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CHAPTER 1
INTRODUCTION

1.1. Overview

Real-time control systems, such as aircraft and nuclear power plants, consist of two
synergistic components: the controlled process and the controlling computer. As the use of
digital computers for real-time control increases, real-time computing has emerged as an
important discipline in computer science and engineering.

Real-time computing is typified by the speedy execution of computational tasks and high
reliability of the system. The former implies that tasks in the system must be allocated
(assigned and scheduled) in such a way that they can be completed before their deadlines;
otherwise, a dynamic failure will occur [SKL85]. The latter implies that the computing system
must be reliable; loss of a large number of system components will lead to a static failure. In

real-time systems, both dynamic and static failures could lead to catastrophic consequences.

Since both task flowtime (response or tumaround time) and system reliability can be
improved by using multiple CPUs and memories, distributed systems are an attractive
candidate for implementing real-time applications [Sta84]). However, there are many difficult
problems to be solved before the distributed system is realized, such as determining a physical
topology of the system, allocating tasks, selecting communication structures, and incorporating
reliability considerations. For non-real-time applications, ad hoc or intuitive solutions are

usually acceptable. For applications that have strict timing constraints, any design should be



the result of rigorous analysis and validation. The research results on such a system, as
reported in the literature, are far from being satisfactory. This is probably because most
problems involved in the design and analysis of distributed real-time systems are NP-hard.
Therefore, ad hoc or pseudo-optimal approaches are usually adopted to obtain fast, suboptimal
solutions. Among the various problems involved with distributed real-time systems, this thesis
will consider only those research issues dealing with the efficient execution of tasks.

Unlike other applications, computational tasks in real-time systems are usually either
periodic or aperiodic, Periodic tasks are invoked at fixed time intervals and constitute the
normal computation for the processes under control. An aperiodic task can be invoked at any
time in response to environmental stimuli, such as abnormal or critical situations. While an
aperiodic task is independent of other tasks, most periodic tasks communicate with one another
to accomplish a common system goal. These communications impose precedence constraints

during the course of their concurrent execution.

In order to take advantage of a distributed implementation of the system, a good system
design should allocate both periodic and aperiodic tasks among the processing nodes (PNs) of
the distributed system so that the desired performance can be achieved. Ideally, a system must
be designed to have the capability of dynamically allocating both types of tasks to take full
advantage of the parallelism in the system. However, the increased overhead accompanying
this capability on intertask communication and the increased complexity involved in system
analysis might outweigh the benefit of such a design. Therefore, the following compromised

scheme is used in the thesis:

CP1. Periodic tasks are pre-assigned among PNs and their assignment remains unchanged

throughout the mission lifetime provided no PNs fail.

CP2. Aperiodic tasks may be dynamically transported to other PNs for execution to

accomplish load sharing and a load sharing algorithm is assumed to be available.



1.2. Problem Statements and Contributions

In this thesis, five research problems are addressed on how to manage system resources,
processors in particular, such that the underlying system can perform as desired. As shown in
Fig. 1.1, these five research problems form a hierarchical structure. That is, each problem is
formulated assuming that the preceding problems have been solved. The solutions to the five
indi\./idual problems thus constitute a major part of the complete solution to an integrated

problem that covers the entire system.

The performance criterion used here is the system hazard, or the maximum normalized
task flowtime, where the maximum runs over all tasks of the system. The normalized
flowtime of a task is the ratio of the task flowtime to its normalization factor, which is
typically the allowable deadline of the task following its arrival. This criterion is chosen
because it subsumes many other criteria related to meeting task deadlines. Besides, if the task
execution times are random, then the system hazard is a good measure for the system’s

inability to meet task deadlines.

In what follows, the five research problems and their associated contributions are
described. Task allocation is the central step in the design of any distributed real-time system
(see Figure 1.1). By allocation, we mean assignment with the subsequent scheduling
considered. To derive an optimal task allocation, an optimal schedule of tasks for any given

assignment has to be determined with respect to (w.r.t.) the system hazard.

First, optimal scheduling algorithms for independent tasks on a PN with a single
processor are studied in detail. Specifically, optimal algorithms for various scheduling
schemes are derived and their associated best processor utilization bounds computed. These
results are useful for the scheduling, assignment and sharing of independent tasks in a

distributed real-time system.



OPTIMAL SCHEDULING OF
INDEPENDENT TASKS

(fixed execution times)

OPTIMAL SCHEDULING OF
DEPENDENT PERIODIC TASKS

(fixed execution times)

STATIC ALLOCATION OF
PERIODIC TASKS

(fixed execution times)

MODELING OF CONCURRENT
TASK EXECUTION

(random execution times)

OPTIMAL CONTROL OF
TASK EXECUTION

(random execution times)

Figure 1.1 Structure of Problems Addressed
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Deriving an optimal schedule for a set of communicating (and thus, dependent) periodic
tasks is the second problem, which is treated in the context of a multi-project scheduling
problem (MPSP). The MPSP is a generalization of the conventional job-shop scheduling
problem. In addition to its use for scheduling communicating tasks, an optimal solution to the
MPSP is also useful, for example, in a project-based organization where precedence
constraints exist among the activities of different projects as well as within a project. An
optimal scheduling algorithm is needed for the project leaders so as to cooperate well to
complete all the projects in a desired fashion.

Based on the solutions to the first two problems, an optimal allocation of periodic tasks
is derived in the third problem. As mentioned earlier, the performance of our task allocation
is that of task assignment determined by the subsequent optimal scheduling of the assigned
tasks. This is in sharp contrast to conventional approaches, which deal with either assignment

or scheduling of tasks, but not both.

Since the actual execution time of each task may not be fixed as was assumed when the
tasks were first allocated, a Continuous-Time Markov Chain (CTMC) model is developed in
the fourth problem for the concurrent execution of the tasks assigned. In addition to
considering precedence constraints, the CTMC modeling has a finer granularity in describing
the execution stages of tasks than most other modeling work. The CTMC model has high
potential use for resolving various design and analysis issues of distributed real-time systems,
such as task execution time estimation, message handling, time-out, etc.

Finally, one particular use of the CTMC model — deriving an optimal solution to the
problem of combined periodic task and message scheduling for each PN — constitutes the last
problem dealt with in the thesis. Without the CTMC model, this problem would be intractable

because of its complicated problem structure.
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Notice that, the proposed solutions to all but the first problem may be limited to small or
medium sized problems only. For problems of large size, the computation involved may
become prohibitively demanding because of the combinatorial nature of the problems
addressed. Notice also that each of the research problems has been studied extensively by
others for non-real-time applications. However, as we shall see in the following survey, the
assumptions and criterion functions used were quite different from the ones proposed in this

thesis, making these results inapplicable to our needs.

1.3. Related Work

Task scheduling has been a popular research problem in the fields of Operations
Research and Computer Sciences. For scheduling tasks with deadlines, various algorithms
have been proposed for different scheduling objectives, and different assumptions on the set of
tasks to be scheduled and the set of processors to execute them. Task scheduling in real-time
systems can be either off-line or on-line. An off-line algorithm needs a complete prior
knowledge of the tasks’ characteristics so that the schedules can be derived beforchand. An
on-line algorithm, on the other hand, determines schedules for tasks on the fly at their random
arrivals [CMM®67]. Thus, off-line algorithms are usually used for scheduling periodic tasks,
while on-line algorithms are needed for scheduling aperiodic ones.

As was reviewed in [CSR87], scheduling algorithms in real-time applications are
concerned with one and only one objective: meeting task deadlines. An off-line algorithm is
optimal if it generates a schedule in which each task can be completed before its deadline
provided at least one such schedules exists. An on-line algorithm is optimal if it performs as
good as its off-line counterpart. For example, in the case of independent tasks to be executed
by a single processor, the earliest-due-date (EDD) scheduling algorithm — which always

chooses the ready task with the earliest deadline to run — is both an optimal off-line [Bak74,



Hor74] and on-line [Der74, Mok83] algorithm when preemption is allowed.

For systems with multiple processors, Hom [Hor74] derived an optimal off-line
algorithm to schedule independent tasks with arbitrary release times and deadlines. This result
was generalized by Martel [Mar82] for systems with processors of different processing speeds.
Unfortunately, on-line algorithms for such systems do not exist except for some special cases
[MoD78]).

Scheduling tasks with precedence constraints is generally NP-hard [GaJ79] except on a
single processor. Baker et. al [BLL83] derived an optimal off-line scheduling algorithm for a
single processor so as to minimize the maximum task completion cost, where the cost
associated with each task can be any monotone non-decreasing function of its completion time.
In what follows, a brief survey of the work related to the five research problems are described

in the order shown in Figure 1.1.

In‘the off-line scheduling of independent periodic tasks on a single processor, Liu and
Layland [LiL73] derived and analyzed two optimal algorithms: static and dynamic algorithms.
A static algorithm always schedules the ready invocation of one task before that of another if
the first task is given priority over the second task. A dynamic algorithm, however, may
assign different priorities to different invocations of a task. They showed that the rate
monotonic scheduling (RMS) algorithm — which assigns a higher priority to a task with
shorter invocation period — is an optimal static algorithm, whereas the EDD algorithm is
optimal in the dynamic case.

The single-processor on-line scheduling of aperiodic tasks in the presence of periodic
ones belongs to the case of the general single-processor on-line scheduling. Thus, the EDD
algorithm is also applicable here. Recently, because of the simplicity of the static scheduling
of periodic tasks, another approach to scheduling aperiodic tasks has been proposed. By

assuming a minimal interarrival time for all aperiodic tasks, this approach treats and schedules
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the aperiodic tasks just like a new periodic task with a period of the minimal interarrival time
[SLR86, LSS87, SSL89].

It is much more difficult to schedule dependent periodic tasks which have been assigned
among the PNs of a distributed system than to schedule them on a single processor [BENS2,
LLR81]. For example, the general job-shop scheduling problem, a special case of the stated
problem, is already NP-hard for the problems even as simple as J,| m; 23| C gy (a two-
- machine job-shop in which the number of operations in any job is greater than or equal to 3
and the scheduling objective is to minimize the maximum job completion time among all
jobs), or J3| m; 22| Cpyy [GoS78, LRB77]. Giffer and Thompson [GiT60] are the first to
propose a systematic approach to generating the set of all active schedules based on which
(and variations thereof) most implicit enumerative algorithms have been developed. A set A
of active schedules is said to dominate another set S o A of all schedules in the sense that
inclusion of an optimal schedule (w.r.t. any regular measure [Bak74]) in S implies thatin A.
In other words, to find optimal schedules w.r.t. any regular measure, it suffices to consider
only the set of active schedules, thus reducing the size of the state space to be searched. An
extensive survey of job-shop scheduling with branch-and-bound (B&B) methods can be found
in [LLR77], where job-shop scheduling was modeled by settling pairs of disjunctive arcs and a
tighter bound of cost was also developed by including many other bounds as special cases.
Possible extensions of the problems and variations of the solution techniques are described in

[BENS82].

As mentioned earlier, the performance of task allocation for real-time tasks must be
determined by the subsequent scheduling of the assigned tasks. For a set of independent
periodic tasks, Dhall and Liu [DhL78] and their colleagues developed various assignment
algorithms based on the RMS algorithm. If precedence constraints exist among the tasks to be

allocated, then a general approach to the problem of assigning non-periodic tasks must be



taken. However, most prominent methods for task assignment in distributed systems are
concemed with minimizing the sum of task processing costs on all assigned processors and
interprocessor communications (IPC) costs. As was reviewed in [CHL80], these methods are
based on graph theoretic [Sto77, StB78], integer programming [MLT82], or heuristic [ShT8S,

Vir84] solutions.

Few results have been reported on the task assignment with precedence constraints,
because most of such problems are NP-hard [Cof76, GaJ79, LLR81, LeK78]. This fact calls
for the development of enumerative optimization methods or approximate algorithms using
heuristics [KoS76]. For example, Chu and Lan [ChL87] chose to minimize the maximum
brocessor workload for the assignment of tasks in a distributed real-time system. Workload
was defined as the sum of IPC and accumulated execution time on each processor. A wait-
time-ratio between two assignments was defined in terms of task queueing delays. Precedence
l'elations were usged, in conjunction with the wait-time-ratios, to arrive at two heuristic rules for
task assignment,

Modeling concurrent tasks and their execution for real-time applications can be divided
into two parts: the basic objects to be considered and the structure among them. The basic
object belongs either to the module level or to the task level; the structure can be classified as
either the block diagram or the Markov Chain. Most work related to the modeling of
concurrent tasks has basic objects belonging to the task level and structures to the block
diagram. However, as a more accurate estimate of program execution time or a better control
of program execution becomes necessary for real-time applications, the modeling with module

level objects and Markov Chain structure evolves.

The task level/block diagram modeling is exemplified by a scheme developed_ at MIT
[War78] where the task system is modeled by a directed acyclic graph in which each node

represents a task and each directed arc represents the precedence relationship between the two
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nodes adjacent to the arc. The task level/Markov Chain model captures the execution states of
the task system when the task execution time is assumed to be independently exponentially
distributed [ThB83].

There exists a relatively limited literature on the low level, such as module level,
modeling of real-time concurrent tasks. This is probably because distributed real-time
computing is a new discipline and the importance of the lower level analysis has not been
obvious until recently. Chu and Leung [ChL84] and Leung [Leu85] developed a real-time
task model to estimate the task response time based on a module level/block diagram modeling
in which four types of subgraph: And-Fork to And-Join, Or-Fork to Or-Join, loop and
sequential thread are used to construct the block diagram. Huang [Hua85] addressed the issue
of software partitions on better resource utilization through a similar model. Woodbury
[Woo086] developed a model that incorporates a more complete set of elements including
exception handling of real-time tasks to compute the probability distribution function of the

execution time of real-time tasks.

While scheduling tasks with fixed execution times has long been studied, its stochastic
counterpart (scheduling tasks with random execution times) is relatively new [Web82].
Stochastic scheduling algorithms are normally used to optimize the expected value of certain
performance quantity. There are very few research results reported on scheduling tasks with

random execution times and precedence constraints in a distributed system.

1.4. Outline of the Dissertation

In Chapter 2, we present the system hazard w.rt. which optimal static and dynamic
scheduling algorithms for independent periodic tasks on a single processor are then derived.
Using the optimal algorithms, two best bounds of processor utilization are derived. If, in

addition to the periodic tasks, aperiodic tasks arrive randomly at the processor, no optimal on-
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line scheduling algorithms are shown to exist. Thus, simple mechanisms are described, which
can be used to determine whether or not an arriving aperiodic task can be completed with less
than the pre-specified system hazard.

Chapter 3 deals with the problem of scheduling communicating periodic tasks in a
distributed system. This problem is formulated and solved in the context of Operations
Research, thus calling it a multi-project scheduling problem. A multi-project is first expressed
in a PERT/CPM form called the multi-project graph (MPG). Using the MPG, the dominance
relationship between simultaneously schedulable operations are identified to reduce the set of
active schedules to be searched with a B&B algorithm. Lower-bound cost estimates are
derived to guide the search for an optimal schedule. Finally, a demonstrative example and

some computational experiences are presented.

Using the results of optimal scheduling algorithms obtained above, an optimal task
allocation can be determined. Since allocation of independent periodic tasks has been studied
in considerable detail, only dependent periodic tasks are considered in Chapter 4 for their
optimal allocation. While deriving the optimal allocation of periodic tasks, the problem of
scheduling aperiodic tasks is also considered through determining the power for processing
both types of tasks. To reduce the computation required for an optimal assignment, a
polynomial-time algorithm .is used to estimate the lower-bound cost for a non-terminal node in

the B&B search tree.

After periodic tasks have been optimally assigned to PNs, the modeling of the concurrent
execution of the tasks assigned is studied in Chapter 5. First, tasks in each PN are decomposed
into activities. The activities and the precedence constraints among them are then modeled by
a Generalized Stochastic Petri Net (GSPN). Finally, a sequence of homogeneous Continuous-
Time Markov Chains (CTMCs) is built from the GSPN to model the concurrent task execution

in the distributed real-time system.
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In Chapter 6, an important application of the CTMC model is explored. Specifically, we
want to solve the problem of optimally scheduling tasks and messages in distributed real-time
systems. The scheduling problem is first transformed into a Semi-Markov Decision Processes
(SMDP) and the Dynamic Programming (DP) technique is then used to solve the SMDP. We
derived an optimal schedule for the centralized case and a sub-optimal schedule for the
decentralized case. Moreover, we consider the scheduling problem where each PN
periodically broadcasts its local mformaﬁon to other PNs so that a better scheduling decision

can be made by each PN.

Finally, the thesis is concluded in Chapter 7 with important results and a suggestion for

future research.



CHAPTER 2

A NEW PERFORMANCE MEASURE AND
THE SCHEDULING OF INDEPENDENT TASKS

2.1. Introduction

The workload in a real-time system is composed of periodic and aperiodic tasks.
Periodic tasks are the ‘‘base load”’ and invoked at fixed time intervals while aperiodic tasks
are the “‘transient load’’, arriving randomly in response to environmental stimuli. In hard
real-time systems such as missile navigation or robot control, execution of both periodic and
aperiodic tasks must be not only logically correct but also completed in time. Specifically,

there exists an associated deadline for each task before which the task must be completed.

Using different assumptions on the set of tasks to be scheduled and the set of processors
to execute them, various scheduling algorithms have been proposed. (See [CSR87] for an
extensive survey.) It is important to note that all of these scheduling algorithms are concerned
with one and only one objective: meeting task deadlines. A scheduling algorithm is said to be
optimal if it generates a schedule in which every task can be completed before its deadline,
provided such a schedule exists. However, scheduling tasks with this objective alone has the

following drawbacks:

e Prior knowledge of the task system based on which conventional scheduling algorithms
were derived is not always available or accurate. For instance, the exact execution time
of a task is difficult to obtain because of the uncertain behavior of loops and conditional

branches in the task.
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e It is impossible to evaluate the goodness of a schedule in terms of how early a task can
be completed before its deadline. This information is important, especially in scheduling
periodic tasks in the presence of randomly arriving aperiodic tasks which must also be

completed before their deadlines.

To remedy the above drawbacks, we propose a new performance measure, called the
system hazard, as the objective function for scheduling real-time tasks. Specifically, the
system hazard, denoted by O, is the maximum normalized task flowtime, where the flowtime
(response time or turn-around time) of a task T; is defined as the time period between the

release (arrival) (rj) and the completion (c;) of 7;. That is, ® = max (cj=rj)! @; - rj
J

where d; is the deadline by which T; must be completed. A schedule is said to be optimal
with respect to (w.r.t) © if it achieves the smallest possible value of ©, denoted by ©".
Several insights can be drawn from © and " as follows. First, under the assumption that all
task execution times are fixed (as with most existing scheduling algorithms), 8" < 1 if and
only if there exists at least one schedule under which all tasks can be completed before their
deadlines. Thus, if ©° < 1, an optimal schedule w.r.t. © is also optimal in terms of the ability
to meet deadlines. Second, if task execution times are random rather than fixed, then 8" is a
good measure for the system's inability of meeting task deadlines. Third, ®° can also be used
to evaluate the goodness of task assignments in distributed real-time systems [PeS89]. An
assignment with lower @" is superior to the one with higher 8" because the former results in

a lower probability of each assigned task missing its deadline.

In this paper, we shall study the optimal preemptive resume scheduling algorithms and
their associated processor utilizations for both periodic and aperiodic tasks by minimizing ©.
As was done in [LiL73], this derivation is based on the assumption that A1) tasks are to be
scheduled on a single processor, and A2) periodic and aperiodic tasks are independent of each

other. A2 means that no precedence constraints exist between any two tasks except for those
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among periodic tasks implied by their invocation times.

For periodic tasks, both static and dynamic scheduling algorithms are considered.
According to the definitions used in [LiL73], a scheduling algorithm is said to be static
(dynamic) if all invocations of a task are assigned the same priority (different priorities). Thus
in a static scheduling algorithm, if task T; is given priority over task T}, then an invocation of
T; has priority over all invocations of T;. In a dynamic scheduling algorithm, on the other
hand, two invocations of the same task may be assigned different priorities. We shall prove
that the rate-monotonic scheduling (RMS) algorithm — which was proven to be optimal in
meeting deadlines [LiL73] — is also an optimal static algorithm w.r.t. © for periodic tasks.
For the dynamic case however, the earliest due date (EDD) scheduling algorithm — which is
optimal w.r.t. many other performance measures — is shown to be not optimal w.r.t. . That
is, an optimal schedule derived by minimizing © not only meets all the deadlines that can be
met by the EDD algorithm, but also offers additional benefits. For aperiodic tasks, we shall
show that optimal on-line scheduling algorithms are non-éxistent except for some special

cases.

The rest of the chapter is organized as follows. In Section 2.2, we consider the optimal
static scheduling algorithms for periodic tasks as well as achievable processor utilization
bounds. The dynamic version of the subject in Section 2.2 is dealt with in Section 2.3. On-
line scheduling algorithms for aperiodic tasks are treated in Section 2.4, where, rather than
deriving processor utilization bounds, simple mechanisms are proposed to check whether or
not a randomly arriving aperiodic task can be completed with not greater than the pre-specified

system hazard.
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2.2. Optimal Static Scheduling of Periodic Tasks

LetT = (T;|i=1,2, ---,m} be the set of m periodic tasks to be scheduled on a
processor, where each task T; repeats itself with period p; during the entire mission. Let
I =[0, L) be a planning cycle, where L is the least common multiple (LCM) of all p;’s. For
simplicity, all tasks are assumed to be invoked simultaneously at the beginning of a planning
cycle. The v-th invocation of T;, denoted by T;,, is triggered at time (v—1)p; and has to be
completed before its next invocation time vp;. We want to derive a scheduling algorithm that

minimizes © = . Smﬁ , (¢;y —riy)ip;, where c;, and r; are the completion time and
v Pi
T‘ eT

invocation time of T;,, respectively.

2.2.1. Optimal Static Scheduling Algorithm

Liu and Layland [LiL73)] showed that the rate-monotonic scheduling (RMS) algorithm —
which simply assigns priorities based on task invocation periods — is optimal in the sense that
it generates a feasible schedule provided such a schedule exists.! One may suggest that the
RMS algorithm may also be optimal w.r.t. © provided at least a feasible schedule exists. In
what follows, we shall prove this conjecture by first considering the case of m =2 and then
generalizing it.

It is necessary to state a useful result that follows directly from [LiL73].

Lemma 2.1: The maximum flowtime of a task occurs when the task is invoked simultaneously
with all other higher-priority tasks.

Lemma 2.1 is obvious because the completion of a task will be delayed most if all other
higher-priority tasks are invoked at the same time the task is invoked.

Lemma 2.2: For any two periodic tasks T, and T, such that p, < p,, an algorithm which

1A schedule is said to be feasible if all invocations of every task in the schedule can be completed in time.



























































































































































































































































































































































































































































































































