
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

U niversity Microfilms International
A Beil & Howeil Information C o m p a n y

3 0 0 North Z e e b R o a d . Ann Arbor. Ml 4 8 1 0 6 - 1 3 4 6 U S A
3 1 3 7 6 1 -4 7 0 0 8 0 0 5 2 1 - 0 6 0 0

O rd e r N u m b e r 9208576

N etw orking in d istribu ted real-tim e system s

Kandlur, Dilip Dinkar, Ph.D.

The University of Michigan, 1991

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

NETWORKING IN DISTRIBUTED REAL-TIME SYSTEMS

by

Dilip Dinkar K andlur

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1991

Doctoral Committee:

Professor Kang G. Shin, Chairman
Associate Professor John R. Birge
Assistant Professor Chinya V. Ravishankar
Assistant Professor Stuart Sechrest
Associate Professor Toby J. Teorey

RULES REGARDING THE USE OF

MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations sub
m itted to The U niversity of M ichigan and m ade available through
University Microfilms International or The University of Michigan are
open for inspection, but they are to be used only with due regard for the
rights of the author. Extensive copying of the dissertation or publication
of material in excess of standard copyright limits, whether or not the
dissertation has been copyrighted, m ust have been approved by the
author as well as by the Dean of the Graduate School. Proper credit must
be given to the author if any material from the dissertation is used in
subsequent written or published work.

© Dilip Dinkar Kandlur 1991
All Rights Reserved

To my parents and Sharmila

ACKNOW LEDGEM ENTS

It is impossible to individually acknowledge all the people who have contributed,

both directly and indirectly, to this dissertation. However, I would be amiss if I did not

specially thank the people who have influenced me the most.

My deepest gratitude is to my advisor Professor Kang G. Shin for his constant

encouragement and support throughout the course of this work. In spite of all the demands

on his time, he has always been eager to discuss our problems and his insightful comments

and suggestions have been invaluable. Moreover, it would be hard to find a person who is

more concerned about his students. Similarly, I would like to thank Professors Toby Teorey

and Chinya Ravishankar for their guidance during the initial stages of my graduate program,

and for serving on this doctoral committee. I would also like to express my appreciation to

the other members of this committee, Professors Stuart Sechrest and John Birge for their

constructive criticisms on this dissertation.

I have benefited greatly from my discussions with several past and present members

of the Real-time Computing Laboratory. In particular, Parmeswaran Ram an at h an helped

me formulate the ideas on reliable broadcasting and traffic routing. James Dolter helped

me understand the operations of the HARTS routing and packet controllers. Parmesh and

Jim have also provided assistance in various other things, too numerous to list here. Daniel

Kiskis helped me develop the preliminary version of the HARTOS operating system.

I would like to gratefully acknowledge the Department of EECS, the Office of Naval

Research, and IBM Corporation for providing financial support during the course of my

graduate program. Thanks to Brian Aupperle for developing the Rackham thesis style which

I have used to format this document. Thanks also to Sriram Padmanabhan, Padmanabhan

Krishnan, and Krishna Reddy for making my stay in Ann Arbor more enjoyable.

Finally, I thank my wife Sharmila for her constant support, her patience and

understanding.

TABLE OF CO NTENTS

D E D IC A T I O N ... ii

A C K N O W L E D G E M E N T S .. iii

L IS T O F T A B L E S .. vi

L IST O F F IG U R E S .. vii

L IST O F A P P E N D IC E S ... ix

C H A P T E R

1 I N T R O D U C T I O N ... 1
1.1 B ackground... 1
1.2 Research O b jec tiv es ... 3
1.3 A p p ro ach .. 5
1.4 Outline of the D is se r ta tio n .. 9

2 P R E L I M I N A R I E S ... 11
2.1 The Communication Subsystem .. 11
2.2 Real-time Com m unication... 14

3 R E A L -T IM E C H A N N E L S ... 20
3.1 Delivery Time Guarantees .. 20
3.2 Basic Solution Approach ... 23
3.3 Flow Control and Buffer M anagem ent.. 34
3.4 Extensions for Long Messages ... 36
3.5 Related Work ... 40
3.6 S u m m ary .. 41
A p p en d ix ... 42

4 T H E R O U T E S E L E C T IO N P R O B L E M .. 43
4.1 In tro d u c tio n .. 43
4.2 Notation and Problem Formulation .. 44
4.3 Derivation of the Link Cost Function .. 46
4.4 Problem C haracterization ... 48
4.5 Solution Algorithm ... 51
4.6 Performance E v a lua tion .. 54
4.7 S u m m ary .. 58
A p p en d ix ... 60

iv

5 R E L IA B L E B R O A D C A S T IN G ... 07
5.1 In tro d u c tio n .. 67
5.2 The Broadcast Primitive ... 68
5.3 Simple B roadcasting ... 71
5.4 Multiple Copy B roadcasts... 74
5.5 Algorithm Analysis ... 83
5.6 Concluding R em arks... 90

0 IM P L E M E N T A T IO N O N H A R T S ... 92
6.1 The NP K ern e l... 93
6.2 The Application In te rface ... 96
6.3 Communication Services ... 101
6.4 Supporting Real-time Channels .. 106
6.5 Current S t a tu s ... 115
A ppendices.. 118

7 D IS C U S S IO N A N D F U T U R E W O R K ... 124
7.1 Research C o n trib u tio n s .. 124
7.2 Future Directions .. 126

B IB L IO G R A P H Y ..127

v

LIST OF TABLES

Table
2.1 Communication subsystem structure.. 12
3.1 N o ta tio n ... 21
4.1 N o ta tio n ... 45
5.1 Latency for different broadcast algorithms.. 84
5.2 Comparison of simple broadcast algorithms.. 85
6.1 Some Uniform Protocol Interface (UPI) operations.. 95
6.2 Some library functions.. 96
6.3 Host protocol object s ta te ... 99
6.4 Communication subsystem performance.. 116

vi

LIST OF FIGURES

Figure
1.1 A hexagonal mesh of dimension 3 (E-3).. 7
1.2 Block diagram of a HARTS node.. 8
3.1 Delivery time guarantee... 22
3.2 Channel Establishment Procedure .. 23
3.3 Effect of early arrivals.. 25
3.4 Assignment Procedure D .O rd e r ... 27
3.5 Processing on Packet Arrival .. 31
3.6 D ispatcher.. 32
3.7 Packet group illustration... 37
3.8 Channel establishment for packet groups.. 39
3.9 Extensions to Procedure D.Order for packet groups.. 40
4.1 Graph component corresponding to a variable... 50
4.2 Single path selection... 52
4.3 The route selection algorithm.. 53
4.4 Comparison using number of bufferings: E-5 mesh, uniform distribution. . . 61
4.5 Comparison using the cost function: E-5 mesh, uniform distribution............ 61
4.6 Comparison using number of bufferings: E-5 mesh, non-uniform distribution. 62
4.7 Comparison using the cost function: E-5 mesh, non-uniform distribution. . 62
4.8 Cost comparison: E-4 mesh, uniform distribution... 63
4.9 Performance improvement: E-4 mesh, uniform distribution............................. 63
4.10 Cost comparison: E-4 mesh, non-uniform distribution....................................... 64
4.11 Performance improvement: E-4 mesh, non-uniform distribution..................... 64
4.12 Cost comparison: Q-5 hypercube, uniform distribution..................................... 65
4.13 Performance improvement: Q-5 hypercube, uniform distribution................... 65
4.14 Cost comparison: Q-6 hypercube, uniform distribution..................................... 66
4.15 Performance improvement: Q-6 hypercube, uniform distribution................... 66
5.1 Simple broadcast for an E-4 mesh (SBCAST)... 73
5.2 Direction labeling.. 73
5.3 Packets generated in one direction for the six broadcast algorithms................ 75
5.4 2-BCAST for an E-4 mesh.. 77
5.5 3-BCAST for an E-4 mesh.. 77
5.6 Packets generated in a 6-BCAST (from one direction)... 79
5.7 Packets generated in a 5-BCAST (from one direction)... 81
5.8 Packets generated in a 4-BCAST (from one direction)... 81
5.9 Disjoint paths in a 6 -B C A S T .. 82
5.10 Performance of simple broadcast... 86
5.11 Performance of multiple copy broadcasts (mesh size = 7)................................ 87
5.12 Performance of store and forward simple broadcast... 88

vii

5.13 Performance comparison of simple broadcast algorithms................................... 89
5.14 Comparison of SBCAST and SFBCAST with varying mesh size.................... 89
5.15 Average delivery time comparison with varying mesh size................................. 90
5.16 Broadcast tree for a wrapped rectangular mesh (in one direction)................... 91
6.1 Network processor architecture... 94
6.2 The host interface... 97
6.3 Simplified view of the communication subsystem... 102

viii

LIST OF A PPEN D IC ES

A p p en d ix
3.A Schedulability A nalysis... 42
4.A The Satisfiability P ro b le m ... 60
6.A HARTS Packet F o rm at.. 118
6.D Host User In te rface .. 120

ix

C H A PT E R 1

IN TR O D U C TIO N

1.1 Background

A commonly used definition of a real-time system is that it is one in which the

value of a computation depends not only on the logical correctness of the results, but also on

the time at which the results are produced [SR88]. This definition reinforces the notion that

time is one of the most im portant entities in the system, and there are timing constraints

associated with system tasks. While this definition is broad, and applies to several classes

of systems like multimedia communication systems, on-line transaction processing systems,

and process control systems, our focus is restricted to real-time process control systems.

Examples include control systems for aircraft, spacecraft, nuclear power plants, and drive-

by-wire automobiles.

In addition to timing constraints, another important characteristic of real-time

control systems is their stringent reliability requirement, since a failure of the control system

can lead to a disaster. The specification of the reliability depends upon the application. For

example, the reliability requirements for commercial transport aircraft and spacecraft are

specified in terms of the allowable probability of failure per mission, and a figure of 10-9

has been specified by the NASA for commercial aircraft for a 10-hour flight [G+84]. In

order to achieve these stringent requirements the system must have the ability to withstand

component failures, so fault-tolerance plays an im portant role in the design of these systems.

Distributed processing systems are potentially well suited to meet the performance

and reliability requirements of real-time control systems. These systems offer several advan

tages such as parallel computation, graceful performance growth, and graceful degradation

in the presence of faults. Moreover, a distributed system is ideally suited for environments

which have considerable physical separation between the components to be controlled. The

availability of inexpensive and powerful microprocessors also makes these systems cost-

effective.

1

2

In the design of distributed systems for real-time applications, along with pro

cessors and memory components, the interconnection network is an im portant component.

One of the goals in the design of the interconnection network is to provide reliable commu

nication in the presence of component failures. The approach taken in multicomputers like

SIFT [G+84] and MAFT [KWFT88] is to provide a fully-connected network, where each

node is connected to every other node with dedicated point-to- point links. Although this

method is extremely reliable, it does not scale and can be used only in systems with a small

number of nodes. As a case in point, both SIFT and MAFT have less than 10 nodes.

For larger systems, it is necessary to use networks which are not fully connected.

A notable approach to providing fault-tolerant communications is the AIPS virtual bus

scheme [Lal87, LHA91]. The AIPS network controllers are connected by multiple poin t-to-

point links, but they are configured under software control to act as a single virtual bus.

However, there is a significant delay incurred in traversing through the repeater stages in

a controller node, so the end-to-end latency is substantial when multiple links are to be

traversed. This results in long bit-holding times for the contention resolution protocol used

to gain access to the virtual bus, which can adversely affect the throughput. Also, the

virtual bus configuration does not permit simultaneous communication over disjoint paths

in the network.

In contrast to these approaches, we consider a (partially connected) point-to-point

interconnection network with a regular structure as a good candidate for use in real-time

control systems. Examples of such networks include hypercubes and meshes [Sei85, CSK90].

The existence of multiple disjoint paths between nodes in these networks make them robust

to link and node failures. Also, the links in this network operate in parallel and this results

in a higher total throughput than that of shared medium networks like buses and rings.

Typically, these networks have been operated in a packet switching mode. In this

mode, if a message has to traverse several network nodes to reach its destination, packets

are stored at each intermediate node and then transm itted forward. One major drawback

of packet switching is the large delay in communication which arises from the store and

forward mechanism. Another possible mode of operation is circuit switching, in which the

route to the destination is reserved before the message is transm itted. Since the route is

reserved, the packet can be directly transm itted from the source to the destination without

any buffering delays. The problem with this method is the overhead associated with the

circuit set-up, which makes it unsuitable for short messages. The circuit set-up overhead

also results in a wastage of network bandwidth and low utilization.

3

The virtual cut,-through switching technique can provide low-latency communi

cation in partially connected point-to-point networks. This technique, first proposed by

Kermani and Kleinrock [KK79], has flavors of both circuit and packet switching. In this

scheme, messages arriving at an intermediate node do not always get buffered, instead, they

are forwarded to the next node in the route if a circuit can be established. This differs from

conventional packet-switching schemes in the sense tha t messages do not always get buffered

at an intermediate node. It also differs from circuit switching schemes since messages do

not wait for the entire circuit to the destination to be established before proceeding along

the route.

Advances in VLSI technology have now made it possible to implement sophisti

cated switching schemes, like virtual cut-through, which reduce the message delivery time

significantly. Network controllers like the Torus routing chip [DS86, DS87] and the HARTS

routing controller [DRS89] are notable examples. It is therefore feasible to use a multi

computer based on a point-to-point network with virtual cut-through switching for many

real-time applications. Many of the issues considered in this dissertation deal with commu

nications in a multicomputer system of this kind.

1.2 Research O bjectives

Although distributed systems offer many advantages for real-time applications,

they also present several challenging problems. This includes providing guarantees for

timely delivery of messages and managing the network to realize its potential for high

performance and fault-tolerance. The main focus of this dissertation is to address problems

related to providing time-constrained and fault-tolerant communication in distributed real

time systems.

In any real-time system, a significant number of tasks have time constraints as

sociated with them. Communication between these tasks has to be predictable and time-

constrained because unpredictable delays in message delivery could affect their execution.

For example, sensor data has to be delivered to the processing task within certain time

bounds, so tha t the task can produce its control output in time. In order to make inter-task

communication predictable, the sending task must be given a guarantee on the delivery

time of the message. Moreover, this delivery time should not be an artifact of the network,

but should be determined by the needs of the sending task. The problem of providing tim

ing guarantees for inter-task communication is especially difficult in distributed systems,

because network delays and characteristics have to be included in the analysis. Our efforts

4

are aimed at developing a scheme which gives a priori gua.ra,nt,ees on message delivery for

inter-node communication with delivery time constraints.

In the type of network that we consider, there are several different paths between

any given pair of nodes. This poses the problem of selecting routes for inter-task commu

nication, and our aim is to select routes which preserve the benefits of virtual cut-through

switching. In this switching technique, since messages do not necessarily get buffered at

intermediate nodes, the delays encountered are smaller than those for a packet switching

scheme. The automatic forwarding also means that if a cut-through switch is established,

the packet is not seen by the processor at that intermediate node. Hence, the load im

posed on the network processors at the intermediate nodes is smaller than tha t for a packet

switching scheme. However, the communication latency is critically dependent upon the

number of times tha t a packet gets buffered at intermediate nodes. The emphasis of our

traffic routing scheme is on choosing routes so that the congestion in the network is avoided,

and the number of bufferings is minimized. This work also yields an algorithm which can

be applied to select routes for traffic with timing constraints.

In a real-time system, it is essential to provide a common time-base for all the

system nodes. The time base is required so that common deadlines can be specified and

tasks on different nodes can coordinate and complete their operations before the specified

deadline. In order to establish a common time-base, it is necessary to synchronize the

local clocks on the individual nodes in the system. Clock synchronization can be achieved

by using either hardware or software solutions. Hardware solutions can achieve very tight

synchronization, but they do so at the expense of employing additional lines for clock signals

or using a separate clock network. Software solutions, on the other hand, use messages to

periodically exchange clock values between nodes and they adjust the individual clocks

based on these clock values. In [RKS90], we developed a synchronization scheme which

strikes a balance between the additional hardware required and the clock skews tha t can

be attained. It is a software algorithm th a t requires no modifications to the network, and

uses timestamping hardware at the nodes to achieve reasonably tight synchronization.

This synchronization scheme relies on a mechanism for broadcasting clock messages

reliably from any node in the system. Broadcasting is also an im portant operation in many

other algorithms like distributed diagnosis, resource lookup, etc. An obvious shortcoming of

a point-to-point interconnection network is that broadcasting is expensive and non-trivial.

We study the problem of providing support for efficient broadcasting in a point-to-point

network with virtual cut-through switching. Furthermore, we also address the problem of

5

reliable broadcasting in the presence of unknown (or even Byzantine) faults, in a mesh

network.

In addition to developing analytical solutions for these problems, our aim is to

implement them to provide communication services for applications. Although communica

tions support is critical for a distributed system, it is a system overhead from the perspective

of applications. If the overhead is high, it can interfere with execution of application tasks.

Thus, our objective is to explore the use of a dedicated communication coprocessor to

provide these services. A dedicated communication coprocessor may add to the cost of the

system, but it can be used to perform additional functions related to monitoring and system

diagnosis.

In summary, the objectives of this dissertation are to:

• develop a scheme which supports time-constrained communication

• improve the performance of virtual cut-through switching using traffic routing

• provide a fault-tolerant broadcasting mechanism for mesh networks

• integrate these services into the operating system and exploit the use of a communi

cation coprocessor to provide these services.

1.3 Approach

The goal of this dissertation is to study and solve problems related to commu

nication in distributed real-time systems. Our endeavor is to develop solutions for these

problems in a general setting, which would be applicable to a variety of real-time systems.

However, we are also interested in implementing our solutions so as to demonstrate their

validity and thus develop a base for experimenting with real-time applications. The follow

ing subsection gives an overview of HARTS1, which serves as the implementation vehicle

for our research.

1.3.1 H ARTS

HARTS is an experimental distributed real-time system, which is being developed

in the Real-time Computing Laboratory, The University of Michigan [Shi91]. It is comprised

of several multi-processor nodes connected by a point-to-point interconnection network. A

’ Hexagonal Architecture for Real-Time Systems

6

HARTS node consists of several Application Processors (APs) which are used for running

application tasks, and a Network Processor (NP). The NP contains the interface to the

network, buffer memory, and a general-purpose processor. This processor can be used to

handle most of the processing related to communication. The network uses the virtual

cut-through switching scheme, described earlier in Section 1.1.

The HARTS network has a C-wrapped hexagonal mesh topology [CSK90, Ste86],

which is a regular, homogeneous graph where each node has six neighbors. It can be defined

succinctly as follows.

D efin ition 1 A C-wrapped hexagonal mesh o f size n is comprised o f N = 3n(n — 1) -f 1

nodes, labeled from 0 to N — 1, such that each node s has six neighbors [s-f l]^r, [s + 3 n - 1]^,

[s -f 3n — 2]/v, [■» + 3n(n — l)]yv, [s + 3n2 — 6n + 2];v, and [s + 3n2 - 6r? + 3]^, where [a](,

denotes a mod b.

The graph can be visualized as a simple hexagonal mesh with wrap links added to the

nodes on the periphery. A simple hexagonal mesh looks like a set of concentric hexagons

with a central node, where each hexagon has one more node on each edge than the one

immediately inside of it. Figure 1.1(a) shows a simple hexagonal mesh of dimension 3,

while Figure 1.1(b) illustrates the wrapping scheme for the nodes. An analysis of some of

the topological properties of the HARTS network, and its comparison with other topologies,

can be found in [CSK90].

The hexagonal mesh offers better connectivity, and thus better fault-tolerance,

than a rectangular mesh. Moreover, routing algorithms have been developed [OS89] which

exploit the fault-tolerance properties of the network. Compared to the hypercube topology,

the hexagonal mesh has the advantages of better scalability and fixed node degree. Also,

for small systems (less than 100 nodes), it has better connectivity than a hypercube. The

version of HARTS under construction has a hexagonal mesh of dimension 3 and contains

19 nodes.

In the current configuration, the nodes of the HARTS system are VME-bus based

Ironies Performer-32 systems (see Figure 1.2). Each node has 1-3 AP cards, a System

Controller card, and an Ethernet processor card. The processor cards have a Motorola

68020 32-bit processor, optional memory management unit, and 1 or 4 Mbytes of dual

ported RAM which can be accessed from the VME-bus. These cards also have a hardware

mailbox interrupt mechanism which generates a CPU interrupt on a write access to the top

256 bytes of the dual-port memory. The System Controller Card arbitrates the VME bus

and also contains two serial ports, a SCSI bus controller, and a clock/calendar. The Ethernet

7

15, 1 6]

17] 181

10

(a)

2 3 3 4 4 b

IV 16'13

17

10

10

16 18

14>10,

1515 16 1716

(b)

Figure 1.1: A hexagonal mesh of dimension 3 (E-3).

8

C w dctg t Boundvy

A R B ut I r f r t t c t

t~ Pn c w w
L Mcesoao Jrsn r~5n

4 h B
Loc^ Memory

WOC But H i r f M

(PrOOttMT 1
MCMflgQ J

(F f f) r PM AJ ^
I MM1 J I W t l j

V W Kw M rta c *

f ^ « o n w 1
I MC M 0?0 J

rsn rsn
lo ca l Momery

[W E h i W «<«» IVME B ut H u h o i

(VME But W u l l]VM EButM wtoco

MIC But
A rt**

ciod*
C rf* id *

-
SCSI B ut Soriel
C orfro i* Port*

EtjM rimtrttl

(» M E M W . t o]

T Proems 1
1 MCfOOO J

J M « U W C t C r t < « i i J

V_ 8 y * tm C ortro i*

'• >'6

To HtstQonal Moth
Ethernet IEEE 602-3

Figure 1.2: Block diagram of a HARTS node.

9

Processor card ENP-10 uses a 10 MHz 68000 processor, an AMD Ethernet Controller device

(LANCE), and provides 512 Kbytes of buffer memory which is also accessible from the VME-

bus. Note th a t the Ethernet is not a part of the HARTS architecture, but it currently serves

as the system interconnect while the custom hexagonal mesh network is under development.

The Ethernet also serves as a link to the workstations used for software development. A

custom routing controller chip [DRS89] has been developed which supports virtual cut-

through switching. It implements the data link layer and portions of the network layer

of the OSI seven layer model for network communications. This chip will be used in the

network processor card and will serve as the front-end interface to the hexagonal mesh.

1.4 O utline of the D issertation

The structure of this dissertation is as follows. In Chapter 2 we present an overview

of our approach to the problem of providing support for communications in distributed real

time systems. We also describe the communication requirements of real-time systems, and

propose a scheme for providing predictable inter-process communication in real-time sys

tems which gives guarantees on the maximum delivery time for messages. This scheme is

based on the concept of a real-time channel, a unidirectional connection between source and

destination. A real-time channel has parameters which describe the performance require

ments of the source-destination communication, e.g., from a sensor station to a control site.

This chapter provides the framework for the work described in subsequent chapters.

Chapter 3 deals with the problem of establishing real-time channels. Once such a

channel is established, the communications subsystem guarantees tha t these performance

requirements will be met. In this chapter, we concentrate on methods to compute guarantees

for the delivery time of messages belonging to real-time channels. We also address problems

associated with allocating buffers for these messages and develop a scheme which preserves

delivery time guarantees. Issues relating to the implementation of real-time channels are

deferred to Chapter 6.

In Chapter 4, we address the problem of selecting routes for inter-process commu

nication in a network with virtual cut-through capability, while balancing the network load

and minimizing the number of times that a message gets buffered. The approach taken

here is to formulate the route selection problem as a minimization problem, with a link cost

function th a t depends upon the traffic through the link. The form of this cost function is

derived based on the probability of establishing a virtual cut-through route. It is shown that

this route selection problem is A/TMIard in the general case, so an approximate algorithm

10

is developed which tries to incrementally reduce the cost by re-routing traffic. The per

formance of this algorithm is evaluated for two regular network topologies: the hypercube

and the C-wrapped hexagonal mesh — example networks for which virtual cut-through

switching support has been developed. This chapter also presents an algorithm which can

be used to select routes for real-time channels.

Chapter 5 is focused on the problem of broadcasting in mesh networks. A simple

extension of the virtual cut-through switching method is proposed, which provides good

support for broadcasting in mesh-connected multicomputers. An implementation of this

extension (termed a broadcast primitive) for HARTS is also presented. Based on this

primitive, a set of broadcast algorithms is developed for the hexagonal mesh topology.

These algorithms deliver multiple copies of a message from a source node to every other

node in the hexagonal mesh through disjoint paths. They can be used for broadcasting in

the presence of faulty nodes/links, even when the identity of the faulty components is not

known. It is noted that the 5-BCAST algorithm described in this chapter is an im portant

component of the clock synchronization scheme presented in [RKS90]. The performance of

these algorithms is analyzed and compared with the performance of other possible broadcast

algorithms.

In Chapter 6 we describe the design and implementation of a communication

subsystem for HARTS, which incorporates the ideas presented in the earlier chapters. We

first present the kernel for the HARTS NP on which the subsystem is built, and describe

how it interfaces with the Application Processors. We then describe the components of the

subsystem, which provide different services, like the clock synchronization service. We place

special emphasis on the components relating to the implementation of real-time channels

and these are described in detail. We also present preliminary results on the performance

of the subsystem.

The dissertation concludes with Chapter 7, which reviews the contributions of this

dissertation and presents a discussion of future directions for the work presented herein.

C H A PT E R 2

PRELIM INARIES

In this chapter, we present the framework for the dissertation, and explain our

model for real-time communication. The approach that we take is to design a subsystem

which provides various communication related services to applications. In the first section,

we present a high-level description of this communication subsystem, leaving the details of

the implementation for Chapter 6. Following this, we present the model for communication

with timing constraints.

2.1 The Com m unication Subsystem

The im portant objectives of a real-time communication subsystem are to deliver

messages before certain deadlines and to provide mechanisms for reconfiguration in case

of failures of network components. It also offers services such as maintenance of a global

time-base using a clock synchronization algorithm, and support for group communication.

The global time-base has benefits not only for application tasks, but also several system

functions like message scheduling and network management. Also, the subsystem incorpo

rates several functions, like route selection and broadcasting, which are necessary to support

these services.

In HARTS, communication functions are the responsibility of the Network Pro

cessor (NP). The communication subsystem is designed to be resident on the NP and it is

interfaced to the real-time kernel which runs on the Application Processors (APs). The APs

currently run the pSOS™ uniprocessor real-time operating system kernel [Sof86]. pSOS

serves as the executive on each AP and provides facilities like process management, memory

management, event handling and local inter-process communication. In prior work [KKS89],

we had extended the pSOS primitives to work in a multiprocessor and multicomputer envi-

™ pSOS is a tradem ark of Software Components Group, Inc.

11

12

Interface to the AP
Services Network Management Name Service

Real-time Channel Group Channel
Clock Synchronization

Transport Level Request-Reply User Datagram
Network Level Datagram Service
Link Level Broadcast Service

Message Scheduling

Table 2.1: Communication subsystem structure.

ronment. This system provides pSOS-style communication between nodes and serves as a

test-bed for distributed workloads [KS90b]. However, the pSOS communication primitives

do not have any notion of timing constraints associated with them. This was one of the

motivating forces for the development of a new communication system.

Table 2.1 presents an overview of the services tha t are provided by this subsystem.

This table shows the functions provided at the different layers in the OSI reference model. As

is the case in many LAN architectures, some of the higher layers of the reference model are

not required. For example, since we are targeting a homogeneous system, presentation level

functions are not required. At the link level, we have to manage multiple point-to-point

links and take care of packets tha t are transiting through the node. We also have to prioritize

between different packet types and regulate the access to the links. The broadcasting

mechanism is also supported at this level. It will be seen that this mechanism can benefit

greatly from hardware assistance at the physical level. At the network level, we provide a

simple datagram service which can be used by the higher level services and by applications.

At the transport level, we support both request-reply and datagram functions. The request-

reply function is used by the network management and the name service functions, and it

can also be accessed by other functions. The Real-time Channel service is our method

for providing time-constrained communication, and it is the topic of the next section. The

network management functions include the establishment of real-time channels and handling

of link/node failures. The services of this subsystem are made available to processes running

on the APs by the interface layer.

As stated above, one of the design objectives for the subsystem is reconfiguration

in the case of network failures. Before elaborating on the communication scheme, we would

13

like to clarify some issues regarding fault-tolerance, including the assumptions tha t we make.

T h e F au lt M odel; Since the system under consideration is not designed for a specific

application, it is not clear what fault model would be appropriate for the entire system.

Consequently, our approach is to investigate the types of faults tha t can be handled, at a

reasonable cost, a t each level or for each operation. We would then analyze the class of

faults tha t the system can tolerate after examining all the levels in detail.

For instance, at the link level, we use a checksumming mechanism as protection

against corruption of data in messages. For the NP, the model adopted is tha t of non-

malicious faults where components fail gracefully, tha t is, failed components do not collude

to disrupt the operation of non-faulty components. Thus, we assume that a failure in the NP

will manifest itself only as a loss of messages and it can be detected by the other neighboring

nodes in the system. Another way of looking at this, from the network viewpoint, is that the

faults considered are timing or omission faults [CASD85]. In [Sch84], Schneider describes

a method for building such non-malicious processors.

At the application level, the group communication facility is provided to support

fault-tolerance by masking faulty outputs using replication and voting. We do not attem pt

to recover from process faults; they are just masked by the voting process. For real-time

systems, this scheme is considered to be more suitable than a rollback recovery scheme

because of the timing constraints involved. The group communication facility is being

developed as an extension of the real-time communication scheme presented in this chapter.

F au lt D e tec tio n a n d R ecovery : In this dissertation, we restrict our attention to

detection of, and recovery from, network faults, which can be classified as link and node

failures. One possible approach for fault detection is to periodically exchange status mes

sages. When a failure is detected, it is necessary to reroute the traffic tha t originally used

the failed components. This topic will be covered in greater detail in Chapter 6.

14

2.2 R eal-tim e C om m unication

The objective of our work here is to provide and support an abstraction which

allows expression of the communication requirements of real-time applications. Specifically,

we consider the issue of guaranteeing the delivery of messages with time constraints. The

problem of time-constrained communication can be defined as follows.

D efin ition 2 T im e-C o n s tra in e d C o m m u n ica tio n : A message generated at the source

station by an application program must be received at the destination station within a given

amount o f time after its generation at the sending station. Messages which cannot be deliv

ered to their destinations before the given time constraint (deadline) are considered lost.

The problem of time-constrained communication has been studied by several re

searchers, since it plays an important role in video- and voice- data transmission over a data

network. Recently, it has also been studied in the context of communication in embedded

or real-time systems. These efforts have been directed mainly towards designing medium

access protocols for multiple-access networks which consider time constraints on messages.

The medium access protocols try to implement a distributed scheduling discipline, and the

focus has been on developing algorithms which try to minimize message loss. For example,

in the case of CSMA/CD networks, the proposed algorithms include the virtual-time based

methods [ZR87] and the window based access methods [KSY88, ZSR88]. The survey paper

by Kurose et al. [KSY84] discusses many of the other proposed techniques. Most of these

schemes can be classified as best-effort schemes, where the system tries to ensure that most

messages meet their deadlines, but it cannot give any guarantees about the delivery times.

The performance of these algorithms is demonstrated mainly by simulation using certain

stochastic arrival and deadline patterns.

On the other hand, when the system has some information about the arrival pat

tern of messages, it can try to give guarantees about their delivery times. For example,

Strosnider and Marchok [SM89] use a variation of the rate-monotonic scheduling algorithm

to control access to a token-ring network. They assign priorities at design time to message

sources based on the periodicity of message generation using which they can check for the

possibility of deadline overrun. In their work, the time-constraint on periodic messages

is implicitly assumed to be the beginning of the next period. Recently, Arvind and oth

ers [ARS91a, ARS91b] have proposed a scheme for guaranteed delivery of messages on a

multiple access network using a window-based medium access control algorithm. However,

their guarantee computation is based on a local worst-case analysis where it is assumed that

15

all other nodes in the network have packets to send. They do not make use of information

about actual message generation at other nodes.

The network under consideration here is, however, not a multiple-access network,

but has a point-to-point interconnection structure which, as mentioned earlier, has po

tential for higher performance and reliability than bus/ring structures. In this case, the

problem is more complicated than multiple-access networks, because we have to consider

delivery time constraints across multiple stages in the network. In this type of network,

there is only one source node for any network link, so the issue to be addressed is not one

of access to the medium but tha t of message scheduling in the network nodes. Although it

is possible tha t messages which have to traverse multiple links to reach the destination may

suffer from the problem of higher latency, the latency can be made more predictable using

message scheduling and network flow control. The higher latency need not be a problem for

periodic messages, where it is generally assumed that the deadline for a periodic message is

the beginning of the next period, which is typically large. There has not been much work

reported on the problem of providing time-constrained communication in a local-area point-

to-point interconnection network. However, the work by Ferrari, Anderson and others in

the DASH and Tenet projects [Fer89, FV90, And88, AF88] dealing with continuous-media

communication in wide-area networks is closely related to the work reported here. (See

Section 3.5 for differences between this work and ours.)

2.2.1 M essage Types

Before elaborating on the topic of time-constrained communication, we will first

characterize the types of messages encountered. In a real-time system, there are several

classes of messages with different requirements. Guarantees are required for a small but

significant number of messages in the system. In the manner of Strosnider [Str88], we

classify message traffic into three classes:

1. Alert messages

2. Real-time messages

3. Non real-time messages.

Alert messages are aperiodic and they have strict delivery time constraints. They

are considered to represent catastrophic conditions, hence they are allowed to interfere

with normal system operations. We perceive that messages in this class would require the

transmission of multiple copies on node-disjoint paths to guard against transmission errors.

16

Real-time messages, which have time-constraints on their delivery time, form the

second class. These include both periodic and aperiodic messages, and in either case the

time-constraint would be explicitly specified. For periodic messages, the periodicity can be

precisely specified and the inter-arrival time will be approximately constant. An important

subclass of this are the Clock messages which would be exchanged between nodes as part

of the clock synchronization algorithm. The arrival pattern for aperiodic messages can be

specified using a pessimistic estimate for the minimum inter-arrival time. It is assumed that

an occasional loss of messages, due to transmission errors or because of a time-constraint

violation caused by the presence of Alert messages, is permissible for these messages. The

multiple-path approach can be used to further minimize this type of message loss, if the

requirements of the application demand it.

Messages of the third class do not have hard time-constraints, so their scheduling

and routing is much more flexible. The system is only required to provide “best-cffort”

delivery for these messages. These messages can be considered to have advisory time-

constraints. T hat is, the system can discard messages whose time-constraint has been

violated. This category also includes messages without any expressed timing constraint,

like those found in general-purpose distributed systems.

The communication system has to support all three types of messages. Of these

three types, real-time messages pose many problems because they require delivery time

guarantees and, unlike Alert messages, they are not infrequent. Hence, we will first look at

real-time messages, and then at the other types of messages.

2.2.2 R eal-tim e M essages

Communication between user-level entities in this system can either be connection-

oriented or connectionless. In the connection-oriented case, it can be either message stream

or byte stream oriented. In the context of time-constrained communication, the commu

nication model has to preserve message boundaries, and so a byte stream model is not

suitable. Connection-oriented service is considered more suitable for applications which

require guaranteed delivery time for communication [FV90]. The rationale for this choice is

tha t, given an isolated message with an arbitrary deadline, it is very difficult to guarantee

its delivery a priori. In order to make a guarantee about delivery time for a message, the

system requires information about other message sources that can contend for resources

with this message. It is therefore necessary to provide a mechanism for describing the char

acteristics of communication, so that resources can be reserved for real-time connections.

17

In a connection-oriented service, the connection establishment procedure gives the service

provider, in this case the distributed operating system, the opportunity to reserve resources

for the connection, and for the user to specify its requirements. Therefore, the abstraction

tha t we use for guaranteed time-constrained communication is one of connection-oriented

sequenced messages, which we call a real-time channel or simply channel. In a bidirectional

connection between a pair of user entities, the message generation characteristics may differ

substantially for the two directions. Hence, it is preferable to restrict the real-time channel

to unidirectional communication, and a bidirectional connection can be composed from a

pair of channels.

The resources required by a channel include network bandwidth, buffer space, and

message processing bandwidth. The operating system can make resource reservations based

on the communication requirements of the user, as specified in the request for the connec

tion. These requirements consist of the source and destination end-points, a description

of the message generation process, and the desired end-to-end guarantee for the delivery

time. W ithout a description of the message generation process, the service provider cannot

compute the resource requirements and hence it cannot provide a guarantee.

Message Generation Model: We note tha t a significant portion of the traffic which

requires guarantees will be periodic, so our model for message generation is slanted towards

periodic traffic. The message generation process is specified in terms of a linear bounded

arrival process, a model which was first proposed by Cruz [Cru87]. This model has also been

adopted by Anderson and others [ATW+90, AIIS90] for continuous media applications,

and some of the terminology given below is from [ATW+90]. The arrival process has the

following parameters:

maximum message size Smax (bytes)

maximum message rate Rmax (messages/second)

maximum burst size B max (messages)

The model includes the restriction tha t, in any time interval of length t, the number of

messages generated may not exceed B max + t • R max, and tha t the length of each message

may not exceed Smax• Rmax is a bound on the message generation rate and its reciprocal,

/ min, is the minimum (logical) inter-arrival time between messages. The burst parameter

Bmax puts a bound on the allowed short-term variation in the message generation rate,

and partially determines the buffer space requirement of the channel. Message generation

18

which is not periodic can be represented in this model using an estimate of the worst-case

inter-arrival time and the average rate of generation.

2.2.3 Channel Specification

As described above, a real-time channel is a network level abstraction similar to

a virtual circuit, tha t represents a unidirectional stream of sequenced messages between

end-points on the source and destination nodes. A channel has many attributes that would

be used to describe the requirements of the processes which use it. These attributes must

express the requirements of each of the message types given in the previous section. Some

of the attributes represent parameters required by the lower levels tha t support the channel

abstraction for providing the service, like the message generation process. A description of

the channel attributes is given below.

Type the message class

Source the source port of the channel

Destination the destination port of the channel

Length the maximum message length

Rate the maximum message rate

Burst the maximum burst size

Laxity the bound on the message delivery time

Reliability the number of copies to be sent, required to guard against transmission errors

and message loss

It can be seen that these attributes are sufficient to describe the requirements of

the three message types. However, it is not necessary to specify all the parameters. Alert

messages are aperiodic and infrequent, so in this case it is not necessary to specify the rate

and burst attributes. The laxity and reliability attributes will be specified to reflect the

desired time bound and the number of copies. The reliability attribute can also be used for

real-time messages when it is necessary to protect against message loss. We will elaborate

on this in Chapter 6. For non real-time messages the message generation parameters are

not necessary since resources are not reserved for this class.

2.2.4 Channel E stablishm ent

The channel abstraction would be supported as one of the services of the com

munication subsystem, primarily by the network manager and the message scheduler (see

19

Table 2.1). The actions taken by the communication subsystem to establish a. channel

depend upon the type of channel.

Alert messages: These messages are given the highest priority at each service point,

even at the risk of violating the deadlines of some real-time messages. This ensures that

the delay experienced by these messages is small. Also, since they are infrequent, we can

assume th a t there is no contention for service amongst Alert messages.

When an Alert message channel is created, the source node creates several paths

to the destination, as specified in the reliability field. These paths have to be link and

node disjoint, so tha t the message will be delivered even in the presence of congestion and

failures. We also choose the paths such tha t their interaction with the paths of other Alert

messages is minimized. Ram anathan and Shin [RS91] show how the multiple copy approach

can improve the probability of timely delivery for messages.

Real-time messages: The channel establishment operation is quite complicated in

this case, and it is the topic of the next chapter.

Non real-time messages: In this case, channel establishment is a local operation.

The parameters of the channel are stored in a session structure, so tha t they can be used

during the actual message transmission. The priority mechanism used for the transmission

of these messages is described in Section 3.2.3.

We feel tha t the channel abstraction is adequate for many tasks, but it may be

necessary for some tasks to bypass this interface and get directly to the lower level facilities

like the datagram service and the reliable broadcast service. This would be of use to tasks

like the time maintenance service. Also, in this way, a request-reply type communication

mechanism could co-exist with the unidirectional channel service. A description of these

other services can be found in Chapter 6.

C H A PT E R 3

REAL-TIME CHANNELS

In this chapter, we will be concentrating on issues related to the design of channels

for real-time messages, using which the system provides a priori guarantees for message

delivery. We will also briefly discuss how best-effort delivery can easily be accommodated

into the design. Section 3.1 describes the guarantees provided for messages transm itted on

real-time channels. In Section 3.2 we present a solution scheme which is general and works

for messages of arbitrary length. Section 3.3 describes a buffer management scheme which is

consistent with the message handling scheme described in Section 3.2. Section 3.4 presents

extensions to this scheme to help it handle long messages more effectively. We discuss other

related work in Section 3.5 and draw our conclusions in Section 3.6. A summary of the

notation used in this chapter related to real-time channels is presented in Table 3.1.

3.1 D elivery T im e G uarantees

We define the semantics of the end-to-end guarantee on delivery time based on

the linear bounded arrival process model which was described in the previous chapter. The

logical generation time , £c(m ,), for a message m, on channel M c can be defined as

4(7«0) = tco

4 (m .) = m ax{4(m ,_1) + <•}

where t£ denotes the actual generation time of m,-. If A c is the end-to-end delay for the

channel, the system guarantees that any message m, will be delivered to the destination

node by time Cc(mi) + A c. In other words, when the inter-arrival time between messages is

at least the system guarantees that each message in the channel incurs a delay of at

most A c seconds. However, messages which arrive in a burst, where the inter-arrival time

is less than may suffer a larger delay since the guarantee is given with respect to the

logical arrival time. This possible increase in delay is a consequence of regulation: arrivals

20

21

ccumax The

R c-*1'max The

I Cmin The

A c The

dc,a The

£c(m,) The

The

Im ax -

Actual arrival time of the ith message on channel M c at some node.

Ci The maximum service time required for messages on channel M,-.

Pi same as

r,- Response time for a channel M, at some link.

Cpkt The service time for a single maximum-length packet.

Cgrp The service time for a packet group.

Hk Horizon for the link k. For example, //„ (, denotes the horizon for link (a,b).

Table 3.1: Notation

22

R x
Do

i c{m \) = *c(m0) + / £ in
! # 1 = 4 (m i) + Ac

I
I h H 1---------1---------1---------1---------H

Ao A,
I c■*min

Figure 3.1: Delivery time guarantee.

at each node have to be regulated in order to prevent burst arrivals on one channel from

affecting the guaranteed delay of messages belonging to other channels.

This definition of the message delivery guarantee is well suited for periodic message

generation. For example, consider a periodic task which generates a message at the end of its

execution. The generation time of the message depends upon the response time seen by the

task, and this can vary from one invocation to another. If these messages are transm itted

on a real-time channel, the worst-case delivery time of a message can be linked to the arrival

time of the periodic task. Figure 3.1 shows two instances of a periodic task which occur

a t time Ao and Ai respectively. The messages form a part of a real-time channel M c with

inter-arrival time I ^ in and delay A c. The first instance of the task experiences its worst-

case response time R , so the message is released at time R q. The second instance of the

task experiences a response time (R \ — A i) < (R q — Ao). Hence, the interval between the

generation time of the first and second messages is less than i.e., the second message

arrived early. The logical generation time 4 (^ i) assigned to the second message is therefore

greater than its actual arrival time. However, it can be seen that the generated messages

will always be delivered by time R + A c from the beginning of the task period. This property

can be used in any off-line schedulability analysis for the system.

This chapter deals with problems connected with computing a guaranteed end-to -

end delay for messages belonging to a channel, and the scheduling of messages to achieve this

goal. These two problems are related because it is necessary to understand the scheduling

environment in order to compute a guarantee. In the next section, we will first present a

simple channel establishment procedure in which the problem of computing an end-to-end

guaranteed delay is reduced to the problem of guaranteeing the worst-case delay for a single

station/node.

23

1. Select a source-destination route for the channel.

2. Compute the worst-case delay for a message on each link on the route. In this compu
tation, it is necessary to ensure that the new channel does not affect the guaranteed
delivery times of existing channels. Also compute the buffer requirement for this
channel.

3. Compute the sum of the worst-case delays which were determined in Step 2, and check
whether it is less than the user-specified delay. This is the channel establishment test.

4. If the channel can be established, divide the user-specified delay among the links on the
route based on their worst-case delay for the message. Adjust the buffer requirements
based on these allocated delays.

____________________ Figure 3.2: Channel Establishment Procedure____________________

3.2 Basic Solution Approach

There are two distinct phases in handling real-time channels: channel establish

ment and run-time message scheduling. The channel establishment phase is outlined in

Figure 3.2, and begins with the selection of a route for the channel. There are two alter

natives for routing packets in the network: dynamic routing and static routing. Dynamic

routing offers the advantage tha t it can adapt to the network load and can reduce the

average delivery delay for messages. However, it is very difficult to make any guarantees

on message delivery for a channel based on dynamic routing, in which a message can use

one of several alternate routes through the network. Therefore, we use static routing for

messages belonging to real-time channels. We will assume that a route has been selected

for the channel, possibly using a scheme like the one presented in [KS90a], and concentrate

on the computation of guarantees and on buffer management.

The worst-case delay for a message at a fink depends upon the scheduling algorithm

used and the other channels which use the link. The fink may also be used by messages

without time constraints, but the effect of these messages on the worst-case delay is limited

(i.e., restricted to a single packet delay if packet transmission cannot be aborted while in

progress) because they would belong to a lower priority class. Hence, we can restrict our

attention to messages belonging to real-time channels while calculating the worst-case delay.

The scheduling environment tha t we encounter in message scheduling is one of independent,

possibly periodic, message arrivals which have deadlines associated with them. The message

deadline may be related to its period, but it is not necessarily the beginning of the next

period. There are several approaches to scheduling these messages, which can be categorized

24

as fixed priority or dynamic priority algorithms. For example, Earliest Due Date [Der74] is

a dynamic priority algorithm, whereas rate monotonic scheduling [LL73] is a fixed priority

algorithm. We will now discuss the problems associated with the use of these algorithms

for message scheduling and channel establishment.

Deadline Scheduling: The Earliest Due Date (EDD) algorithm schedules messages in

the order of their deadlines, with higher priority given to messages which have closer dead

lines. Liu and Layland [LL73] have shown that EDD is optimal for preemptive scheduling of

periodic tasks when the task deadline is equal to the beginning of its next period, and that a

feasible schedule exists whenever the total utilization is less than one. However, there is no

similar result (based on utilization alone) available when the task deadlines are not related

to their periods. The main drawback of EDD scheduling is that computation of guarantees

is difficult, since the priority of a task depends upon the relative order of arrival of the tasks.

A multi-class version of the EDD algorithm has been used for scheduling real-time messages

by Ferrari and Verma [FV90, Fer89], who also present sufficient conditions for the existence

of feasible schedules. Their approach will be discussed in greater detail in Section 3.5.

Fixed Priority Scheduling; Scheduling decisions can be based on a fixed (static)

priority scheduling algorithm where messages are processed and transm itted in the order

of priority. For example, in rate-monotonic scheduling the priority assigned to a channel

is related to the frequency of occurrence of messages on that channel. For any priority as

signment scheme, if message arrivals on all the channels are assumed to be strictly periodic,

we can determine whether the set of channels is schedulable. This is done by computing

the worst-case response time for each message using a critical time zone analysis similar to

the one used by Liu and Layland [LL73], and verifying tha t the worst-case response time is

less than the delay assigned to th a t channel. The details of this scheme for analysis can be

found in Appendix 3.A.

There are some problems with priority based scheduling and the computation of

guarantees when we consider multiple stage service, like service for a message which has

to traverse multiple links. The response time for the message varies depending upon the

arrival time of other messages a t a node. Therefore, even if messages are generated with

a fixed inter-arrival time at the source, the inter-arrival time for the message at the next

service point is not constant. Early arrivals are also possible due to burstiness in the message

generation at the source. A message which arrives early at a node can cause a lower priority

message to miss its deadline. Figure 3.3 shows the results of preemptive priority scheduling

25

n o r m a l a r r iv a l*

e a r l y a r r i v a l

_________________________ Figure 3.3: Effect of early arrivals._________________

for two message streams, M\ and M2, with service requirements C\ and C2, where M\

has higher priority than M2. The figure shows how the early arrival of a message on M\

can cause a message on M2 to miss its deadline rf2. Note that a similar effect can be

observed even when anon-preem ptive discipline is used. One solution for this problem is to

“hold back” the early arrival and not consider it for transmission until its scheduled arrival

time. However, this scheme involves the setting and resetting of timers and is expensive

to implement. Also, it implies tha t the message cannot make the best progress possible on

lightly loaded links.

3.2.1 Proposed A lgorithm

The discussion on the problems of deadline and fixed priority scheduling in a multi

hop communication system suggests the use of a combination of deadline and fixed priority

scheduling. Our channel establishment scheme uses fixed priority scheduling for comput

ing the delay, but we use a form of EDD as the run-time message scheduling algorithm.

When a channel is to be established, for each link on its route, we estimate the worst-case

response time for a message based on fixed-priority scheduling using the method outlined

in Appendix 3.A. The response time analysis is based on an approximation of preemptive

scheduling. Pure preemptive scheduling cannot be used in the context of message schedul

ing, because, if the transmission of a message is interrupted, the message is lost and has to

be retransm itted. To achieve the benefits of preemptive scheduling, the message has to be

split into packets so that message transmission can be interrupted at the end of a packet

transmission, without loss. (This is analogous to allowing an interrupt at the end of an

instruction execution.) Therefore we consider a message to be a set of one or more pack

ets, where the packet size is bounded. Packet transmission is non-preemptive, but message

transmission can be considered to be preemptive.

26

The priority assigned to the new channel at a link depends upon the characteristics

of the other channels going through the link. The total response time, which is the sum

of the response times over all the links on the route of the channel, is checked against the

maximum permissible message delay and the channel can be established only if the latter

is greater. In this case, the permissible message delay is split proportionally among the

different links. While using this procedure, it is necessary to ensure tha t the new channel

does not affect the guaranteed delivery times of existing channels. This is taken care of in

the priority assignment algorithm.

3.2.2 Priority A ssignm ent

The worst-case response time computation for a new channel at a link on the route

requires an assignment of priorities for existing channels that use this link. This priority

assignment problem can be defined formally as follows. Let {M, = (C ,,p ,,d i) ,i = 1 ,.. .,&}

be the set of k existing channels through a link £, where C, is the maximum service time

required for messages of channel M, on this link, p, = / ^ In is the message inter-arrival time,

and d, is the permissible delay which has been assigned to the channel for this link. The

service time requirement C, is proportional to the product, 5’̂nax.7Z|nQ;r, of the maximum

message size and the maximum message rate for the channel A/,. Given a new channel

M)t+i = (Ck+i,Pk+i) t° be established (the delay bound need not be specified on a per-link

basis), we have to find a priority assignment for this augmented set of channels such that

the response time r[computed for a channel under this priority assignment satisfies the

constraint r\ < d,, t = 1 An assignment which satisfies this constraint is called a

feasible priority assignment. Moreover, we would like to find a feasible priority assignment

which will minimize the response time rj.+1 for the new channel M*+1 . By finding the

minimum feasible response time on each link, we can improve the chances of satisfying the

channel establishment test.

Consider the procedure D .Order, shown in Figure 3.4, which assigns priorities and

computes the response time for all channels, including the one to be established. This

procedure works under the condition tha t, for all channels, d, < p,-. That is, the worst-case

delay at each link for any channel does not exceed its inter-arrival time. Note tha t the total

end-to-end delay can exceed the inter-arrival time of the channel.

We can prove tha t, when d, < p,, Vi, assignment procedure D.Order is optimal in

the sense that the computed response time rjj.+1 is the minimum possible for any feasible

priority assignment. Lemma 1 proves that the priority assignment based on delays is optimal

27

1. Arrange the channels in ascending order of their associated delay d;.

2. Assign the highest priority to the new channel Mk+ \. Assign priorities to the other
channels based on this order, with high priority assigned to channels with small delays.

3 . Compute the new (worst-case) response times r[for the existing channels based on
this priority assignment.

4 . In the priority order, find the smallest position q such tha t r[< d, for all channels
with position greater than q.

5. Assign priority q to the new channel and compute the response time r£+1.

_____________________ Figure 3 . 4 : Assignment Procedure D.Order_____________________

in the sense tha t if there is any feasible priority assignment for the channel set, there is a

feasible priority assignment based on delays. This is in fact a generalization of the optimality

result for rate-monotonic scheduling [LL73]. In their model, Liu and Layland assumed that

the deadline for an instance of a periodic task is the release time of the next instance, that

is, d{ = pi. The rate-monotonic algorithm assigns priorities to periodic tasks based on their

periodicity, with high priority assigned to tasks with high periodicity. The optimality result

for this scheduling algorithm can be derived from Lemma 1 by substituting d, = p,,Vi. It

has been brought to our attention tha t a result similar to Lemma 1 has also been proved

by Leung and Whitehead [LW82].

L em m a 1 Consider the set o f channels {Mi = (C i,p i,d() ,i = 1 , . . . , Ar} through a link.

Assume that there exists a feasible fixed priority assignment for the channels such that the

computed response time for each channel satisfies the constraint ri < di < p,, Vi. Then, the

priority assignment P D, based on an increasing order of delays with high priority assigned

to channels with small delays, is also a feasible priority assignment.

Proof: We can assume, without loss of generality, tha t the set of channels is ordered by

priority in accordance with a feasible priority assignment P. That is, i < j implies that

M{ has higher priority than Mj under P. Now, if d, < dj,Vi < j , our proof is complete.

Otherwise, there exists at least one pair of adjacent channels, M, and Af,+i such that

d,- > d,+j. In this case, we want to prove tha t priorities of these two channels can be

swapped to yield another feasible assignment, P ' .

Let r, and r,+i be the worst-case response times of the two channels M, and

M,+1 , computed under the priority assignment P using the scheme shown in Appendix 3.A.

28

Then, since d,+i < di < p, and r ,+i < d,+_i, r ,+i < pi, and so r f+j includes the service

time for exactly one instance of Mi. Under P ' , the response time for A/,+i is reduced, so

the constraint r,-+1 < <1,+j is trivially satisfied. Also, by the definition of the worst-case

response time (see Eq. (3.8) in Appendix 3.A), r,+i contains exactly one instance of A/,+j.

The response time for AT, under P' also has to contain one instance of Mi and Af,+i, and

it can be seen tha t = r ,+1 < d ,.1 For all other channels we have r ' = rj < d j , and hence

P' is a feasible priority assignment.

It is evident tha t by a sequence of pairwise exchanges, we can reach P D and show

that it is a feasible assignment. ■

Theorem 1 Assignment procedure D-Order yields the smallest response lime for the new

channel, Afjt+i-

Proof: Suppose there is some other feasible priority assignment P which yields a smaller

response time. If r^+i is the response time for Af/t+i under P , we can set dfc+i = rjt+j.

Consider any channel Mj which has lower priority than M^+j. Then, r^+i < rj < dj and

hence d^+i < dj. Now, by Lemma 1, the priority assignment P D based on the channel

delays is also a feasible assignment. Under this assignment, d^+1 < d(implies tha t Mk+\

has priority over M(. Therefore, any channel which has priority lower than Afjt+i under

P also has priority lower than M^+i under P D. Also, a channel which has priority higher

than Affc+i under P could have priority lower than Mk+i under P D. This means that

the response time for Mk+\ under P D will be no greater than the response time under P.

Contradiction. I

D.Order can be implemented efficiently by storing some additional information

about the existing channels. We can maintain the channels in ascending order of permissible

delays, so the cost of sorting can be ameliorated. The computation of the response time for

all channels is then the most im portant operation. We can eliminate duplicate computations

by computing the response times in ascending order. For example, r I+1 > r, + C ,+i, and

we can use this as the starting point in the scan. Also, in the computation, if r[> d, then

the computation for r\ can be aborted.

In the last stage of the channel establishment procedure, delays will be assigned to

the new channel, for each link on the source-destination route. For any link, the assigned

delay for tha t link, das, has to be such tha t das > r fc+i* It can be shown that if channels are

'N o te th a t this result holds only because r,+ i < p,+ i, so tha t when we switch priorities only one instance
of A/,+i is included in the response time for A/,.

29

allotted priorities based on this assigned delay, the resulting priority order is still feasible.

The new priority order for the channels is not necessarily the one used to compute the

response time r£+1 because there may exist a channel with r^+1 < d, < das.

3.2.3 R un-tim e Scheduling

A node in the system can have several incoming and outgoing links connected to it.

These links can operate in parallel, so each outgoing link is considered as a separate entity

for scheduling. Messages are composed of packets, and packets carry information about

the message, and the channel, to which they belong. When a packet arrives at a node,

or is generated in the node, it is dispatched to the appropriate outgoing link. Suppose

the arriving packet belongs to the ith message on the channel M c. All packets belonging

to the ith message would be assigned the same logical arrival time, £c{fni)i which is the

logical arrival time for the message. For the source node s of channel Mc, l cA m i) is defined

exactly in the same way as the logical generation time in Section 3.1, where t? denotes the

generation time of message m, .

tc,s(m o) = *o

t c A m *) = max{(£C|J(m,-_i) + /£,■„), <•}• (3-l)

For nodes other than the source node, the logical arrival time at the node is based on the

logical arrival time of the message at the upstream node. The information about the logical

arrival time is carried in the packet, as a part of the packet header. Consider two adjacent

nodes a and 6, sharing a link (a, b) which is a part of the route for channel M c. The logical

arrival time for m, at node b, £c,b(m i)i *s defined 35

lc,b(m i) ~ + dc,a (3.2)

where dc<a is the worst-case delay for messages on channel M c at node a. It can be seen that

the logical arrival time of a message at any node is ultimately based on its logical arrival

time a t the source node. This definition of the logical arrival time is feasible because the

nodes in the system have synchronized clocks and the maximum skew between clocks on

different nodes is small compared to the message delivery delays [RKS90].

Alternatively, it is conceivable to define £c,b(m i) based only on the observed ar

rival time of messages at node b, without carrying any timestamps in the packet headers.

However, this type of scheme has problems when we consider multiple-packet messages. For

example, can be defined based on the arrival time of the first packet of m,. But

30

then, it is possible tha t the last packet of m, may arrive up to (approximately) d,c<a time

units later than the first packet, if we consider the worst-case delay for m, over just one link

(a, 6). When we consider delays for m, over multiple links, the separation between the first

and last packets can increase further. In this case, the last packet can be assigned a logical

arrival time which is beyond its local deadline. This can result in some problems for the

deadline scheduler. On the other hand, if (c,b{m i) ' s defined based on the arrival time of the

last packet of m,, the message cannot be processed until the last packet has arrived. More

over, it would be necessary to guard against loss of the last packet of a message, possibly

using message timers.

The logical arrival time that is assigned to messages is used by the message sched

uler, which uses a variation of the multi-class EDD algorithm. In the following description,

the second subscript has been dropped from the notation for the logical arrival time, since

we are dealing with a single node. The scheduler maintains three queues for each outgoing

link, corresponding to three service classes.

Queue 1 Packets belonging to real-time channels with fc(m,) < current.tim e, arranged in

the order of increasing deadlines.

Queue 2 Other packets arranged in an appropriate priority order.

Queue 3 Packets belonging to real-time channels with Cc(m i) > current.tim e, arranged in

the order of increasing logical arrival time.

Queue 1 and Queue 3 contain packets which belong to real-time channels, while Queue 2

contains all other types of packets. Queue 1 contains current real-time packets, which have

to be scheduled in the order of their deadline, hence it is organized by increasing packet

deadlines. Current real-time packets are those packets whose logical arrival time is less than

the current clock time at the node. Queue 2 contains packets for which no guarantees are

given, and the ordering depends upon the message type. For example, packets belonging to

messages which request “best-effort” type service would fall in this category, and they would

be arranged in the order of increasing deadlines. The service provided for this class of packets

is improved by giving them priority over real-time packets which are not current. Since they

are not pertinent to the current discussion, we will not elaborate on the treatm ent of this

class any further. Packets in Queue 3 are those which have arrived early, either because of

burstiness in the message generation or because they encountered delays which were smaller

than the budgeted worst-case delays at some upstream nodes. These packets are stored in

31

1. find £c(m ,), the logical arrival time of the message to which this packet belongs.

2. set ff(packet) = t c(m i)-

3. set the deadline for this packet to fc(m ,) + dc.

4. if (^/(packet) < current.time)
insert packet into Queue 1

else
insert packet into Queue 3

5. invoke the dispatcher.

_______________________Figure 3.5: Processing on Packet Arrival______________________

the order of their logical arrival time because they have to be transferred to Queue 1 as

they become current.

The actions taken when a real-time packet arrives are shown in Figure 3.5, whereas

non real-time packets are simply inserted into Queue 2. The logical arrival time is deter

mined based on the channel to which the packet belongs and the sequence number of the

message of which it is a part. This is the logical time, lt{), of a packet. The deadline for the

packet is set to f c(m ,) -f dc, where dc is the worst-case delay guaranteed for channel M c at

this node. Since all packets in a message have the same fc(m,-) and the same dc, they will

all have the same deadline. The packet is then inserted into Queue 1 or Queue 3, depending

upon whether it is current or early. Lastly, the dispatcher is invoked.

The dispatcher, which is shown in Figure 3.6, first checks whether any real-time

packets in Queue 3 have become current and transfers such packets to Queue 1. If the link

is idle, it examines the queues in the order of priority looking for a packet to transmit.

Packets in Queue 3 are considered for transmission only if their logical time is within the

horizon, //* , for the link. The horizon is link-dependent and is used for flow control, as

explained in Section 3.3. These packets are scheduled in the order of logical time, primarily

because they are queued in that order. Also, this ordering makes it easy to identify packets

which are within the horizon (and can be considered for transmission). The dispatcher is

also invoked upon completion of transmission of a packet on the link. In some situations,

it is possible that Queues 1 and 2 are empty and Queue 3 only contains packets which are

ineligible for transmission. In such cases, a timer can be used to trigger the dispatcher at

the appropriate future instant.

32

0. Examine Queue 3. Transfer those packets which have ff(packet) < current.tim e, to Queue 1.

1. if (link idle)

2. if (Queue 1 nonempty)

3. start transmission of head(Queue 1)

4. else if (Queue 2 nonempty)

5. s ta rt transmission of head(Queue 2)

6. else if (Queue 3 nonempty)

7. if (£<(head(Queue 3)) < current.time + //*)

8. start transmission of head(Queue 3)

9. end
10. end
11. end

_______________________________ Figure 3.6: Dispatcher_______________________________

Proof of Correctness

We now have to establish that this run-time scheduling scheme will conform with

the guarantees computed using fixed message priorities. This is stated formally in Theorem 2

below.

Theorem 2 Consider a link containing a set of real-time channels which satisfy the fol

lowing properties.

1. The channels are assigned delays for this link using the procedures in Section3.2.1
(Figures 3.2 and 3.4).

2. Arriving messages are assigned logical arrival times using Eqs. (3.1) and (3.2).

3. Messages are scheduled using the procedures in Figures 3.5 and 3.6.

Then, all messages arriving on real-time channels meet their delay requirements on the link.

Proof: We approach this in two stages. In the first stage, we show that if we use this

scheduling scheme on a channel set (which is schedulable) tha t has strict periodic arrivals

satisfying the inter-arrival time constraints, then no message will miss its deadline. In the

second stage we consider the effects of deviations from the periodic behavior and show how

our scheme can accommodate them.

33

s t a Se l.: The system times for channels have been computed based on priority schedul

ing, taking into account the maximum rate of arrival of messages; and these times satisfy

the local deadlines for each channel. Hence, when arrivals are all periodic and conform

to the inter-arrival time constraints, a feasible schedule based on priorities exists. Der-

touzos [Der74] has shown that this implies the existence of a feasible EDD schedule for

this message set, which is based on the deadlines assigned to the channels. In this case,

the logical arrival time of each message is the same as its arrival time and all arrivals go

into Queue 1. Since this queue is scheduled using the EDD algorithm, and a feasible EDD

schedule is possible, the delay requirements of all messages will be satisfied.

S tag e 2; Consider a message mj belonging to channel M c, which arrives at the source

node before its logical arrival time, that is, tc- < Cc(m j) = £c(m j - 1) + ^min- This message

would be assigned a deadline, D j = fc(mj) + dc, corresponding to its logical arrival time

and would be inserted into Queue 3. There are two possibilities to consider: 1) mj is

transm itted directly out of Queue 3, and 2) mj is subsequently transferred to Queue 1.

In the first instance, we can conclude that mj was transm itted before time and

hence it was transm itted before its deadline. In the second case, some packets of m j were

transferred to Queue 1. Since Queue 3 is scanned at the end of every packet transmission,

this transfer will occur by time £c{m j) + CpJtt> where Cpkt is the transmission time for a

single maximum-length packet. By the argument given in Stage 1, we can assert tha t, if

the message m j arrived into the system at its logical arrival time, a feasible EDD schedule

exists by which all messages will meet their deadline. Note tha t the computed response

time for the channels includes Cpkt• Hence, the packets of m j which were transferred to

Queue 1 will be transm itted before their deadline. The same argument can be applied even

when multiple messages arrive prior to their logical arrival time.

If a message m, arrives late at the source node, that is, tf > £c(7n,_i) + I^int ^

will be assigned a logical arrival time f c(m,) = t? and a deadline, £), = Cc(mi) + dc. It

will then be inserted into Queue 1. Also, future message arrivals on this channel will be

assigned logical times based on f c(m,). This message cannot increase the maximum system

time for any other messages, since the system times for these messages were computed by

considering the maximum possible arrival rate for messages on channel M c. Hence, a feasible

priority-based schedule exists in this case, and consequently, a feasible EDD schedule also

exists. ■

34

3.3 Flow Control and Buffer M anagem ent

Buffer space has to be reserved for real-time channels at the source, destination,

and intermediate nodes in order to prevent buffer overruns and consequent loss of messages.

During channel establishment, the user has to specify the burstiness in message generation,

Bmax, as part of the channel specification. This burstiness determines the buffer requirement

at the source node of the channel. If dc<s is the worst-case delay guaranteed for channel M c

at the source node, the buffer requirement can be expressed as (B^ax + dc<s • R cmax)Rmax,

where the dCi$ • Rmax term accounts for new arrivals during the system (response) time of

a message on the channel. It is necessary for the source node to provide this buffer space

because the client can legitimately produce messages at this rate, and, if buffer space is

not provided, messages could be lost due to non-availability of buffers. Also, the source

node is responsible for making sure tha t message generation for M c adheres to the channel

specification. It can refuse to accept messages belonging to M c when the actual generation

rate exceeds the specified bounds.

Intermediate nodes also have to provide buffer space for M c, but this need not

depend upon -0£,ax if a flow-control mechanism is employed between nodes. The buffer

reservation scheme and the flow-control mechanism are intimately related, since flow control

can be used to regulate the burstiness of message arrivals at intermediate nodes. The flow-

control mechanism considered here operates by holding back some of the messages which

arrive before their logical arrival time. If flow control were not used, messages could zip

through lightly loaded nodes and back up at heavily loaded nodes, thereby causing buffer

space problems at the heavily loaded nodes. An extreme case of flow control is when all

messages which arrive early are held back, that is, a message is considered for transmission

only when t c(message) < current.time. In this extreme case, an intermediate node, k,

can rely on flow control to eliminate the burstiness and need only provide buffer space

proportional to dc>k • Rmax ’ ^max- However, this strict regulation can result in unnecessary

delays for messages when the network is lightly loaded. By allocating more buffer space,

we make it possible for messages to go quickly through lightly loaded nodes.

The logical arrival time assigned to a message depends upon the burstiness in the

arrival process. Ilence, the bound on burstiness can also be interpreted as a horizon for the

logical arrival time. Burstiness can be measured by the equation,

B = (/ c(message) — current.tim e)//^,,•„

35

which can be rewritten as

^(m essage) = current_time + B •

A bound on the burstiness, B < B m, can therefore be interpreted as £c(message) <

current.tim e + B m • /^,tn. Packets belonging to messages with logical arrival time greater

than this horizon may be discarded by the node. In other words, the horizon, B m •

determines the buffer requirement for a channel at an intermediate node.

A node can compute the horizon for a link, based on the available buffer memory,

whenever a new channel is to be established with that link. This horizon is passed back to

the upstream node, since tha t node is responsible for flow control on the link. The upstream

node has to make sure tha t it transmits forward only those messages which have logical

time, at tha t node, within the horizon (packets which belong to a single message all have

the same logical time). It is possible to use a different horizon for each channel, but this

can create problems for the run-time scheduler because it is then forced to examine all the

packets in Queue 3 individually to check their eligibility for transmission. Use of a single

horizon means less flexibility in buffer management, but it is more suitable for run-time

scheduling. The buffer space required for a channel is computed as follows.

Consider two adjacent nodes a and 6, sharing a link (n,6) which has a horizon

//a,&- Consider a message p arriving at node b on channel Afc, using link (a, 6). Since

node a uses IIa<b for flow control on link (a, 6), we can deduce that the logical time for

the message at node a must be £c<a(p) < current.tim e -f l l a,b- The logical time assigned

to the message at node b is £c,b(p) = £c,a{p) + dc<a, where dc<a is the assigned worst-case

delay for M c at node a. Node b will not contain any messages belonging to M c which have

£c,b(m) < current.tim e — dc<b, where dc<b is the worst-case delay assigned to the channel at

this node. This is because messages on M c are guaranteed to leave b within dCib time units

from their logical arrival time. Hence, node b can only contain messages belonging to M c

which have logical time in the range

current.tim e — dCtb < £c,b(p) < current.time -f IIa>b + dc>a.

The buffer space required to hold these packets is then given by:

\(Ha,b + dc,a + dc,b)//m ini ’ ^m ar

From this equation, it is clear that the minimum buffer space required for a channel

iS $max ' \(dc,a + ^c,6)//minl > which is when Ha<b = 0. When the horizon II for a link is very

36

large, the maximum buffer space required for a channel is bounded by S£,dT '([A c /Z ^ J +

Bmax)t where A c is the end-to-end delay for the channel.

The overall buffer space requirement of a node is the sum of the buffer space

required for all channels going through the node. When a new channel is being established,

the node first tries to accommodate the new channel by computing the buffer space based

on the existing horizon. If the available buffer space is less than the requirement, the node

then reduces the horizon for tha t link. Reducing the horizon for a link has the effect of

reducing the buffer space requirement of all channels using the link, so the amount of buffer

space available increases.

3.4 E xtensions for Long M essages

The channel establishment scheme, as presented, can handle messages of any size.

However, the response time obtained for a long message can be substantial, and since the

latency for message delivery is determined by the cumulative response time over the links in

the route, it can grow very large. The underlying problem here is that store-and-forward

delays grow with the size of the message. Long messages also pose problems for buffer

management at intermediate nodes as these nodes have to reserve sufficient buffer space to

hold the entire message. Since the number of channels going through an intermediate node

can be large, the buffer space requirement of transit messages is an important issue.

Consider a request for a channel M m = (Cm,p m, A m), where A m is the end-to -

end delay for M m, which has to traverse Lm links. In order to satisfy the end-to-end delay,

the sum of the worst-case delays on the Lm links should be no greater than Am. Hence, on

the average, the worst-case delay at a link should be within A m/ L m. It can be seen that as

L m increases, the delay available at each link reduces and it may not be possible to satisfy

the delay requirement. Also, the buffer space required at each link for M m depends upon

Cm (and on the burstiness parameter).

The delay and buffer problems of long messages can be alleviated by splitting these

messages into packet groups and “pipelining” the transmission of these packet groups2. A

message on channel M m can be split into N m packet groups, each with size Cgrp = Cm/N m

and delay dgrp. The transmission of these packet groups will be in sequence, as shown in

Figure 3.7. This figure shows a message split into 2 packet groups, Cgrp and CgTp, and

transm itted over three links. Transmission of each packet group has to complete within an

2We use the term packet group to distinguish this entity from a physical packet. A packet group can
contain one or more physical packets.

37

linkopEsi
0

C 2 ° . q r p

9rP 2 d ,grp

1
3 dgrp 4 • d grp

linki
f \
° g r p

d,grp

r 2C grp

2 d grp 3 d ,grp 4 • d,grp

links
C 1grp C 29r?

*grp 2 d grp 3 d grp 4 • d,grp

________________________ Figure 3.7: Packet group illustration.________________________

interval of length dgrp. Here dgrp represents the delay in any stage of the pipeline, and it

has to exceed (or equal) the maximum response time for the packet group over the links

in the route. The pipelining mechanism enables us to bring out the overlap between the

transmission of packets belonging to a message of M m on different links of the route. The

end-to-end delay for a message on Mm is then dgrp*(Nm + Lm - 1) (= 4dgTp in the example).

Hence, the constraint that dgTp has to satisfy is:

dgrp — A m/ (N m -J- Lm — 1). (3.3)

Selection of N m : When packet groups are used, a larger value for N m is preferable

from the standpoint of the delay computation. The ratio CgTp/d grp defines the fraction of

time required to process the packet group to the packet period, and it is desirable to make

this small. This ratio, when expressed in terms of the parameters of Mm, is (Cm/A m) •

(N m + Lm — l/./Vm), a monotone decreasing function of N m. Also, the buffering problem is

reduced because intermediate nodes now have to provide buffer space based on the size of

the packet group instead of the message size. To increase flexibility in buffer management,

it appears tha t we should increase the number of packet groups, N m, as much as possible,

preferably to have only one packet per packet group.

In this pipelining scheme, it is necessary that all packet groups of a message should

be transm itted from a link before the arrival of the next message on the channel. This

imposes a restriction on the possible values for the number of packet groups.

dg r p ‘ N m ^ Prn (3 . 4)

.38

Using Eqs. (3.3) and (3.4) we get

(A m/ (N m + Lm - l)) - N m < p m (3.5)

This equation can also be rewritten as a constraint on N m, whose solution depends upon

the relative values of A m, pm, and Lm:

l / L m < N m/ (N m + Lm - l) < p m/ A m. (3.6)

There are three cases to be considered:

Am < pm : In this case, N m can take any value. However, for large N m, dgrp is

small and this implies th a t the priority assigned to the channel is high. This can

interfere with the resource requirements of other channels, and result in the rejection

of subsequent channel establishment requests.

pm < A m < Lpm : The optimal choice for N m is the largest integer which satisfies Eq. (3.5).

For example, if A m = 2pm in the example of Figure 3.7, the optimal choice for N m is

2 .

A m > Lpm : It can be seen that Eq. (3.6) has no solution when Am > L-pm. However,

the end-to-end delay requirements are not very stringent in this case. Although

pipelining cannot be used, we still have message level parallelism for transmission on

different links.

In practice, the choice of N m is also affected by the size of the resulting packet

group and the group delay. dgrp cannot be made very small because it has to include the

transmission time of at least one packet, since packet transmission cannot be interrupted.

3.4.1 Channel Establishm ent

When a channel creation request is handled, we have to decide whether this request

should be treated as a regular channel or a channel with packet groups. This decision is

based on the parameters of the channel, A m and p,„, and the number of links on the route

to the destination. The channel establishment procedure has to be modified when packet

groups are used, as shown in Figure 3.8. The decision on whether to consider the request

as a channel with packet groups is taken in Step 2. The worst case delay for a link is again

computed using procedure D.Order, but in this case, there is a target worst-case delay

dm = A m/(JVm -f Lm — 1) for the packet group on each link. The channel establishment

check is tha t each link should be able to satisfy this target worst-case delay, without violating

the worst-case delay of existing channels.

39

1. Select a source-destination route for the channel. This determines Lm , the number
of links on the route.

2. Select N m, the number of packet groups.

3. Compute the worst-case delay for the message on each link of the route. The desired
worst-case delay is set to dm = A m/ (N m + Lm — 1).

4. Check the buffer requirement and compute the horizons for the different links.

5. Check whether the channel can be accommodated (Figure 3.9) for each link on the
route. This is the channel establishment test.

6. If the channel can be established, assign dm as the delay for each link on the route.

_________________ Figure 3.8: Channel establishment for packet groups._________________

Response Time Computation: The procedure D.Order also has to be modified to

handle packet groups (see Figure 3.9). Since the channel to be established now has a target

worst-case delay specified, it has to be assigned a priority based on this target dm. This

priority assignment can increase the worst-case response time, r t', for existing channels, and

may cause some of them to exceed the assigned worst-case delay, d,. The new channel can

be accepted only if r\ < d, for all channels.

The response time computation scheme used in procedure D.Order now has to

accommodate packet groups. Consider an existing channel which has response time r such

that i • dm < r < (i + l)d m, for some i < N m. This channel can consider M m to be

a channel with period dm and a message length equal to the size of the packet group.

However, channels which have N m ■ dm < r will treat M m as a regular channel with length

Cm and inter-arrival time pm.

Run-time Scheduling: Packets belonging to a packet group are considered as part

of a single unit, and use the same logical arrival time. The logical arrival time of a packet

group is determined on the basis of the logical arrival time of the message, and the sequence

number of the packet group. For example, the logical arrival time for a packet belonging to

the tth packet group of the message rrtj is:

I({packet) = i • dm + i (m j)

40

1. Arrange the existing channels in ascending order of their associated delay di, where
the delay is for a packet group of the channel.

2. Insert the new packet group into this order based on the required worst-case delay
dm,

3. Compute the new worst-case response times r\ for all channels based on this priority
assignment.

4. Check whether for all channels i , t \ < d,. If not, the channel cannot be established.

____________Figure 3.9: Extensions to Procedure D_Order for packet groups.____________

where l{m,j) is defined as before for a regular channel. This computation has to be done

only at the source node. At intermediate nodes, the logical arrival time is computed simply

from the logical arrival time at the previous link. Here again, we can see how the use of a

global time-base simplifies the design. Scheduling for the packet is handled as before based

on this logical time and the horizon for the link.

B uffer R e q u ire m e n t: The intermediate nodes should provide bufTer space sufficient to

hold at least two packet groups. The buffer requirement is computed based on the horizon,

as in Section 3.3, but with some small changes. The channel is considered to have an

inter-arrival time of dm and a message size equal to the size of the packet group, Cm/N m.

3.5 R elated Work

The concept of a unidirectional real-time channel was developed by the researchers

of the DASH project. The real-time channel considered in this dissertation is similar to the

deterministic real-time channel of [FV90]. That paper also considers two other types of chan

nels: statistical, where messages are given a guarantee of successful delivery with a certain

probability, and best-effort (with no guarantees). We do not consider statistical channels

mainly because real-time applications require hard guarantees. Comer and Yavatkar have

developed an abstraction called flows [CY88], which is similar to a unidirectional channel,

but they do not give guarantees for the delivery time of messages. Flows can be identified

with best-effort channels.

The parameters used for the description of the message arrival process are based

41

on the linear bounded arrival process model of Cruz [Cru87], with small modifications.

Although the outline of our channel establishment scheme is similar to the one presented

in [FV90], it is different in several respects. We have examined the problem of guarantee

computation in depth, and developed a scheme for computing worst-case response times

based on priorities. This corresponds to the delay bound test of [FV90]. It can be shown

that the delay bound test of [FV90] is a special case of the priority-based response time

computation scheme presented here. Moreover, we have presented an integrated solution to

the problem of buffer reservation and flow control, based on the horizon model. We have

also shown that channels with long messages require special consideration, and presented a

scheme to accommodate them.

The problem of time-constrained communication in a multi-hop network has also

been addressed by Cidon et al. in the PARIS system [CG88, CGGS88]. Their approach is

based on providing limited buffer space in the switching nodes and using FIFO scheduling

to obtain an upper bound on the network delay in each node. Limited buffering can result

in packet loss, and so their efforts are aimed at maximizing throughput, while keeping

the probability of packet loss below a certain level. Another approach to this problem is

the “stop-and-go” queueing framework proposed by Golestani [Gol90a, Gol90b]. In this

approach, a framing technique is used at all switching nodes to eliminate packet loss and

to achieve a guaranteed end-to-end delay. However, the end-to-end delay is tied to the

sizes of the frames, thus reducing the flexibility of satisfying different delay requirements.

It appears that this approach is appropriate mainly when the required end-to-end delay is

large compared to the periodicity of the message arrivals, as in voice transmission.

3.6 Sum m ary

In this chapter, we have identified and solved problems related to the establish

ment and management of real-time communication channels. We have presented algorithms

for computing the worst-case delay for messages, and for scheduling these messages. The

computation was based on priority scheduling, and it was shown to be optimal under certain

conditions. We also presented mechanisms for buffer allocation and flow control suitable for

real-time channels, which would preserve the guarantees on delivery time. The ideas pre

sented here will be integrated into the communication subsystem for HARTS, as described

in Section 6.4.

42

A P P E N D IX

3 .A Schedulability A nalysis

Consider a set of channels {A/, = (Ci,rf,, p ,) ,i = 1 ,.. . ,m } which share a common

link C, where C,- is the maximum service time on I for any message on channel Af,, rf, is

the maximum permissible delay for messages belonging to Af, at this link, and p, is the

inter-arrival time. Assume th a t the channel set is ordered by priority with M \ being the

channel with the highest priority. It can be shown that the worst-case delay for a message

occurs when its arrival time coincides with the arrival time of all other messages of equal

or higher priority. We can denote this critical instant as time t = 0. The transmission of a

message can be delayed by the instances of higher priority messages present in the system

at t = 0 and by subsequent arrivals of new instances of these messages. The arrival times

of these instances are given by the set 5,, and the system time requirement of this message

and of the higher priority messages is given by VT,(t), as shown below (see [LSD89]).

S i = { d i } I 3 = 1 > 2 > • • •»* - 1 i k = 1 » 2 , • • • , l (d i / p j) \ }

W >(l) = ' ' E Cj - \ t / p A + C i (3.7)
3 = 1

A channel Af,- is schedulable (i.e., its delay bound will always be satisfied) if and only if

W i(0 < t, for some t 6 The worst-case response time for messages belonging to A/, is

the smallest value of t such tha t VT,(t) = t. The set of channels is said to be schedulable if

and only if each channel in the set is schedulable.

These results hold under the conditions that preemptive scheduling is employed

and a message can be aborted at any stage in its execution without any loss. In our

model, messages are split into packets, and packet transmission cannot be interrupted. The

schedulability conditions have to be modified to account for the new worst-case conditions.

The worst-case response time for a message occurs when all messages of equal and higher

priority arrive at the same time and a packet belonging to a lower priority message is being

transm itted at that time. The system time requirement in this case is:

H'Z(i) = Cpt, + £ < ? '■ \tlvs\ + c;, (3.8)
j =1

where Cpkt is the service time for the maximum size packet, and C'j is the service time for

a message on M j , including the overheads of packetization.

C H A PTER 4

THE ROUTE SELECTION PROBLEM

4.1 Introduction

The problem addressed in this chapter is the selection of routes for messages in a

multicomputer system of this type. It is assumed that the assignment of tasks to different

nodes has already been done and the communication patterns between tasks are known. The

reason for this is tha t, in a real-time system, the placement of tasks depends not only on the

communication pattern but also on the peripherals and resources available at the different

nodes. The traffic between nodes is specified in terms of mean data rates, which can be

determined from the length of the messages and the periodicity of the communication. Given

the network topology and this traffic pattern, the objective is to select a route for each pair

of communicating processes such that the network load is balanced and the probability of

establishing virtual cut-through is enhanced. Route selection is essential in order to reduce

message delivery delays and to make full use of the network’s cut-through capabilities.

It can be considered to be a high-level approach to message scheduling, where the units

considered are inter-process traffic patterns and not individual packets.

In the type of network considered here, it is assumed that link capacities are

large and the overheads in handling packets at intermediate nodes is a significant factor.

This assumption is reasonable considering the Gigabit range bandwidth possible with fiber

optic links. Also, we restrict our attention to finding a single fixed route for each pair

of communicating processes. Fixed routing is preferable in real-time systems because it

can simplify the computation of bounds for the message delivery time, an issue which is

im portant when messages with delivery time constraints are considered [Fer89].

Variations of this problem have been studied for general wide-area networks,

mainly as techniques for building routing tables in packet switched networks [SS80]. How

ever, most of these studies are based on link capacities, since these are limited for wide-area

networks. In the TRANSPAC network, the routing algorithm uses link costs depending

43

44

upon utilization [SS80]. The cost function is piecewise continuous with hysteresis. The

routing is computed to minimize costs depending upon the current utilization or queue

lengths, but future traffic is not considered.

One study relating to multiprocessor networks is by Bianchini and Shen [BS87], in

which a traffic scheduling algorithm is presented. However, they assume that the switching

nodes in the network have the ability to implement traffic splitting, which makes the network

behave like a fluid-flow pipeline. They further assume that the delivery cost is not depended

on the length of the path and arrive at a link cost which is an exponential function of the link

traffic. The properties of the exponential link cost function result in a major simplification

for their traffic scheduling algorithm. On the other hand, the message delivery delays in

a multicomputer network have a strong dependence on the length of the path and this is

taken into account in the cost function derived here.

In this chapter, the traffic scheduling problem is formulated as an optimization

problem in Section 4.2. The link cost function used in this formulation is derived in Sec

tion 4.3. In Section 4.4 it is shown that the optimization problem is A^TMIard and the

associated decision problem is M V -Complete. The heuristic algorithms developed to solve

this problem and their basis are presented in Section 4.5. The performance of these al

gorithms is then analyzed using simulation in Section 4.6. The chapter concludes with

Section 4.7.

4.2 N otation and Problem Formulation

The environment under consideration is a multicomputer system with a po in t-to -

point interconnection structure and a set of assigned tasks. It is assumed that the message

communication patterns between the tasks are known in terms of average length of messages

and the frequency of communication. From this, one can determine the unidirectional task-

to-task communication volume. We call this volume a flow , which is measured in bytes/sec.

The problem is then to determine a route through the network for each flow to meet a global

“goodness” criterion.

The notation used to describe this problem formally is given in Table 4.1. For

brevity, the term path is used to denote a simple directed path in the digraph DG. Also, the

terms path and route are used interchangeably in this chapter. Given these definitions, and

the condition tha t there is a unique path for each flow, the routing problem can be stated

as follows.

P a th S election P ro b lem : Given N , L, Q, the capacities and the costs of the links,

45

D G : A digraph (N , L) representing the multicomputer system which consists of a set, N ,

of n nodes and a set, L, of m links.

eij: The directed link/edge from node i to node j .

Q : The set of q flows {(s,, d,, r,) : flow r, required from node s, to node d, in D G ,

* = 1, — , 9}.

Pk'. The set of all simple directed paths from Sk to d^ in DG, where (.sjt,d^,r^) € Q.

Pk". An element of Pk, which can be considered to be an ordered subset of L.

S: {pk : k = 1 , . . . , q), an element of P\ X P2 • • • x P , .

f ij\ The flow in link e,j. =]£fc=i where = 1 if e,j 6 p/t and 0 otherwise.

Cij: The capacity of link etJ .

c,j: The cost of routing traffic onto link e,j, which can be a function of / tJ and/or Cij.

Table 4.1: Notation

46

find a set, S , of paths such tha t for each link cij £ L, fij < Cij and total cost T =

E L i rk ■ (E eiJep* ca) is minimized.

By changing the order of summation, T can be rewritten as T = E e tJe£-c'j ' (ESt=i

The inner summation is seen to be the link flow f i j , so T = J2e,}e L cij ' fij-

As formulated above, the objective of route selection is to minimize the total cost

over all the flows in the network, while adhering to the capacity constraints for each link.

Although this formulation is general, the characteristics of a particular type of network can

be incorporated by a suitable choice of the link cost function c,y. The features of virtual

cut-through switching make the flow through a link critical to the cost function, since it

affects the probability of establishing a cut-through route. Intuitively, it would be better to

choose longer than optimal routes so as to avoid heavily used links. However, path lengths

remain an im portant factor because long paths use up more network resources. It will be

shown in the next section tha t the link cost function can be chosen such that minimizing

the total cost is equivalent to maximizing the weighted probability of achieving virtual cut-

through in the network. The total cost function T then represents a tradeoff between using

longer than optimal paths to avoid busy links versus the penalty incurred by the increased

path length.

4.3 D erivation of the Link Cost Function

It is our intention to minimize the probability of messages getting buffered at

intermediate nodes in the path. When a message gets buffered, it has to be examined by

the processor on the communication adapter and then scheduled for onward transmission.

Thus, in addition to the message store-and-forward delay, an additional processing cost is

incurred. Hence, it is preferable to use a long path with a lower probability of buffering.

The link cost function is derived based on this probability.

The network DG = (N , L) is modeled as a network of queues with one (single

server) queue for each link. The problem of analyzing a network of queues with arbitrary

arrival and service patterns is known to be intractable. To make the analysis tractable, the

following assumptions are made in this analysis. It is noted that these assumptions may

not be valid for a real-time system where periodic message traffic is predominant. However,

their use is justified, since the results obtained are used mainly as a guideline for the choice

of the link cost function.

AO: Poisson message generation at the source nodes.

47

A l: Exponentially distributed message lengths.

A2: Infinite nodal capacity.

A3: A packet loses its identity when it arrives at a node and a new length is chosen for it
at random, i.e., the Independence Assumption [Kle64].

This model, and the Independence Assumption, was first, used by Kleinrock [Kle64],

and simulations and actual measurements have later demonstrated the validity of the model.

The model has also been used by other researchers for the analysis of networks [KK79, IM86].

Under these assumptions, the arrival process for a link is independent of the departure pro

cess from the link and Jackson’s result [Jac57] can be applied to the network of queues. Tha t

is, in the steady state the network behaves as if each node were stochastically independent

of the other nodes and similar to an M /M /1 system.

Consequently, the probability that a message gets buffered at a particular interme

diate node is independent of the probability of it getting buffered at any other intermediate

node. Hence, the probability of establishing a source-destination cut-through route can be

written as a product form expression. Consider a path P = {e„on, ,e „ ,n2, .. •,en,_,n,} from

node no = i to node ri(= j . The probability that a message from node i to node j will be

delivered without buffering at intermediate nodes is given by:

*-i
/ >ro6(cut-through on P) = J J (1 — Pro6(buffering at node nr))

r = l

*-i= no - Pro6(link cnr„r+1 is busy))
r = l

t - 1

= I l O _ Pn*nr+l)
r = l

t - 1

= 1 - ^ p nrnr+1 + higher order terms in p
r = l

where Pnrnr+i = /n rnr+1/C nrnr+1 is the mean utilization of link enr„r+1.

In the type of high-bandwidth network considered here, the mean utilization of

the links would tend to be small. Hence, to a good approximation, the higher order terms

can be dropped from the equation. Therefore,

t —\
Pro6(cut-through on f) w 1 - ^ /n r M l /C nrnr+ r

r = l

I - 1

Pro6(cut-through on P) is maximum when ^ / „ rnT+i /C nrUr+i is minimum.
r = l

48

To consider all flows in Q we have to form a weighted sum over all q flows and maximize

this: 9
7 ; Tfc • Prob(cut-through on pk).
k = 1

In this sum, the utilization of the first link in the path will not be included because the

expression for cut-through on pk includes only intermediate nodes. However, for this anal

ysis, an approximation is used in which the utilization of the first link is also considered,

since a lower utilization for the first link would ensure tha t the delay experienced before

the message is transm itted from the source node is small. This then corresponds to finding
Q

the minimum of ^ rk • ((fi j /C ij)) .
k = 1 et] e p k

The form of this function matches the cost function of the Path Selection Problem,

with the link cost c,j = f i j /C ij . If we restrict our attention to homogeneous networks, the

capacity Cij is the same for all links and the cost function can be simplified to Cij ~ fi j '

This function can be interpreted as follows. As the number of flows through a link increases,

f i j increases and so does the cost of using the link. This would present a bias towards the

choice of longer paths to circumvent heavily used links. On the other hand, the total cost

for a flow depends upon the length of the path and so, there is an opposing bias to reduce

the length of the paths. With cij — fij as the link cost function, the total cost T = ^ f/j.
e,j€L

This is the form of the total cost function used in subsequent sections.

4.4 Problem Characterization

In this section it is shown that the Path Selection Problem is A^P-Hard and the

decision problem associated with it is AfP-Complete. The decision problem, shown below

as Decision Problem 1, is A/"P-Complete because it contains the subproblem of finding a

feasible set of paths. It can be shown that SATISFIABILITY (SAT) [Coo71] is reducible

to this subproblem of finding feasible paths. The reduction relies on capacity constraints

which force exclusive use of links. However, even when the capacity constraints are not

imposed, the problem remains AfP-Complete when the link cost c,j is a function of the link

utilization. In particular, it is shown that Decision Problem 2 given below, which has the

cost function = f i j and no link capacity constraints, is A^P-Complete. The definition of

SAT, adapted from [GJ79], is given in Appendix 4.A.

D ecision P ro b le m 1 Given N ,L ,Q , and the link capacities Cij. Is there a feasible set,

S, o f paths such that for each edge eij £ L, fij < Cij where fij = ^ rk ?
]£Pk

49

Decision Problem 2 Given N ,L ,Q , link cost function c^ = f i j , and a bound B. Is there
k=q

a feasible set, S, o f paths such that total cost — ^ r* • (zL ca) - 11, f?j < B?
fc=l c,j6 pk

The reduction from SAT is similar for the two problems and it is shown only for the second

problem. It is based on the method used in [EIS76] for the Multicommodity Integral Flow

problem. The proof is constructive and it shows a polynomial time transformation from an

instance of SAT to an instance of Decision Problem 2.

Theorem 3 Decision Problem 2 (DP2) is NV-Complete.

Proof: It is easy to see tha t DP2 is in AfV because given a guess for the set of paths, it

is possible to compute and verify that the total cost is within the bound B, in polynomial

time. We now show that SAT is reducible to DP2.

Given an instance of SAT with collection C = {C i,C 2 , . . .,G*} of clauses on a

finite set U of variables. For each variable x,-, let ti be the number of occurrences of x, in

the clauses, and u,- be the number of occurrences of x7. Let = max(<i,u,). Construct a

graph component Gi corresponding to this variable as shown in Figure 4.1. The component

consists of a start node v‘ , an end node t?|, and two chains of nodes, each with 2tn, nodes.

The chains represent a choice of tru th assignment for the variable. These components are

then connected in series with the end node of component G, connected to the start node

of component G,-+1 , tha t is, v't connected to uj+1. Create special nodes s and d and links

from s to v], v to d.

For each clause C, create two nodes, s, and d,. For the j- th occurrence of literal x,,

say in clause C t , create links from from st to v2 i - ! and from V2j to d/. A similar construction

is used for an occurrence of x7, but in tha t case, the nodes v2 j - j and v2j would be used. The

graph components and the additional links described above, together form the sets N and

L. The set of flows is chosen to be Q = {(s,d , 1), 1) , . . . , (s |c |, d|c|> !)}• Finally, the

bound B is selected to be 3|C | + 1 + 5Zi=i (2wi + 2). This bound is in fact the total cost of

routing the set of flows Q , where each link has exactly one flow. The 3|C | part corresponds

to the flows associated with the clauses, and the (1 + + 2)) part corresponds to

the (s ,d , 1) flow. This gives an instance of DP2.

If the instance of SAT has a feasible solution, there is a tru th assignment to the

variables which satisfies all the clauses. In the corresponding instance of DP2, the following

solution is feasible. The path from s to d is chosen such tha t if x, is assigned a FALSE

value, the upper trail (wj, • • •) is chosen through the component G,, and vice versa. In

50

-x

______________ Figure 4.1: Graph component corresponding to a variable.______________

each clause Cj, there exists a term u3k which evaluates to TRUE and the link in the graph

component corresponding to this term, say ej, would be unused. The path for (S j ,d j) can

be chosen to go through this link. It can be verified that this choice of paths gives a feasible

solution for DP2.

Similarly, given a solution to DP2, the path from s to d through the component

G{ determines the tru th assignment for the corresponding variable. The choice of B forces

the paths selected to be disjoint. Otherwise, if a link were used in more than one path, its

cost will be greater than 1 and the total cost will exceed B. This ensures tha t a variable

cannot be used with conflicting values in different clauses, and the path (S j ,d j) identifies

a term in Cj which has a TRUE value. Thus, it is clear tha t the instance of SAT has a

feasible tru th assignment iff there is a feasible set of paths for the instance of DP2. |

C o ro lla ry 1 The Path Selection Problem with cost function c,j = / ,j , and no capacity

constraints, is AfV-Hard.

The Path Selection Problem is a search problem which has a finite upper bound,

so it can be easily shown that it is Turing reducible to DP2 using the “binary search”

technique described in [GJ79]. Hence, it follows from the theorem that the Path Selection

51

problem is A/’T5-Hard. Also, from the proof of Theorem 3 it can be seen that a bound,

B , can be suitably chosen to accommodate other cost functions where the link cost is a

monotone increasing function of the link utilization.

4.5 Solution A lgorithm

The problem of finding a minimum cost solution has been shown to be A/’T5-Hard

when the link cost function is a function of the utilization. It is observed tha t the search

space grows as r i L i i f t i , where |P/t| is usually large for the types of regular interconnection

networks tha t are under consideration. This implies that it is impractical to determine the

optimal solution by brute-force techniques, even for a small number of flows. Thus, we need

to find a good heuristic solution for the problem.

We have developed an algorithm which selects paths one at a time, while keeping

the other paths fixed. The algorithm begins with an initial assignment of paths to the

flows. It then successively tries to improve the paths, considering one flow at a time, until

no further cost improvement is possible. An outline of this algorithm, which is called

Route_All, is given in Figure d.3. The procedure for determining the path for a single flow,

called Route.One, is described in Figure 4.2. The theoretical basis for this procedure is

given below.

The algorithm required for selection of a single route is one in which we are given

the current utilization of the network and the characteristics of the new flow to be estab

lished. The objective here is to find a route such that, under the given cost function, the

incremental cost is minimized. It is shown that a version of the shortest path algorithm

with appropriately defined link lengths will yield a solution.

Consider a path p* for this new flow. When this flow is added to the system, the

new flows in the links are given by

f = j h + Tk *f 6ij 6 Pk
3 [fij otherwise.

The additional cost incurred is then

i =]
et]eL

= H (2/y 'r* + rl)

= n • (2/o + r*)-
e, j€Pk

52

A lg o r ith m R o u te .O n e

/*
Given N , L, F = { /< ; : Cjj 6 L) and a new flow (.sjfc,djt,r*),
find a route pk with m inim um incremental cost.

7
/ * Initialize the distance m atrix * j
fo r each i , j 6 N

i f e,j E L
Dij : = 2 * f i j - f Tk

e ls e
Da := 0

e n d i f
e n d fo r

Use the Greedy Algorithm to find a path pk from sjt to d*
with the distance m atrix D i j .

e n d Route_One

__________________________ Figure 4.2: Single path selection.__________________________

This incremental cost, / , is minimum when £ 7 o€pk(2/,j + rk) is minimum. This minimum

can be obtained by using 2 /,j- f r* as the length of link e,j and finding the shortest path from

sit to dfc- This is the approach used in Algorithm Route.One, in which a greedy algorithm

is used to find the shortest path. Since all the link lengths are non-negative, a greedy

algorithm would yield the shortest path. From this discussion, it is clear tha t Algorithm

Route.One is optimal under the condition tha t routes tha t are already established cannot

be disturbed. This is the case when requests for creation of new flows arrive dynamically

and are serviced in order.

Algorithm Route_All starts with an initial flow assignment, F. It then selects

each flow in turn, removes it from F , and checks whether a better route is available using

Route.One. The function IncrementaLcost computes / as shown in the derivation above.

The solution obtained is not guaranteed to be optimal because it is possible tha t a better

solution may be obtained by the simultaneous re-routing of multiple paths. The algorithm,

however, is guaranteed to terminate since the cost function is monotone decreasing with

successive re-routing. Algorithm Route.One is essentially a shortest path algorithm and

its complexity is 0 (N 2) for an adjacency m atrix representation of the network. Algorithm

Route.All uses Route.One repeatedly, but the number of iterations is data dependent and

cannot be easily determined. The running time of Route.All is bounded below by q • N 2,

that is, it is Sl(qN2). However, the results of experiments with the algorithm on several

53

r
v

A lg o r ith m R o u t e - A l l

Given N , L, and Q , find a set o f paths for each flow in Q
with the objective o f m inim izing the cost function.

Assign an initial path for each flow, initialize the flow m atrix F.

new .route.found := TR U E
w h ile (new .route.found)

new .route.found := FALSE

fo r each (s,-,d,-,r,) in Q
remove p, from F
o ld .cost = Increm ental_cost(p,)

R oute.O ne (s ,, d,, r ,) returns path p\

new .cost = Increm entaLcost(pj)
i f (new .cost < old .cost)

add p(to F
new .route.found := TR U E

e ls e
restore p, to F

e n d i f
e n d fo r

e n d w h ile

e n d R oute.A ll

Figure 4.3: The route selection algorithm.

54

flow patterns show that the convergence is rapid.

4.6 Perform ance Evaluation

In this section, we evaluate the performance of the algorithms developed in Sec

tion 4.5, and study the effectiveness of the cost function derived in Section 4.3. To evaluate

the performance of Algorithm Route_All, termed ALLP, it is compared with two other

path selection algorithms. One of them, called INC, is a simple extension of Algorithm

Route.One in which routes are assigned to the flows in the order of arrival and no further

re-routing is employed. The other is a “pure” shortest path algorithm (SP) in which a path

of minimum length from source to destination is selected for each flow. The purpose of

this comparison is to measure the improvement obtained using the re-routing technique.

The comparison between SP and INC demonstrates the utility of Algorithm Route.One

as compared to a simple shortest path algorithm. The complexity of INC is the same as

tha t of the shortest path algorithm, 0 (N 2) for an adjacency matrix representation of the

network. The execution time is slightly higher because it has to update the flow fij in the

links which constitute the route after the route has been selected.

To evaluate the effectiveness of the cost function, we used a discrete-event simulator

which models a network with virtual cut-through switching. This simulator was originally

developed by the authors of [DRS91] to study the behavior of virtual cut-through in HARTS

and it models the routing hardware, its interface to the buffer management unit, and the

network processor of each node.

The simulator accurately models the delivery of each message by emulating the

routing hardware along the route of a packet at the microcode level. It also captures the

internal bus access overheads experienced by packets as they pass through an intermediate

node. For example, when a transit packet arrives at an intermediate node, the following

sequence of events is initiated. First, the receiver for the link on which the packet arrived

waits for the packet header to become available. It then examines the packet header to

determine the packet type. For a BROADCAST packet, the receiver tries to schedule two

events: one to reserve the transm itter in the same direction to forward the packet, the other

to the buffer management unit to receive the packet. Lastly, the receiver schedules events to

signal the completion of the packet at this node. The simulator collects detailed statistics

for different types of messages. In addition to supporting exponentially distributed packet

lengths, the simulator can also use a discrete distribution of packet lengths in which the

user specifies different types of messages, their lengths, and the probability of generation of

55

each type of message.

We modified the simulator to generate traffic based on each connection (flow), and

to collect statistics on the number of bufferings, i.e., the number of times packets failed to

cut-through and were buffered at intermediate nodes. We chose to measure the number

of bufferings because tha t is what the cost function tries to capture. We did not use the

average delivery time as a measure because the overhead cost incurred when a packet is

buffered depends upon the processor, and the load on the processor. The simulator did not

model this load.

The simulator allows us to relax many of the modeling assumptions used in the

derivation of the cost function. In particular, we do not use the Independence assumption,

nor do we have exponentially distributed message lengths. In our experiments, we configured

the simulator for a hexagonal mesh of size 5 (denoted by E-5), which has 61 nodes. We

generated sets of flows by selecting the source, destination, and quantity of each flow using

independent random number generators. The source node was chosen using a uniform

random number generator. For a fixed source, the destination node was chosen using an

independent random number generator, with two different types of distributions in different

experiments. One was a uniform distribution, where the destination node is chosen to be

any other node in the system with equal probability. The second distribution tried to

capture the principle of locality, that is, the destination node is more likely to be close to

the source. The value of each flow was selected in the range [1,10] using a third uniform

random number generator. Note tha t in the cost function, it is the relative values of the

flows which are significant, the units do not affect the results.

We used the SP, INC, and ALLP algorithms to produce 3 different sets of route

assignments for each set of flows. These algorithms also returned the “cost” of the route

assignments tha t they produced. We then used the mesh simulator to simulate traffic on

these flows and measured the number of bufferings for each of the three sets of routes.

The value of a flow was interpreted to be a rate of packet generation, and the packet size

was fixed at 128 bytes. On each flow, packets were generated using a Poisson distribution

with a mean inter-arrival time specified by the value of the flow. The actual rate of packet

generation and the service time for the packets are a function of the link transmission rate.

The effective link transmission rate in our simulation was 1.5 microseconds per byte, and

a flow value of 1 was converted into an arrival rate of 1 packet per 180 milliseconds. This

value was chosen to ensure that the average link utilization remained low (it was below 0.4

in all our experiments). We note that the number of bufferings observed is a function of link

56

utilization and it would change if we assigned a different rate for the flow value. We could

make this arbitrary choice of generation rate because, in our experiments, we are interested

in the relative values of the number of bufferings for the three route assignments. In each

simulation, we collected statistics over a period in which 100,000 packets were delivered.

This number was'chosen by looking at the convergence of the statistic of interest (number

of bufferings) in some sample simulations.

Experiment 1: In this experiment, for any source, the destination of the flow was

chosen using a uniform distribution. The number of flows was varied from 50 to 500, and this

resulted in a change in the observed average link utilization from 0.035 to 0.33. The results

of the simulation are shown in Figure 4.4, which plots the number of bufferings observed

for a particular number of flows with each of the three algorithms. Each data point in the

graph represents an average over 50 different data sets. The results here can be compared

with the cost figures shown in Figure 4.5 for the same sets of flows. This experiment also

allows us to compare the performance of the three algorithms. The comparison shows that

the computed cost and the observed number of bufferings have similar behavior, except

when the number of flows is very small. In this case, INC and SP perform better than

what the cost function shows. It is seen that there is a modest improvement for INC over

SP, and for ALLP over INC. The improvement for INC over SP is higher when there are

fewer flows, tha t is, when the network load is light, because INC is able to locate routes

through links tha t are otherwise unused. Since INC performs quite well in this situation,

the additional improvement attainable by using ALLP is small. On the other hand, when

the number of flows is very large, because of the uniform communication pattern, most of

the links are almost evenly loaded and INC is not able to find much improvement.

Experiment 2: This experiment differs from Experiment 1 in th a t the destination

node was picked by first selecting a hexagonal ring and then selecting the particular node

within the ring, considering the source node as the center of the mesh. Since there are

more nodes in the outer rings, the probability of selecting a node in an outer hexagon is

smaller than tha t of selecting a node from an inner hexagon. W ith this distribution, the

average source-destination separation in a mesh of size e is e/2 as compared to (2e — l) /3

in the case of a uniform distribution. When the number of flows was varied from 50 to

400, the observed average link utilization changed from 0.035 to 0.26. The number of flows

could not be increased beyond 400 for the simulation because the routes generated by SP

resulted in severe network congestion. The results of the simulation are shown in Figure 4.6,

57

while those of the cost function are shown in Figure 4.7. Here again, the results for the

simulation match well with those given by the cost function. There is an apparent anomaly

seen here, in tha t, the cost for the SP algorithm is vastly increased even though the average

distance for a route is reduced as compared to the uniform distribution. The reason for

this is th a t, although the route length is longer in Experiment 1, the number of different

paths to nodes in an outer hexagon is substantially larger. Hence, because of the uniform

distributions for sources and destinations, the SP algorithm performed quite well. However,

for the non-uniform distribution, where the average number of possible shortest paths for a

flow is smaller, the effects of congestion are more pronounced and so the performance for SP

deteriorates. The INC and ALLP algorithms are better equipped to cope with congestion

and this is reflected in their vastly better performance than SP.

From these experiments, we can see tha t a route assignment which reduces the

cost function also results in a reduction of the number of bufferings in a hexagonal mesh

network.

O ther E xperim ents

To evaluate the performance of the routing algorithms, we have to test them on

other topologies and other mesh sizes. However, the computing resources required for com

paring the performance using the number of bufferings is prohibitive. The mesh simulator

ran on a SUN Sparcstation 1, and the time required for the simulation of a single set of

routes was several minutes. Consequently, we evaluate the algorithms based only on the

cost function. We have tested the routing algorithms on two network topologies: binary

hypercubes and hexagonal meshes, and for different network sizes. This choice was moti

vated by the fact tha t variations of virtual cut-through switching have been implemented

for these topologies. The binary hypercube is a well-studied topology [Sei85] and is used in

many commercially available multicomputer systems, hence its description is omitted.

The performance of these algorithms has been studied using simulated traffic pa t

terns which were generated as described earlier. For each data point, the experiment was

repeated with 100 different sets of flows and an average value was obtained. The standard

deviation of the mean was found to be less than 5% of the mean for all data points, and

less than 3% for most data points.

Figures 4.8 and 4.9 show the results of the simulation on a hexagonal mesh of

size 4 (denoted by E-4), having 37 nodes, using a uniform distribution for the selection

of the destination node. A comparison of the total cost for the solutions obtained by the

58

three algorithms is shown in Figure 4.8, and the percent improvement in cost between SP

and INC, and between INC and ALLP, is shown in Figure 4.9. These results are similar to

those obtained for the E-5 mesh in Experiment 1. In the second set of experiments for the

hexagonal mesh, the destination node was selected using a non-uniform distribution as in

Experiment 2. The simulation results obtained with this non-uniform distribution for an

E-4 mesh are shown in Figures 4.10 and 4.11, and they are similar to the results obtained

for the E-5 mesh in Experiment 2. We also performed experiments on an E-6 mesh and the

results obtained were similar.

The experiments with the binary hypercube used a uniform distribution for the

selection of source and destination nodes, but in this case, the average distance between

source and destination is n /2 for a hypercube of dimension n. The results obtained for

hypercubes of dimension 5 (Q-5, 32 nodes) and 6 (Q-6, 64 nodes) are shown in Figures 4.12

to 4.15. These are similar to the results for the hexagonal mesh with a non-uniform source-

destination distribution. They also show that the INC and ALLP algorithms perform much

better than the SP algorithm. ALLP again shows a modest improvement over INC.

In Algorithm Route_All, the final results can depend on the initial state of the

network. To study the sensitivity of the results to the initial flow assignment, three different

strategies were used to select this assignment. The first method was to select a route using

the shortest path algorithm without considering the other routes in the network. The second

method used the Route.One algorithm, with routes chosen in the order in which the flows

were generated. In the third strategy, the flows were sorted in the order of cost before using

the Route.One algorithm for assignment. Both the ascending and the descending order of

cost were considered. A comparison of these strategies was made for an E-4 mesh using the

same set of flows as input, and the experiment was repeated several times with different

sets of flows. The results indicated tha t, on the average, there was very little difference in

the final cost.

4.7 Sum m ary

The problem of routing inter-processor message traffic in a point-to-point inter

connection network has been formulated as an optimization problem for the total cost,

where the cost of a route depends upon the links that are used. The link cost function

was chosen with the objective of maximizing the probability of establishing vir

tual cut-through routes in the network using analysis based on a queueing model for the

network. It is noted that although some of the assumptions made in the queueing analysis

59

may not be valid in a real-time system, the cost function obtained intuitively captures the

notion of congestion avoidance. This was verified in our experiments with the hexagonal

mesh simulator.

The optimization problem was shown to be ATP-Hard, and thus, a heuristic al

gorithm (ALLP) was developed for the solution. The special case of online route selection

was also considered, in which requests are serviced as they arrive, and a polynomial time

algorithm (INC) was developed for this case. The performance of these algorithms was

studied for the binary hypercube and the hexagonal mesh network topologies using simu

lation. It was found tha t the extent of the performance improvement depends upon the

network topology and the distribution of the source-destination pairs in the network.

The ALLP algorithm can be used for selecting routes off-line in conjunction with

an algorithm for assignment of tasks to the nodes. The cost function of ALLP can then

be incorporated into the cost of the task assignment to reflect the cost of communication.

On the other hand, the INC algorithm can be used to select routes for flows in a dynamic

environment. It is optimal for the cost function derived here under the condition tha t routes

that are already established cannot be disturbed. This algorithm has been applied to select

routes for real-time channels, which is the first step in the channel establishment procedure

of Section 3.2.

60

A P P E N D IX

4 .A The Satisfiability Problem

Let U = { x \ ,X 2 , . . -,£m} be a set of Boolean variables. If u is a variable in U ,

then u and u are literals over U. A truth assignment for U is a function t : U -+ {T, F) ,

which corresponds to true and false respectively. The literal u is true under t if and only if

the variable u is true under t. Similarly, the literal u is true if and only if the variable u is

false.

A clause over U is a set of literals over U, and represents the disjunction of those

literals. It is satisfied by a tru th assignment if and only if at least one of its members is true

under tha t assignment. A collection C of clauses over U is satisfiable if and only if there

exists some tru th assignment for U tha t simultaneously satisfies all the clauses in C. With

this definitions, the SATISFIABILITY problem can be stated as follows. It was shown to

be AfP-Complete by Cook [Coo71].

S A T IS F IA B IL IT Y Given a set U of variables and a collection C of clauses over U. Is

there a tru th assignment for U such that C is satisfiable?

61

640001

■S 56000 -

4*000 -

40000 —

32000 ------------

24000 -

16000 -

i — r i — r •i— i— i— r

j i i i i i a i_
i

i i i _

A-

A A **O O NC
_ □-----□ M±P

 i / ji * i / i i /
& i f

r 1 '

J I I £ - A' _ J I I I I__

I • i / A . '

8000 i _ y_i

' i / i f '* i / if
* if / •

/ • V - i -
 i__

so 100 150 200 230 300 350 400 450 500 550 600
Number of Flow*

Figure 4.4: Comparison using number of bufferings: E-5 mesh, uniform distribution.

300000

3
270000

240000

210000

itoooo

130000 “1 “ “ “1 1 1 -

120000

A / J*
90000

600130 200 230 300 400100
Number of Flows

Figure 4.5: Comparison using the cost function: E-5 mesh, uniform distribution.

62

£ 100000

A A S P
O ------------O INC
□ ------------□ ALLP

s*
o

<0000 —

40000

20000

'XT
i o o o o M - -

500450
Number of Flows

1)0 250 300 350 400100 200

Figure 4.6: Comparison using number of bufferings: E-5 mesh, non-uniform distribution.

~ 500000

3 A -----------A S P
O ------------O WC
□ - ------- □ ALLP4S0000

350000

150000 —

100000

50000 -------

I ,

f - r
50 100 450

Number of Flows
500300 400150 200

Figure 4.7: Comparison using the cost function: E-5 mesh, non-uniform distribution.

63

270000'

240000 H--

210000

i / if
110000

150000 — I ------------\ 1 “

 I J ____

— — H — ^90000

60000

-J30000

550 600300 400 500100 150 200 250
Number of Flow*

Figure 4.8: Cost comparison: E-4 mesh, uniform distribution.

3
G O S P -IN C

• □ INC * ALLP
5 5 -------------1

4 5 -------------1

4 0 -------------1

3 5 ----------- 1

--1

' ^ . 3, 1 1
1I I I V

1 0 ,

5 —

500 550 600

Number of Flows
350150 200 250 300 400 450100

Figure 4.9: Performance improvement: E-4 mesh, uniform distribution.

64

~ 7S0000

5
€73000

€00000 1 _ 1 — H - - H/ » 1 -

523000 —

430000 -----------•

373000 ------- 1 “ 1 “

_ J I _

130000 -

73000------------ 1

p-rf ;
100 130 200 230 300 330 600

Number of Flow*
330 400 430300

Figure 4.10: Cost comparison: E-4 mesh, non-uniform distribution.

3
•B I 1---- 1“

t 1 ”“ “1 ”

4 5 ----------- 1

4 0 ----------- 1

3 5 ----------- ,

3 0 ----------- 1

2 5 ----------- ,

1 5 ----------- 1

10 ,

1 ““ 1--- 1---- 1-----I “

600150 200 250 300 350 400 450 500100
Number of Rows

Figure 4.11: Performance improvement: E-4 mesh, non-uniform distribution.

65

675000

H -

525000

450000

500000

225000

150000

_l - ^ 175000

400 450 500 600ISO 200 250 500 550100
Number of Row*

Figure 4.12: Cost comparison: Q-5 hypercube, uniform distribution.

.s S P • INC
IN C ■ ALLP

5 5 ----------- 1

<? ©
4 0 ----------- 1

35-----1

J O 1

25-----1

1 5 ----------- ,

10 ,

- I -----------1 - - ■ §] - _5 -------------1 -

350 400 450 500 550 600

Number of Flow«
150 200 250 300100

Figure 4.13: Performance improvement: Q-5 hypercube, uniform distribution.

66

750000

675000 —

450000

375000 “I “

' J

-225000

_ X . _150000

75000

150 200 250 300 350 400 500 550 600100
Number of Flows

Figure 4.14: Cost comparison: Q-6 hypercube, uniform distribution.

55-----, - “1---- 1---- 1-----1-----1---- 1---- 1-----1------1 " _I I I I I I I I I
ft » -----1-
- a .

 1 “

3 5 ----------- ,

3 0 ----------- 1

2 5 ----------- 1

20 ,
1 5 ----------- 1

1 0 ---------------1

jh i l i
i I i T

5 ----------- , - !----j ------1 -

250 350 400 450 500 550 600

Number of Rows
100 150 200 300

□ - “
- O S P ' INC
- □ INC-ALIP

Figure 4.15: Performance improvement: Q-6 hypercube, uniform distribution.

C H A PT E R 5

RELIABLE BR O A DC A STIN G

5.1 Introduction

This chapter addresses the problem of broadcasting in mesh-connected multi

computer systems, like HARTS, which use virtual cut-through switching. Although this

operation is very simple for broadcast networks like the Ethernet and the Token Ring,

where a message transm itted can be ‘seen’ by every other node in the network, it is more

involved for a point-to-point interconnection network. For this type of network, a sim

ple non-redundant broadcast algorithm, which delivers a single copy of a message to every

node, essentially constructs a spanning tree for the network graph rooted at the source

node. It is desirable to minimize the height, and hence the number of store-and-forward

communication steps, for the spanning tree. We present a simple primitive to support broad

casting efficiently in this type of network. This primitive is based on the virtual cut-through

switching scheme and significantly reduces the number of required store-and-forw ard com

munication steps. We also present an implementation technique for this primitive for the

HARTS routing controller.

Based on this primitive, we then develop broadcasting algorithms for meshes which

are resilient to node/link faults. Motivation for this work is provided by its applicability in

implementing algorithms for problems like clock synchronization and distributed agreement

in the presence of faults [LMS85, LSP82]. In these problems, it is necessary to ensure that

a non-faulty node can correctly deliver its private value to all other non-faulty nodes in the

system. This problem is difficult because (intermediate) faulty nodes can discard, corrupt,

and possibly alter the information passing through them. Although on-line distributed

diagnosis schemes are available for identifying faults, these schemes do not give 100% fault

coverage unless the testing for the diagnosis goes on for a very long time. Therefore, it is

highly desirable that these broadcast algorithms should work even when the identity of all

the faulty processors is not known. This is accomplished by delivering multiple copies of the

67

68

message through disjoint paths to every node in the system. The receiving nodes can then

identify the original message from the multiple copies using a scheme which is appropriate

for the fault model, like majority voting.

Although the broadcast primitive can be used to develop similar algorithms for

rectangular meshes, we only present algorithms for the wrapped hexagonal mesh topology,

since these are more complex than those for a rectangular mesh.

To the best of our knowledge, this is the first reported work dealing with reliable

broadcasting in point-to-point interconnection networks with virtual cut-through switching.

In other related work, Chou and Gopal have recently presented some algorithms for linear

broadcast routing [CG89]. The linear broadcast technique is similar in principle to the

broadcasting primitive presented here. The authors, however, concentrate on the problem

of finding optimal simple broadcast algorithms for general network topologies, and they

have shown that the general problem is NP-complete. A multiple-copy reliable broadcast

algorithm for the hypercube topology is presented in [RS88]. Algorithms for total-exchange

and optimal broadcasting, again in hypercube multi-computers, can be found in [Fra89,

JH89]. In [CSK90] we presented a point-to-point broadcast algorithm for the hexagonal

mesh, which required n + 2 communication steps in a mesh of size n. T hat algorithm, which

is based on traditional store-and-forward switching, does not consider possible hardware

support for virtual cut-through switching, and it does not handle multiple-copy broadcasts.

Protocols for reliable broadcasting, mainly for broadcast networks, can also be found in

the literature [CM84, BJ87]. These protocols try to provide a consistent delivery ordering

among broadcast messages, but they do not consider malicious failures.

This chapter is organized as follows. Section 5.2 describes the proposed broadcast

primitive and its implementation for HARTS. In Section 5.3 we develop an algorithm for

simple broadcasting based on this primitive. Broadcast algorithms, which deliver multiple

copies of the message through node-disjoint paths to each node in the hexagonal mesh, are

presented in Section 5.4. An analysis of these algorithms and their comparison with other

broadcast algorithms is presented in Section 5.5. The chapter concludes with Section 5.6.

5.2 The Broadcast P rim itive

When we consider multi-computer systems with virtual cut-through switching,

packet routing is typically handled by a front-end controller at each node. The normal

operation of the controller is to compare the packet destination with the node address and

if they match, the packet is delivered to the processor. Otherwise, it is forwarded to the

69

next node in the route. In many such systems dynamic routing is employed, in which case

the controller also has to choose the next node on the route. For example, in HARTS, the

possible routes of a message to the destination are described by three routing tags (which

take positive and negative values) corresponding to the distances to be traversed in the six

directions in the hexagonal mesh. The routing controller examines the tags in turn to check

whether there are any non-zero values, and if so, whether the corresponding outgoing link

is available. As the message is being routed toward the destination, its routing tags are also

updated to reflect the new distance to the destination.

One of the principal advantages of this scheme is that the node processor does

not have to examine and process all the packets going through the node. However, this

advantage would be lost when broadcast messages are to be delivered using a simple store-

and-forward broadcasting scheme. In addition to the larger delays caused by buffering,

these messages could result in a substantial load on the processors. To facilitate efficient

broadcasting, it is therefore necessary to support the operation at the link level. We propose

to use the RELAY primitive, shown below in the form of a procedure, to accomplish this.

This procedure shows the actions to be taken by the link controller when a packet arrives. It

is assumed that the packet header contains the information required for handling broadcast

messages like type, distance, step, and tag. The type field distinguishes a BROADCAST

packet from an ordinary packet, while the distance gives the number of nodes to be traversed

in a particular direction. The step and tag fields are used by the broadcast algorithms

described later in this chapter.

In the RELAY procedure, deliver corresponds to the delivery of the packet by

the link controller to the processor. The procedure also shows tha t the link controller is

responsible for updating the distance field in the packet header before delivering or relaying

the packet. The packet is relayed to the next node in the same direction in which it arrived,

i.e., on the link opposite to the input one, using send.on.link.

70

p r o c e d u r e R E L A Y

b e g in
rccc ivc -f romJink(p&ckc t , from .direction)
i f (packet.type = BR O A D C A ST)

packet.distance := packet.distance — 1
de/ircr(packet)
i f (packet.distance ^ 0)

scnd-onJ»nJt(direction = from .direction, packet)
e n d

e ls e
n o rm a l packet handl ing

e n d
e n d

There are several reasons for choosing this primitive. First, it blends in easily with

the existing dynamic routing algorithms. Second, the deliver and the scnd.on.link steps

can be accomplished concurrently using a “tee” operation. Third, the operation is simple

enough to be implemented at little additional cost in the link controller. Furthermore, we

will show that this primitive can be used very effectively to develop broadcast algorithms

for mesh connected multi-computers.

The implementation of the “tee” operation can be described in more detail in the

context of the HARTS routing controller [DRS89]. The controller contains six receivers and

six transm itters, corresponding to the incoming and outgoing links, connected to a single

bus. This bus, called the time-sliced bus, also has interfaces to the packet buffer management

unit in the node to accept and deliver packets. The bus is time-slotted and each receiver is

thus guaranteed an access slot, which it uses to place the data tha t it receives on the bus.

Most of the intelligence in the routing controller resides in the receivers. When a packet is

received, the receiver examines the routing tags in the packet header to check whether the

packet has reached its destination. If not, it checks the directions in which a packet can

be forwarded and tries to reserve a transm itter in one of these directions. Note that when

shortest path routing [CSK90] is used, the routing tags are such tha t at most two of the

three routing tags are non-zero. In this case, the packet can be forwarded in at most two

of the six directions. If the reservation succeeds, the transm itter accepts any data tha t is

placed on the time-sliced bus by the receiver and transm its it. If the reservation attem pts

do not succeed, the receiver asserts a control line to request the buffer management unit to

store the packet for later transmission.

To implement the RELAY primitive, the receiver operation can be modified to

recognize packets of type BROADCAST. For this packet type, in addition to attem pting a

reservation for the transm itter in the same direction, it also asserts the control line to store

71

the packet. Therefore, when the receiver places packet data on the bus, it can be forwarded

to the next node (send.on.link) and dropped to the node (deliver) simultaneously. If the

reservation does not succeed, the packet is dropped to the buffer management unit as

usual. In practice, only one packet is delivered to the buffer management unit even if the

packet cannot cut through to the next node. The packet header is marked appropriately to

inform the network processor about the status of the forward transmission. The HARTS

routing controller is microprogrammable and these modifications have been implemented

by changing the micro-programs, without any change to the controller hardware.

5.3 Sim ple Broadcasting

The algorithm for simple broadcasting is shown below in the form of procedures

BCAST.INIT and SBCAST.RELAY. An example of its operation is given in Figure 5.1

for a hexagonal mesh of size 4 (denoted by E-4). In this algorithm, and in the algorithms

described later in this section, the size of the hexagonal mesh is n and the directions re

ferred to are labeled in a counter-clockwise sense, as illustrated in Figure 5.2(a). With

reference to the definition of the C-wrapped hexagonal mesh, direction 0 corresponds to

the link from a node s to the node [s + l]3 „2 - 3 n+i- The term principal axis is used fre

quently in the explanation of the algorithms. This refers to an imaginary line connecting

the center of the hexagon to one of the six corners. Since the C-wrapped hexagonal mesh is

a homogeneous structure, any node can be considered to be at the center of the mesh and

the algorithms can be described by placing the broadcasting node at the center. It is also

useful to define directions relative to the direction in which the packet arrived into a node,

as in Figure 5.2(b). Hence, left corresponds to the absolute direction (in + 1) mod 6, right

corresponds to direction (in - 1) mod 6, and so on.

The procedure BCAST.INIT is executed by the node which initiates the broadcast,

and is common to all broadcasting algorithms. This node plays no further part in the

broadcast process. In BCA STJN IT, the distance is set to n — 1 because this is the diameter

of a hexagonal mesh of size n. The send.packet function, which is also used in other

algorithms, is a non-blocking send and only initiates the transmission of the packet. Actual

packet transmission can proceed in parallel on the six outgoing links after the initiation.

The other procedure, SBCAST.RELAY, is not specific to a particular node and describes

the overall operation for the system. It is activated whenever a broadcast packet is received

at a node. The actions taken by a node are driven by the information that it receives in

the broadcast packet. It is noted that the step number, step, and the algorithm type are

72

a part of the state information tha t is contained in the broadcast packet. Moreover, the

information about the direction from which a particular packet was received (denoted as

from.direction), is available to the receiving node. This is indicated by the receive operation

in SBCAST.RELAY. Based on this information, the processor at an intermediate node can

determine the next step in the broadcast as per the SBCAST.RELAY algorithm. The

algorithm terminates after step 2 because packets with a step value of 2 do not branch any

further. Note that send.packet and receive are processor level operations, distinct from the

link level operations shown in the RELAY primitive.

p r o c e d u r e B C A S T J N I T

b e g in
packet.type := BROADCAST
packet.step := 1

scnd.packet(pncket, direction=0, distance=n — 1)
send.packet(pncket, direction=l, distance=n — 1)
send.packet (packet, direction=2, distance=n — 1)
send.packet(packet, direction=3, distance=n — 1)
send.packet^packet, direction=4, distance=n — 1)
send.packet (packet, direction=5, distance=n — 1)

e n d

p r o c e d u r e S B C A S T .R E L A Y

b e g in
receive(packet, from.direction)
if (packet.step = 1)

packet.step := 2
if (packet.distance ^ 0)

direction := (from.direction + 1) mod 6
send.packet(packet, direction, packet.distance)

e n d
e n d

e n d

The correctness of this algorithm can be explained based on Figure 5.1, which

shows the paths taken by a broadcast packet. The broadcast packet is delivered to all

nodes on the six principal axes by the BCASTJNIT operation. The “distance” field in

the broadcast packet header is decremented, as shown in the RELAY primitive, at each

intermediate node and at the receiving node. Hence, a node on the principal axis which is

m hops away from the source node sees a value of (n — 1 — m) in the packet.distance field.

In SBCAST.RELAY, this value is used in the forwarding, so the forwarded packet travels

a total distance of m + (n —1 — m) = n —1 from the source node. Since the nodes on the

periphery of the hexagonal mesh are n — 1 hops from the center, the forwarded packet will

reach the peripheral node.

73

Figure 5.1: Simple broadcast for an E-4 mesh (SBCAST).

3

left

In

rightdow n

forward

(•) < b)

Figure 5.2: Direction labeling.

74

5.4 M ultip le Copy Broadcasts

While simple broadcasting is sufficient for many applications, it is susceptible

to message loss, possibly due to data corruption and/or link and node failures. There

are several applications which require more resilient broadcast mechanisms, like the clock

synchronization algorithm described in [RKS90]. For this type of application, we have

developed a family of efficient and elegant algorithms, called k-reliable broadcasts, to deliver

multiple copies of a message to each node using node-disjoint paths. The algorithms can

also be used to guard against message loss in applications which require reliable message

delivery, in place of the conventional acknowledgment-retry mechanism.

In the clock synchronization algorithm, for example, to tolerate m arbitrary (Byzan

tine) faults, it is necessary for a node to transmit 2m + 1 copies of its local clock to every

other node in the system through disjoint paths. From the values received, a node can de

termine the value that was sent by the originator using the technique described in [YM88].

Therefore, using a 5-reliable broadcast, it is possible to achieve clock synchronization in a

hexagonal mesh in the presence of up to two Byzantine faults. In this application, and in

other applications of reliable broadcasting, there are two aspects to a reliable broadcast:

the delivery mechanism and the reception mechanism1. The delivery mechanism consists

of algorithms that deliver multiple copies of a message to all other nodes, through disjoint

paths. It is noted that in the presence of faults, some of these copies may be corrupted or

lost. The reception mechanism involves algorithms which interpret and assimilate informa

tion from the different copies received at a node. These are strongly dependent on the fault

model used. A discussion on different reception mechanisms can be found in [RS88]. These

mechanisms are not dependent on the hypercube topology, so they can also be used for the

hexagonal mesh.

This section presents the message delivery algorithms, starting from the two-copy

algorithm and progressing toward the six-copy version. The delivery algorithms have a

common broadcast initiation procedure, BCAST.INIT, which was described in Section 5.3.

Figure 5.3 shows the packets generated in one direction for the different broadcast algo

rithms, where the source node is placed at the lower left corner of the hexagonal mesh.

*The terminology used here is taken from [RS88],

75

Figure 5.3: Packets generated in one direction for the six broadcast algorithms.

76

5.4.1 2-R eliable Broadcast (2-B C A ST)

The algorithm 2-BCAST shown below delivers two copies of the message to each

node. Its operation is illustrated in Figure 5.4 for an E-4 mesh, and for clarity, only the

actions of nodes on two of the principal axes are shown. Also, the links tha t wrap around

are shaded and labeled. This algorithm is similar to SBCAST.RELAY, except that the

message is forwarded in two directions. Using the explanation presented earlier for the

simple broadcast algorithm, it is observed that nodes which are not on the principal axes

get two copies of the message, as shown in the figure. Also, nodes on the extremities of

the principal axes (packet.distance = 0) use the wrap links to send the message to nodes

on another axis. For example, in the figure, the wrap links (a) and (b) are used to deliver

messages to two other principal axes. This ensures that nodes on the principal axes also

get two copies of the message, and through disjoint paths,
p r o c e d u r e 2 -B C A S T

b e g in
reccu>c(packet, from .direction)
i f (packet.step = 1)

packet.step := 2
i f (packet.distance ^ 0)

send.pacifcef(packet, direction=(from .direction
send .pa cke t (packet, direction=(from .direction

e ls e
send.packet(pn.cYet , direction=(from .direction

e n d
e n d

e n d

5.4.2 3-R eliable Broadcast (3-B C A ST)

The 3-reliable broadcast algorithm can be explained through a transformation of

the 2-BCAST algorithm. In going from 2-BCAST to 3-BCAST, it is necessary to deliver one

more copy of the packet to each node. This is accomplished by arranging for the delivery of

the third copy using the wrap links from nodes that are diametrically opposite with respect

to the broadcasting node. There are two modifications required to the 2-BCAST algorithm,

intermediate nodes on the principal axes now transmit the packet left for n — 1 hops to reach

nodes in the opposite sextant. Also, the extreme nodes on the axes transm it the packet

n — 1 hops to the left. The results of these modifications can be seen in Figure 5.5, where

the labels indicate nodes connected by a wrap link.

+ 1) m od 6, packet.distance)
— 1) m od 6, packet.distance)

— 1) m od 6, d istan ce= n — 1)

o o o o

o o o o

Figure 5.4: 2-BCAST for an E-4 mesh.

(a) (g) (f) (e)

•>(d)

(c)

(b)

(d) \ \(d) (a)

(c)

(b)

(e)

Figure 5.5: 3-BCAST for an E-4 mesh.

78

p r o c e d u r e 3 -B C A S T

0. b e g in
1. rcce ivc (packet , from_direction)
2. i f (packet.step = 1)
3. packet.step := 2
4. i f (packet.distance ^ 0)
5. semf_pacitct (packet, direction=(from _direction + 1) mod 6, d istance= n - 1)
6. sen d . p a ck e t (p a ck c t , d irection=(from .direction — 1) mod 6, packet.distance)
7. e ls e
8. s e n d . p a c k e t (packet, direction=(from _direction + 1) mod 6, dist.ance=n - 1)
9. s e n d . p a c k e t (packet, d irection=(from .direction - 1) mod 6, d istance=n - 1)
10. e n d
11. e n d
12. e n d

5.4.3 6-R eliable Broadcast (6-B C A ST)

We choose to describe 6-BCAST before 4-BCAST and 5-BCAST because the latter

two can be treated as restricted forms of 6-BCAST. This algorithm, which is presented in

procedure 6-BCAST, creates the broadcast tree shown in Figure 5.6. This figure shows the

packets generated by 6-BCAST from a single principal axis. As compared to 3-BCAST,

this algorithm is more complicated because it is necessary to use an additional forwarding

step at some of the nodes. We employ a tag field in the broadcast packet header to ensure

tha t only the relevant nodes will execute the additional step. This tag field takes different

values, and it is interpreted by the receiving node to forward the packet in the appropriate

direction (lines 26-38 of 6-BCAST). Nodes on the extremities of the principal axes use

tags ’A’ and ’B’ to forward the packet to two sextants. This is shown in the first part of

Figure 5.6, where the labels mark nodes that are connected by wrap links. The immediate

neighbors of the broadcast source node, with packet.distance of n - 2, use tags ’C’ and ’D’

to reach nodes on the adjacent principal axes. In the second part of Figure 5.6, the graph

is redrawn by re-positioning the nodes reached by wrap links. The initiating node is now

at the bottom left corner of the hexagon. The figure demonstrates that the broadcast tree

generated is quite regular, which is not immediately apparent from procedure 6-BCAST.

It can be seen that the packets reach all the nodes in the hexagonal mesh (except

the initiator node). Similarly, the nodes also receive packets originating from each of the

other five principal axes. Ilence, each node receives six copies of the packet. However, it is

not obvious from the figure tha t these six copies would be received through node disjoint

paths. We will show that this is indeed the case later in the section. Given tha t the node

degree of all nodes of the hexagonal mesh is six, this is the maximum number of disjoint

paths possible. This algorithm shows that the hexagonal mesh is 6 connected in terms of

79

t a g ' A '

t a g ' B'
(g)v (f)

t a g ' C' —

(b)

A 7 t a g ' D '

(b)

<g> (d)

\ /

A \ W
___________Figure 5.6: Packets generated in a 6-BCAST (from one direction).___________

node connectivity.

5.4.4 5-B C A ST and 4-B C A ST

Both 5-BCAST and 4-BCAST can be realized as restricted forms of 6-BCAST. In

5-BCAST, we eliminate the additional forwarding step for packets tha t were tagged ’A’ in

6-BCAST. We can accomplish this by setting packet.tag to NONE on line 5 in procedure

6-BCAST, and by excluding the send operation on line 10. The resulting broadcast tree, in

one direction, is shown in Figure 5.7. To get 4-BCAST from 5-BCAST, we further eliminate

the send operation on line 7 of 6-BCAST. The broadcast tree for 4-BCAST is shown in

Figure 5.8.

5.4.5 C orrectness of the A lgorithm s

The correctness of the simple broadcast algorithm can be shown using the figure

of the complete broadcast tree (Figure 5.1). This technique can also be used for 2-BCAST,

to show that each node receives two copies and the paths used are node disjoint. For the

more complicated algorithms like 6-BCAST, we can show that all nodes receive the required

number of copies using the broadcast tree. To show that the paths are node disjoint, we

consider the case of 6-BCAST in some detail and examine the paths generated from the

source node to a particular destination node. There are two main cases to be considered:

(1) the destination node is on one of the principal axes, (2) the destination node is between

two principal axes. Figure 5.9 shows the paths in these two cases.

80

procedure 6-BCAST

0. begin
1. receu;e(packet, from .direction)
2. if (packet.step = 1)
3. packet.step := 2
4. if (packet.distance = 0)
5. packet.tag := ‘A ’ / * tag = NONE for 4-B C A ST and 5-B C A ST * /
6. send_pacite<(packet, direction=(from .direction + 1) m od 6, d istan ce= n — 1)

7. packet.tag := ‘B ’ /* this send is excluded for 4-B C A ST * /
8. send.packet (packet, direction=(from _direction — 1) m od 6, dist,ance=n — 1)

9. packet.tag := NO NE /* this send is excluded for 4-B C A ST and 5-BC A ST
10. send.packet(p&ckct, direction=from .dircction, d istance= n — 1)
11. else if (packet.distance = n — 2)
12. packet.tag := ‘C ’
13. send.packet(p&ckei, direction=(from _direction + 1) mod 6, dist.ance=n — 1)

14. packet.tag := ‘D ’
15. scn<f_padtc/(packet, direction=(from .direction — 1) mod 6, d istan ce= n — 1)

16. packet.tag := NO NE
17. send.pacibe<(packet, d irection=(from .direction + 2) m od 6, d is ta n ce= l)
18. send_pacite<(packet, direction=(from _direction — 2) m od 6, d ist.ance= l)
19. else
20. packet.tag := NONE
21. send.pacite/(packet) d irection=(from .direction + 1) m od 6, d istan ce= n — 1)
22. send.packet(pncket, direction=(from _direction — 1) m od 6, d istan ce= n — 1)
23. end
24. else if (packet.step = 2) A N D (packet.distance ^ 0)
25. packet.step = 3
26. case (packet.tag) of
27. ‘A’:
28. send.packet(pa.cket, direction=(from .direction — 1) m od 6, packet.distance)
29. ‘B’:
30. send.packet{packet, direction=(from _direction + 1) m od 6, packet.distance)
31. ‘C’:
32. send.pacite<(packet, d irection=(from .direction + 1) m od 6, 1)
33. ‘D’:
34. send.packet(packet, direction=(from _direction — 1) m od 6, 1)
35. NONE:
36. end
37. end
38. end

81

<e) (d)

<9> H (f) Q (e) Q (d) O

\
\ \ /

w \a— q- o Q-*— c

T T V v ;

Figure 5.7: Packets generated in a 5-BCAST (from one direction).

\
\ \

o o o

AV5:
Figure 5.8: Packets generated in a 4-BCAST (from one direction).

82

(d>

(b)

(b)

(b)

— (a)

(b)

Figure 5.9: Disjoint paths in a 6-BCAST

C ase 1: Path 0 is created by the BCASTJNIT operation. Paths 1 and 5 are created

using tag ’D’ and tag ’C’ packets (lines 13 and 15), with subsequent forwarding. Path 2 is

created using a tag ’A’ forwarding on lines 6 and 28, whereas path 3 is created on line 21.

Path 4 is created by the send operation on line 6.

C ase 2: Paths 0 and 1 are created from the axes which bound the sextant containing

the destination node. They are created essentially by the operations on lines 21 and 22.

Versions of these operations for nodes adjacent to the sender (distance = n — 2) and at the

end of the principal axes (distance = 0) can be found on lines 13, 15 and 6, 8 respectively.

Paths 3 and 4 are similar, and they are created from the opposite axes. The send operation

on line 10 creates path 2. Path 5 is created using tagged forwarding on line 6.

We can see tha t the 6 paths generated in each case are node disjoint. 4-BCAST

and 5-BCAST are restricted forms of 6-BCAST, so it follows tha t the paths generated by

these algorithms are also node disjoint. In 5-BCAST, one sextant of the hexagon is left

uncovered in each direction. From the structure of the broadcast tree, we can see tha t the

a different sextant is left uncovered in each direction. Hence, the number of copies received

by each node is five. Similarly, in 4-BCAST, the number of copies received is four for the

4-BCAST, and the paths are disjoint.

We have also used an enumeration technique to independently verify these algo

rithms. We developed a program which implements the broadcast algorithms and generates

broadcast trees for a fixed source node. From the broadcast tree of the fc-BCAST, this pro

gram traces the paths from the source node to each node in the system. It then verifies

that each node is visited by k paths and that the paths are node disjoint. We used this

83

program to verify that the algorithms performed correctly, for mesh sizes2 from 3 to 15.

5.5 A lgorithm Analysis

The latency of a broadcast can be defined as the elapsed time between the initiation

of the broadcast and the delivery time of the last packet in the broadcast. This latency can

vary depending upon the system load and the number of cut-through routes. To analyze

broadcast algorithms, one metric is the latency for the algorithm in the best case, that is,

when the network is otherwise idle. This latency can be computed based on a model that is

commonly used for point-to-point communications. The time required to transm it a packet

of length M can be modeled as 5 -f rM , where S is the packet set-up time and r is the

transmission rate on the link. When a packet cuts through a node, the delay experienced

is essentially the time taken to receive and examine the packet header, a small constant d.

Hence, if a packet cuts through t nodes, the time elapsed between the start of transmission

and the end of reception is S + rM -f id.

Consider the simple broadcast algorithm presented in Section 5.3. Assuming that

the network is otherwise idle, and the node can concurrently transm it messages on multiple

links (as in the HARTS routing controller), the packet can be delivered to all nodes on the

principal axes in a single transmission. The second step, which completes the operation,

can also be accomplished by a single packet transmission. Hence, in the best case, the

broadcast operation can be completed using two packet transmissions. The longest path

in this broadcast is n — 1 hops, which is the diameter of a hexagonal mesh of size n, and

the packet is buffered and relayed only once on this path. Hence, the number of nodes that

are cut through is n — 3 and the best-case maximum message latency for the broadcast is

25 + 2 rM + (n — 3)d. The average-case maximum message latency is (k -1- 2)(5 + r M)-f (n -

3 — k)d, where k = (n — 3)p. This algorithm compares very favorably with the point-to-point

broadcast algorithm presented in [CSK90], since tha t algorithm has latency (n + 2)(5+ rA f).

The latency for the other broadcast algorithms can be determined in a similar

fashion, using the number of message transmissions, and the maximum path length. Note

tha t the send.packet operations in all the algorithms can be performed in parallel since

they do not have any common links. The paths traced by these algorithms do not result in

any contention for the links because each link has to carry at most one packet. Moreover,

as mentioned earlier, it is assumed that a node can transm it packets on more than one

2 A hexagonal mesh of size 2 is a complete graph of 7 nodes, which can be treated as a special case

84

Type Best-Case
SBCAST
2-BCAST
3-BCAST
4-BCAST
5-BCAST
6-BCAST

2(S + rM) + { n - 3) d
2(S + r M) + 2 (n - 2) d
2(5 + r M) + 2(n - 2)d
3(5 + r M) + (n - 3)d
3(5 + r M) + (2n - 5)d
3(5 + rA /) + (2 n - 5) d

Table 5.1: Latency for different broadcast algorithms.

outgoing link simultaneously. This is the case for the HARTS routing controller [DRS89].

The latencies of these algorithms are shown in Table 5.1. 2-BCAST and 3-BCAST have a

minimum number of two message transmissions, whereas the other three algorithms require

three transmissions because of the additional forwarding step.

A comparison based only on the best case latency is not satisfactory because the

latency is very sensitive to the number of times that a message gets buffered. In the C-

wrapped hexagonal mesh, the RELAY primitive can also be used to send a packet to all

nodes using send.packet with distance set to 3n(n - 1), since this traces out a Hamiltonian

cycle along any one of the six directions emanating from the broadcasting node. The latency

for packet delivery for this algorithm (called Algorithm A) would be 5-f rM + (3n(n— 1) — l)r/

in the best case. This shows tha t in the best case, for certain values of 5 , r , and d ,

Algorithm A can perform better than SBCAST.

However, the probability of a packet getting buffered increases with the length of

the path, which results in a larger latency. For example, consider a packet that is to be

delivered to a node which is m hops away. If the packet cuts through all the intermediate

m — 1 nodes, the latency is 5 + r M + (m — l)d. However, if the packet gets buffered at i of

the m —1 nodes on the path, the latency experienced would be (i + l) (S + r M) + (m — \ — i)d,

where the average queueing delay experienced before a packet is serviced is included in the

setup time 5 . The average number of times that a packet gets buffered can be determined

using the queueing network model, like the one used in [KK79, IM86]. Assuming that

the network is uniformly loaded and the utilization of each link is p, the probability that

a message gets buffered waiting for a link is p. For brevity, we call this the probability

of buffering for a link. Since the probability of buffering for a link is independent of the

probability of buffering for any other link, the number of times tha t a message gets buffered

follows a binomial distribution. Hence, if a message has to traverse m links, the average

number of times that it will get buffered is mp.

85

p SBCAST (no cut-through) Algorithm A
0.00 2(5 -f r M) (5 + rM) + 17 d
0.05 2 (S + r M) 1.85(5+ r M) + 16.15d

n = 3 0.10 2 (5 + rM) 2 .70 (5+ r M) + 15.30d
0.15 2 (5 + rM) 3 .55 (5+ r M) + 14.45d
0.20 2 (5 + r M) 4.40(5 + rM) + 13.60d
0.00 3 (5 + rM) (5 + rM) + 35d
0.05 3(5 + rM) 2.75(5 + rM) + 33.25d

n = 4 0.10 3 (5 + r M) 4 .5 0 (5 + r M) + 31.50d
0.15 3 (5 + r M) 6.25(5 + rM) + 29.75d
0.20 3 (5 + rM) 8.00(5 + rM) + 28.00d

Table 5.2: Comparison of simple broadcast algorithms.

Based on this model, the average-case broadcast message latency for Algorithm A

is (£ + l) (5 + rM) + (3n2 — 3n — 1 — £)d, where I = (3n (n — 1) — \)p. It is difficult to compute

a similar expression for SBCAST because it has many parallel transmissions and the latency

is determined by the delivery time of the last (slowest) message. However, it is possible

to compute the latency for SBCAST assuming that the broadcast message gets buffered at

each intermediate node. A comparison of these two algorithms for different values of p in

hexagonal meshes of size 3 and 4 is given in Table 5.2. It is noted tha t the setup time 5 is

an increasing function of the utilization p because it also includes the queueing delay. From

this table, it is clear tha t SBCAST outperforms Algorithm A as the utilization p increases.

Also, as n increases, SBCAST performs better even for very small values of p. The SBCAST

algorithm can also be compared with an “ideal” simple broadcast algorithm, which would

deliver messages to all nodes with a single message transmission. Since the diameter of the

hexagonal mesh is n — 1, the number of nodes that are cut through is n — 2. Hence, this

ideal algorithm would have a best-case latency of 5 + r M + (n — 2)d. Thus, SBCAST is

within a constant factor of the ideal algorithm.

Sim ulation R esults

In order to study the performance of our broadcast algorithms, we have simulated

these algorithms using a discrete-event simulator described in Section 4.6. This simulator

has been modified and extended to implement the RELAY primitive in the routing hardware

and the broadcast algorithms in the network processor.

One of the objectives of the simulation experiments was to get an estimate of

the performance of the broadcast algorithms under different network load conditions. The

86

^ 90000

90000

30000

10000
0000

- J I I _

4000

3000

1000
000
•00
700
600

900
0 5 0 0.35

Link Load
0 00 0 05 0 1 0 0 15 0 3 0 035 0 90 035 040

Figure 5.10: Performance of simple broadcast.

traffic generated for the network was uniform across all the nodes and consisted of two types

of packets: regular and broadcast. At each source node, packets were generated using a

Poisson arrival process and they were assigned type regular or broadcast with probability

0.999 and 0.001, respectively. For the base non-broadcast traffic, destination nodes were

chosen such tha t the probability of communicating with a node was inversely proportional

to the distance from the source. Both types of packets were assigned lengths of 64, 128, and

512 bytes, with probability 0.3, 0.5, and 0.2, respectively. The link load used for plotting

is the ratio of the packet generation rate to the peak I/O rate of the routing hardware.

Currently, the peak I/O rate tha t can be supported by the routing hardware is 4 MBytes

per second.

Figure 5.10 shows the latency of message delivery for the SBCAST algorithm. The

units for latency in this and other figures is hardware “clock cycles” , in the current routing

controller hardware this is 1.5 microseconds. The three curves shown in the figure are for

meshes of size 5, 7, and 9. It can be seen that the latency increases with mesh size and

with link load. For a particular link load the increase is close to linear when we move from

one mesh size to another. The latency increases super-exponentially for link loads beyond

0.5, indicating tha t the network is close to saturation at that point. The reason for this

“early” saturation is that link access overheads are not included in the computed peak I/O

87

120

110

*0 --------

•0---- 1 T - - -fir - ->T-i i s ' \ i

S i ,* i
i i

70---

6 0 -------

40 —

50-------r

r - A —| A - 2 f C A 6 T -
I O —j O 3 fC A 8 T
, 4-BCASTr - A-p—A-rL---►T-10 -

0 05 0 25 0 5 0000 0 15 0 3 0 0.33 0 4 0 0 450.10
Link Load

Figure 5.11: Performance of multiple copy broadcasts (mesh size = 7).

rate. For example, the routing hardware imposes a forced idle time corresponding to 8 bytes

between the transmission of successive packets on any link. These access overheads decrease

the effective throughput of the routing hardware, so saturation (for regular messages) sets

in for link loads greater than 0.7. Since the broadcast message has to traverse multiple

links, and the latency is determined by the last packet to be delivered, the latency increases

rapidly with increasing link load.

Figure 5.11 shows the performance of the multiple copy broadcast algorithms com

pared to the SBCAST algorithm for a hexagonal mesh of size 7. The graph shows the percent

increase in latency of the multiple copy broadcasts compared to the SBCAST latency for

different link loads. It is observed tha t the ratio increases with increasing link load, showing

tha t the latency of multiple copy broadcasts increases more rapidly than SBCAST. Part of

the reason is tha t there are more messages to be delivered, and the latency is determined

by the slowest message. The cost of 4, 5, and 6 copy broadcasts is quite close, because these

three algorithms all use the wrap links to deliver messages and have a long path length.

The other objective of the simulation is to study quantitatively the benefits of using

the virtual cut-through broadcast primitive. This is achieved by comparing the performance

of our SBCAST algorithm against an algorithm which uses only store-and-forward packet

88

_ nooo
40000

90000

30000

_ J I I _ I _10000
9000

6000 ------------1I9000 ---- 1

MOO j--

3 000 ------------1

1000 ---
900 ----------- 1 -

TOO---- 1
600 ------------1

0 0 0 0 09 0 1 0 0 1 9 0 3 0 0 3 5 0 70 0 3 5 0 4 0 0 45 0 3 0 0 3 5

Link Load

Figure 5.12: Performance of store and forward simple broadcast.

switching. This algorithm, termed SFBCAST, uses the same broadcast tree as SBCAST

(see Figure 5.1). Two performance metrics are used for the comparison: one is latency, and

the other is mean delivery time which is defined to be the average of the delivery time of

a broadcast messages over all the nodes in the network. This second metric is necessary

because latency, which is defined to be the delivery time for the last packet in the broadcast,

does not consider the shorter delivery times of other packets and may be skewed by large

queueing delays on some path. It is noted tha t the simulator does not count processing

overhead in the nodes, but this tends to favor SFBCAST since packets which cut through

do not incur the processing overhead in any case. This means that in practice the SBCAST

algorithm would perform better, when compared to SFBCAST, than what is shown in the

simulations.

Figure 5.12 shows the latency of the SFBCAST algorithm as a function of the link

load, for meshes of size 5 and 7. The latency of SFBCAST is substantially higher than

tha t of SBCAST for low link loads, but it increases more gradually with the link load. This

can be clearly seen in Figure 5.13, which plots latency of the two algorithms for a mesh

of size 5. Figures 5.14 and 5.15 show the effects of varying the mesh size on the relative

performance of SBCAST and SFBCAST. Figure 5.14 plots the percent increase in latency

of SFBCAST over SBCAST for different link loads and mesh sizes. This figure shows that

89

1
2
!

_ J _ I I _ J __ J I I _

J _1000 —
900 -

900
0 2 9 029 0 4 J0 0 9 0 1 0 0 1 9

l i n k Load

ComfMriaon: SBCAST va Sion and Porwvd Broodcait (Math S is = 5)

Figure 5.13: Performance comparison of simple broadcast algorithms.

100

1
I
I 10 —

70

90 —

1 0 ------

7 0 03 0 0100

Ratio o f Latency: SFBCAST to SBCAST.

Figure 5.14: Comparison of SBCAST and SFBCAST with varying mesh size.

90

I ----------- 1----------1--------- 1---------- 1---------1--------
9 t I t I l
9 i t i i i
*S n o -------------1-------------- >-------------- 1--------------- 1----------- A -------------

{ (i i i y i
i i i t /* i

too -------------- 1-------------- 1--------------- \ ----------- 1- - / ' ------ 1---------------
I I I 1 / ’ I
I I I \ / I9 0 -------------------- , --------------------, --------------------, -------------------^ ------------------ , -------------------

1 1 1 / '
I I 1 / 11 0 ------------------- , ---------------------, --------------------, -------------------, --------y ' - ---------------------

I I 1 / 1 1
i « I . X.S ITO-------------- , -------------- , 1 / ----------- / f ------------- 1 -------------
i i M s' i i
♦ ♦ / * S' i -HJ

• o ---------------\ -------------- i ---- /— i ---------- 1 S ^ -------------
1 ' / • s' ' *
I \ / & lb+ I901------------------- (---------------------(------------------------------ g f ------------------ j ---------------------

/ S \ + \ i
S > +* i •40|--------- ,-------- y ---------^0 -------- , ---------, ----------

1 * S 1 1I -• , * I I I
3 0 ------------------------- ,---------- , --------------------

l , 9 I I I
I * \ I I Ix ------------- -jt- 1 -------------- 1 --------------- 1 ------------- , ---------------

, , I 4 — 4 l f - . 1 1
a ' , , , 0 O IfMd.O-J

1 0 , , , ----
I I I I I

„l_______1______ I_______ I_____I________I_____
200 300 400 3 00 <00 700 100

Me*h Site

R*tio of Averaje Delivery Time: SFBCAST to SBCAST.

Figure 5.15: Average delivery time comparison with varying mesh size.

the difference in latency reduces as the link load increases, which is expected because the

number of packets which cut through reduces with increasing link load. For a fixed link load,

the difference in latency increases with increases in mesh size. The results of comparing

the average delivery time (Figure 5.15) are similar, except that the percent difference is

substantially higher in this case. These results reflect the advantages of virtual cut-through

switching over store-and-forward packet switching.

5.6 Concluding Rem arks

In this chapter, we developed a broadcast primitive which is applicable to intercon

nection networks with virtual cut-through switching. The primitive is well-suited for broad

casting in mesh-connected multi-computers, where a simple broadcast can be achieved using

this primitive with only two message transmissions in the best-case. We also presented a

family of broadcast algorithms based on this primitive, which deliver k (k = 1 ,. . .,6) copies

of a message through node-disjoint paths to each node in the hexagonal mesh. The salient

features of these algorithms are simplicity and the efficient use of virtual cut-through. The

algorithms are particularly relevant to real-time systems, where the time overhead of iden

tifying all the faulty processors on-line cannot be tolerated. Although the algorithms have

been described separately, the relay procedures for the six algorithms can be combined into

t./ 1
;• yP

• S -

X

r□T
, A A l o a d -0 .1

O O l o * - 0 2
, T > - - Q * 6 3 .

J-

rr+n
> oC X r

Figure 5.16: Broadcast tree for a wrapped rectangular mesh (in one direction).

a single function which makes decisions based on the type of broadcast in progress. We

note tha t similar algorithms can also be developed for wrapped rectangular meshes. The

broadcast tree for a 4-reliable broadcast algorithm in a wrapped rectangular mesh is shown

in Figure 5.16. It can be seen tha t this tree is similar in structure to the 6-BCAST tree in

Figure 5.6.

In HARTS, the RELAY primitive has been incorporated into the VLSI routing

controller chip. The implementation of these broadcast algorithms on the HARTS network

processor is discussed in Chapter 6. The NP has hardware support for time-stamping

messages, and one immediate application of reliable broadcasting will be the establishment

of a global time-base for HARTS, based on the clock synchronization scheme described

in [RKS90].

C H A PTER 6

IM PLEM ENTATION ON HARTS

In this chapter we describe the detailed design and implementation of the commu

nication subsystem for HARTS, which was outlined in Section 2.1. One of the distinctive

features of this subsystem is its use of the HARTS NP. The dedicated NP offers several

advantages, especially in a real-tim e system. It does most of the communication processing,

so the processing power of the APs can be devoted to application tasks. The NP handles

all packet-level operations, so the number of interrupts seen by the APs is limited. It also

results in a clear separation of scheduling domains: application tasks which run on the APs

can be scheduled using their priorities and deadlines, while message processing tasks can

be scheduled on the NP according to message priorities and deadlines. This avoids prob

lems associated with determining the priority in case of conflicts, like when a high-priority

task sends a message with a low priority. A dedicated NP may add to the cost of the

system, but it can also be used to perform functions related to monitoring and system di

agnosis. One possible drawback of this architecture is tha t the latency for application-level

communication can increase due to the added level of indirection. However, this does not

necessarily translate into longer execution time because of the execution-communication

overlap between the APs and the NP.

Other systems have also used communication processors to improve network per

formance. The network adapter board of the VMP system [KC88] implements some link

and network level protocols in the hardware. It is specifically designed for the VMTP proto

col, and it provides a “device” interface to the application processors which are responsible

for executing higher level protocols. The Nectar system [ABC+89] uses a communications

adapter board (CAB) which features a general-purpose SPARC processor. The CAB soft

ware organization [CSRZ90] is similar to our design and provides a high-level interface to

the host processors. However, it does not deal with the problem of real-time communication.

The NP is currently being developed by members of RTCL, and a block diagram is

92

93

shown in Figure 6.1. Its main components are the programmable routing controller (PRC),

the network interface unit (NI), and the interface management unit (IMU). The PRC,

which is an ASIC, subsumes the functions of the original routing controller [DRS89] and

it also interfaces with the general-purpose IMU (a MIPS R3000 processor). The network

interface consists of AMD’s TAXI serial transm itter/receiver communication devices which

are capable of achieving a data throughput rate of 100 Mbps.

The communication subsystem described in this chapter has, however, been imple

mented on the ENP-10 Ethernet processor. As mentioned earlier, the Ethernet is not a part,

of the HARTS architecture, but it serves as the system interconnect while the hexagonal

mesh network is being developed. The ENP offers some of the functionality of the NP of

HARTS, so we use it as a test-bed for software which is ultimately targeted for the real NP.

For example, the ENP has an AMD LANCE Ethernet controller whose function is similar

to the PRC. Thus, in the discussion that follows, we take the liberty of using the terms

“NP” and “ENP” interchangeably.

In this chapter, we first describe the kernel tha t we have used on the NP in

Section 6.1. This is followed by a description of the A P-N P interface and the view that is

presented to processes running on the APs. We will then present the communication services

provided by the NP, including a description of the packet structures used in Section 6.3.

This section also discusses the implementation of the clock synchronization and reliable

broadcasting algorithms. Section 6.4 deals with the implementation of real-time channels

and the functions of the network manager. It also addresses the problem of error control

and fault-tolerance for real-time channels. Lastly, in Section 6.5, we discuss the current

status of the subsystem and provide some preliminary performance figures.

6.1 The N P K ernel

We have employed a derivative of the x-Kernel [HP91] as the executive for the

NP, since it is well suited for supporting communication protocols. The x-Kernel provides

several facilities for implementing protocols like a uniform protocol interface, and libraries

to efficiently manipulate messages and maintain mappings. It also comes with utilities to

configure and test different protocol stacks. However, several modifications are necessary to

make it support the real-tim e communication service which are outlined in Section 6.4.1.

The following is a brief overview of this kernel, summarized from [HP91].

The x-Kernel supports three types of communication objects: protocols, sessions,

and messages. Protocols are static, passive objects and each protocol object corresponds to

>
2

UJ
00

3
CO

94

Ntfworfc PreoM ter VME Card Boundary

~ \ r

B uffer M em o ry

4 M B - 1 6 M B
7 0 n s DRAM

(M EM)
Program m able

R ou ting
C o n tro lle r

A pplica tion
P r o c e s s o r
In te rfa ce

Network
In te rfa c e

In te rfa c e
M a n a g e m e n t

U nit

Cut-Mvoupi But
(CTBU6)

H
e
x
a

■ g
0
n
a

. I

M
e
s
h

Figure 6.1: Network processor architecture.

95

Protocol Operations session = x.open(hlp, lip, participant_set)
x_openenable(hlp, lip, participant-set)
session = x_opendone(hlp, lip, participant.set)
x_demux(protocol, message)

Session Operations x_push(session, message)
x_pop(session, message)
x.close(session)

Common x_control(s, opcode, buf, len)

Table 6.1: Some Uniform Protocol Interface (UPI) operations.

a conventional network protocol. The relationships between protocols are expressed in the

form of a protocol graph, which is compiled when the kernel is configured. Session objects

are passive, but they are created dynamically. They represent the dynamic interaction

between protocols and the data structures associated with them contain the local state of

network connections. A message is an active object tha t is shepherded through session

and protocol objects by a kernel process. Its representation consists of a stack containing

protocol headers and a tree structure containing the user data.

The x-Kernel provides a uniform interface for interactions between protocols, some

of the im portant operations on these objects are summarized in Table 6.1. The x_open()

call is used by a higher-level protocol (hip) to actively open a session with a lower-level

protocol (lip), in order to establish a connection to some peer(s) specified in the participant

set. This is typically used by the client side of a client-server pair. On the server side, the

x .openenableO call is used by the higher-level protocol to look for connections on an ad

dress specified in the participant set. The lower-level protocol announces the establishment

of a connection using the x.opendone upcall. The x_demux operation is used by a protocol

to direct an incoming message to an appropriate higher-level protocol, x.push and x_pop

are used to send and receive messages on existing sessions, while x .c o n tro l can be used to

perform various protocol specific control operations on protocols and sessions.

The message library provides numerous useful operations for handling messages.

These include functions for fragmenting messages into packets and coalescing packets into

messages, appending and removing (protocol) headers, etc. The map library maintains

mappings and it is used primarily to map between session identifiers and session pointers.

For example, a lower level protocol can use the port number field in a message (and other

information) to find the session for which the message is destined.

96

Message Library msg_make_new, msg.peek
msg.break, msg.join
msg.push, msg.pop

Map Library map.create
map.bind, map .resolve

Table 6.2: Some library functions.

Port to the E N P

The kernel running on the ENP is based on version 3.0 of the x-Kernel for the

Sun-3 platform. The x-Kernel sources for the Sun-3 were mostly written in C, with a few

low-level routines in 68020 assembly language. Some of the C source files had 68020 depen

dencies, like the routines which manipulate the process stacks and the exception frames.

The changes required for the ENP implementation can be attributed to (a) differences be

tween the 68020 and 68000 architecture and instruction set and (b) differences between

the Sun-3 and ENP-10 designs. The first category affects things like process management

and exception handling, where exception stack manipulation is required. Differences in the

second category affect the memory management, interrupt and exception processing, and

the I/O facilities.

The ENP-10 does not have any memory mapping hardware, nor does it make any

distinction between user and supervisor state for memory access. Therefore, the process

management routines have been modified to remove all virtual address space support. Also,

since we do not intend to support user processes on the ENP, we have not provided any

support for them. All processes running on the ENP are kernel processes, which handle

communication-related tasks for the processes running on the host processors or APs. The

User system call trap handlers and the user interface routines of the Sun-3 version have

therefore been left out. In their place, however, we have the interface between the host

processors and the ENP. Further details of this port can be found in [Kan].

6.2 The A pplication Interface

The application interface is split between the APs and the NP, and it has been

designed to provide both synchronous and asynchronous forms of message delivery. Com

munication between the ENP and the host processors is accomplished using mailboxes in

memory, and inter processor interrupts. Host processors can interrupt the ENP by access-

97

MailboxAP

NP
Mailbox

Interrupt Handler

Interrupt Handler

AP Interface Protocol

NP Interface Library

Other Protocols

Figure 6.2: The host interface.

ing any location in a certain page of the ENP memory, but the access itself is dummy. Host

processors also support a similar interrupt mechanism, so the ENP can interrupt any host

processor. Figure 6.2 shows a block diagram of the interface.

There are two mailboxes for every AP, one each for communication in either di

rection, so tha t a mailbox is accessed by exactly one producer and one consumer processor.

Each mailbox is organized as a circular buffer with a fixed number of slots, and head and tail

pointers. The producer processor can only modify the tail pointer, while the consumer pro

cessor can modify only the head pointer. Hence, we are able to achieve consistent access to

the mailbox without using read-modify-write operations1. A mailbox slot consists of three

elements: an operation code, an argument pointer, and a priority number. The normal op

eration on the part of the consumer is to map the operation code into a handler procedure,

and pass the argument pointer as a parameter to this handler. While passing pointers be

tween the host processors and the ENP, it is necessary to translate the addresses, because

1 Read-m odify-w rite operations can result in bus exceptions on the 68000 which are not easy to handle.

98

the ENP address space is different from the host address space. In our implementation, all

such translation is done in the ENP and the host is not aware of this operation.

6.2.1 H ost Side Interface

The User Interface allows pSOS processes running on the host processors to access

the communication facilities of the ENP. In addition to providing the asynchronous receive

mechanism supported by the x-Kernel, we also provide a synchronous receive which is

similar to the pSOS IPC primitives. Access to the NP services is accomplished by:

(1) creating a host protocol object,

(2) linking this to the appropriate NP protocol object to obtain a session, and

(3) invoking operations on the session.

The host protocol object is required for any operation with the NP, since it contains

structures used for the A P-N P interactions. It is created using x c r e a te p r o t lO and the

object is located in host memory. This operation initializes the protocol object state and

creates a pSOS agent process which is used to handle upcalls from the NP. It then signals

the create protocol operation on the NP which is responsible for further state initialization.

The state associated with this object is shown in Table 6.3. It contains three types of

structures: structures used exclusively by the host processor, like the session structures

through which application tasks receive messages; structures used to convey information

between the host and the ENP, like the send-reply mailboxes and the upcall request-reply

mailboxes; and structures used only by the ENP, like the interface protocol entry points

and the receive buffers.

The host protocol can be linked to an NP protocol using the standard xopen

and xopenenable functions. The xopen call returns a host session structure which is used

for further message send and receive operations. This structure contains pointers to the

host protocol object, the NP session object, and semaphores for ensuring exclusive access.

The list of all available User Interface functions, and their description, is presented in

Appendix 6.B.

On the receive side, since pSOS does not provide an asynchronous signal mecha

nism, we use the pSOS agent process which is attached to each protocol object to handle

upcalls. The handling of the upcall depends upon the parameters used for the protocol. For

example, consider the demux upcall. The agent process first locates a host-specific session

structure corresponding to the ENP session on which the message arrived. If a host session

is not found, as in the case of the first message, a new host session is created and initialized.

99

int +send_mutex;

int +reply_sem;

int *upcall;

int agent.pid;

int priority;

buf.hdr *apbuf_list;

int *accept_wait;

uJong new_sessns;

PFI demux;

PFI opendone;

PFI closedone;

PFI control;

uJong sendbox[5];

uJong replybox[4];

uJong upcallbox[5];

uJong upcallreplybox[4];

buLhdr *buf_slot;

short cpu;

int *upcall_mutex;

int *upcall_reply;

buLhdr *npbuf_list;

/* host related stuff */

/* to wait for new sessions */

/* circular list */

/* UPI procedures * /

/* AP - NP parameter area */

/* NP related stuff */

Table 6.3: Host protocol object state.

100

New sessions are inserted in a queue in the protocol state for subsequent presentation to

application processes. If there is a process waiting for a session, it is awakened.

After the host session has been identified, message delivery can be synchronous

or asynchronous. If the host protocol has the demux procedure defined, the agent process

invokes this routine and passes it the received message as a parameter. Otherwise, it inserts

this buffer into a receive queue which is a part of the session structure. If there is any process

waiting for messages, the agent performs a signal operation to awaken the process. Message

retrieval from the session is based on the queueing discipline specified for the session, the

default being FIFO.

6.2.2 E N P to H ost Interface

The ENP side interface has been written as a protocol module, so th a t it can be

configured easily into a protocol stack using the x-Kernel protocol configuration tools. This

makes it possible for us to construct two types of applications: those which only use the

ENP processor, and those which use both the host and the ENP processor. The former type

is especially useful for testing new protocols, while the latter is the standard configuration

for applications.

The mailbox interrupt handler is set up as part of the protocol initialization pro

cedure. The interrupt handler extracts the contents of a mailbox slot and interprets the

requested operation. In most cases, it creates a new kernel process with the requested pri

ority level to handle the requested operation and passes the argument pointer to it. The

operations supported are the standard x-Kernel Uniform Protocol Interface (UPI) opera

tions, with a couple of additional operations:

f in d p ro tl : to find a protocol object given its name, and
req_v: to signal a semaphore object.

All operations other than req_v accept a protocol object as the argument. The state asso

ciated with this protocol object contains the actual parameters for the operation, and other

related control structures. The results of the execution are also returned to the requesting

process on the host through the protocol state. The requesting process is assumed to be

blocked, waiting for a reply, on a semaphore.

Among the important UPI operations, c r e a te p r o t l is used to initialize the ENP—

related structures in the protocol object. This includes initializing the protocol state, and

the pointers to functions related to this object, like the demux function. The protocol object

itself is created by the host process and it resides in the host memory. The push operation

101

creates a message structure and copies the packet data from the host buffer into the message

buffer. It then pushes the message to the lower-level protocol on the appropriate session

(that is another parameter). For long messages, tha t is, those which would require multiple

packets for transmission, the message structure is created but the copy operation is deferred.

The copying would take place, on a packet-by-packet basis, only when the message is ready

for transmission.

On the receive side, the interface provides routines like demux and opendone which

handle received messages on behalf of all host protocol objects. These routines pass pa

rameters to the host using the upcall boxes in the protocol state. Access to these boxes is

serialized using a semaphore. After signalling the appropriate host processor, the routines

block for a reply using a semaphore.

Messages arriving at the ENP reside in local memory. The message contents have

to be copied into the host memory before the host is signalled. For this, the demux routine

must have access to receive buffers in the host memory. We handle this problem by forcing

the host to provide receive buffers for the protocol object. These receive buffers are actually

allocated by processes on the host which use the protocol object, and their size is determined

by the application.

6.3 Com m unication Services

Communication services are provided in the form of protocols running on the

x-Kernel. Fig. 6.3 gives an overview of the communication subsystem, and shows the de

pendencies between various protocols. The link-level protocol supports broadcast addresses,

and also provides a reliable broadcast mechanism. The clock synchronization protocol main

tains a system-wide synchronized time base, which can be accessed by application tasks, and

by other protocol modules. Other services provided include a name service, user datagram

service, a request-reply service, etc. The request-reply service (i.e., RPC) is used by many

protocol modules, including the name service and the real-tim e channel service. Before

describing these protocols, we will first present the packet format that we have developed

for the HARTS.

Figure 6.3 also shows several protocol modules related to the real-time channel

(RTC) service which will be described later in Section 6.4. The RTC link level has been

made distinct from the normal link level mainly because of the differences in buffer man

agement and in-transit message handling. The dashed-line block in Fig. 6.3 indicates that

the Network Manager, which is a centralized service that handles RTC establishment and

102

APPLICATION LEVEL

Network Manager •

User Diagram

Name Service

Normal Link Level

Clock Sync. Protcl.

RTC Link Level

FRAG

HARTOS Protocol

RPC Protocol

RTC Protocol
RTC Control

Application Interface

PHYSICAL LEVEL

_____________ Figure 6.3: Simplified view of the communication subsystem._____________

maintenance, is not present on all nodes in the system.

6.3.1 Packet T ypes

The hexagonal mesh packet format has been derived after considering the different

types of messages tha t are supported, and the hardware support tha t they require from the

HARTS Programmable Routing Controller (PRC) at the link level. It represents informa

tion which is used by the PRC and determines the method used to handle the packet. The

packet contains framing bytes, message flags, route specification, priority, and other fields.

A description of the fields in the packet can be found in Appendix 6.A.

The route specification and some of the other fields depend upon the packet type,

which is determined by the f la g s field in the packet header. There are three types of

packets: normal, broadcast, and source route packet. The packet type also determines

103

protocol module to be used for handling the packet. For example, a packet with the RTC

flag is handed over to the RTC Link Protocol. The source and destination fields are 16-bit

h n e t addresses, and the different types of broadcasts have been assigned special addresses.

Normal Packet: None of the packet flags is set for this type of packet. The destination

field is specified using three signed Routing Tags which give the distance to the destination

node in six directions. The PRC uses the hexagonal mesh dynamic routing algorithm which

was described in Section 5.2 to process packets of this type. Route specification:

Routing Tag x (1 b y te)

Routing Tag y (1 b y te)

Routing Tag z (1 b y te)

Broadcast Packet: The Broadcast flag is set for packets of this type. The PRC

treats the first byte of the Route Specification as a Hop Count. It decrements this count

and if the count is non-zero, it tries to propagate the packet forward in the direction in

which it is traveling. Moreover, a copy of any Broadcast packet is automatically dropped

off to the node. The type of broadcast, whether simple or k-copy, is indicated by the

destination address. The other two bytes of the route specification, tag and step, are

the state information required to implement the broadcast algorithms of Chapter 5. This

information is used by the Link Protocol to forward the packet appropriately to other nodes.

Route specification:

Hop Count (1 b y te)

Tag (1 b y te)

S tep (1 b y te)

Source Route Packet: The Source Route flag is set for this type of packet. It is

envisaged tha t this type of packet will be used mainly for real-time channel traffic, so the

RTC flag would probably also be set. The destination node is specified in the form of a

route leading to it. The route is specified in terms of a sequence of links to be traversed.

To specify 1 out of 6 links, a minimum of 3 bits are necessary; we have chosen to represent

this using 4 bits, a nibble. The PRC would pick up the next link to be traversed from the

Route field and fill that nibble with zeros. When the Route field is all zeros, the PRC can

recognize tha t the packet has reached its destination. Route specification:

Route to d e s t in a t io n , 1 n ib b le p e r hop

(f ix e d s iz e : 3 b y te s , g iv e s a max. p a th le n g th of 6)

104

6.3.2 Link Level P rotocol (LLP)

This protocol sits on top of the device driver and handles both Normal and Broad

cast packets. Its clients are different protocols, like the Clock Synchronization Protocol, and

it demultiplexes messages to the different client protocols based on the Protocol Number in

the packet. It uses the Priority field in the packet to determine the order of service for the

packets.

Different types of broadcast operations are supported: from simple broadcasts

to 6-reliable broadcasts, and the type of broadcast is be determined by the destination

field in the packet. Broadcast packets also carry some additional information in the route

specification field, as described earlier. When a broadcast packet is received, this protocol

module notes the direction in which it was received and checks to see whether the packet

was able to propagate forward using virtual cut-through at the PRC. If not, it assumes the

responsibility of propagating the packet forward in conformance with the RELAY primitive.

It then uses the destination, hop count, tag, and step fields, and the direction information,

to determine whether the packet has to be forwarded in any other directions.

Broadcast communication can be made more efficient if it is -possible to send a

packet on multiple (preferably all six) links simultaneously. Although the da ta portion of

the packet would be the same, the header information differs, depending upon the direction.

In this case, it is highly beneficial to have the ability to make different headers point to the

same packet data. The PRC makes this possible by allowing packets to reside in a chain

of buffers, where the first buffer contains the link packet header. On the transm it side, the

LLP places the header in a separate buffer and the rest of the packet in one or more packet

buffers. This packet header is of fixed size and, on reception, it is again placed in a separate

buffer by the PRC. This mechanism allows intermediate nodes which have to forward the

broadcast packet in different directions to function efficiently, since they do not have to

make copies of the data part of the packet.

One simple client of the this protocol is the User Datagram Protocol (UDP), which

provides datagram service to user processes. It provides ports, to which processes can attach

to send and receive messages. The UDP can directly access the LLP for short messages,

and it can use the FRAG protocol to handle messages that are longer than the maximum

packet size. The packet format for this and other protocols can be found in Appendix 6.A.

105

6.3.3 Clock Synchronization Protocol

The clock synchronization protocol (CP) module interacts with its peers on other

nodes to provide a global time-base for the system. It relies on a hardware timestamping

mechanism to disseminate its clock value to other nodes [RKS90] and uses the Interactive

Convergence Algorithm[LMS85] on the clock values that it receives from other nodes. The

PRC affixes a transmit timestamp to a clock packet just before its transmission and it ap

pends a receive timestamp to any clock packet that it receives. This hardware timestamping

ensures th a t delays in the processing and propagation of clock messages can be factored out

and they do not affect the tightness of the synchronization. The protocol also employs a

hardware maintained local clock, which is 64-bit wide and has a resolution of 1 microsecond.

To implement interactive convergence, the CP must transm it and receive clock

messages, which it accomplishes using the LLP. It sits on top of the LLP and binds itself

at a special protocol number, so tha t any packets received with th a t protocol number are

forwarded to it by the LLP. It transm its packets using the LLP, with the destination host

specified to be a 5-reliable broadcast address. The CP requires access to the Clock flag in

the link packet header, so the LLP provides a control operation for this purpose. The LLP

also assists the CP in handling clock packets tha t pass through the node as a part of the

reliable broadcast. For these packets, it adjusts the time-stamp fields as specified by the

clock synchronization algorithm before propagating the packet to other nodes.

The clock maintained by this protocol can be read directly by processes running

on the NP. It is used to set deadlines for messages and processes, and to determine the

order of service. The protocol also provides control operations using which processes on the

APs can access the time.

6.3.4 R em ote Procedure Call

This protocol implements a request-reply operation with at most once semantics,

using the technique of Birrell and Nelson [BN84]. The protocol handles only the RPC

transport mechanism. Clients of this protocol are expected to marshal the call arguments

into a request packet, and subsequently extract the return results from the reply packet.

We can implement the existing HARTOS calls [KKS89] in the form of a client

protocol module sitting on top of RPC. Some of the HARTOS calls are not necessary

because their function has been subsumed in other protocols. For example, the name service

calls are handled by the Name Service Protocol. Similarly, the data transfer operations can

trivially be implemented using UDP and the fragmentation protocol, FRAG (below).

106

6.3.5 Fragment P rotocol (FRAG)

This protocol fragments large messages into link level size packets and transports

them. On reception, it collects the fragments and coalesces them into a single message. At

present, it is designed to handle a maximum of 32 link level size packets. The protocol is

unreliable and does not guarantee successful message delivery. It is a blast protocol based

on the Sprite RPC’s fragmentation algorithm. Currently, it is used to transport both RPC

and UDP packets.

6.3.6 N am e Service

The name service provides a mechanism for associating names to objects and

for locating objects by their name. The service can be used for locating port numbers,

processes, etc., by application processes and by other services on the NP. It is implemented

as a client of the RPC protocol, which it uses to talk to its peers on other nodes. The

protocol uses broadcasting to locate remote objects, so the RPC protocol was modified to

accept broadcast destination addresses.

6.4 Supporting R ea l-tim e Channels

The real-time channel service is provided by several modules running on the NP

which handle the different phases of a real-time channel, i.e., message transmission and

channel establishment. The Real-time Channel Protocol (RTCP) provides the front-end for

all user-level operations related to real-time channels. It accepts user requests for channel

creation/deletion, and message transmission on existing channels. It interacts closely with

the RTC link protocol, which among other things handles transit packets belonging to

real-tim e channels.

It has been shown that channel establishment is a complex operation and it involves

reservation of resources at multiple nodes in the network. It is therefore preferable to

place the channel establishment function into a separate service. By making this function

centralized, it is possible to make better use of network resources since we can select routes

appropriately to balance network load. This approach also makes it easier to handle network

reconfiguration in the event of network failures. This service, called the Network Manager

(NM), is provided by a special node (or a set of nodes) in the system. We now describe

these protocols in detail, starting with the RTCP.

107

6.4.1 R ea l-tim e Channel Protocol

This protocol implements the real-time channel communication scheme and it

handles the different types of messages described in Section 2.2.1. The clients of this protocol

are processes running on the APs. It handles the transmission and reception of messages of

varying sizes. As defined, a real-time channel is a uni-directional connection between two

end-points. In order to support bi-directional communication, the RTCP can be extended

to allow the user to create a pair of real-tim e channels simultaneously. The parameters for

these two channels would be specified separately, as they are expected to be different. The

RTCP module consists of two logical parts: a send-receive part and a control part (RTCC).

Channel Control

The control part handles requests for channel creation and teardown, and it in

terfaces with the NM using the services of RPC as shown in Figure 6.3. It also talks with

its peer RTCCs on other nodes in the network to accomplish these functions. The actions

taken depend upon the type of message that is specified. The description of the handling

of Alert and Best-effort messages is deferred to the end of this subsection. In the case of

real-time message channels, central reservation is required because these messages require

delivery time guarantees. This delivery time is measured from the time the request is pre

sented to the NP to the time it is delivered to the AP on a remote node. The RTCP is

responsible for transferring data to and from the local memory of the APs and the overhead

incurred for this (and other functions) has to be accounted for in the computation of the

end-to-end delivery time. Hence, the delivery time computation includes processing and

buffer-copying time at the source and destination nodes, and message transmission time on

each link of the route. It does not, and cannot, include scheduling delays at the receiving

AP because these are determined by the application task priorities and the scheduler on

the AP.

Channel establishment proceeds in two phases. In the first phase, the control part

frames the parameters of the channel into a create-request message and makes a remote

procedure call to the NM. The request and reply packets used for interaction with the NM

for channel creation are shown below. If the channel creation request is successful, the NM

returns a message containing the selected route for the channel, and the worst-case delays

for each link on the route. In the second phase, the RTCC again uses a series of remote

procedure calls to forward this information to each node along the route to the destination.

This two-phase scheme tries to split the task of channel creation between the requester and

108

the NM, to reduce the load on the NM.

/♦
* Channel Establish Reply
* /

struct est_reply {
enira {FAILURE, SUCCESS} status;
int channel_id;
int total_delay;
int num.links;
struct link_inlo {

int node.num;
int link.num;
int link_delay;
int cumulative_delay;
int horizon;

} links[ROUTE_MAX_LIHKS];
};

The channel creation information is received by the corresponding RTCC modules

and recorded in data structures which are used to set deadlines for messages belonging to

real-tim e channels. If a failure occurs during this phase of operations, the RTCC tries to

close the channel and free up the resources. Otherwise, a session is created corresponding

to the new channel and a server process is created to service the session. The function of

this server process will be explained in the following section. The session pointer is returned

to the requesting task and this has to be used in all subsequent operations on the channel.

On the destination node, the RTCC performs a similar operation to create a session.

To close a channel, the RTCC only has to inform the destination node and the

NM. The destination node has to be informed so tha t the receiving end of the channel

can be notified. However, the intermediate nodes do not have to be informed because the

NM keeps track of all state information regarding transient load. To clean up the state

associated with the channel, the RTCC has to destroy the session and the server process

associated with it.

Kernel Modifications

The run-tim e environment provided by the x-Kernel is not adequate to support

real-tim e channels. Several modifications and enhancements are required, mainly in the

areas of process scheduling and buffer management, as described below.

* Channel Establish Request
* /

struct est_reqst {
hnet_addr source;
hnet_addr destn;
int msg_size;
int msg_inter_arrival;
int burst_size;
int requested.delay;

109

S cheduling : The x-Kernel uses a, fixed-priority scheduling policy, where processes in

kernel mode are not preempted. We need a deadline-based scheduling scheme with multiple

classes of processes, similar to the message scheduling policy described in Section 3.2.3. We

classify active processes into three queues: high-priority real-tim e processes, non real-time

processes, and low-priority real-tim e processes. Processes now have deadline and arrival

time attributes associated with them, derived from the messages tha t they handle. Also, to

preserve the message scheduling model, the network device driver has to maintain queues

for different types of packets. (This is technically not a part of the kernel.)

Processes: The number of processes that can be created is limited by the available

kernel memory because each process requires a private stack. Therefore, the process-per-

message model could result in a loss of messages if processes are not available to handle them.

In HARTS, there are two factors which can increase the demand for processes: packets in

transit, and real-tim e channels. Real-time channels pose a problem because messages which

arrive early (in Queue 3) may not be eligible for processing. If a process were used to handle

each message, these messages would tie up processes. We can handle in-transit packets by

letting the receive interrupt handler take care of the forwarding. Our solution to the second

problem is to adopt a process-per-channel policy for real-tim e channels. This is sufficient

because messages belonging to the same channel have to be processed in the order of their

arrival. To support server processes of this type, we require primitives to suspend and

resume processes with a certain priority/deadline, operations which are more efficient than

process creation.

Buffer Management: Currently, buffers are allocated from a common pool when the

message is created. The buffers are released when the message is destroyed after transmis

sion, provided there are no other outstanding copies of the message. (The message data

structure contains reference counts to keep track of the copies.) A common buffer pool

can create problems for real-time messages because demands for buffers from non real-time

messages could use up the pool. In order to reserve buffer space for real-time messages, it

is necessary to maintain a separate pool of buffers for these messages. To achieve this, we

have to tag the buffers, so that they can be returned to the appropriate buffer pool when

freed. On the NP, one possible mechanism is to use the address range to identify real-tim e

packet buffers.

The receive side deserves special attention. A pool of receive buffers has to be

provided to the PRC to receive incoming packets. In order to preserve buffer space for

110

real-time messages and prevent buffer overruns, this pool has to be replenished whenever a

packet is received. The packet should be accepted only if a free buffer is available, which

in turn depends upon the type of the packet. For example, if the packet belongs to a real

time channel, a new receive buffer has to be allocated from the pool of buffers reserved for

real-time channels.

Message Transmission

RTCP treats each send request to be a separate message. It handles messages of

varying sizes and in the case of large messages, which are larger than the maximum link

packet size, it does fragmentation and reassembly. However, in the usual case of real-time

messages, RTCP does not expect any acknowledgment, nor does it a ttem pt to retransmit

packets. The real-time channel send request, which is a push operation on the session, has

to be treated as a special case in the application interface. Instead of creating a process

to handle the request, the interrupt handler directly invokes a special send function in the

RTCP. This procedure first checks whether the send request satisfies the constraints of the

arrival process for the channel. It rejects the send request if these constraints are violated

so as to prevent the channel from exceeding its allotted resources. Otherwise, it computes

the logical arrival time for the request and queues the request for service. The operation is

non-blocking and the procedure exits with a return code that indicates the time by which

the message is guaranteed to be delivered. In the case of a rejected request, the sending

process can detect the error condition from the return code and take appropriate recovery

actions. For example, it can resubmit the request at a later time, or send it as a best-effort

message.

The channel server processes the requests in order of their arrival. The deadline of

this server process is determined by the request that it services. It has to copy the message

in from AP memory and create packets for transmission. It places these packets into the

appropriate queue in the device driver. Or. the destination node, the channel server collects

the fragments of a message. The priority of this server is again determined by the deadline

of the message tha t it services. It copies the message into a receive buffer associated with the

channel, provided by the application task. If a receive buffer is not available, the message is

immediately discarded so tha t it does not tie up buffer space in the NP. If some fragments

of a message do not arrive within the deadline for the message, the partial message will be

delivered to the client with an appropriate warning.

I l l

Other Message Types

We now describe how to handle the other types of real-time channels, and some

special cases of real-time message channels. In the case of Alert messages, the RTCC has

to interact with the NM to find appropriate disjoint routes. Alert messages are treated as

single packet messages whose inter-arrival time is infinite. The NM selects multiple routes

for the channel as specified in the reliability parameter. In the selection process, it checks

for contention with other Alert channels and tries to minimize the contention.

The reliability field can also be specified for real-time message channels. It is

treated as a specification for error control. A non-zero value indicates tha t the RTCP has

to enforce error control and try to compensate for packet loss. Since we reserve buffer space

and bandwidth for real-time messages, transmission errors are the main remaining cause

for packet loss. We use two different methods for error control, the choice is determined by

the size of the message as specified in the channel parameters. These methods try to reduce

the probability of message loss due to transient transmission errors. Network failures are

handled separately by reconfiguring the channels that use the failed component.

Short messages are handled by transm itting two copies of the message over the

same route at two different times, and the destination is responsible for choosing a copy

from the packets that it receives. The advantage of this scheme is tha t it is simple and

it does not require any acknowledgment from the receiver. Moreover, the channel estab

lishment procedure is essentially unchanged, except that the message size is now doubled.

The alternative method of selecting two node-disjoint routes for the channel would require

several modifications to the channel establishment procedure, and it would also increase the

overheads of channel establishment.

The technique used for short messages may not be appropriate for long messages

because of the excess resource requirement. Hence, we use a selective retransmission scheme

for long messages. If the receiver detects an error in a received packet, or a dropped packet, it

sends a negative acknowledgment to the sender containing the identity of the lost packet(s).

Retransmission occurs after all the packets in the message have been transm itted. It can be

shown that selective retransmission of lost packets can significantly reduce the probability

of message loss, even if there is a bound on the number of packets retransm itted. A bound

on the number of retransmissions is necessary because of the timing constraints on the

message. However, it can be shown that even if retransmission is restricted to a single

packet the probability of message loss can be reduced significantly.

Assuming that the packet loss probability is p for any packet, the probability of

112

successful delivery, without retransmissions, for a message containing n packets is (1 — p)n.

With a selective retransmission policy restricted to one packet, and assuming tha t the packet

loss probability for the NACK and the retransmitted packet is also p, the probability of

successful delivery is improved to (1 - p)n + np(1 — p)n_1(l — p)2. For example, with a

packet loss rate of 1 in 1000, the probability of successful delivery for messages of different

sizes without retransmission, and with selective retransmission is summarized below.

No. of Packets Prob. of Delivery One Retransmission
8 0.9920 0.9999
16 0.9841 0.9998
32 0.9684 0.9994
64 0.9379 0.9979
128 0.8797 0.9922

The single packet retransmission policy has the added advantage that the time

reserved for retransmissions is small. We therefore adopt this policy for transmission of

long messages. We use best-effort delivery for the NACK and the retry packet because

these packets are generated sporadically. This decision also allows us to retain the channel

establishment procedure with slight modifications. The RTCC now requests the NM for a

message deadline which is shorter than the actual deadline. The deadline is determined by

considering the time required for exchanging the NACK and retry packets between source

and destination. As shown in the figure below, the transmission time of the NACK and the

retry packet overlaps with the time allotted for copying the packets into the AP memory

at the destination.
NM deadline deadline

|____________Message Transmission___________________________ | Copy at destination |_____ |

| NACK | Retrans. | Copy |

Best-effort messages do not require any hard guarantees, so the RTCC does not

have to request the NM for any reservations. If the reliability field is zero, the RTCC is free

to use dynamic routing so the channel establishment is trivial. Otherwise, RTCC selects

two disjoint routes to the destination using path length as the metric for the selection. We

do not permit more than two copies for the best-effort channel in order to limit the run-time

resources required for the channel.

6.4.2 Network M anager

The Network Manager handles requests for creation and deletion of channels. It

maintains state information for all nodes in the system and implements the channel estab

113

lishment scheme outlined in Section 3.2. The NM maintains several structures which are

vital to the channel establishment procedure. It maintains a table containing the resource

requirements and the assigned route for all existing channels in the system. For each node,

it also maintains a structure containing information about the links emanating from the

node, the channels which use these links and their relative priority, and the buffer space

allocation. In order to ensure the consistency of this data, the NM serializes the channel

creation/deletion operations.

The procedure used for channel establishment differs slightly from the one shown

in Fig. 3.2. The processing time for a message a t the source and the destination of a channel

can be substantial because it includes time for copying the message into and out of NP buffer

memory. In order to compute the worst-case end-to-end delivery time, it is essential to

compute the worst-case response time at the source and destination nodes. This response

time is affected by the processor scheduling policy employed on the NP. As described in

the previous section, we have adopted a processor scheduling scheme in which we classify

processes into three categories based on the type of message tha t they handle and assign

deadlines to processes based on the message deadlines. This scheduling policy enables us

to compute the worst-case response time for messages using the same technique tha t we

use for computing the worst-case link delays. The actual processing time for a message is

proportional to its length and since HARTS is homogeneous, it is not node dependent.

We employ the incremental routing algorithm, INC, described in Section 4.5 to

select routes for channels. Since the worst-case link delay for a channel depends mainly on

the other channels using tha t link, we do not have to consider other traffic while computing

the link load. The algorithm for computing the worst-case link delay, which is based on

the procedure in Appendix 3.A, is a pseudo-polynomial time algorithm. Its execution

time depends on the number of channels and the inter-arrival time of messages on the

channels. However, we expect this algorithm to be quite efficient in practice, especially

because the route selection scheme tends to balance the load and reduces the number

of channels assigned to a link. Our initial experience with the algorithm supports this

assertion.

The buffer requirement for a channel over a fink depends upon the assigned delay

for the link, and it is computed in the final phase of the procedure. In each node, the

buffer space available for real-tim e channels is partitioned into two parts: space reserved

for channels which have their source on the node, and space for channels which pass through

or terminate on the node (transient space). The transient buffer space is shared among the

114

links connected to the node. For each link, the buffer space required is computed based

on the assigned delay for the channel at tha t link and the horizon for the link. If this

requirement exceeds the available buffer space at the node, an attem pt is made to find

a reduced horizon which would satisfy the buffer constraints. Upon successful channel

establishment, the (possibly new) link horizons are included in the reply message to be

propagated subsequently to the nodes which form the route for the channel.

Fault-Tolerance

The current version of the NM is not replicated, so it is susceptible to single

point failure. To protect the system against single-point failure, it would be necessary to

replicate the functions of the network manager on multiple nodes. However, this gives rise

to the problem of maintaining consistency amongst these replicated tasks. We have to

make sure tha t tha t the replicas of the network manager coordinate their activities to avoid

inconsistencies.

We have developed a scheme for replication in which the network management

functions are placed on three adjacent nodes, so that up to two failures can be tolerated.

This is based on the reliable broadcast scheme developed by Chang and Maxemchuk [CM84].

One of the three network managers is picked to be the token holder. The client node

broadcasts its request using a simple broadcast. The token holding manager assigns a serial

number to the request and processes the request in sequence. Once a request is processed,

the manager sends the reply to the other managers so that they can update their state

information. It cannot send the reply back to the client until it is certain that at least

one of the other managers has a copy of the reply. This precaution is necessary because

the token holding manager could fail after sending the reply, which could leave the other

managers in an inconsistent state. The token is made to circulate between the manager

nodes to make sure tha t their state remains consistent.

In this scheme, the client node is responsible for retransm itting requests if it does

not get a reply within its timeout duration. The clients and the managers use the request-

reply protocol which automatically handles duplicate requests and replies. This scheme also

has the advantage that it can be easily extended to accommodate more manager nodes.

Failure Handling; The failure handling scheme relies on monitoring, in which the

NPs monitor each other to detect link or node failures. If a failure is detected, the node

which detects the failure sends a report to the network manager nodes. The manager nodes

115

then identify the failed node/link and try to reroute channels tha t were using the failed

components. All nodes in the system would then be notified about the failed component

and the new routes for some of the channels. It may not be possible to support all existing

channels, in which case some channels would have to be torn down. Since this failure

notification is critical to system operation, the manager node uses a‘ reliable broadcast to

propagate it throughout the system.

Failure of one of the manager nodes has to be handled very carefully, since these

maintain primary state information about the rest of system. However, these can be handled

using techniques similar to those developed in [CM84]. If the node which failed is the token

holder, then our channel establishment procedure ensures that the state information is up-

to-date on at least one of the other nodes. Such a node will be selected as the new token

holder. In the other case, the token holder is guaranteed to have the state information, so

there is no loss.

6.5 Current Status

We have ported the x--Kernel to the ENP card, and we have also implemented

several protocols on it in C and 68000 assembler language. Among the protocols, h n e t im

plements the hexagonal mesh link-level protocol, but it uses Ethernet-encapsulate packets

for transmission. The request-reply protocol is based on the chan protocol (see [IIPA089])

and implements RPC transport. The application interface has also been implemented and

it supports both synchronous and asynchronous delivery of messages.

Table 6.4 shows sample performance measurements for some selected operations.

The experiments were performed on an otherwise idle network and the operations were

repeated 10,000 times to obtain accurate timings. The timing for creating a kernel process

was measured by repeatedly creating a process, which immediately destroyed itself. The

reported timing therefore is a sum of process create, context switch, and process destroy.

The kernel performance is somewhat slower than the figures reported for the Sun-3 because

the ENP card has a slow (10 MHz) 68000 processor. Also, some of the processing power

is used for a software DRAM refresh. The round-trip times reported are all for packets

with 100 bytes data. The EN P-EN P round trip mainly measures the overheads in the

Ethernet driver, and the time for processing a packet. Packet processing involves creation

of a process to handle the packet. The A P-EN P local call was a “find address” operation

and it measures the time for a simple operation, with a few parameters and very little data

movement. The AP to AP round-trip time reveals the overheads of crossing the AP to

116

Time (milliseconds)
Kernel process create + destroy 0.34
ENP-ENP hnet round-trip 3.16
ENP-ENP chan round-trip 4.81
A P-EN P local call 0.66
A P-A P hnet round-trip 5.60
NM channel create + destroy 23.7

Table 6.4: Communication subsystem performance.

ENP boundary 4 times, and includes the cost of buffer copying.

Among the RTC-related protocols, we have implemented the Network Manager

protocol and have done some initial performance measurements on it. The NM was con

figured to handle a hexagonal mesh of size 3 which has 19 nodes. We first created a base

load of 100 channels and then performed the measurements. The channel create operation

had to be repeated a large number of times to obtain accurate timings. We were therefore

forced to repeatedly create and destroy a channel, so the figure reported above includes

channel creation and destruction. The channel created had 3 links and a total end-to-end

delay of 100 milliseconds. The same experiment was also repeated on a Sun-3/60, and we

obtained a time of 4.1 milliseconds. This large difference is caused by more than just a

difference in clock speed between the Sun-3/60 (25 MHz 68020) and the ENP. The channel

establishment algorithm contains some integer multiply and divide operations which have

to be performed in software on the EN P’s 68000 processor. Although the performance of

the NM on the ENP is slow, the NP of HARTS is currently being built with an MIPS R3000

processor, so we expect the N P’s performance to surpass the Sun-3/60.

It is possible to estimate the timing for channel creation based on the measured

request-reply time, the NM create time, etc. The channel creation time seen by the appli

cation includes (1) A P-EN P local call, (2) ENP-NM RPC, (3) NM channel create time,

(4) EN P-EN P RPCs for registering the channel, and (5) local channel creation overheads.

Since the channel contains 3 links, step (4) above requires 3 RPCs. Using the numbers

reported above for the different operations, we obtain an application-level channel creation

time of 43.5 milliseconds, excluding local channel creation overheads. We expect that the

local channel creation overheads will not be substantial: they are mainly updates to the

protocol data structures (and server process creation on the source and destination).

Some of the protocols and functions described here have not been implemented

because they require hardware support. For example, the clock synchronization protocol

117

requires a hardware clock and timestamping mechanism, which is not available on the ENP.

Similarly, the broadcast operations in the link protocol are currently implemented using

Ethernet broadcasts. We have also not completely implemented the RTCP because the

send-receive operations are designed for an environment with multiple transm itters and

receivers, each with its own queue. We cannot emulate these operations on the ENP which

has only a single transm it queue.

We have deferred the implementation of the kernel modifications outlined in Sec

tion 6.4.1. The modifications required are mainly in the low-level machine dependent part

of the kernel, and as such, they will not be portable to the new NP which uses a MIPS

R3000 processor.

118

A PPEN D IC ES

6 .A HARTS Packet Format

A brief description of the fields in the packet format, and their effect on packet

processing is given below.

Message Flags (1 byte)
Broadcast
Clock
Source Route
Real-time Channel (RTC)

<Route Specification> (3 bytes)
Destination (2 bytes)
Source (2 bytes)
Length (2 bytes)
Protocol Number (2 bytes)
Priority (4 bytes)
<Protocol-specific part>
<Data>
Checksum (4 bytes)

Flags: The Broadcast and Source Route flags are interpreted by the PRC and control

how the destination is specified. Consequently, at most one of these two flags can be

set for any packet. The Clock flag is interpreted by the PRC and a time-stamp is

appended to the packet on transmission and on reception. The RTC flag is ignored by

the PRC, but it is essential for the fast dispatching of packets belonging to real-time

channels.

<Route Specification> The contents of this field are dependent upon the type of packet.

Destination / Source: The destination and source addresses for this packet. This ad

dress is encoded to include broadcast addresses, with different types of broadcast

operations each given a separate address. We can consider the address to be com

posed of a 3 bit Address Type and a 13 bit Host Address.

Length: The total length of this packet, including the header and the data. Used by the

PRC to determine the end of the packet on the send side.

119

Protocol Number: This field is used to identify different clients of the link level proto

cols.

Priority: This field is included in the general packet format because it is common across

one or more packet formats. It is used to order the packets tha t are awaiting trans

mission on a particular link. It is possible to treat this priority to be the deadline for

a packet. However, it should be considered to be a per-hop deadline.

< Protocol-specific part> The protocol specific fields of some higher level protocols are

given below.

User Datagram Protocol Header

Destination Port (2 bytes)
Source Port (2 bytes)

FRAG Protocol Header

Operation Type (2 bytes)
Client Protocol Number (2 bytes)
Sequence Number (4 bytes)
Number of fragments (2 bytes)
Fragment mask (2 bytes)

120

6.B H ost User Interface

The following is the list of procedures available to user processes running on the

APs to access the communication facilities provided by the NP.

XOBJ xcreateprotl (prio,demux,opendone,closedone,control)
short prio;
PFI demux, closedone, control;
PFS opendone;

Creates a protocol object which has an agent process of priority p r io associated with it. If

the demux procedure is non-nil, the agent process invokes tha t routine whenever a message

arrives from the ENP. Otherwise, the agent places the message in a receive queue associated

with the session. The other procedures are handled similarly.

xnop(protl)
XOBJ protl;

A dummy operation used to test the host to ENP interface.

APSESSN xopen (protl, lip, parts)
XOBJ protl;
XOBJ lip;
PART *parts;

Open a session with the lower level protocol lip on the ENP, with parameters specified in

parts.

int xopenenable (p, lip, parts)
XOBJ p;
XOBJ lip;
PART *parts;

Listen for a session connection with the lower level protocol lip, with parameters specified

in parts.

int xopendisable (hip, lip, parts)
XOBJ hip;
XOBJ lip;
PART *parts;

121

Revokes a previously established “openenable” .

in t x accep tse ssn (p , sessn)

XOBJ p;

APSESSN * sessn ;

Accept a new session associated with the host protocol p, which has previously been part

of an openenable operation. If a session is available, a pointer to this new session is re

turned in sessn . Otherwise, the process may get blocked if WAIT mode is selected (see

xcontrolprotl()).

i n t xpush (s e s s n , msg, m sglen, rmsg, rm sglen)

APSESSN sessn ;

char *msg;

i n t m sglen;

ch ar *rmsg;

i n t *rm sglen;

Send a message of length msglen contained in the buffer msg on the given session. The

process blocks until a signal is received from the lower level protocol. If any reply is

obtained, it is returned in the buffer rmsg, provided this is non-nil, and the length of the

reply message is returned in rm sglen.

i n t x c lo se (se ssn)

APSESSN sessn ;

Closes the network session associated with sessn . It also cleans up the host session struc

ture, releasing any pending messages or blocked processes.

in t x c o n tro lp ro t l (p , p r o t l , opcode, b u f , le n)

XOBJ p; f* h o s t p ro to c o l */

XOBJ p r o t l ;

i n t opcode;

char * b u f;

i n t le n ;

Use the host protocol object p to send a control operation to the protocol p r o t l on the

ENP. If p r o t l is the same as p, the operation is local and is executed immediately on the

122

host. Local operations include submission of receive bufTers, adjustment of timeout values

for session wait, etc., and their specification is given below. Note that control operations

are protocol specific, so remote control operations are determined by the type of protocol

(p ro tl) .

S U B M IT -B U F F E R buf is the buffer pointer, and le n is the buffer length of the receive

buffer to be submitted.

A C C E P T _W A IT _O F F makes the xacceptsessn() call non-blocking.

A C C E P T -T IM E O U T makes xacceptsessn() blocking, with a timeout value given by

buf. If the timeout value is 0, an indefinite WAIT is specified.

in t x c o n tro ls e s sn (s e s s n , l o c a l f , opcode, b u f , le n)

APSESSN sessn ;

i n t l o c a l f ;

i n t opcode;

ch ar *buf;

in t le n ;

Performs local or remote control operations related to the host session, depending upon the

value of lo c a l f . A description of the local control operations is given below.

R E C V _W A IT _O FF makes the xrecv() call non-blocking.

R E C V _ T IM E O U T makes xrecv() blocking. Specifies a timeout buf for the blocking,

where 0 implies an indefinite wait.

XOBJ xgetprotlbynam e (p , name)

XOBJ p;

ch ar *name;

Use the host protocol object p to execute a REQ.FINDPROTL command on the ENP to

find the protocol corresponding to name.

xrecv (s e s s n , b u f , le n)

APSESSN se ssn ;

ch ar **buf; /* in -o u t */

i n t * len ; /* in -o u t * /

123

Synchronous receive operation. On input, buf can point to a buffer of length le n to be

submitted to the pool of receive buffers for the given protocol. If a receive message is

available, a pointer to the receive buffer is returned in buf, and the length of the message is

returned in len . If no message is available, the process is blocked awaiting message arrival.

The blocked process can be awakened by a timeout, if one is specified (see xcontrolsessnQ).

C H A PT E R 7

DISCUSSION A N D FU T U R E W ORK

In this chapter we recapitulate the contributions of this dissertation, and explore

possible extensions and future directions for the work presented here.

7.1 Research Contributions

We recognize that communication is an im portant problem in distributed real-time

systems. It is necessary to support time-constrained communication, especially between

processes tha t have deadlines associated with their execution. One of the issues involved

in supporting time-constrained communication is tha t we need a mechanism to specify

timing constraints. For this purpose, we have developed a framework which allows the

specification of the communication requirements of real-time applications. This is based

on the abstraction of a real-time channel, which is a unidirectional connection between two

ports.

Our attention has been focused mainly on distributed systems with partially con

nected point-to-point interconnection networks. In this environment, we have identified and

solved several problems related to the design of real-time channels. In order to guarantee

the delivery time of messages, we have developed algorithms for computing the worst-case

delay for messages, and for scheduling these messages. This computation procedure, which

is based on priority scheduling, has certain desirable optimality properties. To prevent mes

sage loss caused by a lack of buffer space, we developed a mechanism for buffer allocation

and flow control suitable for real-time channels.

In a point-to-point interconnection network where there are multiple paths be

tween nodes, route selection is an important problem. Although this problem has been

researched extensively for packet switching networks, results for networks with virtual cut-

through switching have been lacking. We formulated the problem of routing traffic in a

network with virtual cut-through switching as an optimization problem, where the cost of

124

125

a route depends upon the links th a t it uses. We were especially interested in finding routes

for traffic on connections like real-time channels, so we imposed the restriction that the

traffic on a connection always used the same (static) route. We then selected a link cost

function which tries to maximize the probability of establishing virtual cut-through routes

in the network using analysis based on a queueing model for the network.

We have shown that the optimization problem is ATP-Hard, by proving the as

sociated decision problem to be AfP-Complete. Consequently, we developed a heuristic

algorithm for the global optimization problem. However, for the special case in which a

new route is to be selected without disturbing the routes tha t have already been established,

we have devised a polynomial time optimal algorithm. This case is of great significance be

cause it matches the conditions for real-time channel establishment. Using simulation, we

showed that the route selection algorithms gave significant improvements in network per

formance. The extent of the performance improvement depends upon the topology of the

network and the distribution of the sources and destinations of messages.

Reliable broadcasting was the next subject of the dissertation. We first devel

oped a broadcast primitive, RELAY, which is applicable to point-to-point interconnection

networks. This primitive has been designed such tha t it can be easily incorporated with

virtual cut-through switching, and it is especially suited for broadcasting in mesh-connected

multicomputers. We showed how this RELAY primitive can be easily incorporated into the

routing scheme for HARTS, which is the experimental real-time system being developed in

the Real-time Computing Laboratory. Using this primitive, it is possible to broadcast a

message from any node with only two message transmissions in the best case.

We have also developed a family of reliable broadcast algorithms based on the

broadcast primitive. These algorithms, which deliver k copies of a message through node-

disjoint paths to each node in the hexagonal mesh, also make efficient use of virtual cut-

through. They are especially useful in real-time systems, because they can deliver messages

in the presence of undiagnosed faults. We also showed how similar algorithms can be devel

oped for wrapped rectangular meshes. An important application of the reliable broadcast

algorithms is in clock synchronization, where the broadcast is used to distribute clock values.

In addition to developing these algorithms for channel establishment, routing, and

broadcasting, we have also pursued their implementation in a prototype. We have designed

and partially implemented a communication subsystem for HARTS which incorporates sup

port for real-time communication. The communication subsystem, which is targeted for the

HARTS network processor (NP), has been implemented, and is currently being tested, on

126

an Ethernet processor. We have implemented those the parts of the subsystem that are

portable to the HARTS NP. Our prototype demonstrates the use of a communication co

processor in providing a high-level abstraction to user processes, thereby offloading protocol

processing overheads from the main application processors.

7.2 Future D irections

The Ethernet processor lacks certain hardware features tha t are essential to some

parts of the communication subsystem. For example, the real-time channel transmit-receive

module is designed for an environment with multiple transm itters and receivers, each with

its own queue. We cannot emulate its functions on an Ethernet processor which has only a

single transm it queue. We will implement these parts of the communication subsystem on

the HARTS network processor when it is available.

The completion of the implementation will allow us to conduct several interest

ing experiments. For example, we will be able to measure the performance of the reliable

broadcast algorithms using representative workloads. We will also be able to measure the

overheads of our clock synchronization algorithm and compare it against other proposed al

gorithms, such as [0S91]. Moreover, we can experiment with the policies used for scheduling

messages to assess their effects on the best-effort class of messages.

This work has revealed several promising research issues tha t are worth further

investigation. The concept of a real-time channel, which is a one-one communication ab

straction, can be extended to include one-many connections. This extension, which we

term a group channel, is very useful for supporting applications which use replication to

achieve fault-tolerance. For example, a group channel can be used to disburse inputs from

a sensor station to the replicas of the task which will process the data. The group channel

also opens up several issues related to multicast routing, which are possible extensions of

our work on route selection.

We have addressed the issue of reconfiguration briefly in this dissertation, but this

is an im portant research topic in its own right. In the present scheme, when a failure occurs

there is some message loss before a channel can be reconfigured. It is possible tha t this

interruption in service may not be acceptable for some applications. One possible solution

to this problem is to set up standby channels which will facilitate quick reconfiguration.

However, we incur the cost of reserving resources for standby channels which could otherwise

have been used to allocate other channels. In fact, any solution to this problem must deal

with a tradeoff between the reconfiguration time and the resource requirement.

B IB L IO G R A P H Y

[ABC+89]

[AF88]

[AHS90]

[And88]

[ARS91a]

[ARS91b]

[ATW+90]

[BJ87]

[BN84]

[BS87]

[CASD85]

E. A. Arnould, F. J. Bitz, E. C. Cooper, H. T. Kung, R. D. Sansom, and P. A.
Steenkiste. The design of Nectar: A network backplane for heterogeneous mul-
ticomputers. In Proceedings o f the Third Intl. Conference on Architectural Sup
port fo r Programming Languages and Operating Systems (ASPLO S-III), pages
205-216. ACM, April 1989.

D. P. Anderson and D. Ferrari. The DASH project: An overview. Technical Re
port 84/405, UCB Computer Science Division, EECS, Berkeley, CA, February
1988.

D P. Anderson, R. G. Herrtwich, and C. Schaefer. SRP: A resource reservation
protocol for guaranteed performance communication in the internet. Technical
Report TR-90-006, International Computer Science Institute, Berkeley, Febru
ary 1990.

D. P. Anderson. A software architecture for network communication. In Proc.
8th International Conference on Distributed Computing Systems, pages 376-383,
June 1988.

K. Arvind, K. Ramamritham, and J. A. Stankovic. A local area network ar
chitecture for communication in distributed real-time systems. Journal o f Real-
Time Systems, 3(2), May 1991.

K. Arvind, K. Ramamritham, and J. A. Stankovic. Window MAC protocols for
real-time communication services. COINS Technical Report 90-127, University
of Massachusetts at Amherst, January 1991.

D. P. Anderson, S. Y. Tzou, R. Wahbe, R. Govindan, and M. Andrews. Sup
port for continuous media in the DASH system. In Proc. 10th International
Conference on Distributed Computing Systems, pages 54-61. IEEE, May 1990.

K. P. Birman and T. A. Joseph. Reliable communication in the presence of
failures. ACM Transactions on Computer Systems, 5(l):47-76, February 1987.

A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(l):39-59, February 1984.

R. P. Bianchini and J. P. Shen. Interprocessor traffic scheduling algorithm for
multiple-processor networks. IEEE Transactions on Computers, C-36(4):396-
409, April 1987.

F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From
simple message diffusion to byzantine agreement. In Proc. 15th International
Conference on Fault Tolerant Computing Systems, pages 200-206, June 1985.

127

128

[CG88]

[CG89]

[CGGS88]

[CM84]

[Coo71]

[Cru87]

[CSK90]

[CSRZ90]

[CY88]

[Der74]

[DRS89]

[DRS91]

[DS86]

[DS87]

[EIS76]

I. Cidon and I. S. Gopal. PARIS: An approach to integrated high-speed private
networks. Intl. Journal o f Digital and Analog Cabled Systems, l(2):77-86, April
1988.

C.-T. Chou and I. S. Gopal. Linear broadcast routing. Journal o f Algorithms,
10:491-517, December 1989.

I. Cidon, I. Gopal, G. Grover, and M. Sidi. Real-time packet switching: A
performance analysis. IEEE Journal on Selected Areas in Communications,
6(9):1576-1586, December 1988.

J.-M. Chang and N. F. Maxemchuk. Reliable broadcast protocols. AC M Trans
actions on Computer Systems, 2(3):251-273, August 1984.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings 3rd
Annual AC M Symposium on Theory o f Computing, pages 151-158, 1971.

R. L. Cruz. A Calculus for Network Delay and a Note on Topologies o f Inter
connection Networks. PhD thesis, University of Illinois at Urbana-Champaign,
July 1987. available as technical report UILU-ENG-87-2246.

M.-S. Chen, K. G. Shin, and D. D. Kandlur. Addressing, routing, and broad
casting in hexagonal mesh multiprocessors. IEEE Transactions on Computers,
C-39(l):10-18, January 1990.

E. C. Cooper, P. A. Steenkiste, R. D. Ransom, and B. D. Zill. Protocol im
plementation on the Nectar communication processor. In Proceedings o f the
SIGCOM M Symposium, pages 135-144. ACM, September 1990.

D. E. Comer and R. Yavatkar. FLOWS: Performance guarantees in best effort
delivery systems. Technical Report CSD-TR-791, Computer Science Depart
ment, Purdue University, West Lafayette, IN 47907, July 1988.

M. L. Dertouzos. Control robotics: The procedural control of physical processes.
In Proceedings IF IP Congress, pages 807-813, 1974.

J. W. Dolter, P. Ram anathan, and K. G. Shin. A microprogrammable VLSI
routing controller for HARTS. In Proc. IEEE In t’l. Conf. on Computer Design:
VLSI in Computers, pages 160-163. IEEE, October 1989.

J. W. Dolter, P. Ram anathan, and K. G. Shin. Performance analysis of message
passing in HARTS: A hexagonal mesh multicomputer. IEEE Transactions on
Computers, C-40(6):669-680, June 1991.

W. J. Dally and C. L. Seitz. The torus routing chip. J. Distributed Systems,
1 (3): 187—196, 1986.

W. J. Dally and P. Song. Design of a self-timed VLSI multicomputer com
munication controller. In Proc. IEEE In tl . Conf. Computer Design: VLSI in
Computers, pages 230-234, 1987.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom
modity flow problems. SIA M Journal o f Computing, 5(4):691-703, December
1976.

129

[Fer89]

[Fra89]

[FV90]

[G+84]

[GJ79]

[Gol90a]

[Gol90b]

[HP91]

[HPA089]

[IM86]

[Jac57]

[J1I89]

[Kan]

[KC88]

[KK79]

D. Ferrari. Guaranteeing performance for real-time communication in wide-
area networks. Technical Report UCB/CSD 89/485, UCB Computer Science
Division, EECS, Berkeley, CA, January 1989.

P. Fraigniaud. Asymptotically optimal broadcast and total-exchange algorithms
in faulty hypercube multicomputers. Technical Report 89-05, Ecole Normale
Superieure de Lyon, 46, Allee d ’ltalie, 69364 Lyon Cedex 07, France, May 1989.

D. Ferrari and D. C. Verma. A scheme for real-time channel establishment
in wide-area networks. IEEE Journal on Selected Areas in Communications,
SAC-8(3):368-379, April 1990.

J. Goldberg et al. Development and analysis of SIFT. NASA contractor report
172146, NASA Langley Research Center, February 1984.

M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman
and Company, 1979.

S. J. Golestani. Congestion-free transmission of real-time traffic in packet net
works. In Proc. INFOCOM, pages 527-536. IEEE, June 1990.

S. J. Golestani. A stop-and-go queueing framework for congestion management.
In Proc. SIGCOMM Symposium, pages 8-18. ACM, September 1990.

N. C. Hutchinson and L. L. Peterson. The x-Kernel: An architecture for im
plementing network protocols. IEEE Transactions on Software Engineering,
17(1):1—13, January 1991.

N. C. Hutchinson, L. L. Peterson, M. B. Abbott, and S. O ’Malley. RPC in the
x-Kernel: Evaluating new design techniques, ni Proc. 12th Symp. on Operating
Systems Principles, pages 91-101. ACM, December 1989.

M. Hyas and H. T. Mouftah. Towards performance improvement of cut-through
switching in computer networks. Performance Evaluation, 6:125-133, July 1986.

J. R. Jackson. Networks of waiting lines. Operations Research, 5(4):518—521,
August 1957.

S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized commu
nication in hypercubes. IEEE Transactions on Computers, C-38(9): 1249-1268,
September 1989.

D. D. Kandlur. The x-kernel on the ENP-10 Ethernet processor. RTCL working
document, December 1990.

H. Kanakia and D. R. Cheriton. The VMP network adapter board (NAB):
High-performance network communications for multiprocessors. In Proceedings
of the SIGCOMM Symposium, pages 175-187. ACM, August 1988.

P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communi
cation switching technique. Computer Networks, 3:267-286, 1979.

130

[KKS89]

[Kle64]

[KS90a]

[KS90b]

[KSY84]

[KSY88]

[KWFT88]

[Lal87]

[LHA91]

[LL73]

[LMS85]

[LSD89]

[LSP82]

[LW82]

[OS89]

D. D. Kandlur, D. L. Kiskis, and K. G. Shin. HARTOS: a distributed real-time
operating system. ACM SIG O PS Operating Systems Review, 23(3):72-89, July
1989.

L. Kleinrock. Communication Nets: Stochastic Message Flow and Delay.
McGraw-Hill, New York, 1964.

D. D. Kandlur and K. G. Shin. Traffic routing for networks with virtual cut-
through capability. In Proc. 10th International Conference on Distributed Com
puting Systems, pages 398-405. IEEE, May 1990.

D. L. Kiskis and K. G. Shin. A synthetic workload for real-time systems. In
Proc. Seventh Workshop on Real-Time Operating Systems and Software, pages
77-81. IEEE, May 1990.

J. F. Kurose, M. Schwartz, and Y. Yemini. Multiple-access protocols and time-
constrained communication. ACM Computing Surveys, 16(1):43—70, March
1984.

J. F. Kurose, M. Schwartz, and Y. Yemini. Controlling window protocols for
time-constrained communication in multiple access networks. IEEE Trans.
Communications, 36(l):41-49, January 1988.

R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai. The MAFT
architecture for distributed fault tolerance. IEEE Transactions on Computers,
C-37(4):398-405, April 1988.

J. H. Lala. AIPS tutorial. Technical report, The Charles Stark Draper Labora
tory, Inc., January 1987.

J. H. Lala, R. E. Harper, and L. S. Alger. A design approach for ultrareliable
real-time systems. IEEE Computer, 24(5):12-22, May 1991.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal o f the ACM, 20(1):46—61, January 1973.

L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of
faults. Journal o f ACM, 32(1), January 1985.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Proc. Real-time Systems
Symposium, pages 166-171. IEEE, December 1989.

L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Performance Evaluation, 2(4):237-250, December
1982.

A. Olson and K. G. Shin. Message routing in HARTS with faulty components.
In FTCS-19, Digest o f Papers, pages 331-338, 1989.

131

[0S91]

[RKS90]

[RS88]

[RS91]

[Sch84]

[Sci85]

[Shi91]

[SM89]

[Sof86]

[SR88]

[SS80]

[Ste86]

[Str88]

[YM88]

[ZR87]

A. Olson and K. G. Shin. Probabilistic clock synchronization in large distributed
systems. In Proceedings o f the 11th Intl. Conference on Distributed Computing
Systems, pages 290-297. IEEE, May 1991.

P. Ram anathan, D. D. Kandlur, and K. G. Shin. Hardware-assisted software
clock synchronization for homogeneous distributed systems. IEEE Transactions
on Computers, C-39(4):514-524, April 1990.

P. Ram anathan and K. G. Shin. Reliable broadcast in hypercube multicomput
ers. IEEE Transactions on Computers, C-37(12):1654-1657, December 1988.

P. Ram anathan and K. G. Shin. A multiple copy approach to delivering mes
sages under deadline constraints. In Proceedings o f the Twenty-first Interna
tional Symposium on Fault-tolerant Computing, pages 300-307. IEEE, June
1991.

F. B. Schneider. Byzantine generals in action: Implementing fail-stop proces
sors. AC M Transactions on Computer Systems, 2(2):145-154, May 1984.

C. L. Seitz. The cosmic cube. Communications o f ACM, 28(l):22-33, January
1985.

K. G. Shin. HARTS: A distributed real-time architecture. IEEE Computer,
24(5):25-35, May 1991.

J. K. Strosnider and T. E. Marchok. Responsive, deterministic IEEE 802.5
token ring scheduling. Journal o f Real-Time Systems, 1(2): 133-158, September
1989.

Software Components Group, Inc., Santa Clara, California. pSOS-68K Real
time Operating System Kernel User’s Guide, March 1986.

J. A. Stankovic and K. Ramamritham. Tutorial: Hard Real-Time Systems.
IEEE Computer Society Press, 1988.

M. Schwartz and T. E. Stem. Routing techniques used in computer communi
cation networks. IEEE Transactions on Communications, 28(4):539-552, April
1980.

K. S. Stevens. The communication framework for a distributed ensemble archi
tecture. AI Technical Report 47, Schlumberger Research Laboratory, February
1986.

J. K. Strosnider. Highly Responsive Real-Time Token Rings. PhD thesis,
Carnegie-Mellon University, Pittsburgh, PA, August 1988.

C. L. Yang and G. M. Masson. A distributed algorithm for fault diagnosis in
systems with soft failures. IEEE Transactions on Computers, C -37(ll):1476-
1480, November 1988.

W. Zhao and K. Ramamritham. Virtual time CSMA protocols for hard real-time
communication. IEEE Transactions on Software Engineering, 13(8):938-952,
August 1987.

132

[ZSR88] W. Zhao, J. A. Stankovic, and K. Ramamritham. A multi-access window pro
tocol for transmission of time constrained messages. In Proc. 8th International
Conference on Distributed Computing Systems, pages 384-392, June 1988.

