to execute. The entries are of the form

<processor name> |
< parameter list>

I;
If the experiment parameters are to be the same for multiple processors, the DEFAULT entry
may be used. All processors for which there is no explicit entry are assigned the default
parameter values. The experiment parameters are listed in Table 4.4,

The experiment parameters are divided into two groups. The first group specifies
the temporal characteristics of the experiments. These parameters indicate whether the
experiment is to be timed and define the duration of the execution interval. The second
group of parameters provide control of the statistical properties of the stochastic behavior of
the SW. They define the seeds of the random number generators. Multiple random number
generator streams may be defined. Each distribution function in the graph and function files
can calculate its values from a separate stream. In this way, consecutive values generated
by the distribution will be independent. The result is statistically independent events in
the SWs execution. The SEED_RESET parameter may be used to reset the seed values at the

beginning of each run. In this way, the behavior of individual streams may be reproduced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

<function name> {
<input and output definitions>
BEGIN
<function code>
END;
b

Figure 4.6: Function definition format.

INPUT = <input name> : <flow type> ;
OUTPUT = <output name> : <flow type> ;

Figure 4.7: INPUT and OUTPUT specification in the function file.

4.3.3 Functions file

This file defines the ¢ functions for the transformations. The simple operations and
control constructs from the workload model have been adapted for specifying SWs. Simple
operations are implemented using synthetic operations. Synthetic operations exercise spe-
cific resources in a predefined manner. The use of synthetic operations has been described
in {4, 64, 60]. Special control constructs are defined to reproduce the data-dependent effects
on the behavior of the looping and branching constructs in the workload model.

The functions file contains EXTERNS, CONSTANTS, and CODE sections. The code for
the functions is defined in the CODE section. Function definitions follows the format shown
in Figure 4.6. <input and output definitions> is a list of definitions of the input and
output flows given in the form shown in Figure 4.7. These flows are given symbolic names
that are used within the function. At compile time, the symbolic name is mapped to the
corresponding INPUT or OUTPUT of the transformation that executes the function. The code
that is executed by the function is defined between the BEGIN and END keywords. During
each periodic or sporadic invocation of the transformation, the code between the BEGIN and
END keywords is executed exactly once.

Computation and communication are implemented with synthetic operations. The
synthetic operations are located in a library of operations. Synthetic operations are imple-
mented as C functions. These functions are parameterized so the user can control their
behavior. By defining them as functions, we hide the implementation details. Hence, the

SW function specifications are made target system independent. All system dependencies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

LOOP <expr>
{

<function code>

b
Figure 4.8: LOOP construct.

are contained in the implementation of the operations.

We have collected a number of synthetic operations for the library. Some of these
were taken from the publicly available Bell Labs Benchmark suite and the dhrystone bench-
mark. They perform functions such as Ackerman’s function, floating point arithmetic, and
word counts which exercise specific system functionalities. The operations are parameter-
ized to control the number of iterations of each function. We also include a function to
exercise memory by producing reference strings based on the algorithm in [2]. Additional
operations may easily be added to the library.

Of particular importance are the sread and swrite operations. They are defined
to be generic input and output operations. The primary parameter for these functions is
the symbolic name of the input or output. The user need not specify any information about
the object with which the function is communicating via the operation. The operations take
information generated by the SWG for each input and output of the function and determine
the appropriate system call(s) on the target system to use to perform the appropriate
reading or writing operation. Therefore, they may be used in any function, regardless of the
transformation which executes it and regardless of the objects to which the transformation
is connected. These operations increase flexibility by introducing the capability for plug-in
functions. During normal use of SWSL and the SWG, it is anticipated that the user will code
a number of functions with different behaviors representing different types of tasks. These
functions will be “plugged in” to transformations as needed for the particular application.
Thus, SWs can be quickly constructed from components with known characteristics.

Control flow within a function is achieved by using two constructs, LOOP and
SWITCH. LOOP is an adaptation of the while - do loop in the workload model. It is a single
entry, single exit looping construct. The format for the LOOP construct is shown in Figure
4.8. The parameter <expr> specifies the loop count. The LOOP may be made to execute
a constant number of times for each run, or it may execute a random number of times by
specifying a distribution function as the loop count. By looping a random number of times,

the loop simulates the behavior of data-dependent loops in the workload being modeled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

SWITCH
{

percent; :

{

<function code>
ks

percents :

{

<function code>

}

percent,, :

{

<function code>

b

remaining :

{

<function code>
h
};

Figure 4.9: SWITCH construct.

Branching is accomplished using the SWITCH construct. The SWITCH construct is
shown in Figure 4.9. It is a generalization of the if-then-else construct in the workload
model. It is derived from the SWITCH operation in [60]. In the SWITCH statement, the
user specifies alternate blocks of code to be executed. Probability values are assigned
to each block. Each time the SWITCH is executed, one block is selected at random. By
branching probabilistically, it simulates the behavior of real applications that branch based
on data values. The percenty, ..., percent, values, where Y =, percent; < 100, represent
the percentage of times that each corresponding branch will be taken. For example if
percenty = 60 and percents = 10 then 60 percent of the branches will be to the first block
of code and 10 percent of the branches will be to the second block of code. The remaining
label indicates that the remaining percentage (up to 100) of the branches execute its block
of code. If the percentages do not add to 100 and there is no remaining case, then the
remaining percentage of the time no operations are performed.

C code may be inserted at any point in the CODE section using a verbatim/endver-
batim block. This C code is copied directly to the C code being generated for the function
by the SWG. An SWSL function may contain any combination of synthetic operations and

user code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

4.4 Synthetic Workload Generation

We have designed and implemented the SWG which compiles SWSL. The SWG
completely automates the generation of SWs. The synthetic workload generation process
is shown in Figure 4.10. The SWG compiles the SWSL graph file to produce an internal
representation of the task graph. It checks the graph for compliance to the connection rules.
It then processes the inputs and outputs of the components to expand any specifications that
use the simplified specification notation. Next, it compiles the experiment file and generates
arrays containing the experimental parameters for each processor. Then, it compiles the
functions file and produces C language code for each function of each transformation on each
processor. While producing these files, it uses information from the task graph to expand
the input and output symbolic names in the functions. The parameters of the object to
which the flow is connected is specified in the graph file. Therefore, for each input and
output specification which is compiled, the SWG generates a data structure which contains
the important parameters of the object to which the input or output flow is connected.
This information may be used by the synthetic operations within the function. For all
other synthetic operations, the SWG copies the call directly to the C code of the function
being defined. Input and output operations which operate on flows specify the flow name
as a parameter. The flow name is expanded by the SWG to a reference to the proper data
structure before being copied to the function C code.

Next, the SWG generates files containing arrays of the parameter values for the
objects on each processor. These arrays are described in Chapter 5. Finally, the SWG
uses the processor assignment information from the graph file to direct the make utility to
compile the generated code for each function. The compiled function files are then linked
with the library of synthetic operations, the library of distributions, and the SW driver® to
create an executable image. The executable images for all the processors compose the SW.

They may then be downloaded to the target system and executed.

4.5 Summary

SWSL is a language for specifying synthetic workloads for distributed real-time
systems. It is designed to be easy to use while providing compact and flexible specifications.
It is based on a workload model which makes it compatible with commonly used software

specification notations. Hence, it is capable of accurately modeling real workloads. The

3The SW driver is described in Chapter 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Task Graph Description Experiment Task Functions

Parameters

Run_length Functionl Function2

Seeds Input x; Input n;

Time_unit Output y: Output m; | oo
Begin Begin
End; End;

Y 5 4

Application
tasks C code

Library of
Operations
Driver object
code
Library of
Distributions

Exccutable Synthelic
Workload

Figure 4.10: Synthetic Workload Generation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

language includes facilities for experiment support such as support for multiple runs, object
templates, multiple random number generator streams, and modeling of stochastic behavior.

The SWG has been fully implemented. It supports all features described in this chapter.

Its use is demonstrated in Chapters 6 and 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

THE SYNTHETIC WORKLOAD

5.1 Introduction

The synthetic workload (SW) executes on a distributed real-time system. The
SW on each processor is composed of a set of processes that can be divided into two
groups: the synthetic application tasks' and the driver processes. The synthetic application
tasks implement the user-specified SW. The driver controls the SW in the context of an
experiment.

The use of a driver to control an SW is not a new concept. A good discussion
on workload drivers may be found in {24]. Our contribution is to describe the important
features of a driver for SWs to be used in distributed real-time systems. These features
have been implemented in the driver for our SW.

Our SW uses distributed control because centralized control would cause addi-
tional load on the system’s communication facilities. This overhead would adversely affect
the performance indices being measured. Distributed control allows the SW to execute
without imposing any overhead load on the communication system. The only communi-
cation overhead is caused when the distributed SW control elements synchronize at the
beginning and end of each run. Synchronization is necessary if synthetic tasks on different
processor require synchronous communication. It is especially important if the tasks are
periodic. Synchronous communication between unsynchronized, periodic tasks on different
processors can cause intolerably long waits for the task which is invoked first as it waits for
the other task to be invoked. The SW is not like a distributed discrete event simulation. In
distributed simulations, simulation tasks execute in simulated time. If some processors start
later than others, then the algorithms which maintain global consistency of simulation time

can quickly bring the processors into relative synchrony. In the SW, all tasks run in real

"The term “task” is used to distinguish the synthetic application processes from the driver processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

(“wall clock™) time. The execution cycles of periodic tasks are fixed and are independent of
the behavior of the periodic tasks. They will not become synchronized through the actions
of the tasks. Explicit synchronization is required.

The SW implements all the experimental support provided by SWSL. It fully sup-
ports the multiple run facility. The duration of each run is determined by the TIMELIMIT
parameter. Between runs, the workload is completely reset. It is then recreated with the
parameter values for the next run. The SW is implemented to work in harmony with mon-
itors and other measurement mechanisms. It presents itself to the system as an application
program. Therefore, existing monitors may be used without modification.

Real-time systems control physical processes. For some applications, the system
can not be evaluated while connected to live sensors and actuators. This is especially true
when using an SW, which can not properly interpret data from sensors nor can it send
the proper commands and data to actuators. For this reason, the SW simulates the input
and output properties of terminators. Our implementation of simulated terminators is an
expansion of external event generation described for [60] and various techniques for device
simulation, e.g., [31].

In addition to these behavioral features, the SW has implementation features to
make it easier to use and easier to port to a new system. Although the synthetic tasks may
change for each evaluation, the driver has a fixed structure. It is compiled once for a given
target system. After that, it is only necessary for the SWG to link the driver’s object code
with the SW. This separation between SW tasks and the driver makes it faster to compile
SW specifications because the driver code does not need to be recompiled for each new
specification. Also, the driver and the library of operations contain the system-dependent
code for the SW. Porting is simplified by localizing the system dependencies.

In section 5.2, the structure of the SW is outlined, and its implementation and
use are described. As we describe the SW, we will discuss how the above features are
implemented. In Section 5.3, we discuss the overhead incurred by the driver. The chapter

concludes with Section 5.4.

5.2 The Synthetic Workload

The graphical representation of the SW for each processor is shown in Figure
5.1. The driver processes and data structures are shown in the labeled box. All other

transformations, stores, and terminators represent the user specified SW.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

OOt Processes
on other processors

objects on
other processars

Store

dispatcher
ucuc

Figure 5.1: Data flow model for the SW processes on a single processor.

5.2.1 Synthetic Application Tasks

The synthetic application tasks are responsible for generating the resource de-
mands on the processor. They are the implementations of the transformations in the SWSL
specification. Their structure has been discussed in Chapter 4, and will not be discussed

further here.

5.2.2 Driver Processes

The driver controls the execution of the SW in the context of an experimental
evaluation. The driver processes are responsible for initializing and starting the SW, for
the synchronization between the SWs on the various processors, and for the scheduling of
stochastic events and simulated 1/0.

The root process executes first at system initialization. It spawns all the other
driver processes and synthetic application tasks and creates the data structures that im-
plement the stores. It also synchronizes with the root processes on the other processors at
the beginning and end of each execution. This synchronization is required if the SW tasks
participate in synchronous communication.

The driver uses the TIMEOUT parameter from the experiment file to specify the
maximum time that each run is to execute. When this time is reached, the run ends. At
the end of a run, all SW tasks, data structures, and processes, except for the root process,
are deleted. No history information is kept between runs. Hence, runs are statistically

independent. After the execution of each run, the root process waits for input from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

user. This wait gives the user time to upload performance data or reset measurement
instruments before the system is reinitialized for the next run.

The two other driver processes are the trigger and dispatcher. The trigger acts as a
software timer that periodically sends clock tick messages to the dispatcher. The dispatcher
counts time and performs a number of time related functions. For both of the implementa-
tions used for the evaluations in Chapters 6 and 7, these functions included implementing
scheduling of periodic tasks and the enforcement of task deadlines. On a system whose
operating system fully supported periodic tasks, these functions of the dispatcher would
not be necessary. Therefore, scheduling of periodic tasks and enforcement of deadlines are
not considered to be permanent parts of the SW. The dispatcher is also used to simulate

the operations of terminators.

5.2.3 Software Structure

The SW software is structured to be modular, and the code that may be altered
by the user is separated from the fixed code. The only time the code should be altered
is when it is being ported to another target system. Once installed, it should not require

further modification.

Data Structures

The SWG produces parameter arrays that define the workload parameters from
the SWSL graph file. These arrays are read by the root process to create the appropriate
tasks and data structures for the specified SW. The parameter arrays contain an array for
each parameter of each object type. Each is an n X m array, where n is the number of
objects defined of the specified type and m is the number of runs. For example, consider
the array

int trans_priority [2][3] = {
{10, 5,12},

{ 15, 2, 12},
b

that defines the values for the PRIORITY parameter for transformations. This array indicates
that there are two transformations in the workload and values have been defined for three
runs. The array name includes an indication of both the object type and the parameter.
This naming scheme is necessary since some parameter names are shared by multiple objects,

e.g., the TYPE parameter for both terminators and stores.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

Some parameters may take on values that are generated at run-time by calling a
function. An example is the SPORADIC parameter for transformations. The value of this
parameter is specified in SWSL as a call to a random distribution function. At run-time, the
distribution function is called and the value returned is assigned to the parameter. Some of
these functions require parameters; some do not. Furthermore, the values of the function’s
parameters, or even the selection of which function to execute may change between runs.
The SW driver must call these functions. Since the driver has a fixed structure and is
precompiled, it can not know about the names of the functions and their parameters.
Therefore, we have added one level of indirection in the calling sequence for these functions.
For each function, f(z), the SWG defines a uniquely named function, f'() = f(z), that
calls the required function. For each f(a) there is a unique function defined for each run.
The functions are named

<transformation name>_<parameter name>_.<run number>

indicating that the named transformation executes the function to obtain a value for the
parameter during the specified run. These functions return the value that is calculated by
the user-specified function. We clarify the definition of these functions with the following
example.

Suppose the workload consists of a single transformation, taskl, which is to be
invoked sporadically, and the time between invocations is defined by a geometric distribu-
tion. There are two runs in the experiment. In the first run, the mean of the sampling
distribution is to be 10, and in the second run it is to be 15. Then the following functions

will be defined.

extern int geom();
int taskl_sporadic_1 ()

{

return(geom(10));

}

int taskl_sporadic_2 ()

{

return(geom(15));
h
The first entry defines taskl.sporadic_1() as a function that returns the value returned
from the geometric distribution function with a mean of 10. The second entry defines
taskl_sporadic_2() as a function returning the value taken from a geometric distribution
with mean 15. The corresponding table for the SPORADIC parameter for transformations
will be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

int (xtrans.sporadic [1][2])() = {
{ taskl.sporadic.1, taskl.sporadic-2},

};
Using this technique, the SW driver can obtain the proper value for the SPORADIC parameter
by executing the function in the array.

The sizes of the parameter arrays change between experiments as the number of
objects and the number of runs change. Hence, the source code for each function that
accesses these arrays must be recompiled for every change to the workload. We wish to
reduce the time required to recompile the SW between experiments. Therefore, we define
an current-run array that contains only the values for the parameters for a single run.
During the execution of the SW, this array will contain the parameter values for the run
being executed. The proper values are placed in the current-run array by the initialization
function which is described below. All other driver functions access only the current-run
array. The initialization function is located in a separate source file. It is the only driver
source file that must be recompiled between experiments. A similar scheme is used for the

arrays containing the experimental parameters.

The Root Process

The pseudo-code algorithm for the root process is shown in Figure 5.2. The root
process is responsible for creating all the user-specified components of the SW. Once the
components have been created and spawned, the root process waits for the SW to complete
execution. This process is contained in a loop that executes once for each run.

Two functions are called by the root process. The first is the initialize()
function. It is called at the beginning of each run. It resets the driver data structures and
places the appropriate parameter values from the parameter arrays into the current-run
array.

The second function called by the root process is the synchronization function.
In general, it can be assumed that the target system maintains synchronized clocks on the
processors. Synchronized clocks are necessary if the system is to provide guarantees for time-
constrained communication between processors [39]. In the presence of synchronized clocks,
the synchronization function is simple. The SW on one processor would be designated as the
master. At the beginning of a run, it broadcasts a message to the other SWs indicating the
start time. The start time is calculated to be a time at a suflicient distance into the future
to allow all drivers time to receive and process the message. Upon receipt of the message,

each SW waits until the start time, as indicated by its local clock. All clocks reach this time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

root()

{

for each run
initialize() ;
create(dispatcher queue);
create(root queue);
for each store

{

create data structure for the store;

}

for each terminator
create terminator data structure;
create terminator process;
schedule the START activity for the terminator;

}

for each transformation
{
spawn the task;
schedule the START activity for the task;
}
synchronize();
spawn(dispatcher);
spawn(trigger);
wait(root queue);
synchronize();
delete all tasks, processes, and data structures;

Figure 5.2: Root process structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

simultaneously, and the SW is synchronized. In a system without synchronized clocks, the
other drivers begin executing as soon as they receive the message from the master. This
technique results in much looser synchronization due to the different times at which the
drivers receive the messages.

The first time the synchronize() function is called within the loop is to ensure
that the root processes on all processors are at the same point in their execution. All pro-
cessors then perform their initialization and begin execution of the application tasks. Once
each processor completes its run, it synchronizes with the master processor. When all pro-
cessors have completed, the master notifies the user, who may then reset any measurement
mechanisms or upload performance data from the processors. The master then waits for
a predetermined period of time or for input {rom the user console; either mechanism may
be used. When the wait period has elapsed or the command from the user is received, the

master begins the next run.

The Trigger Process

The trigger process periodically sends clock tick messages to the dispatcher data
structure. Once it has sent a message, it sleeps for a length of time specified by the
TIME.UNIT parameter. This user-specified parameter determines the basic unit of time

(a multiple of the system’s clock period) that will be used for all time-related SW actions.

The Dispatcher Process

The dispatcher uses the trigger messages to count time. The time value is used for
the scheduling of activities. The dispatcher maintains an activity? queue which is similar to
event queues used in discrete event simulation systems. Activities correspond to actions that
are to be performed by the dispatcher at specific times. Activities indicate each task’s start
time, as defined by the START_TIME, PERIOD, and/or SPORADIC parameters, and deadline, as
specified by the DEADLINE parameter. There are also activities to indicate the times when
the simulated terminators are to produce or consume data.

The dispatcher uses the RATE parameter for terminators to determine when to send
messages or events from source terminators and when to read messages or events at sink
terminators. The SW simulates terminators by using a data structure and a task for each
terminator. The data structure is used if the simulated terminator is to produce or receive

data. Synthetic application tasks that communicate with the terminator will send and

2The term “activity” is used to avoid confusion with events in the workload model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

function()

{

loop forever

{

wait for "invoke" signal from dispatcher;
do_work;
send "completed" message to dispatcher;

}
}

Figure 5.3: Function structure.

receive messages to/from the data structure. The terminator task is used if the simulated
terminator is to produce or receive signalled events. When instructed by the dispatcher, it
sends signals to the appropriate application tasks or reads signals sent by application tasks.

Since the dispatcher is being used for scheduling tasks, it receives other messages
through the dispatcher queue besides clock ticks. Each task sends a message to the dis-
patcher when it has completed execution. The dispatcher uses this information to cancel
the corresponding task deadline activity in the activity queue.

To support scheduling by the dispatcher, the application tasks generated by the
SWG all have the same skeleton structure, which is shown in Figure 5.3. Each time the task
receives an invoke signal from the dispatcher, the remaining code in the loop executes once.
Between invocations, the task blocks waiting for the invoke signal from the dispatcher. The
do_work section of the code represents the execution of the task ¢ function. Once its work
is completed, the task must notify the dispatcher so that the dispatcher may cancel the

deadline activity for the task.

5.3 Driver Overhead

As was stated carlier, the application tasks must produce the desired workload
characteristics. It is their structure and behavior that may be changed. The structure of
the driver is fixed; it’s demands for resources are not controlled by the user. Obviously, the
driver’s behavior is influenced by the workload parameters. The dispatcher, for example,
will execute more frequently in a workload with short period tasks than it will in a workload
with longer period tasks. However, the amount of time that it executes per task invocation
will be fixed. The driver thus produces a calculable overhead per task execution. This

overhead may be determined and taken into account as the workload is being tuned for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

particular experiment. Since we are working with real-time systems, we want the driver
overhead to be as low as possible.

We ran an example SW on HARTS in order to measure the driver overhead. The
workload consisted of four application tasks. The execution of each task consisted of a
loop to use CPU time. This workload was sufficient to measure the fixed per-invocation
overhead. Data was collected for each of the three driver processes (root, dispatcher, and
trigger). The dispatcher time was measured separately for each of the functions that it
performed. These functions include: invoking a task, aborting a task which has reached its
deadline, and processing a clock tick from the trigger. For each operation, we measured the
time immediately after the dispatcher received a message from the dispatcher queue and
dequeued the appropriate activity from the activity list until immediately before it made the
system call to request the next message from the dispatcher queue. The time required for
the dispatcher to receive a message was on the order of 100 usec.; this time is not included
in the following measurements. The average time to invoke a single task was 118 usec. The
time was clearly dominated by the approximately 100 usec. it took to perform the system
call to send the invoke signal to the task. The time to process a deadline event was 469
psec. This time was due to the number of system calls that were performed to destroy the
task and spawn and activate a new version of it.

The trigger process took 247 usec. per trigger. The actual amount of code in
the trigger process is small, but two system calls were made per trigger. The root process
executed for less than 60 msec. This time was primarily used in system initialization. The
root process was suspended while the rest of the workload was executing. Therefore, this

overhead did not affect the performance of the SW.

5.4 Summary and Conclusions

In this chapter we described the executable SW. It is compaosed of the synthetic
application tasks and the driver. The synthetic application tasks implement the user spec-
ified workload. The driver provides control of these tasks in the context of an experiment.
We outlined a number of features which should be supported by a driver in a distributed
real-time system.

Our driver implements these features. It synchronizes the distributed SW at the
beginning of each run, reinitializes the SW between runs, and simulates the actions of
terminators. It also provides task scheduling facilities, if needed.

The SW driver is similar to the driver for a discrete event simulation. It controls the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

start and termination of an experiment. During the experiment it controls the execution of
various activities or events. In fact, the dispatcher manages its activity queue using common
techniques for managing event queues in simulations. The main difference between the two
types of drivers is that the SW is not a simulation. The tasks in the SW are actually
executing on the system in real time. The dispatcher must process activities at the correct
time. Once an activity is processed, the dispatcher cannot move time ahead and process
the next activity. Similarly, it must not wait too long to process the next activity. If the
timing requirements are not met, the driver could cause incorrect behavior from the SW,
an unacceptable situation. Another difference concerns what events are controlled by the
driver. In a simulation, the driver processes all events. It handles all interactions between
the simulated objects. The SW driver does not control all aspects of the SW. The SW may
contain a wide range of control constructs and task interactions which are unknown to the
driver. Sporadic tasks may be “invoked” by receiving data from other tasks without being
scheduled by the dispatcher. Since for real-time systems we are generally concerned with the
timing behavior of the workload, the SW driver must not produce a significant overhead.
For tasks with periods of 10-20 msec., such as those described in Chapter 6, the driver

overhead represents approximately two percent of each period. This value is acceptable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

REPRESENTATIVENESS OF THE SYNTHETIC
WORKLOAD

6.1 Introduction

This chapter addresses the problem of verifying that the SWG is capable of pro-
ducing representative SWs. Our goal is to demonstrate that, given the proper SWSL spec-
ification and workload parameters, the SWG is able to produce an SW which accurately
represents an actual workload. To demonstrate this ability, we first determine how to mea-
sure the representativeness of the SW. Then, we describe an actual experiment which used
the SWG to produce an SW to accurately model an independently developed real-time
workload.

Many performance analyses are concerned with determining how the system will
behave under an actual or proposed workload. It is therefore important that the SWG be
capable of generating SWs which accurately represent the actual workload. The problem
of how to create a representative SW has been studied since the development of the first
benchmark programs [35, 36]. In the case of benchiarks, the definition of representativeness
was restricted to the ability of a benchmark program to model the behavior of a generalized
example of a program from a given application domain. The problem was to define how
to compare the behavior of the benchmark with that of an actual application program.
Since that time, three models have evolved which may be used to determine if an SW
is representative [29]. These are the resource-usage model, the functional model, and the
performance-based model.

In the resource-usage model an SW is said to be representative of a workload if
the jobs in the SW consume system resources at the same rate as the jobs in the workload.
Since an SW is an abstraction of a real workload, it does not consume resources exactly like
the real workload. However, it can exhibit the same resource consumption pattern or ratio

between the consumption rates of different resources, e.g., the number of disk accesses per

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

unit of CPU time used. This model has been used frequently in workload characterization
studies. For example, it was used by Domanski [18] to produce a representative synthetic
workload based on an actual workload for a database management system from which
resource usage data had been obtained. Using data from the log tape of the execution of
an application, the jobs in the application were plotted in the space defined by the quantity
of CPU time, input message length, output message length, and number of database calls
used by the job. A clustering algorithm was applied to find representative jobs from the
workload. The parameters of the representative jobs were then used as the parameters of
the SW.

The second model is the functional model. The functional model states that an SW
is representative of the real workload if it performs the same functions as the real workload.
For example, an SW would be considered representative of a payroll processing workload if
the SW contained only payroll processing jobs.

The functional model is much more system independent than the resource-usage
model, because it specifies only the functions to be performed, not the manner in which
they are to be performed. One need only specify which functions are to be considered
representative, then construct a workload (from a smaller number of these representative
tasks) which performs those functions in proportional amounts.

The performance-based model was first defined by Ferrari [23]. According to this
model, an SW is representative if it causes the system to behave in the same manner as
the real workload, as measured by some specified performance indices. This notion was
formalized in [26]. Given a synthetic workload W’, a workload W, a set of performance

indices P, and a target system S, then

Definition 1 W’ is representative of W if it produces the same values of the performance

indices P as W when running on the same system S.

Each of these three models has its strengths and weaknesses. The main advantage
of the resource consumption model is that it is intuitive. A workload can be thought
of as a set of programs which consume resources in the system. This model translates
readily into the design of an SW. The disadvantage of this model is that it is highly system
dependent. The resources consumed by the workload are particular to the system on which it
is executing. Likewise, the consumption patterns are determined in part by the configuration
of the system.

The functional model has the advantage of simplicity. One need only choose

workload components which perform the proper functions, and the result is a representative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

workload. The main problem with this model is that there can be a wide variation in the
ways that a given function may be implemented. Therefore, there is no guarantee that
measurements of the system which are made while the SW is executing will be any indication
of the values which would be obtained if the actual workload were being executed.

The advantage of the performance-based model is that it relates directly to the
reason that we are using an SW. We are using an SW to aid in performance evaluation.
As such, our only concern is how the SW affects the performance of the system. The other
two models are useful for guiding the design of the SW, but the performance-based model
is the only one which provides a quantitative measure of representativeness which can be
related directly to the evaluation being undertaken. It is therefore the best choice for our
purposes.

The performance-based model can be used at any level of abstraction. For example,
suppose the SW is being used to evaluate the communication subsystem of a distributed
real-time system. Tle measured performance index is the message delivery time at a certain
traffic level. The traffic level is determined by the frequency of message generations, which
is indirectly proportional to the time between message generations by the sending task.
We are thus measuring two performance indices: the message delivery time and the task
execution time between message generations. In an actual workload, this latter index would
be determined by other factors such as the number of operations to be performed, number
of memory accesses, and resource contention between tasks. However, since the goal of
the evaluation is not to characterize the delays caused by these factors, the SW need not
reproduce them individually. It need only reproduce the cumulative delay.

To use this definition of representativeness, we must perform experiments on a real
system. To obtain W, P, and &, we devised a realistic performance evaluation experiment
such that P would be measured while W executed on S. The experimental scenario is
described below. We executed W on S and measured the values of P. Then, an SW,
W', was constructed to model W. The P and S selected for the experiment were used to
determine the representativeness of W’ relative to W,

In the experimental scenario, the real-time computing system, S, was the computer
used at the Robotics Laboratory at the University of Michigan to control a pair of robot
arms. The workload, W, was the software that interprets movement commands from the
user and controls the movement of the arms. This workload was chosen for two reasons.
First, it contained a real-time element and an element with no real-time requirements.
Thus, the SW could model both periodic and sporadic (aperiodic) tasks. Second, it was

developed independent of the SW by researchers who were unaware of the existence of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

SW. Likewise, the SW was developed independent of it. As such, its design was not biased
toward structures and behaviors which might be easily modeled by the SW, nor was the
SW biased toward being able to model its structure. It therefore served as a fair test of the
SW’s ability to model actual workloads.

We wanted to make this evaluation as realistic as possible. Therefore, to determine
the performance requirements of the application and, therefore, the proper indices to use
as P, we consulted with the researchers who originally selected and purchased the system!.
The primary performance requirement used in the selection processes was that the real-time
portion of the workload must meet its timing requirements. The timing requirements are
discussed in Section 6.3.1.

This chapter is organized as follows. In Section 6.2, we describe the target system
S, the robot control software, W, and the representative SW. In Section 6.3, we describe
the representativeness experiments. We define the experimental parameters, the data col-
lection technique, and the performance indices, P, that were measured. The results of the
experiment are presented and analyzed in Section 6.4, and we conclude the chapter with

Section 6.5.

6.2 Target System

The target system consisted of a multiprocessor computer controlling a pair of
robot arms. In this section we will define the system architecture. We will then describe

the robot control software and the representative SW.

6.2.1 System architecture

The robot control computer was composed of five processor cards with a variety of
CPUs: two Motorola 68020s, two Motorola 68030s, and a Motorola 68040. The processor
cards had their own local memory and were housed in a common card cage and connected
on a VMEbus backplane. VxWorks was used as the real-time operating system for the
processors. The system also included an analog-to-digital converter board, a digital-to-
analog converter board, and an arm interface board on the VMEbus. These boards were
used to communicate with the robot arms. The processors were connected to a workstation
by an Ethernet. The computer controlled two Puma 560 industrial-grade robot arms. Each
arm had six degrees of freedom and a gripper that could grasp objects. The robot control

environment is shown in Figure 6.1.

'Primarily Joseph A. Dionese.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

System Motorola
= & 68020

Ethernet -/_ Motorola Motorola
LAN 68030 w/

6830w/ KIVIED
i | Ethemet Interface M Ethernet Interface
| —
: B
U] -
Motorola Analog to Digital
68020 [S| Converter
| S ——— e
Workstation Digital w Analog
Arm Interface K| KD Convertcr
—_—— \J e .

Figure 6.1: The robot control environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

6.2.2 The robot control software

The two robot arms were controlled independently by software on separate pro-
cessors. There was no low-level coordination of the arms. Therefore, we only considered
the software for a single arm executing on a single processor. The robot control software
was composed of three tasks: a client, a server, and a level0 control task. The client task
executed on a workstation which was separate from the robot control computer. The client
task acted as the user interface to the control software. It processed user commands and
passed them via a Unix socket to the server. The server task executed on the robot control
computer. It accepted commands from the client and processed them accordingly. Many of
the commands were executed directly by writing the appropriate values to the arm interface
and digital-to-analog converter boards. The server also updated global tables to change the
system status or the operating mode. Some commands were reformatted and placed in a
message queue which was read by the level0 task. The level0 task ran as a periodic inter-
rupt executing with a frequency of 60 Hz. It performed the control loop for the robot arm.
During each invocation, the loop read the arm position sensors, calculated new position-
ing commands based on an adaptive control-law algorithm, processed commands from the
server, and wrote the new motion commands to the arm interface board. A flowchart of
the task’s internal structure is shown in Figure 6.2. The level0 task was the primary task
in the workload. The server and the level0 task executed on the same processor. The only
other tasks which executed on the system were the VxWorks system tasks.

There were three primary operational modes for the robot control software. In
standby mode, arm motion was stopped. This mode was used during initial calibration of
the arm position sensors. In torque mode, arm movement was controlled by a high-level
control module which calculated the torque values for the joints. This mode relieved the
robot controller from generating the desired arm path and calculating the feedback law. For
our evaluation, we were interested in evaluating the timing requirements of the application
when it calculated the feedback law as part of its control loop. Therefore, this mode was
not used. In position interpolated mode, the robot arm received motion and gripper
commands from the user interface and moved and acted accordingly. This was the primary

operating mode for the robot arm.

6.2.3 The synthetic workload

A uniprocessor SW was created to model the robot control software. Figure 6.3

shows the structure of the SW. This figure uses a simplified notation for clarity. Pairs of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

onstan
velocity
? yes
clear acceleration| getdata
vector

getdata

gel data

compute acceleration
and jerk

szt control] set global
values values relative

move

no,

compule next

joil iti ute accelerati
joint position [~~~ comp o ok on compule next
x* position
pots encoders
read d/a converter read encoders
transform values transform values
force
used?
ye ne
get force sensors
transform and
translate values
check
_ position mode /" torque
interpolated
compute and output| standb compute and output
new positions new posilions
calculate
position error|

Figure 6.2: Flowchart for the level0 task

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

file system console client
2, &
G &)
3 5
I | motor
| | control &2)
server
<>
)N dac_board
AuxClock <«] -
i

2 N\ dac_board
/\, semaphore

Sensors

UL

S6Nsors
semaphoreXm
) ai_board
globals g
command adc_board

command A\ level0
semaphore\

Y adc_board
i /\, semaphore

SBIUS@_______P
Figure 6.3: Dataflow diagram of robot control software

flows connecting two objects in opposite directions are combined into a single line with two
arrowheads. The type of arrowhead at each end indicates the type of flow in that direction.
The workload was specified using the graph file listed in Appendix B. All terminators were
simulated. The structure of the functions was based directly on the structure of the actual
server and level source code. All computation was replaced with synthetic operations. The
control constructs were replaced with the loop and probabilistic branching constructs, as
appropriate. None of the robot control code was used in the SW functions.

The SWSL function file for the server and the levelO control task is shown in
Appendix D. The structure of these functions was based directly on the structure of the
actual server and level0 source code. We maintained the control constructs and abstracted
out the computation. All computation was replaced with synthetic operations. The control
constructs were replaced with LOOP and SWITCH constructs, as appropriate.

This approach was taken because the goal of this experiment was to show that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Operation Description

fp(iterations) One of four floating point arithmetic operations per
iteration

trig(iterations One of six floating point trigonometric operations per
iteration

bool(iterations) Eight boolean operations (a combination of AND,

OR, NOT, XOR, and logical shifts) per iteration
sread(INPUT label, wait flag) Read one element from an INPUT; wait flag = WAIT
indicates a blocking read; wait flag = NOWAIT indi-
cates a nonblocking read
swrite(OUTPUT label) Write one element to an OUTPUT

Table 6.1: Synthetic operations used in the robot control synthetic workload

the SW was capable of accurately modeling the robot control software. By representing
the structure of the software exactly, we expected to achieve a representative SW. This
approach is realistic if one considers the suggested operating environment for the SW. In
Chapter 3, we stated that one goal of the SWG is to allow it to be incorporated into a
CASE tool. In such a situation, both the dataflow representation of the workload and at
least an outline of the control constructs and operations of each task should be available.
It is exactly this information that we are using here. Therefore, we are making a fair and
realistic comparison.

All computation and communication functions in the workload were abstracted
and replaced by combinations of five operations. These operations are shown in Table 6.1.
The computation operations were chosen because they best represented the types of com-
putations that were performed in the workload. The calculation of the next joint positions
in the adaptive control algorithm was floating point intensive. Therefore, we chose floating
point operations for our SW. The £p() and trig() functions allow the user to specify ex-
actly how many operations are to be executed, but the selection of the functions was evenly
distributed between the four arithmetic operations in fp() and the six trigonometric and
hyperbolic trigonometric functions in trig().

The iteration values for the floating point operations were chosen based on the
number of operations performed within each straight-line code segment. The percentages
used in the SWITCH statements were based on the expected operating behavior of the actual
workload. The workload was expected to execute primarily in the position interpolated
mode. We were only concerned with steady-state performance of the system. We ignore

the startup calibration stage of execution when the robot system was in standby mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Therefore, all SWITCH statements which represent checks for modes other than position
interpolated had percentages of 0. Likewise, any code which dealt with other startup
conditions had been eliminated.

LOOP constructs were used for repeated reads and writes to terminators. In ad-
dition, an infinite LOOP was used by the server function to make it a data-driven sporadic
task. No loops were needed in the computation sections due to the iteration parameter for

the synthetic operations.

6.2.4 Tuning the SW

If, after executing the SW, it was determined that it was not sufficiently represen-

tative of W, the following steps were to be used to tune the SW.

1. Measure the overhead for calculating random numbers for the probabilistic branches.
Compensate for this time by reducing the amount of computation within the blocks
in each alternative path of the branch. The means of affecting this change is to reduce

the iteration values for the fp() and trig() calls.

2. Adjust the branching probabilities to match observed operation modes.

6.3 Representativeness Experiments

6.3.1 Experimental design

The experiments followed a single factor design. The primary factor was the choice
of workload, either the robotic software or the SW. The secondary factors, the system archi-
tecture and operating system, were held constant. Two response variables were measured.
The first was the mean task execution time of the level0 task. This value determines the
average time between when the joint position sensors were read and the next set of goal
position values were produced. A short execution time was desirable. During execution, the
adaptive control algorithm produces goal positions based on current position. This position
is read from the joint position sensors at the beginning of the task’s execution. The goal
joint position is produced at the end of the execution. If the execution time of the leveld
task is long, then the actual arm position at the end of the execution will be significantly
different from the position measured at the beginning of the execution. Therefore, the goal
positions will be based on out-of-date information. The result is jerky movement by the

robot arm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

The second variable to be measured was the level0 task execution time distribution.
The task execution time was determined by the control constructs within the task. The
number of branches in the function were relatively few but significant. The distribution
indicated the maximum and minimum execution times. It also indicated the effects of the
level0 task execution on CPU utilization and the scheduling of other tasks.

Both of these indices relate to the levelD task. Neither measures the execution of
the server task. The reason for this is that the level0 task is the only critical task in the
workload. Its correct and timely execution determines the success of the application. The
server is a relatively low priority task with no strict performance requirements other than
correct execution.

A simple mechanism was used to collect the necessary performance data. Calls to
a function called probe() were placed at the beginning and end of the level0 code. probe()
calculated the elapsed time since the last call to probe(). Tor the call to probe at the end
of the level0 task, this value was the task execution time. Each time probe() was called,
it calculated a value At; = t; —t;_;. The values 1Ly At; and 3"7ig At? were calculated
iteratively. These values are used to compute the sample mean and standard deviation.
probe() also maintained a histogram of the A¢; values. The histogram is used to calculate

the task execution time distribution.

6.3.2 Experiments using the robot control software

Before running the experiments to measure the performance while executing the
robot control software, we needed to determine the number of data samples that would be
required. To measure a sample mean with a desired level of accuracy with a given confidence

level, we require n samples, where n is computed as

(10023)2
n= —
TT

where z is the normal variate at the desired confidence level, T is the sample mean, s is

the sample standard deviation, and r is the percentage of accuracy desired [34]. In our
preliminary measurements, we measured T = 8.7613 and s = 0.4817. If we wanted 1%

accuracy at a confidence level of 99%, then » = 1 and z = 2.576. We get

_ (100(2.576)(0.4817)

2
(1)(8.7613) >:200'59

Therefore, we had to collect at least 201 samples. Since the level0 task executed at 60 Hz
and one sample was collected during each execution, we needed to collect data for at least

3.3 seconds to obtain the desired accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

move(10.0,0.2,pt1,absolute);
wait();

put_gripper(open);
move(10.0,0.2,pt2,absolute);
put-gripper(closed);
move(10.0,0.2,pt3,absolute);
put_gripper{open);
move(10.0,0.2,pt4,absolute);
put_gripper(closed);
move(10.0,0.2,pt1,absolute);

put_gripper(open);
wait();

Table 6.2: Command script used to control the robot

Commands received from the client task control the actions performed by the
robot. For our experiments, we used the commands listed in Table 6.2. This command
script was taken from a demonstration script developed at the Robotics Laboratory. The

commands are as follows.

¢ move(t, acct, point, mode) moves the robot arm to position point in t seconds.
The acct parameter determines which portion of the movement time is to be used
for each of acceleration and deceleration. mode may be either relative or absolute,

indicating the coding used for point.

¢ wait() waits until the previous command completes before submitting another com-

mand.
e put_gripper(open/closed) opens or closes the gripper.

The command script moved the robot to five positions (labeled pti, ..., pt4). At the end
of the run, the arm had returned to its original position. At each position the gripper was

opened or closed.

6.3.3 Experiments using the synthetic workload

The SW was run to closely approximate the duration and actions of the robot
software. SWITCH percentages were chosen to reflect the distribution of command types and
the execution duration of the move() commands. The same measurement mechanisms were

used and the same statistics were calculated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Time Actual

(msec) | Workload SW; SW,
0 0 0 0

1 0 0 0

2 0 0 0

3 3 0 0

4 1 0 0

5 0 0 0

6 0 0 0

7 0 0 4

8 4216 1 4246

9 732 910 661

10 62 2256 89

11 0 1833 0

12 0 0 0

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

Table 6.3: Task execution time histogram.

6.4 Experimental Results

We first executed the robot control software. We then executed the SW and
compared the results. OQur first SW, SW,, did not pass the tests described below. Its
task execution time histogram is included in Table 6.3. By looking at the histogram, it
was obvious that the mean was too high and the distribution was skewed to the high
end. We then tuned the SW as indicated in Section 6.2.4. To lower the mean, we scaled the
number of floating point operations to 70% of their original number. This scaling is shown in
Appendix D by the use of the fp_scaling factor constant in the £p() synthetic operations.
To change the distribution we reexamined the SWITCH probabilities in the function file. We
found a block with an incorrect percentage value corresponding to the probability of the
robot operating in a certain mode?. We changed the percentage to a more appropriate value
and reran the experiment. This second SW, SWo, produced the performance values used

in the analysis below.

2This percentage is noted in the listing in Appendix D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Time
(msec) Fﬂ-l(z) an,SiVI(x) |Fﬂ1(z) —Fﬂz.SWI(z)l

010.0 0.0 0.0
1§0.0 0.0 0.0
210.0 0.0 0.0
31 0.000598 0.0 0.000598
4 0.000798 0.0 0.000798
5| 0.000798 0.0 0.000798
6 | 0.000798 0.0 0.000798
71 0.000798 0.0 0.000798
810.84164 0.0002 0.84144
91 0.98763 0.1822 0.8054

10| 1.0 0.6334 0.36661

111 1.0 1.0 0.0

12| 1.0 1.0 0.0

Table 6.4: Task execution time cumulative distribution functions.

Time
(msec) | Fn(z) Fopswy(z) |Fai(2) = Fop swy(2)]

0}0.0 0.0 0.0
110.0 0.0 0.0
210.0 0.0 0.0
3 | 0.000598 0.0 0.000598
41 0.000798 0.0 0.000798
5| 0.000798 0.0 0.000798
6 | 0.000798 0.0 0.000798
7 | 0.000798 0.0008 0.00000223
810.84164 0.85 0.00835660
9| 0.98763 0.9822 0.00543462

10| 1.0 1.0 0.0

11 1.0 1.0 0.0

12 1.0 1.0 0.0

Table 6.5: Task execution time cumulative distribution functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

6.4.1 Comparison of mean execution time

Our first test is to compare the means of the distributions for samples denoted 1
and 2. Sample 1 is the data from the robot control software, sample 2 is from the SW.
The clock by which the execution times was measured had a granularity of 1 millisecond.
We collected approximately 5000 data points for each workload. Therefore, the sample
means are accurate to 0.015 milliseconds with 99% confidence. This value corresponds to
an accuracy of 0.18%. The sample means for both workloads equaled 8.17 milliseconds.
The sample standard deviations were 0.43 for sample 1 and 0.42 for sample 2. Since the
means and standard deviations were identical at this level of accuracy, we conclude that

the means of the distributions are equal at the 99% confidence level.

6.4.2 Comparison of the task execution time distributions

To compare the distributions of the execution time we use a Kolmogorov-Smirnov
two-sample test as described in {5]. This test is used to compare two cumulative distribution
functions to determine if they are based on samples drawn from the same population. To use
this test, we must transform the histograms of the sampled data into cumulative distribution
functions F,,;(z) such that .

Fo(z) = n_,

where n; is the number of samples in distribution ¢, and % is the number of observations

less than or equal to z. For a two-tailed test, we calculate
Dnu": = maXIan(z) - Fnz(z)l

and reject the null hypothesis if Dy, », exceeds the critical value. For a confidence level of
99%, the critical value is 1.63 ﬂ;llf‘ni;l

The data collected in our experiments are shown in Table 6.3. We collected n; =
5014 data samples for the robot control software and ny = 5000 samples for the SW.

Therefore, the critical value for the Kolmogorov-Smirnov test is

/5000 + 5014
1.63/ ———— = 0.0325.
50005014

The cumulative distribution functions and the D, n, values are shown in Tables 6.4 and
6.5. Fy,(z)is the cumulative distribution for the task execution times for the robot control
software. Fy, sw, () and Fj, sw,(2) are the cumulative distribution functions for SW; and
SW,, respectively. The maximum absolute value of the difference, | F,, (z) — Fn, sw,(2)|,

is 0.008357. This value is not greater than the critical value. Therefore, with a 99%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

confidence level, we cannot reject the hypothesis that the distribution of the execution time
of the SW task is identical to the execution time of the actual task. Thus, we establish the

representativeness of the SW.

6.5 Summary and Discussion

In this chapter, we described experiments performed to demonstrate the ability
of the SWG to produce representative SWs. We used the SWG to produce an SW which
modeled a robotics application. We used a performance based model of representativeness
to compare the SW with the actual application software. The results showed that the SW
was able to elicit the same performance from the system as the actual workload with a high
degree of accuracy.

The primary result of this evaluation is that the SWG was able to produce a
representative SW. In fact, once the initial structure and parameters for the SW were chosen,
only one revision was required to obtain representativeness with the desired accuracy. We
can therefore state, with some degree of confidence, that the structures and parameters that
were designed into SWSL are sufficient for specifying this type of workload.

The evaluation also allows us to make some observations about the use of the
SWG. The first of these observations is that minimal porting effort was required to get the
SWG to produce a running SW for the robot control computer. The SW was originally
implemented on HARTS. We only needed to change the system-dependent system calls
in the driver and synthetic operations in the library of operations. Some minor changes
were required to the SWG. However, these were only required to support multiple target
operating systems. We added the special constant OPERATING_SYSTEM to be used in the
SWSL specification. The use of this constant is shown in Appendix E. Its value is used
by the SWG to indicate the target operating system. The SWG produces the appropriate
code for that target. These changes to the SWG would not need to be repeated to port the
SWG to yet another operating system.

The time required to port the SW and SWG was approximately two man-weeks.
Before the porting effort, we had no previous experience with VxWorks. So the porting
time includes the lead time required to become familiar with VxWorks and its programming
environment. A user who is experienced with the target system should be able to port the
SWG to their target system in less than a week.

We also observed that it was relatively easy to produce a representative SW if

one has the source code of the workload to use as a guide for writing the SWSL specifica-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

tion. In most cases, however, the users of the SWG will not have the source code of the
workload available. Instead, they will have to specify the SW using other means. In much
the same way as a rapid prototype is developed, the structure of the SW can be derived
from the high-level requirements specifications or structured analysis specifications for the
workload. These specifications will provide information which is equivalent to the specifi-
cation of the transformations, stores, terminators, and flows in our workload model. The
system-dependent parameters may be derived from these high-level specifications, or they
may be estimated based on the user’s experience with other real-time workloads. Lower
level structural details may be filled in as their design becomes available, or they may be
estimated. For example, if the internal structure of a task is not known, its computation
may be modeled using a loop that executes a random number of times with a specified
distribution. This model of a task may be further refined by the user if an even lower level
of detail is needed. Another technique would be to use SWSL functions from other SWs to
represent functions with similar characteristics in the SW being defined. These functions
would also be estimates of the actual behavior of the workload’s tasks, but the user would
be more familiar with them and thus more aware of their level of representativeness.

These techniques will allow the user to produce an approximately representative
SW. By the definition of representativeness, the actual level of representativeness can only
be measured if the real workload is available for comparison to the SW. However, even
if the real workload is not available, the level of representativeness can be estimated by
comparing the performance of the SW with the performance of the modeled workload on
other target systems and taking into account the differences in the systems. Alternatively,
the representativeness can be estimated by comparing the performance of the SW with the
performance of workloads which are similar to the real workload and are run on the same
target system as the SW.

As stated in Chapter 2, increased representativeness requires more information
about the workload being modeled and more space to store this information. An example
of this fact can be seen by comparing the function specification in Appendix D with the
function specifications® in Appendix 1. The functions in Appendix D were designed to
reproduce the computation and system call execution behavior of the workload, and are
therefore much more complex and lengthy. The functions require information about the
loop counts, branching probabilities, number and type of system calls, and amount and

type of computation. This level of detail is necessary if the function is to reproduce the

3These functions are described in Chapter 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

number, sequence, and {requency of computation instructions and system calls of a task in
an actual workload. In contrast, the functions in Appendix I were designed to use a single
resource without representing the low-level behavior of a workload. Thus, the specification
is simple and compact.

The representativeness will also be affected by the accuracy of the workload char-
acterization information. For example, inaccurate estimations of the loop count of an outer
loop or inaccurate branching probabilities in a major branch can cause vastly different be-
haviors by the functions. Thus, if a high level of representativeness is required, the user
must obtain a large amount of accurate data about the workload and accurately model it
in the SWSL specification. Of course, the requirement for a large amount of very accu-
rate data is only necessary if the SW is to be representative of a specific workload. If the
user only requires an SW which is representative of a class of real-time workloads, then less

information is needed, and the more approximate construction techniques will be sufficient.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

USING THE SYNTHETIC WORKLOAD FOR
PERFORMANCE EVALUATION

7.1 Introduction

In this chapter we will demonstrate the other capabilities of the SWG by using
it to evaluate the performance of an experimental distributed real-time system. The SWG
is capable of producing representative SWs. As such, it may be used in evaluations aimed
at determining the performance of a system under specific, expected workload conditions.
However, such evaluations are not the sole purpose of the SWG. It is also capable of sup-
porting controlled experimental evaluation of systems under a range of workload conditions.
The SW used in such an evaluation does not necessarily represent any actual workload. In-
stead, the SW represents specific combinations of workload characteristics whose effects on
performance are being characterized. We demonstrate this latter capability in this chapter.

We have designed a series of experiments which were performed on a distributed
real-time system. In this chapter, we will identify the workload characteristics which were
required to perform the experiments. An SW was constructed which exhibited these charac-
teristics. We will discuss in detail the specification of the SW using SWSL. The specification
will be related to the requirements of the experimental design. Then, the results of the ex-
periments will be analyzed and conclusions drawn.

In these experiments, we measured the performance of the communication soft-
ware for the distributed real-time system HARTS (Hexagonal Architecture for Real-Time
Systems). HARTS is being developed at the Real-Time Computing Laboratory of the
University of Michigan as an experimental testbed for exploring hardware and software
techniques for real-time communication in a distributed multiprocessor. The experiments
determine which workload characteristics most affect the performance of the system. The
characteristics under study were varied in a controlled manner while all other characteristics

were fixed at specific levels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

This chapter is organized as follows. Section 7.2 describes the target system for
this evaluation. Section 7.3 describes experimental design used in this evaluation. The
specification of the synthetic workload is presented in Section 7.4. The experimental results

are presented in Section 7.5. In Section 7.6, we present our conclusions.

7.2 Target System

The target system for this evaluation was HARTS. In the following subsections, we
describe the relevant details of IARTS and its operating system HARTOS. We also describe
HMON, a monitor for real-time systems, which was used to collect the performance data

used in this evaluation.

7.2.1 HARTS

We are currently constructing a 19-node version of HARTS. Each HARTS node
is a shared memory multiprocessor formed by up to three Motorola 68020 microprocessors
which serve as the application processors (APs) for the node. The architecture of a node
and the operating environment are shown in Fig. 7.1. In the final version, the multipro-
cessor nodes will be interconnected via a wrapped hexagonal mesh interconnection network
(12, 17]. A hexagonal mesh is a 6-regular homogeneous graph. The 19-node hexagonal mesh
is shown in Fig. 7.2. The arrows at the edges indicate links that are “wrapped” from one
edge node to another. The APs are to be connected to the network by custom-designed
communication hardware, called the network processor (NP). The NP executes the bulk
of the communication protocol software, thus relieving the APs of this task. All nodes
are connected to a workstation by a shared Ethernet. The workstation is also connected
to the campus computing facilities by a separate Ethernet connection. In this way, pro-
grams developed and compiled on other commonly used workstations may be downloaded
to HARTS, but HARTS executes with a dedicated local Ethernet. The workstation also
serves as the console for the HARTS nodes. It is connected via a multiplexor (MUX) to
the console serial ports on the System Controller cards of each HARTS node. These serial
connections are primarily used for remote debugging. While the hexagonal mesh network is
being designed and built, the HARTOS software executes on the Ethernet processor (ENP)
and uses the Ethernet as the communication medium. Most of the operating system and
software developed with the Ethernet is expected to be portable to the hexagonal mesh

interconnection network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

HARTS node
Cardcage Boundary
(r—— Y
| N
MET System Application
U Other Controller | K Processor
X Nodes
(AP)
: SERIAL PORTS
Ethemet E : = y
LA]Q <themet
: Ethemet B Application
Processor <> Processor
IEEE 802.3 s K
(ENP) AP
77 u (AP)
— .
SUN Workstation r \ -
Network Application
Processor [} K2 Processor
(NP) (AP)
hovsrvees: rovy werssesrermen I T
6 6

To Hexagonal
Mesh

Figure 7.1: HARTS node architecture and operating environment.

Figure 7.2: Wrapped hexagonal mesh with nineteen nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

7.2.2 HARTOS

A preliminary version of HARTOS has been completed and is operational [38]. It
is built upon the real-time kernel pSOS [61] which provides a number of basic real-time
kernel functions. A complete discussion of pSOS may be found in [61]. We present here a

brief description of pSOS and HARTOS as they apply to this evaluation.

pSOS

pSOS uses a process model of computation. Scheduling of processes is priority-
based with preemptable and nonpreemptable modes. Communication between processes is
via event signalling and message passing through structures called message exchanges. Each
process has fifteen events associated with it [61]. A process may signal one or more events to
another process. A process may wait for one or all of several events. Events contain no data
and are not queued; if an event is pending, then a subsequent signalling of that event will
be ignored. Exchanges are data structures where short, fixed-length messages and processes
may be queued. If a process is queued at an exchange and a message arrives, the message is
copied to the process’s buffer area and the process is dequeued and made ready to execute.
Likewise, if a message is queued at the exchange and a process performs a system call to
receive a message, the message is copied to the process. The process continues execution

and the message is dequeued.

HARTOS Services

Version 1 of HARTOS was developed to extend the pSOS interprocess commu-
nication mechanisms to operate in a distributed multiprocessor environment. To support
these facilities, HARTOS provides a name service whereby processes may locate remote
objects with which they must interact. It does not provide support for time-constrained
communication. Version 2 of HARTOS, which is currently under development, is designed
to provide such support. At this time, version 2 of HARTOS is not yet complete. Therefore,
version 1 was used for this evaluation.

The programmer’s interface to HARTOS is via a number of parameterized system
calls. A user task has control over several parameters in their execution, including the
number of retries and whether the call is blocking or non-blocking. A blocking call is one
in which the user task waits until the operation is completed on the remote processor and
the results are returned. For a blocking call, a task can specify a timeout period which is

the maximum duration that it is willing to wait. For a nonblocking call, the task continues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

execution immediately upon placing the call. The NP handles the call processing but no
results are returned to the calling task.

The distributed kernel functions are handled using a variation of the remote pro-
cedure call (RPC) mechanism [6]. At the logical level, the operations involved in a remote
function call can be described as follows. The processor AP1 forwards the data to the NP.
The NP marshals the data into a packet and transmits the packet to the NP (NP2) on
the destination node. NP2 now interprets the message, determines the destination AP and
forwards the message to that AP (say AP2). AP2 executes the function and returns the
reply to NP2. The reply then traces its way back to AP1. The server side handling for these
functions is non-blocking and very short and is executed as part of the interrupt handler.

This eliminates the need for kernel server processes which are used in many RPC systems.

HARTOS Implementation

The communication system for HARTOS consists of agents on both the AP and
the NP. On the AP side there are reentrant stub interface routines for the calls, a common
network agent to communicate with the NP, and an interrupt handler. Communication
between the APs and the NP is through mailboxes in the memory of each AP. Two mailboxes
are used on each AP. One is for passing data to the NP for a remote call. The reentrant stub
interface routines extract the call parameters and place them into a mailbox. They then trap
to the network agent which synchronizes access to the NP and places the request into the
mailbox. If the function specifies a blocking operation mode, the process is then suspended
awaiting a completion signal from the NP. Once the parameters of the call are placed in
the mailbox, a flag is set in the memory of the NP. Access conflicts between processes on
the AP are prevented by using a non-preempt mode while accessing the mailbox. The
other mailbox is used to pass data from the NP to the AP. This data can be either the
parameters of a remotely generated request or a reply from a call which originated from the
AP. When data is placed in this mailbox, the interrupt handler is invoked to execute the
remote call or to transfer the results to the AP. Access to the mailboxes is governed by a
simple producer-consumer type protocol with a buffer size of one.

The NP program consists of several logical processes corresponding to handlers
for different operations. There are separate handlers for message send, packet receive, and
timeout. These are scheduled by a control loop which polls the flags associated with the AP
mailboxes and such structures as the queue of incoming packets. When one of these data
structures indicates that a task is to be performed, the appropriate handler is activated.

The handlers run to completion and there is no processing done during interrupts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

The interface between the NP program and the Ethernet Controller (LANCE) is
through the K1 kernel [14]. The K1 kernel controls the sending and receiving of messages.
Outgoing messages are submitted to the K1 kernel by the NP program. The K1 kernel
queues the messages for transmission by the LANCE. It also provides an interrupt service
routine (ISR) to pass received packets to the NP program. When a packet arrives for the
NP, the K1 kernel receive ISR calls the NP program’s receive ISR which places the packet
on a queue of newly received packets. The status of this queue is checked during the NP
program polling sequence. When a packet is present on the queue, the receive handler is
called.

The K1 kernel also provides a timeout handling facility which is used by the NP
program. The NP program sets timeouts for outgoing messages and transactions if requested
by the application process. When a timeout occurs, the K1 kernel activates the timer ISR
which queues the timeout control data structure on the timeout queue. This queue is also
checked during the NP program polling sequence and the timeout handler is activated if a

timeout has occurred.

7.2.3 HMON

To collect execution data during the evaluation, we use HMON, a monitor for
distributed real-time systems [16]. HMON was designed to support services like debugging
distributed real-time applications, aiding real-time task scheduling, and measuring perfor-
mance. Monitoring is performed transparently so the programmer is not forced to add
special monitoring code to applications. HMON is flexible enough to observe both high-
level events that are operating system- and application- specific as well as low-level events
like shared variable references.

The HMON runs on a dedicated AP, called the monitor processor (MP), on each
node of HARTS. Additional code to collect data runs on the NP and the APs of each node
(see Fig. 7.3). The monitoring system can be divided into three phases: data extraction on
the APs and NP, data compression on the monitoring processor, and uploading logged data
to an external workstation. Data on monitored events is acquired through code inserted
into the monitored software. System calls are monitored transparently by using pSOS and
HARTOS system call interfaces which have been instrumented to produce monitor data.
HMON also monitors interrupts and context switches. All extracted data is sent to the MP
where it is ordered and compressed by a process executing on the MP. At the end of an

experiment, data is uploaded from the MP to a workstation outside HARTS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

AP 1 MP AP 2

Data
Compression

Data | . Daua

Extraction Extraction

To User Workstation

Figure 7.3: Monitor data collection.

7.3 Experimental Design

Simple, baseline measurements of HARTOS performance were reported in [38].
That evaluation was limited to communication between two nodes, each with a single process
executing on a single processor. By using the SWG, we can perform much more sophisticated
evaluations. The evaluation described in this section was aimed at determining which
workload and system configurations most affected the performance of HARTOS.

We wanted to compare the eflects of various factors on the performance of the
HARTOS communication facilities. We used a 2%+ full factorial experiment with two levels
for each of k factors and r repetitions of each experiment. Four primary factors were
used. They were: number of nodes (N), number of processors per node (P), number of
sending tasks per processor (7'), and number of sequential send calls per task (C). Each
experiment was repeated r = 5 times to allow us to estimate the experimental error. Factor
combinations for each experiment will be indicated by the tuple (N, P,T,C).

To allow comparison of effects, each factor was evaluated at two levels, one with a
low value and one with a high value. The low values were determined by logical limitations.
All factors, except N, had low values of 1. The low value for N was 2 since at least two
nodes are required to communicate over the network. The high value for N was 4. At the
time of the evaluations, only 4 HARTS nodes were configured with enough APs for the
experiments. The high value for P was 2. There can be up to three processors per node,
but one is required for the monitor. Therefore, only two were available for the workload.
The high values for T and C' were chosen to be 10. Preliminary evaluations indicated that

performance might level off with greater than 5 tasks. Therefore, it was decided that 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

processor 1 processor 2

producer {consumer;
§ queucey

(consumen) (broducer)

queue) <>

Figure 7.4: Producer-Consumer model for workload.

tasks would be sufficient to observe a maximum performance value.

Only the values of the primary factors were changed between experiments. A
number of parameters of the workload were fixed. The only call type considered was the
rsend x() call. This call sends a short, fixed-length message to a remote message exchange.
This call was chosen arbitrarily. It was shown in [38] that all remote calls had approximately
the same execution times. Therefore, any call could have been used. All calls were blocking,
and a fixed timeout was set for each call. No retries were allowed.

For each combination of factor levels, the workload was executed and two perfor-
mance indices were measured. The first was the time, ¢, required to complete a blocking
message send across the network. This value included the time to send the message and
to receive the reply indicating that the message was delivered successfully. We will refer to
this value as the message response time. The second performance index was the percentage
of messages that were lost, m. This index was measured by counting the number of send
requests that timed out. The count was verified by comparing the number of messages sent

with the number of times that the receiving tasks received a message.

7.4 Synthetic Workload Specification

The SW used in Chapter 6 demonstrated the features of the SW that can be used
when evaluating processor-level performance. In this chapter, we are interested in network
performance. We are only interested in processor-level details insomuch as they influence
network performance. Therefore, for this SW, the functions executed by the tasks were
relatively simple in structure. The operations consisted primarily of synthetic operations

to produce network traffic. We concentrated on the structure of the task graph and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

placement of communicating tasks such that network traffic was carefully controlled.

The workload for this experiment consisted of pairs of tasks with a simple producer-
consumer communication relationship. Messages were sent from the producer to the ex-
change that was read by the consumer. An example of two pairs on two nodes is shown in
Figure 7.4. This configuration corresponds to the (2,1, 1, C) workloads, for all values of C.
For a given producer-consumer pair, the producer and consumer were always on separate
nodes. There were T producers executing on each of the N x P active processors in each
experiment. For workloads containing more than one pair, the producer, consumer, and
exchange were specified using object templates and multiple instances of the objects were
produced. The producer executed periodically. Periodic execution allowed us to obtain mul-
tiple measurements of ¢ for each run of the experiment. These values were used to calculate
the mean value for t for each experiment with a precision greater than the clock resolution
would allow for individual measurements. During each period the producer executed a se-
quence of C remote system calls. Deadlines were defined to be slightly less than the period
length. The difference between the deadline and the period was to give the SW time to
process any missed deadlines. However, no deadlines should be missed because the period
and deadline were defined to give sufficient time for all calls by all tasks on the processor
to time out. Task priorities were fixed such that the sending tasks had higher priorities
than the receiving tasks. We wanted the workload to produce messages at the maximum
rate. Therefore, sending messages was more important. Since messages were queued at the
receiving end, removing the messages from the exchanges was less critical. Although the
exchange message queues had unlimited capacity, queueing messages used limited memory
resources. Therefore, it was necessary that the consumer task be executed whenever the
CPU was otherwise idle and there were queued messages. However, this process could be
relegated to a lower priority level.

The graph file for the SW is listed in Appendix H. The graph file shown is actually
the file used for the (4,1,10,10) workload. For organizational purposes we constructed
separate graph files for each workload configuration. The files were identical except for the
values of the parameters that determine the four experimental factors.

For this experiment, we have used a number of SWSL features. For example, we
took advantage of the ability to define constants. Two constants, num_tasks and loopcount,
are of primary importance. They defined the number of tasks and number of calls per task,
respectively. The value for C was implemented directly through the loopcount constant.
Its use in the functions file is discussed below. The num tasks constant did not directly

implement the value for T'. Instead, this constant was used as the basis for calculating other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

parameter values that depended on T'. The number of tasks was implemented through the
ACTIVE parameter for the tasks. This parameter indicated whether a task would execute
during a given run of the SW. For the workloads with T' = 1, the ACTIVE parameter for
taskl and task2 was set to true. All other tasks had the parameter set to false. For the
workloads with T = 10, all tasks had an ACTIVE parameter value of true. Other important
parameters, such as the task period, task deadline, and the duration of the experiment,
were defined as functions of these constants. With this technique, we only needed to change
the values of these two constants and all parameters that depended on them were changed
automatically.

The workload tasks and stores were defined in the DEFINITIONS section. For
workloads with ten tasks, ten separate source and destination pairs were defined. This was
necessary because objects on the same processor must be defined uniquely. Except for the
values of the ACTIVE and PROCESSOR parameters, the object definitions did not vary between
configurations. All other parameters that vary were replaced with constants.

The factors N and P were implemented through the values for the PROCESSOR
parameters of the objects. Constants were used to define these values. We found it much
easier to change the values when they were grouped together in the CONSTANTS section. For
all of the N = 2 workloads, the producer tasks sent messages to consumer tasks located on
the corresponding processor of the opposite node. For the N = 4, T = 1 workloads, the pro-
ducers sent messages to the next node in sequence, modulo ¥. That is, processor 6 sent to
processor 8; processor 8 sent to processor 9; processor 9 sent to processor 10; and processor
10 sent to processor 6!. The goal was to produce a more distributed traffic pattern. The
N =4,T = 10 workloads had a more complex processor assignment. The task graph corre-
sponding to a portion of the processor assignment for the (4,1, 10,10) workload is shown in
Figure 7.5. The producer tasks, taskl#, on node rtcl6, processor 1 (denoted rtcl61 in the
graph file) are shown with their respective destination exchanges, storel*, and consumer
tasks, task2+. The producer tasks for processors rtcl81, rtcl91, and rtclal had exactly the
same relationship to their destination exchanges and tasks. For each set of producer tasks
in these workloads, we distributed the destination exchanges and tasks among the three
remaining nodes. The purpose was to distribute the communication load across the system.
This version of HARTOS does not support distributed clock synchronization. Therefore, it
was known before the experiments that the method used to synchronize the root tasks in

the SW would provide loose synchronization at best. It was hypothesized that this loose

IThe HARTS nodes used in these experiments were designated rtcl6, rtcl8, rtcl9, and rtclA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

1icl6, processor 1

AN

TiclA, processor 1 ricl8, processor 1

<> X —e{"]
(o—xmme

ricl9, processor 1 /

[Xsuxc]a [Xslorcld [Xsuxclg

Figure 7.5: Workload (4, 1, 10, 10). Producer tasks on RTCLG with corresponding consumer
tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

synchronization might result in a relative misalignment of the periods of the producer tasks
on different processors. As a result, there might be high contention for network resources
between relatively synchronized processors, but little or no contention encountered by the
less synchronized processors. Under these circumstances, the variance between the mean
performance values measured on the different processors could be high. In an attempt to
counteract this possibility, we distributed the load caused by a single node across the re-
maining nodes. The result was expected to be a higher probability that a given node would
encounter contention from other nodes, and thus a reduction of the interprocessor variance.
The actual results of this distribution of load is discussed in Section 7.5.

Two functions were used in this workload, fun1() and fun2(). fun1() was the
producer and fun2() was the consumer. These functions are shown in Appendix I. These
exact same functions specifications were used for all experiments. The value of loopcount
was changed depending on the value of C for the workload. Since loopcount was defined
in the graph file, no changes were made to the functions file for the different workload
configurations.

The function structures were simple. During each invocation, fun1() sent mes-
sages to the exchange that was read by fun2(). The loopcount constant determined the
number of messages sent. Messages were sent using the swrite() synthetic operation. The
syntax for this operation is swrite(output_name, wait_flag, retries, timeout). Be-
cause of the specification of the stores, the swrite() operation performed the remote send
using the HARTOS rsend x() call. Each call was given a timeout of 200 milliseconds. From
preliminary measurements we determined that this was at least twice the expected maxi-
mum value for a given call. Therefore, unless the message was lost, each call should have
completed before the timeout. No retries were specified, because we wanted to measure the
time for a single attempt at each call. Retries could introduce a multimodal distribution for
the message response time; we wanted to avoid this possibility. fun2() executed a blocking
read command within an infinite loop. It read as many messages as were received by the
exchange and blocked on the read call if no messages were present.

The experiment file defines the experimental parameters. Due to the experimental
instrumentation used for this evaluation, we could not use the multiple run facility. For
some unexplained reason, the process of uploading the HMON data after an execution of
the SW caused subsequent runs of the SW to fail. Hence, we were required to reset the
HARTS hardware and download the software between runs. Therefore, the experiments
were defined to have a single run. All processors were to have the same experimental

parameters. Therefore, the default processor label was used. The length of each run was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

based on the loop count, number of tasks, and period of the task. The goal was to run the
experiment until a total of approximately 1000 messages had been sent by the tasks on each

processor.

7.5 Experimental Results

For each of the sixteen factor combinations, five experiments were run and mea-
surements were made. During the experiments, the SW was the only workload executing
on HARTS. The monitor collected data on all pSOS and HARTOS calls. It also recorded
the occurrence of all interrupts. Thus, we were able to count time by noting the timing
interrupts. Using this information, we recorded the time that each rsend_x() call was
made and the time that the reply was received, i.e., the reply mailbox interrupt occurred.
By recording the time that the reply interrupt occurred instead of recording the time that
the task received the message, we eliminated from the response time the delay caused by
multiprocessing on the processor. The response time only included the message processing
time; it did not include the scheduling delay incurred by the task. The shortest interval
for the clock interrupts allowed by the system was 1 millisecond. Therefore, our timing
granularity was restricted to this value.

To analyze the data, we use a multiplicative model for the predicted value of the
performance index as a function of the factors. We chose a multiplicative model based on
the expectation that the performance of the system is a function of total network load, and
the observation that the total network load is determined by the product of the various
factors. For example, when we increased 7" from 1 to 10, we increased the number of tasks
on each processor. Therefore, the total load on the network was multiplied by 10, e.g., the
(4,2,1,1) workload contained 8 tasks, but the (4,2, 10,1) workload contained 80 tasks.

The model we use is

Yij = £90 pINTN (APEP ATTT 4CTC ANPINTP ANPTCINTPTTIC iy (7.1)

Where y;; is the value of the performance index for the jth experiment using the ith

workload configuration, the ¢s are the effects of the various factors and combinations of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Factor levels

T,N,C,P 1 8¢ Int
1,2, 1, 1 567 0376 1.73
1,2,1,2 50 0.00019 1.61
1,2, 10,1 505 0359 1.62
1,2, 10, 2 513 0.0128 1.63
1,4,1,1 464 0.0662 1.53
1,4,1,2 4.75 0.00315 1.56
1,4, 10, 1 522 0.0479 1.65
1,4, 10,2 505 0.109 1.62
10,2,1,1 188 48 2.90
10,2,1,2 183 6.86 2.84
10,2,10,1 264 4.82 3.26
10,2,10,2 364 8.04 3.57

10,4, 1,1 156 5.13 2.70
10,4,1,2 10.6 0.678 2.36
10, 4,10, 1 1.7 1.24 2.45
10, 4, 10, 2 125 2.0 2.52

Table 7.1: Results for response time: mean {, standard deviation s;, and mean of the

transformed data Int.

factors, L;; is the error, and

-1
1
-1
1

|
|
{—1
|

IN =

rp =

1
-1
1

T =
Ic

if 2 nodes

if 4 nodes

if 1 processor per node

if 2 processors per node

if 1 sending task per processor
if 10 sending tasks per processor
if 1 call per task

if 10 calls per task.

If we perform a log transform on the input data, we get a nonlinear regression

model of the form

In(yi;) = go+ynvan+aprpt+qrar+yczc+onprnap+. . +gvpreznzprrrc+ L. (7.2)

We can easily solve this model for the ¢s using known techniques for nonlinear regression

models [34].

Table 7.1 shows the results of the experiments for the response time, t. The

reason for the reordering of the factors will become apparent later. For each factor level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Effect Value 90% Confidence Interval

0 2.22 [2.19, 2.26]

aN -0.1748 [-0.208,-0.139]
qr -0.00850 [-0.0431, 0.0261]
ar 0.602 [0.568, 0.637)
qac 0.0684 [0.0338, 0.103]
avp -0.0274 [-0.0621,0.00717)
gyt -0.145 [-0.18, -0.11]

gnc -0.0566 [-0.0912, -0.0219]
qarT 0.00571 [-0.0289, 0.0403]
qrc 0.0537 {0.0191, 0.0883]
qrc 0.0574 [0.0228, 0.0921]
ANPT -0.0394 [-0.074, -0.00479)
qNPC -0.0104 [-0.045, 0.0243]
INTC -0.0903 [-0.125, -0.0556]
qpPTC 0.0431 [0.00844, 0.0777]
gyvpre 0.0144 [-0.0202, 0.049]

Table 7.2: Effects for the multiplicative model for t.

combination, we see the mean of the response time, 7, the standard deviation, s;, and the
mean of the log of the response time, Int. The values for the response time do not include
the response time (actually the timeout time) for calls where the messages were lost. The
untransformed values, f and s;, are presented for reference only. All analysis was done with
the transformed values.

Solving for the ¢ values is done using the sign table technique described in [34].
This method constructs the 2* linear equations for g;, the predicted value of y;. It then
solves the system of equations for the ¢ values. Using this technique and solving for the
g values, we get the results in Table 7.2. The 90% confidence intervals for the effects are
also given. If the confidence interval contains 0, then the effect is not significant at this

confidence level. Plugging the significant values into Equation 7.2, we get

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Factor(s) Percentage

T 77.5
N 6.45
ERROR 5.87
NT 4.49
NTC 1.74
C 1.0
TC 0.704
NC 0.683
PC 0.616
PTC 0.396
NPT 0.332
p 0.0
PT 0.0
NP 0.0
NPC 0.0
NPTC 0.0

Table 7.3: Percentage of t’s variation explained by each effect.

In(ti;) = 2.22 4 0.602x7 — 0.1748zn — 0.145zy27 — 0.0903z n2TZC
+0.0684z¢ + 0.0574a72e — 0.0566zyzc + 0.0937x pz o
+0.0431z prT2c — 0.03%4 NPT + Eij (7.3)

or equivalently,

ti; = 9.21x 1.83°T x 0.840°N x 0.8G5NFT x 0.9147NFTFC x 1.07%¢
X 1.06¥T*C x 0.945¥N¥C x 1.06%P¥C x 1.04¥PFTTC x 0.961%N*PTT

webu . (7.4)

Table 7.3 shows the percentage of the variation in the mean response time that
is explained by each factor, combination of factors, and experimental error. The entries
are ordered by level of importance. The factor T is the most important. It accounts for
77 percent of the total variation. The second most important factor is N. The factor N
and the interaction of N and T account for 11 percent of the total variation. All entries
labelled as 0.0 percent are not statistically significant at a 90 percent confidence level.
These insignificant factors include the primary factor P. Factor C is barely significant; it
only explains 1.0 percent of the total variation. The experimental error accounts for less
than 6 percent of the total variation. This level is acceptable.

The large effect associated with T, the numnber of producer tasks on each processor,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

points to a bottleneck in the HARTOS implementation. Specifically, there is apparently
a large queueing delay associated with the reply and request NP mailbox associated with
each AP. This conclusion is arrived at by considering the relative effects. The processors on
a given node share the outgoing queue for the network. If there were significant contention
at this queue, then the factor P would have had a greater effect on the performance. The
fact that P had an insignificant effect is evidence against this hypothesis. In fact, all the
queues in the NP are shared by both processors, except for the AP-specific reply and request
mailbox queue and the send mailbox queue on each AP. The send mailbox queue may add
some delay to the response time. lowever, the queue length is limited to one because
the queued task does a busy wait on the mailbox. Other tasks do not get scheduled and
therefore do not have to opportunity to make the remote call until the queued task has been
serviced. The time that the task may be queued is bounded from above by the maximum
time that the NP requires to execute its polling cycle.

If we look more closely at the effect of N on total variation, we see that the effect,
gn, is negative. This can be seen clearly by comparing the 7 values in Table 7.3. The
response times for NV = 2 are higher than for N = 4. This is contrary to what would be
expected. It is expected that more nodes on the network would cause greater contention
for the Ethernet and thus higher response times. It is possible that this behavior is a result
of the combination of the loose method used to synchronize the workloads and the different
traffic pattern used in the four node experiments. As discussed above, the looseness of the
synchronization may have allowed some processors to begin sending messages at a signifi-
cantly long time before or after the other processors. These early and late processors would
be communicating on an otherwise empty network, and would subsequently have lower re-
sponse times. Furthermore, the effort to spread out the load on the four node experiments,
in order to reduce the variance in response times measured on different processors may have
added to this effect. It may be the case that the early and late processors were distributing
the message processing load over a number of idle network processors, thus further reduc-
ing the response time. The messages from these early or late processors were not even
encountering the queuing delays caused by other messages from the same processor.

Verifying the exact cause of this seemingly anomalous behavior can be the subject
of further investigation. The necessary experiments will involve measuring response time
with different traflic configurations and different synchronization techniques. Studying dif-
ferent traffic configurations will involve simply changing the processor assignments for the
different destination tasks and performing the experiments again. Studying the effects of

workload synchronization on performance would entail comparing the performance of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Factor levels

T, N,C, P m S Inm
1,2,1,1 0.01 0.0224 -0.599
1,2,1,2 0.0 0.0 0.0
1,2,10,1 0.01 0.0224 -0.599
1,2,10,2 0.0 0.0 0.0
1,4,1,1 144 4.74 2.61
1,4,1,2 2.23 1.3 0.611
1,4,10,1 5.87 1.31 1.75
1,4,10,2 422 0.95 1.42
10,2,1,1 104 441 2.23
10,2,1,2 149 115 2.21
10, 2, 10, 1 10.3 3.26 2.28
10, 2, 10, 2 16.2 5.86 2.71
10,4, 1,1 504 27.2 3.77
10,4,1,2 36.9 6.83 3.6
10,4, 10, 1 42.7 16.6 3.7
10, 4, 10, 2 50.3 13.5 3.88

Table 7.4: Results for the percentage of lost messages: mean 71, standard deviation s, and
mean of the transformed data In m.

SW on this version of HARTOS against the performance of the same SW on a version
of HARTOS which supported distributed clock synchronization. Such investigations would
provide no further illumination of the capabilities of the SWG, and will thus not be pursued
here.

Next, we analyze the system based on the percentage of messages lost. The statis-
tics for m are shown in Table 7.4. The values for the mean, 7, and standard deviation, s,,,
are shown for reference purposes only. Based on the log-transformed values, we calculate
the effects of the various factor combinations. The effects are shown in Table 7.5 along
with the 90% confidence intervals. If the confidence interval includes 0, then the effect is
insignificant at this confidence level. We note that only six of the factor combinations and
the effects of error are significant.

The percentage of the variation of m that is caused by each significant factor
combination is shown in Table 7.6. TFrom this data we get the following model for the

percentage of messages that are lost.

In(m;;) = 1.8541.2zp + 0.8182n — 0.245zy2p + 0.1962 vz p2y
+0.1542pac — 0.132xy2T + L35 (7.5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Effect Value 90% Confidence Interval

0 1.85 [1.72, 1.98]
ar 1.2 (1.07, 1.33]
an 0.818 [0.69, 0.946)

gvp -0.245 [-0.374,-0.117]
qNPT 0.196 [0.0675, 0.324]
grc 0.154 [0.0259, 0.282]
gyt -0.13 (-0.258, -0.00185)
gvprc -0.11 [-0.238, 0.0183)
gNPC 0.0978 [-0.0304, 0.226]
qaPT 0.0976 [-0.0305, 0.226]
gere -0.0535 [-0.182, 0.0746)
qre 0.0508 [-0.0773, 0.179)
ac 0.0445 [-0.0836, 0.173)
qp -0.0439 [-0.172, 0.0842]
gve -0.0236 [-0.152, 0.105]
gvte -0.0173 [-0.145,0.111]

Table 7.5: Effects for the multiplicative model for m.

Factor(s) Percentage

T 54.0
N 25.1
ERROR 141
NP 2.26
NPT 1.44
PC 0.89
NT 0.634
P 0.0
C 0.0
PT 0.0
TC 0.0
NC 0.0
NPC 0.0
PTC 0.0
NTC 0.0
NPTC 0.0

Table 7.6: Percentage of m’s variation explained by each effect.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

or equivalently,

mi; = 6.36 x 3.325T x 2.277N x 0.783%N%P x 1.219NFPET x] 177PFC
x0.878%N°T x ¢Fis, (7.6)

The conclusions drawn for m parallel those for £. The number of tasks sending
messages from each processor had the greatest effect. However, for this performance index,
the number of nodes, N, had a greater relative effect than it had on ¢. In fact, the effect is
positive, indicating an increased effect due to NV regardless of the communrication configu-
ration. Experimental error had a greater effect on m than on t. For m, the factors P and
C were not significant at a 90 percent confidence level.

Since it is not known why the system loses messages, the three most significant
factors should be evaluated further. The high experimental error may indicate the effects
of other factors that were not considered in the experiments. The nature of these other
factors should also be determined. For users of HARTOS version 1, the high number of lost
messages for heavy workloads points to the need for the specification of retries for remote
calls. The average values for ¢t may be used as a gauge for the timeout before a retry is

attempted. Retries should significantly reduce the number of lost messages.

7.6 Summary and Conclusions

Through these experiments, we demonstrated the ability of the SWG and SW to be
used for experimental analysis of distributed, real-time computer systems. We showed how
an SW may be specified that demonstrates the particular workload characteristics required
for an evaluation. We showed how object templates may be used to produce a reasonably
large workload from a compact specification. The workload with the greatest number of
tasks and exchanges was generated from a graph file only slightly different from the one
shown in Appendix H. It contained 160 tasks and 80 exchanges distributed over eight
processors. The size of the workload which can be specified and generated is only restricted
by the available system resources. There are no limitations imposed by the SWG. We also
showed how, even with a large workload, by using appropriately defined constants, changes
to the specification which are necessary to instantiate different workload configurations may
be localized.

The results of this evaluation provided some important insights into the perfor-
mance of HARTOS version 1. The primary conclusion is that the NP-AP interface is a

serious bottleneck. Future versions of HARTS and HARTOS must pay special attention

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

to this issue. Further evaluations of IIARTS could be performed to fully characterize the
effect of this bottleneck at different levels of T'. As with the proposed evaluation of the
effects of N, such evaluations would use the same techniques used in this chapter. These
techniques have already been demonstrated. The focus of this chapter is demonstrating
the capabilities of the SWG, not to provide a full characterization of HARTS. Therefore,
further evaluations are not included here.

The evaluation also provided insight into the design and use of the SWG. First,
we noted that for multiprocessor workloads, it was more convenient to have the processor
assignments for all tasks in a single location in the input files. This observation suggests
that a new “processor assignment” section be added to the graph file and all assignments be
located there. Such a feature was previously suggested by another researcher in real-time

systems [43]. It will be included in future versions of the SWG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUSIONS

We have described a complete system for generating SWs for distributed real-time
systems. The design was influenced by the desire to accurately represent real-time work-
loads, to support the process of experimental evaluation, and to be flexible, compact, and
easy to use. To achieve these goals, we defined a workload model which describes all aspects
of a real-time workload. The model is based on notations used to specify real software. It
contains user-specifiable parameters to describe the system specific aspects of the workload.
This model is the basis for SWSL, a language for specifying SWs. SWSL includes a number
of features to improve its ability to specify SWs and to support experimental evaluation.

The SWSL specification of an SW is compiled by an SWG to produce an ex-
ecutable SW. The SW uses a driver which provides distributed control and support for
experimentation. We demonstrated that the SW can accurately represent actual workloads

and that SWSL could be used successfully for experimental evaluation.

8.1 Research Contributions

Our work contains a number of contributions to the field. We recognized (what
should be an obvious fact) that the workload is composed of the application software which
is executing on the system and modeled our SW accordingly. Our model specifies the struc-
ture of the workload using a notation based on structured analysis and rapid prototyping
notations. We added a number of parameters in our model to describe the system-dependent
resource requirements of the workload. We also rejected the standard firing rules defined
for dataflow models in favor of a model which specifies the invocation and interactions of
tasks based on their scheduling parameters and on the operations they execute.

We were the first to define a high-level language to specify SWs and implement
an SWG to compile it. The only other language for which the existence of a compiler

is mentioned is APET [4], but APET resembled a simple job control language. It was

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

extremely limited in its capabilities and was therefore not comparable to SWSL.

An important contribution to the specification of SWs is our specification of ob-
ject templates. The concept of producing multiple instances of an object from a common
template can be traced back to the earliest SWs. It is one of the primary mechanisms for
abstracting a workload using a compact notation. Our implementation extends this basic
idea to allow full support of the object templates within the task graph. Object templates
may be used to specify multiple instances of single objects, or they may be combined to
specify multiple instances of entire subgraphs. The syntax for specifying the inputs and
outputs of object templatess allow the graph connectivity to be described explicitly. In
addition, abbreviated syntax is available for some common combinations of templates. The
SWG will automatically expand these abbreviated definitions according to a known set of
connection rules.

We have also identified a number of features required to support experimentation
using the SW. The most important of these is the multiple run facility. Another comes from
the observation that an interactive user interface is not acceptable for SWs for real-time
systems. Therefore, all run-time parameters are specified in SWSL and compiled into the
SW. Then, the SW may be downloaded to the target embedded system and executed. It
will exhibit the specified behaviors without user interference. To the same end, we defined
the experiment file which contains the parameters for the experiment. These parameters
must also be compiled into the SW.

A number of contributions are exhibited in the functions file. The most useful is
the concept of plug-in functions. To support these functions, we defined two synthetic oper-
ations, sread() and swrite(), which use the information provided by the SWG describing
the connected objects to select which system call to use to perform the required read or
write operation.

We introduced the idea of the verbatim code segments within the functions. By
allowing the user to specify the function using both synthetic operations and exact code,
we increase the flexibility of SWSL.

We were the first to consider the statistical properties of the SW. We defined
a number of parameters that take their values at run-time from random number genera-
tors. Control constructs with stochastic behavior are defined in functions to model data-
dependent behavior of the task. We base all stochastic activities on separate random number
generator streams to improve their statistical independence. We also provide the capability
to specify the seeds for the random number streams and to decide whether or not to reset

the streams to the specified seced between runs. This feature improves the reproducibility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

of experiments.
Finally, we defined the necessary features of an SW driver for a distributed real-
time system. It must have distributed control, support for experimentation, and should

simulate terminators.

8.2 Future Directions

SWSL was designed to provide a full range of capabilities for specifying synthetic
workloads for distributed real-time systems. In the process of writing the SW specifications
for the evaluations in Chapters 6 and 7, we discovered a few places where the language
could be extended or modified. The robot control software in Chapter 6 was fairly complex.
SWSL cannot define procedures to be called from synthetic functions. Therefore, all code
for a task must be written in one function specification. SWSL would benefit from the
ability to specify procedures using the SWSL function syntax. It would provide the user
with the ability to specify commonly executed segments of code in a single procedure instead
of having to duplicate that code throughout the function. In addition, recursive procedures
should be supported. Within each recursive procedure, the decision of whether or not
to recurse would be decided probabilistically, because there are no data values in SWSL
upon which the decision can be based. Therefore, the number of levels of recursion will be
a random value with a distribution determined by the probability that a given level will
recurse. Although procedures that recurse an unpredictable number of times are generally
considered inappropriate for hard real-time systems, they may be used in soft real-time
systems. Therefore, SWSL should be able to specify recursive procedures which may be
used to evaluate soft real-time systems.

Two modifications to SWSL were suggested by the requirements of the evaluation
in Chapter 7. First is the ability to specify the processor assignments of the SW objects in a
single location in the input files. This feature was discussed previously. The second feature
is the ability to specify object templates such that multiple instances of the object exist on
the same processor. Such a feature would have reduced the size of the graph specification
in Appendix H to only two transformation definitions (one for the producer and one for
the consumer) and one store definition. If multiple instances of the same object could
exist on the same processor, then the SWSL specification of INPUTs and OUTPUTs would
have to include a specification of which copy of the object on each processor. Adding this
information to the specification would make the specification of INPUTs and OUTPUTs more

complex. An alternative is to change the specification of INPUTs and OUTPUTs to use an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

indexing notation. The various instances of an object would be located on the processors
in the PROCESSOR parameter specification. A given processor label could be listed multiple
times in the PROCESSOR parameter list, indicating multiple instances of the object on that
processor. The position of the processor labels in the list would provide an index by which
the various objects could be referenced. The INPUT and OUTPUT specifications could use this
index to specify connected objects. Shortened notations would allow the user to specify flows
between instances of objects by indicating the relative positions of the instances in the list.

These modifications to the language would improve the convenience with which
the language may be used, but they would not add any modeling power to the language.
SWSL is sufficiently powerful as defined. We found no situation where it was not able to
specify the required properties.

The modifications listed above are minor changes to the existing SWSL. There is at
least one area where more significant research could be applied. SWSL could be modified
to define transformations with multiple threads of control. Our workload model defines
tasks with single threads of control. A number of current experimental real-time operating
systems support multiple threads of control within tasks. Workloads that execute on such
systems must be characterized and the appropriate changes made to the workload model
and SWSL. A more extensive change would be to explore the use of the object-oriented
software paradigm. The particular characteristics of object-oriented workloads should be
studied. The findings could be incorporated into the workload model, or, if necessary, a
new workload model could be developed.

Another area for future research is the study of the use of SWs. We framed our
discussion of SWs in the context of two types of evaluations: those that use SWs that are
representative of actual applications, and those that use SWs that produce specific, user-
controlled resource demands, but are not necessarily representative of any specific workload.
Currently, many researchers are interested in SWs for the first type of evaluation. They want
to show that their experimental system meets the requirements of a real-time application.
While representative SWs are good for demonstrating this fact, these evaluations do not
necessarily provide a quantitative measure of the performance of the system. A collection
of representative SWs allow the user to measure the system while it executes a few sample
workloads, but they do not provide a rigorous characterization of the system.

The second type of evaluation is intended to produce this rigorous characteriza-
tion. They allow the user to measure the system under various combinations of workload
characteristics and make statistically valid evaluations of the system based on these mea-

surements. We consider these evaluations to be the more important application of the SW.
1 Pl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

To support these evaluations, further research should be pursued to improve the ability of
SWSL to specify the resource demands of the SW. The resource demands are produced
primarily by the synthetic operations in the library. Continued research should be focused
on creating a library of operations that contains a wide variety of monoresource synthetic
operations with orthogonal resource requirements. Using monoresource synthetic opera-
tions simplifies the process of specifying an SW which contains those operations. If the
synthetic operations perform complex functions, then the user must spend a great deal of
time selecting the proper operation and then choosing the proper parameters with which to
invoke the operation. If each synthetic operation exercises a single resource, then the user
can select exactly the operation required. If the resource requirements of the operations
are orthogonal, then only a single operation will exercise a given resource in a particular
manner. The user will not have to decide between multiple choices when selecting which
operations to use, and constructing SWs will become much simpler. If more complex be-
haviors are required for operations, then the user should model the complex operation using
a separate transformation with the behavior specified as the transformation’s ¢ function.
The function can then be archived and used as a plug-in function for other SWs where the
same behavior is required.

The creation of an archive of plug-in functions may be the solution to the problem
of how to build representative SWs. In Chapter 6, we demonstrated that the SWG is capable
of generating representative SWs. We were able to make this determination because we had
an existing real-time workload that we could use as the basis of the SW specification. Then
we could compare the performance of the SW with that of the workload to determine the
representativeness of the SW. This approach to creating a representative SW is not usually
possible in practice. Often, researchers desire a representative SW because they have no real
application. If they had a real application, they would use it for the evaluation. Without
a real application, the representativeness of an SW can not be verified. However, we may
be able to construct representative SWs without having a complete, real application with
which to compare.

We hypothesize that a representative SW could be constructed from plug-in func-
tions which have been verified to be representative of individual functions in real workloads.
This hypothesis is based on observations of the trend toward reusable software in the field
of software engineering. Software engineers are attempting to build new software systems
based on components developed for previous software systems. If real-time software fol-
lows this trend, then real-time workloads will be composed of several reused components to

perform standard functions and custom-written components to perform all other functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

SWs to model these workloads could be constructed from archived plug-in functions which
have been verified to represent the reused components. The user would only have to write
the SWSL functions to model the behavior of the custom components in the workload. The
selection of archived and custom components could be based on a high-level specification of
the workload such as the requirements model or the structured analysis specification. SWs
constructed in this manner should closely approximate the behavior of the real workload.

Further research must be conducted to confirm or refute this hypothesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

SWSL GRAMMAR

The following is the BNF for the grammar which describes SWSL. We give the
grammars for the graph file, the experiment file, and the function file. Terminals either
represent keywords or specific symbols and are shown as those keywords in uppercase or as
the symbols. The regular expressions used to define some terminals are in the exact format
as in the lexical analyser generator input file. Nonterminals are shown in lowercase. The

empty terminal is denoted with an epsilon, e.

A.3.1 Graph File Grammar

program u= GRAPH graph
graph = declarations DEFINITIONS obj_defs
declarations = externs constants OBJECTS obj.decls
externs u= EXTERNS externdefs

| EXTERNS

| €
externdefs n= extern.def;

| externdefs extern_def ;
extern_def m= extern-type extern.name

| extern_def , extern_name

extern_type = identifier
extern_name u= identifier
constants #= CONSTANTS cons
| CONSTANTS
| €
cons = const ;

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

const

cons_.name

object_decl_list

obj.decl

object_name

object_type

object. def list

obj.def

parameter_list

parm

parameter

parameter_.name

jo.parameter

jo_parameter_name

io list

flow_type

src_dst_name

location

processor_namnie

io_number

99

cons const ;
cons.name = expr

identifier

obj_decl ;
object_decl_list obj_decl ;
object_type object_name
obj_decl , object_name
identifier

identifier

obj.def ;

object_def.list obj_def ;
object.name [parameter.list]
parm ;

parameter_list parm ;
parameter

io_parameter
parameter_name = expr
parameter , expr

identifier

io_parameter_name = iolist
INPUT

ouTpPUT

src.dst_name location flow_type
io list | io_name flow_type

: identifier

€

identifier

. processor.name io_number
€

identifier

€

. number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

expr

value

parmlist

distribution_name

identifier
string

number

integer

float

il

100

expr -4 expr
expr - expr
expr * expr
expr / expr
— expr
((expr)
value

distribution_name (parmlist)

identifier
number

string

expr

parmlist , expr

€

identifier

[a~zA-Z_] [a-zA-20-9_]*
R EA

integer

float

"ox"?[0-9]+

[0-9]+" . "[0-9]*

A.0.2 Experiment File Grammar

program
experiment

exp_definition_list

exp_definition

EXPERIMENT experiment

constants PARAMETERS exp_definition_list
exp-definition ;

exp.definition_list exp_definition ;

exp-name [exp_parameter.list]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exp-name

exp.parameter list

exp-parameter

exp-parameter_name

A.0.83 Function File

program
functions
function_code

function_list

function

io_declarations
io_declaration
func_o list
func_flow_type

func_io_name

code

stmtlist

statementlist

statement

loop_statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

identifier

exp-parameter ;
exp.parameter.list exp_.parameter ;
exp_parameter.name = expr
exp_parameter , expr

identifier

Grammar

FUNCTIONS functions

externs constants function.code
CODE function_list

function_list function

function

identifier { io_declarations code } ;
jo.declaration ;

io_declarations io.declaration ;
io.parameter.name = func_o_list
io_declaration , func_io_list
func_io_.name func_flow_type

: identifier

identifier

BEGIN stmtlist END ;
statementlist

€

statementlist statement ;
statement ;
loop_statement
switch_statement

simple_statement

LOOP loopbound { loop.body }

102

loopbound n= expr

| FOREVER
loop_body n= statementlist
switch_statement n= SWITCH { case.list }
case_list u= case.list case ;

| case ;
case u= value : { statementlist }
simple_statement um= identifier (parmlist)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

APPENDIX B

ROBOT CONTROL SW SPECIFICATION: GRAPH FILE

GRAPH
EXTERNS

FUNC server_func;
FUNC periodic-func;
PROC expos;

CONSTANTS

AuxClock . ELEMENT_SIZE = 4;
adc_board_in.ELEMENT_SIZE = 4;
adc.board_in.rate = 2;
adc_board.out. ELEMENT_SIZE = 4;
adc.board.out.rate = 2;
ai_board.in.rate = 2;
ai_board_in_size = 4;
ai_board_out_rate = 2;
ai_board_out_size = 4;

buf_rec.size = 20;

client_mess_size = 10;

client_rate = 600;

command ELEMENT_SIZE = 4;
console_ KLEMENT_SIZE = 4;
console_rate = 2;

control_ ELEMENT_SIZE = 4;
dac_board_in.LELEMENT.SIZE = 4;
dac_board_in_rate = 2;
dac_board.out. ELEMENT_SIZE = 4;
dac_board_out_rate = 2;

file_system ELEMENT_SIZE = 4;
file_system.rate = 2;

globals. ELEMENT_SIZE = 4;
motor . ELEMENT_SIZE = 4;
rt_period = 1;

rt_priority = 2;

sensors. ELEMENT_SIZE = 4;
server_priority = 80;
status.ELEMENT_SIZE = 4;

include vxworks.constants

Reproduced with permission of the copyright owner

OBJECTS

TRANS server;
TRANS rt;

STORE ring-buffer;
TERM client;

TERM ai_board_out;
TERM ai_board._in;
TERM adc_board_out;
TERM adc_board._in;
TERM dac_board_out;
TERM file system;
TERM console;
STORE command.semaphore;
STORE dac_semaphore;
STORE adc_semaphore;
STORE sensors_semaphore;
STORE command;
STORE sensors;
STORE AuxClock;
STORE control;
STORE motor;
STORE status;
STORE globals;

DEFINITIONS

/+* TRANS*/ server |
SPORADIC = 0;
FUNCTION = server_func();

include server_io
START.-TIME = 1,
PROCESSOR = expos;
ACTIVE = true;

PRIORITY = server_priority;
NAME = "serv";

B

/*TRANSx/ 1t |
PERIOD = rt_period;

. Further reproduction prohibited without permission.

FUNCTION = periodic_func();
START.TIME = 1;

include rt_io

li

PROCESSOR = expos;
ACTIVE = true;
DEADLINE = rt_period;
PRIORITY = rt_priority;
NAME = "1lvi10";

/*STOREx/ ring_buffer [

I8

name = ''queue";

TYPE = depletable;
ELEMENT_SIZE = buf_rec_size;
INPUT = server : discrete;
OUTPUT = rt : discrete;
PROCESSOR = expos;
CAPACITY = NOLIMIT,;
ACCESS = all;

POLICY = fifo;

/*TERMx/ client|

IR

NAME = "client";

OUTPUT = server : discrete;
TYPE = source;

ELEMENT_SIZE = client_mess_size;
PROCESSOR = expos;

RATE = client_rate;

START.TIME = 1;

/* TERMx/ ai_board_out[

h

NAME = "ai_out";

INPUT = rt : discrete;

INPUT = server : discrete;

TYPE = Sink;

ELEMENT.SIZE = ai_board_out_size;
PROCESSOR. = expos;

RATE = ai_board_out_rate;
START.TIME = 1;

/* TERM+/ ai_board.in[

NAME = "ai_in";

OUTPUT = rt : continuous;
QUTPUT = server : continuous;
TYPE = Source;

ELEMENT._SIZE = ai_board_in_size;
PROCESSOR = expos;

RATE = ai_board_in_rate;
START.TIME = 1,

Reproduced with permission of the copyright owner.

104

/*TERMx/ adc_board.out|
NAME = "adc.out";
INPUT = rt : discrete;
TYPE = Sink;
ELEMENT_SIZE =
adc_board_out.ELEMENT_SIZE;
PROCESSOR = expos;
RATE = adc_board_out_rate;
START.TIME = 1;

I3

/* TERMx/ adc_board.in|
NAME = "adc_in";
OUTPUT = rt : continuous;
OUTPUT = server : continuous;
TYPE = Source;
ELEMENT.SIZE =
adc_board_in.ELEMENT_SIZE;
PROCESSOR = expos;
RATE = adc_board.in_rate;
START_TIME = 1;
l;

/* TERMx*/ dac.board_out[
NAME = "dac.out";
INPUT = rt : discrete;
INPUT = server : discrete;
TYPE = Sink;
ELEMENTSIZE =

dac_board_out_.ELEMENT_SIZE;
PROCESSOR = expos;
RATE = dac_board_out_rate;
START_TIME = 1;

I

/*STOREx/ command_semaphore[
name = “com_sem";
TYPE = DEPLETABLE;
ELEMENTSIZE = 0,
INPUT = rt : discrete;
OUTPUT = rt : discrete;
PROCESSOR = expos;
CAPACITY = 0;
ACCESS = exclusive;

IR

/+*STOREx/ dac_semaphore|
name = "dac_sem";
TYPE = DEPLETABLE;
ELEMENT.SIZE = 0;
INPUT = rt : discrete;
INPUT = server : discrete;

Further reproduction prohibited without permission.

OUTPUT = rt : discrete;
OUTPUT = server : discrete;
PROCESSOR = expos;
CAPACITY = 0;

ACCESS = exclusive;

I

/*STOREx/ adc_semaphore|
name = "adc_sem";
TYPE = DEPLETABLE;
ELEMENT._SIZE = 0;
INPUT = rt : discrete;
INPUT = server : discrete;
OUTPUT = rt : discrete;
OUTPUT = server : discrete;
PROCESSOR = expos;
CAPACITY = 0;
ACCESS = exclusive;

Ik

/*STOREx/ sensors.semaphore[
name = "sens_sen";
TYPE = DEPLETABLE;
ELEMENT_SIZE = 0;
INPUT = rt : discrete;
OUTPUT = rt : discrete;
PROCESSOR = expos;
CAPACITY = 0;
ACCESS = exclusive;

|5

/*STOREx/ command][
name = "comm";
TYPE = NONDEPLETABLE;
ELEMENT_SIZE =
command ELEMENT_SIZE;
INPUT = rt : discrete;
INPUT = server : discrete;
PROCESSOR = expos;
CAPACITY = [;
ACCESS = all;
I8

/*STORE*/ sensors|
name = "sens";
TYPE = NONDEPLETABLE;
ELEMENT.SIZE =
sensors.ELEMENT_SIZE;
INPUT = rt : discrete;
INPUT = server : discrete;
OUTPUT = server : continuous;
PROCESSOR. = expos;
CAPACITY =1,

105

ACCESS = all;
l;

/*STOREx/ AuxClock[
name = "“auxclk";
TYPE = NONDEPLETABLE;
ELEMENT.SIZE =
AuxClock. ELEMENT_SIZE;
INPUT = server : discrete;
PROCESSOR = expos;
CAPACITY = 1;
ACCESS = all;
I

/*STORE*/ control|
name = "control";
TYPE = NONDEPLETABLE;
ELEMENT.SIZE =

control_ ELEMENT_SIZE;
INPUT = server : discrete;
INPUT = rt : discrete;
OUTPUT = server : continuous;
PROCESSOR = expos;
CAPACITY = 1;
ACCESS = all;

li

/*STOREx/ motor|
name = “motor",
TYPE = NONDEPLETABLE;
ELEMENT_SIZE = motor ELEMENT_SIZE;
OUTPUT = server : continuous;
PROCESSOR = expos;
CAPACITY = |;
ACCESS = all;

I;

/* TERMx«/ file_system][

NAME = "file";
INPUT = server : discrete;
TYPE = Sink;

ELEMENT.SIZE =
file_system.ELEMENT_SIZE;
PROCESSOR = expos;
RATE = file_system_rate;

START.TIME = 1,

I

/*TERMx/ console|
NAME = “console";
INPUT = server : discrete;
TYPE = Sink;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

ELEMENT_SIZE =
console. ELEMENT_SIZE;
PROCESSOR = expos;
RATE = console.rate;
START.TIME = 1,

I;

/*STORE=*/ status|
name = "status";
TYPE = NONDEPLETABLE;
ELEMENT_SIZE = status. ELEMENT_SIZE;
INPUT =rt : discrete;
INPUT = server : discrete;
OUTPUT = rt : continuous;
PROCESSOR = expos;
CAPACITY =1,
ACCESS = all;

l;

/*STOREx/ globals|
name = "globals";
TYPE = NONDEPLETABLE;
ELEMENT.SIZE =

globals. ELEMENT_SIZE;
INPUT = rt : discrete;
INPUT = server : discrete;
OUTPUT = rt : continuous;
OUTPUT = server : continuous;
PROCESSOR = expos;
CAPACITY = 1
ACCESS = all;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

APPENDIX C

ROBOT CONTROL SYNTHETIC WORKLOAD
SPECIFICATION: EXPERIMENT FILE

EXPERIMENT

CONSTANTS

Runs = 4;

PARAMETERS

default|
TIMEUNIT = 1000/60; /+ 60 Hz %/
TIMING = true;
TIMELIMIT = 5000;
SEED = 7276330698, 276090261,1808217256;
SEED_RESET = TRUE, TRUE, TRUE;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

APPENDIX D

ROBOT CONTROL SYNTHETIC WORKLOAD
SPECIFICATION: FUNCTION FILE

FUNCTIONS

EXTERNS

DIST expon;

OPER swrite;

DIST intvalue; /* intvalue(z) returns (int)z x|
OPER sread;

OPER bool;

OPER trig;

OPER fp;

CONSTANTS

rare = 1;

fp_scaling_factor = 0.70; /+ Value for SW1: 1.0 +/

CODE

periodic_func {
verbatim

#include "probe.h”
endverbatim

include rt.io

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

BEGIN

verbatim

probe(1);

endverbatim
swrite(adc.board.out);

swrite(ai_board_out);

sread(command._semaphore, WAIT);
LOOP (18+6) { /* loop counts and expressions in fp() calls were derived
from the robot control software %/

swrite(command);

b

swrite(command_semaphore);
SWITCH {
rare : { /* if stopped */
sread(ring.buffer, NOWAIT);
SWITCH {
1/600: { /+ if @ message was read */
SWITCH ({
33 : { /# grasp command? %/
swrite(status);
};
remaining : {
SWITCH {
0: { /* relative move command */

fp(intvalue(fp_scaling_ factor * (6)));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

b
fp(intvalue(fp.scaling factor % (6+6+5+6+3)));
};
remaining : {
SWITCH ({
96 : { /* constant velocity +/
swrite(control);
swrite(globals);
b
b
SWITCH {
4 /% 75 %/ { [+ same segment? Value for SW1: 75 «/
sread(ring-buffer, NOWAIT);
SWITCH ({
1/600 : { /* if a message was read x/
SWITCH {
33 : { [+ grasp command? x/
swrite(status);
};
remaining : {
SWITCH {
0 : { /+ relative move command? x/

fp(intvalue(fp_scaling_factor x (6)));

SWITCH {
96 : { /* no new data? */
swrite(globals);
5
};
fp(intvalue(fp_scaling_factor * (6x6+5+6%3)));
};

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

remaining : { /* in new segment */
SWITCH {
33 : { /* decelerating? */
swrite(control);
b
remaining : {
swrite(globals);

b

};
fp(intvalue(fp_scaling-factor * (6)));
SWITCH { /+ sensor type x/

100 : { /* encoder x/

LOOP 6 {
sread(ai_board_-in, NOWAIT);
bool(1);

5

fp(intvalue(fp_scaling_factor * (6)));

b
remaining : { /* pots x/

LOOP 60 {
sread(adc_semaphore, WAIT);
sread(adc_board_in, NOWAIT);
swrite(adc_semaphore);

};

fp(intvalue(fp-scaling_factor * (6)));

I
};
fp(intvalue(fp_scaling_factor * (12)));
trig(12);
fp(intvalue(fp_scaling_factor * (6)));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

SWITCH {
100 : { /* force used %/
LOOP 6 {
sread(adc_semaphore, WAIT);
sread(adc.board_in, NOWAIT);
swrite(adc_semaphore);
};
fp(intvalue(fp_scaling_factor » (2+36+6)));
trig(2);
fp(intvalue(fp_scaling_factor * (12-+4)));
trig(2);
fp(intvalue(fp.scaling_factor * (12+4)));
h
Y
sread(sensors_semaphore, WAIT);
LOOP 6 {
swrite(sensors);
b
swrite(sensors_semaphore);
SWITCH { /* check mode */
100 : { /= position interpolaied %/
fp(intvalue(fp_scaling_factor * (12%4+4-6%5)));
swrite(al_board_out);
b
rare : { /* torque %/
fp(intvalue(fp_scaling_factor * (6%3)));
LOOP 6 {
sread(dac_semaphore, WAIT);
swrite(dac_board_out);
swrite(dac_semaphore);

};

swrite(ai_board.out);

5

rare : { /* standby /
fp(intvalue(fp_scaling_factor x (12)));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

15
3
sread(adc_semaphore, WAIT);
swrite(adc.board_out);
swrite(adc.semaphore);
verbatim
probe(2);
endverbatim

END;
h

server_func {
include server_io
BEGIN

LOOP forever {
sread(client, WAITY);
SWITCH {
0 : { /= relative move */
SWITCH {
rare : {}; /* if in standby mode x/
remaining : {
sread(globals, NOWAIT);
sread(control, NOWAIT);
fp(intvalue(fp_scaling_factor * (G)));
sread(control, NOWAIT);
fp(intvalue(fp_scaling_factor * (6)));
swrite(ring.buffer);
b
};
b
33 : { /x absolute move x/
SWITCH {
rarve : {}; /* if in standby mode */

remaining : {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

swrite(globals);
sread(control, NOWAIT);
fp(intvalue(fp_scaling_factor * (6)));
sread(control, NOWAIT);
fp(intvalue(fp_scaling-factor * (6)));
swrite(ring-buffer);
%
};
};
33: { /+ gripper OPEN x/
swrite(ring_buffer);
1§
33: { /* gripper CLOSE %/
swrite(ring_buffer);

It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

APPENDIX E

ROBOT CONTROL SYNTHETIC WORKLOAD
SPECIFICATION: INCLUDED FILE
“VXWORKS.CONSTANTS”

OPERATING.SYSTEM = "VXWORKS" ;

WAIT = 0;
NOWAIT = 1;
NOLIMIT = 50;
RUNNING = 0;
ALL = 0;
GROUPONLY = 1;
FIFO = 0;

PRIO = 0x80;
INFINITE = 0
LIMITED = 2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

APPENDIX F

ROBOT CONTROL SYNTHETIC WORKLOAD
SPECIFICATION: INCLUDED FILE “RT_IO”

This include file contains the INPUT and OUTPUT specifications for the transforma-
tion rt which implements the levelQ task. This file is included into both the transformation
specification and the function specification. The syntax is the same for both, and using an

include file keeps the specifications consistent.

INPUT = ring_buffer : discrete;

INPUT = ai_board.in : continuous;
INPUT = dac_semaphore : discrete;
INPUT = adc_board_in : continuous;
INPUT = adcsemaphore : discrete;
INPUT = command_semaphore : discrete;
INPUT = sensors.semaphore : discrete;
INPUT = status : continuous;

INPUT = globals : continuous;
OUTPUT = dac_board_out : discrete;
OUTPUT = dac.semaphore : discrete;
OUTPUT = ai_board.out : discrete;
OUTPUT = adc_board_out : discrete;
OUTPUT = adc.semaphore : discrete;
OUTPUT = command_semaphore : discrete;
OUTPUT = command : discrete;
OUTPUT = sensors_semaphore : discrete;
OUTPUT = sensors : discrete;
OUTPUT = status : discrete;

OUTPUT = globals : discrete;
OUTPUT = control : discrete;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

APPENDIX G

ROBOT CONTROL SYNTHETIC WORKLOAD
SPECIFICATION: INCLUDED FILE “SERVER_10”

This include file contains the INPUT and OUTPUT specifications for the transfor-
mation server. This file is included into both the transformation specification and the
function specification. The syntax is the same for both, and using an include file keeps the

specifications consistent.

INPUT = client : discrete;

INPUT = ai_board.in : continuous;
INPUT = adc_board.in : continuous;
INPUT = dac.semaphore : discrete;
INPUT = adc.semaphore : discrete;
INPUT = sensors : continuous;
INPUT = control : continuous;
INPUT = motor : continuous;
INPUT = globals : continuous;
OUTPUT = console : discrete;
OUTPUT = dac_board_out : discrete;
OUTPUT = dac_semaphore : discrete;
OUTPUT = ai_board_out : discrete;
OUTPUT = adc_semaphore : discrete;
OUTPUT = ring.buffer : discrete;
OUTPUT = command : discrete;
OUTPUT = sensors : discrete;
OUTPUT = AuxClock : discrete;
OUTPUT = control : discrete;
OUTPUT = file_system : discrete;
OUTPUT = status : discrete;
OUTPUT = globals : discrete;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WORKLOAD (4,1,10,10): GRAPH FILE

GRAPH
EXTERNS

FUNC fun?2;

FUNC funl;

PROC rtcl6Gl;
PROC rtcl8l;
PROC rtcl91, rtclAl;

CONSTANTS

num_tasks = 10;

loopecount = 10;

perl = loopcount * num_tasks + 1,
deadl = perl - 1;

source_priority = 20;

dest_priority = 10;

sourcel = rtcl61;
destl.1 = rtel81;
dest1_2 = rtcl91;
dest1.3 = rtclAl;
destl.4 = rtcl81;
destl 5 = rtcl9l;
dest]_6 = rtclAl;
dest]_7 = rtcl81;

destl._8 = rtcl91;
dest1.9 = rtclAl;
dest1_10 = rtcl81;

source2 = rtcl81;
dest2_1 = rtcl91;
dest2_2 = rtclAl;
dest2.3 = rtcl6l;
dest2.4 = rtcl91;
dest2.5 = rtclAl;
dest2.6 = rtclGl;
dest2.7 = rtcl91;

dest2_8 = rtclAl;
dest2.9 = rtcl61;

118

APPENDIX H

dest2_10 = rtcl91;

sourced = rtcl91;
dest3_1 = rtclAl;
dest3.2 = rtel61;
dest3.3 = rtcl8l;
dest3.4 = rtclAl;
dest3_5 = rtclGl;
dest3_6 = rtcl81;
dest3.7 = rtclAl;
dest3.8 = rtcl6l;
dest3_9 = rtcl8l;
dest3_10 = rtclAl;
sourced = rtclAl;
dest4_1 = rtcl6l;
dest4.2 = rtcl81;
dest4_3 = rtcl9l;
dest4_4 = rtcl61;
dest4.5 = rtcl8l;
dest4_6 = rtcl91;
dest4.7 = rtcl6l;
dest4_8 = rtcl81;
dest4_9 = rtcl91;

dest4_10 = rtcl6l;
include psos.constants
OBJECTS

TRANS taskl;

STORE storel;

TRANS task?2;

TRANS taskla;
STORE storela;
TRANS task2a;
TRANS tasklb;
STORE storelb;
TRANS task2b;
TRANS tasklc;
STORE storelc;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TRANS task2c;
TRRANS taskld;
STORE storeld;
TRANS task2d;
TRANS taskle;
STORE storele;
TRANS task2e;
TRANS tasklf;

STORE storelf;
TRANS task?f;

TRANS tasklg;
STORE storelg;
TRANS task2g;
TRANS tasklh;
STORE storelh;
TRANS task2h;
TRANS taskli;

STORE storeli;
TRANS task2i;

DEFINITIONS

/*TRANSx/ taskl]
PERIOD = perl;
FUNCTION = funl();
START_TIME = 1;
PRIORITY = source_priority;
OUTPUT = storel : discrete;
PROCESSOR = sourcel, source2, source3,
sourced;
ACTIVE = true;
DEADLINE = deadl;
)i

/*STOREx/ storel(

TYPE = depletable;

ELEMENT._SIZE = 10;

INPUT = taskl : discrete;

OUTPUT = task? : discrete;

PROCESSOR = dest1_1, dest2_1, dest3.1,
destd_1;

policy = prio;

I

[/* TRANS«/ task?[

SPORADIC = 0;

FUNCTION = fun();

START_TIME = 1;

PRIORITY = dest_priority;

INPUT = storel : discrete;

PROCESSOR. = dest1_1, dest2_1, dest3_1,
dest4_1;

ACTIVE = true;

119

l;

/+*TRANSx/ taskla|

PERIOD = perl;

FUNCTION = funl();

START.TIME = 1;

PRIORITY = source_priority;

OUTPUT = storela : discrete;

PROCESSOR = sourcel, source2, sourced,
sourced;

ACTIVE = true;

DEADLINE = deadl;

I;

/+*STOREx/ storela[

TYPE = depletable;

ELEMENT_.SIZE = 10;

INPUT = taskla : discrete;

OUTPUT = task2a : discrete;

PROCESSOR = dest1_2, dest2.2, dest3_2,
destq_2;

policy = prio;

I

/*TRANSx*/ task2a|
SPORADIC = 0;
FUNCTION = fun2();
START_TIME = 1;
PRIORITY = dest_priority;
INPUT = storela : discrete;
PROCESSOR. = dest1.2, dest2.2, dest3.2,
dest4_2;
ACTIVE = true;
Ii

/*TRANSx/ task1b]
PERIOD = perl;
FUNCTION = funl();
START.TIME = 1;
PRIORITY = source_priority;
OUTPUT = storelb : discrete;
PROCESSOR = sourcel, source2, sourced,
sourced;
ACTIVE = true;
DEADLINE = deadl;
B

/*STOREx] storelb|
TYPE = depletable;
ELEMENT_SIZE = 10;
INPUT = tasklD : discrete;
OUTPUT = task2b : discrete;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PROCESSOR = dest1_3, dest2_3, dest3_3,
destd_3;
policy = prio;

)

/* TRANS#/ task2b[

SPORADIC = 0;

FUNCTION = fun2();

START.TIME = 1,

PRIORITY = dest_priority;

INPUT = storelb : discrete;

PROCESSOR = dest1_3, dest2.3, dest3.3,
dest4_3;

ACTIVE = true;

I

/*TRANS*/ tasklc]

PERIOD = perl;

FUNCTION = funl();

START.TIME = 1;

PRIORITY = source_priority;

OUTPUT = storelc : discrete;

PROCESSOR = sourcel, source2, sourced,
sourced;

ACTIVE = true;

DEADLINE = deadl;

I;

/*STOREx/ storelc|

TYPE = depletable;

ELEMENT_SIZE = 10;

INPUT = tasklc : discrete;

OUTPUT = task2c : discrete;

PROCESSOR = dest1.4, dest2_4, dest3._4,
dest4_4;

policy = prio;

I

/*TRANSx/ task2c|

SPORADIC = 0;

FUNCTION = fun2();

START.TIME = |;

PRIORITY = dest_priority;

INPUT = storelc : discrete;

PROCESSOR = destl_4, dest2.4, dest3.4,
destd_4;

ACTIVE = true;

/*TRANSx/ taskld]|
PERIOD = perl;
FUNCTION = funl();
START.TIME = 1;
PRIORITY = source_priority;

120

OUTPUT = storeld : discrete;
PROCESSOR = sourcel, source2, sourced,
sourced;
ACTIVE = true;
DEADLINE = deadl;
k

/*STOREx] storeld|

TYPE = depletable;

ELEMENT.SIZE = 10;

INPUT = taskld : discrete;

OUTPUT = task2d : discrete;

PROCESSOR = dest1.5, dest2_5, dest3.5,
dest4._5;

policy = prio;

I

/*TRANSx/ task2d[
SPORADIC = 0;
FUNCTION = fun2();
START_TIME = 1;
PRIORITY = dest_priority;
INPUT = storeld : discrete;
PROCESSOR = dest1.5, dest2_5, dest3.5,
dest4.5;
ACTIVE = true;
l;
/*TRANS*/ taskle]
PERIOD = perl;
FUNCTION = funl();
START.TIME = 1;
PRIORITY = source_priority;
OUTPUT = storele : discrete;
PROCESSOR = sourcel, source2, sourced,
sourced;
ACTIVE = true;
DEADLINE = deadl;

It

/*STOREx/ storele|

TYPE = depletable;

ELEMENT_SIZE = 10;

INPUT = taskle : discrete;

OUTPUT = task2e : discrete;

PROCESSOR = dest1.6, dest2_6, dest3.6,
destd_6;

policy = prio;

J;

/*TRANS*/ task2e|
SPORADIC = 0;
FUNCTION = fun2();
START_TIME = 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner

PRIORITY = dest_priority;
INPUT = storele : discrete;
PROCESSOR = dest1_6, dest2_6, dest3_6,
dest4.6;
ACTIVE = true;
L
/+*TRANSx/ task1f]
PERIOD = perl,
FUNCTION = funl();
START.TIME = 1;
PRIORITY = source_priority;
OUTPUT = storelf : discrete;
PROCESSOR = sourcel, source?, sourced,
sourced;
ACTIVE = true;
DEADLINE = deadl;
I8

/*STORE«/ storelff

TYPE = depletable;

ELEMENT_SIZE = 10;

INPUT = tasklf : discrete;

OUTPUT = task2f : discrete;

PROCESSOR = dest1.7, dest2.7, dest3.7,
dest4.7;

policy = prio;

)i

/*TRANSx/ task2f]
SPORADIC = 0,
FUNCTION = fun?2();
START.TIME = 1;
PRIORITY = dest_priority;
INPUT = storelf : discrete;
PROCESSOR = dest1.7, dest2.7, dest3.7,
destd4_T;
ACTIVE = true,
I8

/*TRANSx/ tasklg|
PERIOD = perl;
FUNCTION = funl(),
START.TIME = 1;
PRIORITY = source_priority;
OUTPUT = storelg : discrete,
PROCESSOR = sourcel, source?, sourced,
sourced;
ACTIVE = true;
DEADLINE = deadl;
I

/*STOREx/ storelg|
TYPE = depletable;

121

ELEMENT.SIZE = 10;

INPUT = tasklg : discrete;

OUTPUT = task2g : discrete;

PROCESSOR = dest1_8, dest2_8, dest3_8,
dest4_8;

policy = prio;

JE

/*TRANS*/ task2g|
SPORADIC = 0;
FUNCTION = fun2();
START.TIME = 1;
PRIORITY = dest_priority;
INPUT = storelg : discrete;
PROCESSOR = dest1.8, dest2_8, dest3_8,
dest4_8;
ACTIVE = true;
I
/*TRANSx/ tasklh
PERIOD = perl;
FUNCTION = funl();
START.-TIME = 1;
PRIORITY = source_priority;
OUTPUT = storelh : discrete;
PROCESSOR = sourcel, source2, sourced,
sourced;
ACTIVE = true;
DEADLINE = deadl;

I;

/+#STOREx*/ storelhf

TYPE = depletable;

ELEMENT.SIZE = 10;

INPUT = tasklh : discrete;

OUTPUT = task2h : discrete;

PROCESSOR = dest1_9, dest2_9, dest3.9,
dest4_9;

policy = prio;

|5

[+ TRANS*/ task2h[

SPORADIC = 0;

FUNCTION = fun2();

START_TIME = 1,

PRIORITY = dest_priority;

INPUT = storelh : discrete;

PROCESSOR = dest1.9, dest2_9, dest3-9,
dest4_9;

ACTIVE = true;

/* TRANSx/ taskli]
PERIOD = perl;
FUNCTION = funl();

. Further reproduction prohibited without permission.

122

START.TIME = 1,

PRIORITY = source_priority;

OUTPUT = storeli : discrete;

PROCESSOR = sourcel, source2, sourced,
sourced;

ACTIVE = true;

DEADLINE = deadl;
I;

/*STORE*/ storeli[
TYPE = depletable;
ELEMENT_SIZE = 10;
INPUT = taskli : discrete;
OUTPUT = task2i : discrete;
PROCESSOR. = dest1.10, dest2.10,
dest3.10, dest4_10;
policy = prio;

1

/* TRANSx/ task2if
SPORADIC = 0;
FUNCTION = fun2();
START_TIME = 1,
PRIORITY = dest_priority;
INPUT = storeli : discrete;
PROCESSOR = dest1.10, dest2_10,
dest3_10, dest4_10;
ACTIVE = true;
I;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

APPENDIX I
WORKLOAD (4,1,10,10): FUNCTION FILE

FUNCTIONS

EXTERNS
OPER sread;
OPER swrite;

CONSTANTS
CODE

funl {

OUTPUT = y: DISCRETE;
BEGIN

LOOP loopcount

{
swrite(y, WAIT, 0, 200);
}.

ND;
b

fun2 {
INPUT = x : DISCRETE;
BEGIN
LOOP forever
{
sread(x, WAIT, NOLIMIT);
b
END;
b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

APPENDIX J
WORKLOAD (4,1,10,10): EXPERIMENT FILE

EXPERIMENT
CONSTANTS
[#*CONSTANT*/ Runs = 1;
PARAMETERS
/*PROCESSOR+/ default]
TIMEUNIT = 210;

TIMING = true;
TIMELIMIT = 1000/(loopcount+num_tasks) x perl;

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

{1] A. K. Agrawala, J. M. Mohr, and R. M. Bryant, “An approach to the workload char-
acterization problem,” IEEL Computer, vol. 9, no. 6, pp. 18-32, June 1976.

[2] 0. Babaoglu, “Efficient generation of memory reference strings based on the LRU stack
model of program behaviour,” in Performance 81, F. J. Kylstra, editor, pp. 373-383,
New York, 1981, North-Holland.

(3] 0. Babaoglu, “On constructing synthetic programs for virtual memory environments,”
in Ezperimental Computer Performance Evaluation, D. Ferrari and M. Spadoni, edi-
tors, pp. 195-204, New York, 1981, North-Holland.

[4] R. Baird, “APET - a versatile tool for estimating computer application performance,”

Software-Practice and Ezperience, vol. 3, pp. 385-395, 1973.

[5] W. H. Beyer, editor, CRC Handbook of Tables for Probability and Statistics, CRC

Press, Inc., second edition, 1987.

(6] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM Trans.
Computer Systems, vol. 2, no. 1, pp. 39-59, February 1984.

[7] R. Blumofe and A. Hecht, “Exccuting real-time structured analysis specifications,”
ACM Software Enginecering Notes, vol. 13, no. 3, pp. 32-40, July 1988.

[8] R. R. Bodnarchuk and R. B. Bunt, “A synthetic workload model for a distributed file
server,” Performance FEvaluation Review, vol. 19, no. 1, pp. 50-59, May 1991.

[9] W. Bruyn, R. Jensen, D. Keskar, and P. Ward, “ESML: An extended systems modeling
language based on the data flow diagram,” ACM Software Engineering Notes, vol. 13,
no. 1, pp. 58-67, 1988.

[10] W. Buchholz, “A synthetic job for measuring system performance,” IBM Systems Jour-

nal, vol. 8, no. 4, pp. 309-318, 1969.

{11} M. Calzarossa, M. Italiani, and G. Serazzi, *A workload model representative of static

and dynamic characteristics,” Acta Informatica, vol. 23, no. 3, pp. 255-266, June 1986.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

[12] M.-S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing and broadcasting in
hexagonal mesh multiprocessors,” [EEE Trans. Computers, vol. 39, no. 1, pp. 10-18,
January 1990.

[13] R. M. Cohen, “Formal specifications for real-time systems,”

on Computing Systems, pp. 1.1-1.8. IEEE, 1978.

in Proc. Tezas Conference

[14] ENP K1 Kernel Software User’s Guide, Communication Machinery Corp., May 1986.

15] M. S. Deutsch, “Focusing real-time systems analysis on user operations,” IEEE Sofl-
g

ware, pp. 39-50, September 1988.

[16] P. S. Dodd and C. V. Ravishankar, “Monitoring and debugging distributed real-time

programs,” Software-Practice and Lrperience, 1992. to appear.

[17] J. W. Dolter, P. Ramanathan, and K. G. Shin, “A VLSI architecture for dynamic
routing in HARTS,” Technical Report CRL-TR-4-88, Computing Research Laboratory,
The University of Michigan, April 1988.

[18] B. Domanski, “Building IMS synthetic workloads,” Perf. Eval. Review, vol. 13, no. 3
& 4, pp. 23-31, November 1985,

[19] J. J. Dujmovic, “Computer selection and criteria for computer performance evalua-

tion,” International Journal of Compuler and Information Sciences, vol. 9, no. 6, pp.
435-458, 1980.

[20] H. Falk, “CASE tools emerge to handle real-time systems,” Computer Design, vol. 27,

no. 1, pp. 53-74, January 1985,

[21] F. Feather, Validation of a Faull-Tolerant Multiprocessor: Baseline Erperiments and
Workload Implementation, Master's thesis, ECE Dept., Carnegie-Mellon University,
Pittsburgh, 1984.

[22] T. Feather, D. Siewiorek, and Z. Segall, “Validation of a fault-tolerant multiprocessor:
Synthetic workload implementation,” in Proc. Int’l Conf. on Distributed Computing
Systems, pp. 303-312, May 1986.

[23] D. Ferrari, “Workload characterization and selection in computer perforinance mea-

surement,” IEEE Computer, vol. 5, no. 4, pp. 18-24, July 1972.

24] D. Ferrari, Compuler Systems Performance Evaluation, Prentice-lHall, Englewood
! Y g

Cliffs, 1978.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

[25] D. Ferrari, “Characterization and reproduction of the referencing dynamics of pro-

grams,” in Performance ’81, I'. J. Kylstra, editor, pp. 363-372, November 1981.

[26] D. Ferrari, “A performance-oriented procedure for modeling interactive workloads,” in

Ezperimental Computer Performance Evaluation, D. Ferrari and M. Spadoni, editors,
pp. 57-78, New York, 1981, North-Holland.

[27] D. Ferrari, “On the foundations of artificial workload design,” in Proc. of 1984 ACM
SIGMETRICS Conf. on Meas. and Modeling of Comp. Sys., pp. 8-14, August 1984.

[28] D. Ferrari, G. Serazzi, and A. Zeigner, Measurement and Tuning of Computer Systems,
Prentice-Hall, Englewood Cliffs, 1983.

[29] S. L. Gaede, “Tools for research in computer workload characterization and model-
ing,” in Ezperimental Computer Performance Evaluation, D. Ferrari and M. Spandoni,

editors, pp. 235-247, New York, 1981, North-Holland.

[30] H. Gomaa, “A software design method for real-time systems,” Communications of the
ACM, vol. 27, no. 9, pp. 938-949, Scptember 1984.

[31] H. Gomaa, “Software development of real-time systems,” Communications of the ACM,

vol. 29, no. 7, pp. 657668, July 1986.

(32] G. Haring, R. Posch, C. Leonhardt, and G. Gell, “The use of a synthetic jobstream

in performance evaluation,” The Computer Journal, vol. 22, no. 2, pp. 209-219, May
1979.

[33] D. J. Hatley and 1. A. Pribhai, Strategies for Real-Time System Specification, Dorset
House Publishing, New York, 1987.

[34] R. Jain, The Art of Compuler Systems Performance Analysis, John Wiley & Sons,
Inc., 1991.

[35] E. O. Joslin, “Application benchmarks: The key to meaningful computer evaluations,”

in Proceedings of the 20th National Conference, pp. 27-37. ACM, August 1965.

[36] E. O. Joslin and J. J. Aiken, “The validity of basing computer selections on benchmark

results,” Computers and Automation, vol. 15, no. 1, pp. 22-23, January 1966.

[37] N. I. Kamenoff and N. II. Weiderman, “Hartstone distributed benchmark: Require-
ments and definitions,” in Proc. Real-Time Systems Symposium, pp. 199-208. IEEE,
IEEE Computer Society Press, December 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

[38] D. D. Kandlur, D. L. Kiskis, and K. G. Shin, “HARTOS: A distributed real-time
operating system,” ACM SIGOPS Operating Systems Review, vol. 23, no. 3, pp. 72-
89, July 1989.

[39] D. D. Kandlur, Networking in Distributed Real-Time Systems, PhD thesis, University
of Michigan, 1991.

[40] R. P. Kar and K. Porter, “Rhealstone: A real-time benchmarking proposal,” Dr. Dobb’s
Journal, February 1989.

[41] H. F. Ledgard and M. Marcotty, “A genealogy of control structures,” Communications
of the ACM, vol. 18, no. 11, pp. 629-639, November 1975.

[12] D. W. Leinbaugh, “Guaranteed response times in a hard real-time environment,” IEEE

Trans. Software Enginecring, vol. SE-G, no. 1, pp. 85-91, January 1980.

[43] J. W. S. Liu. personal communication, May 1991.

[44] C. D. Locke, “Generic avionic software,” IBM Systems Integration Division, DRAFT,
October 1988.

[45] H. C. Lucas, Jr., “Synthetic program specifications for performance evaluation,” in

Proc. ACM Annual Conference, pp. 1041-1058, Boston, August 1972.

[46] G. A. Ludgate, B. Haley, L. Lee, and Y. N. Miles, “The use of structured analysis and
design in the engineering of the TRIUMF data acquisition and analysis system,” IEEE
Trans. Nuclear Science, vol. NS-34, no. 1, pp. 157-161, February 1987.

[47] W.lun Kao and R. K. lyer, “A user-oriented synthetic workload generator,” in Proc.

12th Int. Conf. on Distributed Computer Systems, pp. 270-277. IEEE, June 1992.
[48] Luqi, V. Berzins, and R. T. Yeh, “A prototyping language for real-time software,”

IEEE Trans. Software Engincering, vol. 14, no. 10, pp. 1409-1423, October 1988.

[49] H. G. Mendelbaum and D. Finkehnan, “CASDA: Synthesized graphic design of real-
time systems,” IEEE Computer Graphics and Applications, vol. 9, no. 1, pp. 40-46,
January 1989.

[50] A. K. Mok, “The design of real-time programming systems based on process models,”

Proc. Real-Time Systems Symposium, pp. 5-17, December 1984.

1] J. Molini, S. Maimon, and P. Watson, “Real time distributed system studies/scenarios,”
in ONR Third Annual Workshop: Foundations of Real-Time Compulting, pp. 187-209,
October 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

[52] A. H. Muntz and R. W. Lichota, “A requirements specification method for adaptive
real-time systems,” in Proc. Real-Time Systems Symposium, pp. 264-273. IEEE, De-
cember 1991.

[53] P. W. Oman, “CASE analysis and design tools,” IEEE Software, vol. 7, no. 3, pp.
37-43, May 1990.

[54] P. Pulli, J. Dahler, H.-P. Gisiger, and A. Kundig, “Execution of Ward’s transformation
schema on the graphic specification and prototyping tool SPECS,” in COMPEURO-88
System Design: Concepts, Methods and Tools, pp. 16-25, April 1988.

[55] P.J. Pulli, “Execution of structured analysis specifications with an ob ject oriented petri
net approach,” in Proceedings of the IEEE 1989 National Aerospace and FElectronics
Conference NAECON 1989, volume 1, pp. 1747-1752, May 1988.

[56] E. L. Reilly and J. W. Brackett, “An experimental system for executing real-time
structured analysis models,” in Proceedings, Twelfth Structured Methods Conference,
pp. 301-314, August 1987.

[57] H. D. Schwetman and J. C. Brown, “An experimental study of computer system per-

formance,” in Proc. ACM Annual Conference, pp. 693-703, 1972.

(58] G. Serazzi, editor, Workload Characierization of Computer Systems and Computer

Networks, North-Holland, 1985.

[59] A. Singh, Pegasus: A Controllable, Interactive, Workload Generator for Multiproces-

sors, Master’s thesis, Carnegie Mellon University, December 1981.

(60] A. Singh and Z. Segall, “Synthetic workload generation for experimentation with mul-
tiprocessors,” in Proc. Int’l Conf. on Distributed Computing Systems, pp. 778-785,
1982.

[61] pSOS User’s Guide, Software Components Group, 1986.

[62] K. Sreenivasan and A. J. Kleinman, “On the construction of a representative synthetic

workload,” Communications of the ACM, vol. 17, no. 3, pp. 127-133, March 1974.

[63] H. Tokuda and M. Kotera, “Scheduler 1-2-3: An interactive schedulability analyzer for
real-time systems,” in Proc. of the 12th Annual Int’l Computer Software & Applications
Conference, pp. 211-219, 1988.

[64] R. E. Walters, “Benchmark techniques: a constructive approach,” The Computer Jour-

nal, vol. 19, no. 1, pp. 50-55, February 1976.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

[65] P. T. Ward and S. J. Mellor, Structured Development for Real-Time Systems, volume
1-3, Yourdon Press, Englewood Cliffs, 1986.

[66] M. Webb and P. T. Ward, “Executable data flow diagrams: an experimental imple-
mentation,” Structured Development Forum VIII, August 1986.

[67} J. W. Wendorf, “Implementation and evaluation of a time-driven scheduling processor,”

in Proc. Real-Time Systems Symposium, pp. 172-180. IEEE, December 1988.

[68] S. M. White and J. Z. Lavi, “Embedded computer system requirements workshop,”
IEEE Computer, vol. 18, no. 4, pp. 67-70, April 1985.

[69] B. E. Withers, D. C. Rich, D. S. Lowman, and R. C. Buckland, “Software requirements:
Guidance and control software development specification,” NASA Contractor Report
182058, Research Triangle Institute, June 1990.

[70] D. C. Wood and E. lI. Forman, “Throughput measurement using a synthetic job
stream,” in AFIPS Fall Joint Computer Conference, volume 39, pp. 51-55, Novem-
ber 1971.

[71] M. H. Woodbury, Workload Characterization of Real-Time Computing Systems, PhD
thesis, The University of Michigan, Ann Arbor, MI 48109, August 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

