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CHAPTER 1

INTRODUCTION

1.1 Motivation

The potential for applying digital computers to real-time control is enormous. It is just
beginning to be recognized that computers have a vital role in controlling many critical processes.
This is especially true in applications such as the control of aircraft, spacecraft, life-support
systems, nuclear power plants, automobile engines, and process control plants, where the time
available for responding to the environment is always becoming shorter.

The control computers in these applications are required to be fast and highly reliable. These
requirements are stringent because a single failure in the control system can be catastrophic. Fault
tolerance is therefore a major issue in the design of these control computers. The exact nature of
fault tolerance that needs to be incorporated depends on the application. Some applications require
very high reliability for a short period of time while others require moderate reliability over a
long period. For example, in a commercial transport aircraft the duration of a flight is around
10 hours and the allowable probability of failure per mission is specified as 10~°. In contrast,
in a2 manned space flight, the duration of a mission is relatively long, around 10 days, while the
allowable probability of failure per mission is higher by about two orders of magnitude. Besides,
in a commercial transport aircraft there is no facility for repair during a mission as compared to
some facility for repair in a2 manned space flight. Several such factors along with the potential

loss in case of a failure determine the fault tolerance capabilities that needs to be incorporated in

a system.
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Given the fault tolerance requirements, it is still very difficult to show that the designed system
will actuaily meet those requirements. Since the cost incurred upon failure is extremely high, the
control computers for these applications are often designed under the worst-case assumption that
the faulty components can do whatever they like. This includes altering, blocking, re-routing or
in the worst case, sending conflicting information to different parts of the system. A component
that exhibits this type of behavior is commonly referred to as being malicious, and the fault model
is referred to as the Byzantine fault model.

As one can easily imagine, Byzantine faults pose serious problems in all three major activities
of a real-time control system, namely, acquisition of data from the input sensors, the processing
of acquired data and writing of output data to the actuators. For example, it is often necessary
for the components in a real-time system to reach a consensus on the valu.e read from an input
sensor. In the absence of Byzantine faults, this consensus can be easily achieved by using some
form of redundancy. For instance, multiple components can independently read and exchange the
value of a sensor with other components, and then use an appropriate fault-tolerant “averaging”
function to arrive at a mutually agreeable value. This problem however gets complicated when
malicious components report conflicting values to different parts of the system, thus causing them
to arrive at contradictory results.

Several techniques have been put forth for ensuring consensus among the non-faulty compo-
nents in the presence of Byzantine faults [7, 9, 11, 12, 13, 37, 66]. Most of these solutions require
an excessive amount of time to execute and are, therefore, unsuitable for real-time applications.
The objectives of this dissertation are to address ways of eliminating/reducing the time overhead
imposed by these solutions and simplifying the design of computer systems that are resilient to
Byzantine faults. The empbhasis is or developing fault-tolerant methods for synchronizing system
components and ensuring distributed agreement among cooperating processes.

This work is significant because almost all time and mission critical applications use some
form of distributed processing to meet their reliability and performance requirements. In these
systems, the coordination among concurrent processes is by exchanging information. The in-
formation may in general be input data, output data, clock values, system status, or any other
data relevant to the system. Agreement by definition is a consensus among the participating

components on any such information and hence, important in all distributed systems. Likewise,
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synchronization is important in all distributed systems because: (i) it is essential for ensuring
distributed agreement, (ii) it can simplify fault-tolerant algorithms for several design problems
including inter-process communication, checkpointing and rollback recovery, resource allocation,
and transaction processing and (iii) it can be used to implement features like deadlines and timeout

that are essential for correct operation of any distributed real-time system.
1.2 Prior Work

Techniques for designing computer systems that can tolerate Byzantine faults are
well-understood. The following four conditions have been shown to be necessary for any al-

gorithm that is resilient to m Byzantine faults. This includes algorithms for synchronization as
well as distributed agreement.

1. There must be at least 3m + 1 participants in the algorithm [44].

2. Each participant must be connected to at least 2m + 1 other participants through disjoint

communication paths {7].

3. The protocol must consist of a minimum of m + 1 rounds of communication among the

participants [12].
4. The participants must be synchronized to within known skews of each other [8, 16).

Based on these theoretical developments several ultra-reliable computer systems have been
built over the past decade. This includes systems such as the Fault-Tolerant MultiProcessor
(FTMP) [25, 62], Software Implemented Fault Tolerance (SIFT) {20], Fault Tolerant Processor
(FTP) [61], Multicomputer Architecture for Fault Tolerance (MAFT) {30], and Advanced Informa-
tion Processing System (AIPS) [26]. A comparison between these systems is shown in Table 1.1.

As indicated in the table, SIFT is a six processor system with direct connection between all
pairs of processors. It uses a software synchronization scheme to maintain the clocks to within
known skews of each other. In comparison, FTMP is a ten processor system organized in the form

of three triads and a spare. The communication between the triads is through a 5-way redundant
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System | # of proc. Topology Sync. algorithm | Multiprocessing
SIFT 6 Fully connected Software Yes
FTMP 10 Broadcast bus Hardware Yes
F1IP <4 See note 1 Hardware | No
MAFT 8 Broadcast bus Software Yes
AIPS | See note 2 | Broadcast bus See note 3 Yes

Note 1: Special data exchange network.
Note 2: Limited by contention for the broadcast bus.

Note 3; Still being designed.
Table 1.1:  Comparison of a few ultra-reliable systems

broadcast bus with three active and two spares. Unlike SIFT, it uses a hardware synchronization
scheme to maintain the clocks close to one another.

In direct contrast to FTMP and SIFT, FTP is a much simpler design that can execute only
one instruction stream at any given time (the redundant processors are solefy for fault tolerance).
However, like FTMP it uses a hardware scheme to tightly synchronize its clocks. On the other
hand, MAFT is a distributed system comprised of eight semi-autonomous nodes connected through
a broadcast bus network. It uses a software scheme similar to that of SIFT to maintain a loose
synchronization between its clocks. AIPS is a distributed system comprised of fault tolerant
multiprocessors interconnected through a redundant virtual bus. The number of fault tolerant
multiprocessors in AIPS is limited by the contention for the virtual bus.

At the outset, these systems may seem to be widely varied from each other. However, there
are several common features among them that are typical to the existing algorithms for tolerating
Byzantine faults. First, all of the above systems except AIPS are small and tightly coupled
multiprocessors. Second, they can tolerate a maximum of one Byzantine fault at any given time.

Third, the schemes used in these systems cannot often be extended to a multiple fault scenario,
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e.g, the hardware synchronization algorithm used in FTMP and FTP. Finally, even though all
the above systems have extensive capabilities for reconfiguration, there exists no fault detection
algorithm that is guaranteed to always identify the malicious components.

In contrast, the goal of this dissertation is to consider systems that are large and loosely-
coupled. The systems are also assumed to be partially connected through a point-to-point inter-
connection network as opposed to a broadcast bus or a fully connected network. The reliability
requirements of the systems are also assumed to be such that it may be necessary to tolerate more
than one Byzantine fault. This work is significant because large partially connected distributed
systems are well-suited for meeting the stringent performance and reliability requirements of a

critical real-time application.

1.3 Research Objectives

The objectives of this dissertation are three-fold:
e develop algorithms for establishing a global time base in the system,
¢ illustrate the use of global time base to simplify other fault-tolerant algorithms, and

¢ reduce/eliminate the overheads for synchronization and distributed agreement through di-
agnosis of Byzantine faults.

The algorithm for establishing a global time base can be considered at two different levels:
system level and node level. System level synchronization deals with establishing a time base
among the nodes of a distributed system. This problem gets complicated when some of these
nodes behave maliciously by providing conflicting clock values to different parts of the system.
Additional problems arise in large distributed systems because the existing algorithms are not
easily scalable. In contrast, node Ievel synchronization deals with establishing a global time base
among the components in a node by properly distributing a clock signal to all the components.

There are both software and hardware solutions for system level synchronization. The software
solutions require nodes to exchange and adjust their clock values periodically. Since the clock
values are exchanged via message passing, the time overhead imposed by the software solutions

can be substantial, especially if a tight synchronization is desired. The hardware solutions, on
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the other hand, use special hardware at each node to achieve a very tight synchronization with
minimal overhead. However, the prohibitive cost of the additional hardware limits their usefulness
to small distributed systems. Since the choice between the two solutions for a system depends
on the application, both these approaches are considered in this dissertation. The emphasis is on
reducing the cost of hardware solutions and the worst-case skews of software solutions to make
both these alternatives viable even in large distributed systems.

In node level synchronization, the goal is to control the clock skew between the modules in 2
VLSI circuit to an acceptable small fraction of the clock period. Within a VLSI circuit the clock
skews are mainly due to the difference in length of clock lines and due to the difference in the
number of clock buffers inserted in the clock lines. The existing schemes for clock distribution are
either applicable only in the case of a symmetric placement of the modules such as systolic arrays
or they are too detailed and sensitive to the technology and the fabrication process. The emphasis
here is on developing a general scheme that is applicable in non-symmetric VLSI circuits. The
objective is to determine a layout of clock lines given the floorplan that minimizes the clock skew
subject to minimum longest delay.

The use of a global time base to simplify fault-tolerant algorithms is illustrated by considering
the checkpointing and rollback recovery schemes. These schemes are mainly used to recover from
software errors when cooperating processes are executing concurrently in a distributed system. It
is shown that the number of messages as well as the waiting time for checkpointing and rollback
recovery can be reduced substantially by using the global time base. The only additional cost in
this scheme as compared to other known schemes is the cost of establishing the time base.

The cost of synchronization, and hence the cost of establishing a global time base, depends
on the maximum number of Byzantine faults to be tolerated. Given the reliability requircments
of a system, the number of faults that needs to be tolerated can be reduced by preventing the
accumulation of Byzantine faults by diagnosing them as soon as they occur. This work can be used
to reduce the overheads imposed by synchronization algorithms and various other algorithms that
are resilient to Byzantine faults. It is therefore presented in a more general context of distributed

agreement.
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1.4 OQutline of the Dissertation

This dissertation is organized as follows. Chapter 2 deals with the problems related to syn-
chronizing large distributed systems. It discusses solutions to two major problems in the existing
hardware synchronization algorithms, namely, the assumption that there is a fully connected net-
work of clocks and the assumption that the transmission delay from one clock to another is
negligible. These two assumptions are difficult to satisfy in a large distributed system. The
scheme discussed requires only 20-30 percent of the total number of interconnections required
by a fully connected network for almost no loss in synchronization capabilities. This is achieved
by grouping the clocks into clusters and treating the clusters as clock units as far as the system
is concemed. The effects of the transmission delay are reduced by a technique traditionally used
in the communication area called the returnable timing system.

Chapter 2 also discusses a hardware-assisted software solution for synchronizing large partially
connected distributed systems. As compared to the hardware solution, this scheme requires
minimal additional hardware at each node and does not require a separate network of clocks. It
is suitable for synchronizing specific interconnection topologies like a hypercube or a C-wrapped
hexagonal mesh, especially when a very tight synchronization is not essential. The skews achieved
are, however, much tighter than that of the existing software schemes.

The problem of synchronizing different modules in a VLSI circuit is addressed in Chapter 3.
The hierarchy created by clock buffers is used to distribute the clock signal to the modules. Unlike
other related work in this area, both delay and skew are taken into account in determining the
layout. The resulting scheme can be easily parallelized.

A checkpointing and rollback recovery algorithm that is based on the existence of a global
time base is presented in Chapter 4. The existence of a global time base is coupled with the idea
of pseudo-recovery block approach to develop an algorithm that has the advantages of maximum
process autonomy, minimal wait for commitment, fewer messages and less memory requirement.
A probabilistic model to evaluate these advantages is also developed.

A novel approach for reducing the overheads imposed by synchronization and distributed
agreement algorithms is presented in Chapter 5. The reduction in overhead is achieved through
diagnosis of Byzantine faults. The algorithm for diagnosis is such that there is an upper bound
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on the number of times a node can exhibit its Byzantine behavior without being identified.
Chapter 6 is a discussion on future research directions based on the results presented in this
dissertation.
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CHAPTER 2

SYSTEM LEVEL SYNCHRONIZATION

2.1 Introduction

A global time base is widely recognized as an important requirement in distributed real-time
systems. It is essential for problems like distributed agreement and also for implementing features
like deadlines and timeout. It can also be used to simplify solutions to several other problems
like checkpointing, inter-process communication, resource allocation, and transaction processing.

The global time base can be established by synchronizing all the local clocks in the system.
These synchronizing operations would not be much of a problem had all the clocks, including
the faulty ones, behaved consistently with one another. However, when some of the faulty clocks
can behave in an arbitrary manner, these synchronizing operations present some serious problems.
For instance, a faulty clock can make it difficult for the other clocks to synchronize themselves by
sending conflicting information during the course of synchronization. Lamport and Melliar-Smith
referred to this kind of behavior as a Byzantine fault and were the first to develop a solution for
synchronizing clocks in the presence of these faults [35, 36]. Since then, this problem has been
studied extensively and several software and hardware solutions have been _proposed.

The sofiware solutions are flexible and economical but require additional messages to be
exchanged solely for synchronization [22, 36, 43, 64]. Due to the dependence on message
exchanges, the worst-case skews guaranteed by most of these solutions are greater than the
maximum message transit delay between any two nodes in the system. The hardware solutions,

on the other hand, use special hardware at each node to achieve a very tight synchronization with
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minimal time overhead [29, 33, 57, 67]. However, the cost of additional hardware precludes their
use in large distributed systems unless a very tight synchronization is essential. The hardware
solutions also require a separate netwotk of clocks that is different from the interconnection
network between the nodes of the distributed system [S7].

The choice between hardware and software synchronization methods has to be made based on
the application and the characteristics of the system. The goal of this dissertation is to make both
methods viable altematives for synchronizing large distributed systems. This goal is realized by
addressing the specific drawbacks of these two methods, namely the cost of hardware solutions
and the guaranteed worst-case skew of software solutions.

This chapter is organized as follows. A survey of related work in both hardware and software
synchronization methods is presented in the following section. The terminology that is common
to both these methods is introduced in the third section. The drawbacks in hardware and software
synchronization methods are addressed in the fourth and the fifth sections. The sixth section

discusses the relative merits of the schemes proposed.
2.2 _Related Research

The principle of hardware synchronization algorithms is that of a phasé—locked loop. Each
individual clock is an output of a voltage controlled oscillator. The voltage applied to the oscillator
comes from a phase detector whose output is proportional to the phase emror between the phase
of its clock (i.e., the output of the voltage controlled oscillator it is controlling) and a reference
signal generated by using the other clocks in the system. Thus, by adjusting the frequency of each
individual clock to the reference signal, the clocks can always be kept in lock-step with respect
to one another.

As of today, there have been only two implementations of this approach [19, 62]. Both these
implementations use four clocks and can tolerate only one Byzantine fault. An extension of the
algorithms in [19, 62] to tolerate more than one of Byzantine fault is non-trivial and is described
in [29, 33, 67]. The principle in [29, 33, 67] is the same as in 19, 62}, but the selection of the
reference signal is more complicated. Each node receives the clocks at other nodes as inputs and

orders them as per the time of their arrival. The position of its own clock in this ordered sequence
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is used to correct its clock in the subsequent cycles. In [29], the number of clocks that are faster
than its own clock is used to derive the control voltage while in [33] the phase difference between
a chosen reference signal and its own clock is used as the control voltage. In [67], two reference
signals are selected from the ordered sequence and a combination of the phase difference between
its clock and the two reference signals is used as the control voltage.

There are several problems associated with synchronizing large distributed systems using
the algorithms in [29, 33, 67). The first problem is that all of the above algorithms require
a fully connected network of clocks. Due to the large number of interconnections in a fully
connected network, the reliability of synchronization will be determined by the failure rates
of these interconnections rather than the failure rate of the clocks. Furthermore, there will be
problems of fan-in and fan-out caused by the large number of interconnections. The second
problem with the above algorithms is that they are based on the assumption that the transmission
delays between the clocks are negligible as compared to desired worst-case skew. In a large
system, the physical separation between a pair of clocks can be considerable enough to result in
non-negligible transmission delays.

Unlike the hardware solutions, software solutions synchronize logical clocks instead of hard-
ware clocks. Given that the hardware clocks drift at a bounded rate from real time, the software
solutions periodically exchange and adjust the logical clocks to maintain them sufficiently close
to one another [22, 36, 43, 64]. A software solution can be viewed as a process that runs on each
node to maintain a time base for all the activities on the node. This clock process is responsible
for synchronizing the local logical clock with the other logical clocks in the system.

In [22, 64], the clock process broadcasts a message to other clock processes to indicate that it
is ready for resynchronization. This occurs either when its clock reaches a pre-determined time
or when it sufficient number of messages from other processes to be sure that at least one other
non-faulty process is ready for a resynchronization. During a resynchronization, a new logical
clock is started in such a way that it is guaranteed to be close to the clocks started approximately
at the same time at other nodes. In [36, 43], a clock process broadcasts its logical clock at a
pre-determined time. It then waits for a fixed amount of time to collect similar messages from
other processes. At the end of the waiting period, the clock process averages the arrival times of

the messages from other clock processes using a fault-tolerant averaging function. The resulting
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average is used to compute the adjustment to the local clock.

Because of the dependence of these software schemes on message passing, the guaranteed
worst-case skew between the logical clocks is greater than the maximum message transit delay
in the system [22, 36, 43, 64]. This is acceptable in a small fully connected system because the
maximum message transit delays in such systems are typically quite small. However, in large
distributed systems where the nodes are not fully connected, the clock messages may have to be
relayed through several intermediate processes before they reach all other processes. This results
in large message transit delays which in tum results in poor worst-case skews.

There are some software schemes in which this problem does not occur [2, 15]. In [15], the
clocks are intended for simulating the concept of rounds for distributed agreement algorithms
rather than to keep track of elapsed time intervals. Hence, their definition of a clock is different
from the definition in the other schemes [22, 36, 43, 64]. The definition of a clock in [15] is
not sufficient for real-time systems, since it cannot be used to implement ixﬁportam features like
deadlines and timeout. The idea in [2] is to assume that the probability distribution of message
transit delays is known and let each clock process make several attempts to read the other clocks.
At the end of each attempt, it can calculate the maximum error that might occur if the clock value
obtained in that attempt is used for determining the correction. By retrying a sufficient number
of times, a clock process can read the other clocks to any given precision with probability as
close to one as desired. This scheme is particularly suitable for systems that have a master-slave
arrangement in which one clock has been designated or elected as a master and the other clocks
act as slaves. This again is not suitable for a real-time system because the algorithms to detect a
failure of the master and to elect a new one are fairly complex and time-consuming, especially
in the presence of Byzantine faults. There is also a non-zero probability of not being able to
synchronize the non-faulty clocks due to the probabilistic nature of the clock reading mechanism.

As a consequence, the uscfulness of the existing hardware and software synchronization
schemes is limited to small distributed systems. An extension of these schemes to large dis-
tributed systems is presented below. First, solutions are proposed to overcome the transmission
delay and the MIe@mmﬁon problems in hardware synchronization. Then, a hardware-assisted
software synchronization scheme is proposed that achieves skews that are about two to three
orders of magnitude tighter than the skews in the existing software schemes. This can be used in
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systems that cannot afford the cost of additional hardware required in pure hardware solutions.

Prior to describing these solutions some of the notations and the terminology are introduced.

2.3 Terminology

Definition 2.1: The time that is directly observable in scme particular clock is called its clock
time. This should be contrasted to the term real time, which is measured in an assumed Newtonian

time frame that is not directly observable.

Definition 2.2: Let ¢ be 2 mapping from clock time to real time, where ¢(T') = ¢ means that at
clock time T the real time is ¢. Then, two clocks ¢; and ¢, are said to be §-synchronized at a
clock time T if and only if [c1(T) — c2(T)| < 6. We adopt the convention of using lowercase
letters to denote quantities that represent real time and uppercase letters to denote quantities that

represent clock time.

Definition 2.3: A clock c is said to be a good clock during the real-time interval [t1,12,] if it is a

monotonic, differentiable function on [T}, T3] where «(T;) = t;,i = 1,2, and for all T in [T}, T3]:

de(T) _ ll P

aT <3

for some constant p. The constant p represents the drift rate of the good clocks.

Definition 2.4: A set of clocks are said to be well-synchronized if and only if any two non-faulty
clocks in this set are é-synchronized for some specified constant é.

Definition 2.5: A well-synchronized set of clocks has a re-synchronization interval. In hardware
(software) synchronization, the k** re-synchronization interval is the time duration between the
kt* and the (k 4 1)** tick (adjustment) of the fastest non-faulty clock. Note that the fastest
non-faulty clock at the k** tick (adjustment) can be different from the fastest non-faulty clock at
the (k + 1)* tick (adjustment). In hardware synchronization, the k** re-synchronization interval
is also called its k** global clock cycle.
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Figure 2.1: Block diagram of the hardware synchronization scheme

24 A Hardware Synchronization Scheme

Given a distributed system with N nodes, each of which has a clock of its own, the problem
is to synchronize all the non-faulty clocks in the system to a specified fault tolerance m. The
phase-locked algorithms in {29, 33, 67] solve this problem, but require the transmission delays
to be negligible and a large number of interconnections. The effects of transmission delay in
phase-locked loops have been studied in great detail in the communication area [41, 70] but not
in the presence of Byzantine faults. It is shown below and in [59] that it is easy to incorporate
the ideas from the communication area to take into account the presence of both Byzantine faults

and non-negligible transmission delays.
24.1 Elimination of transmission delay effects

A block diagram of the hardware clock synchronization scheme is shown in Figure 2.1. It
comprises three basic blocks : the delay elimination block, the interface block and the synchro-
nization block. The delay elimination block receives all the other clocks as inputs and outputs
analog voltages! proportional to the exact phase difference between the input clocks and its own
clock. The interface block converts these analog voltages into a form suitable for the synchroniza-
tion block. The synchronization block can be any one of the existing hardware synchronization
circuits [29, 57, 67] and will not be discussed here. The details of other two blocks are discussed

L one for each of the other clocks.
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in terms of the following notation.
8;  The clock signal from node 2.
T4ec The global clock cycle.
d;;  Transmission delay for s; to reach node i

7i;  Phase difference between the clocks at nodes ¢ and j expressed
in real time units.

é Maximum phase difference between any two non-faulty clocks
in the system.

e;;  Estimated phase difference at node i between the clocks at nodes
t and j.

The delay elimination block

For clarity of presentation, consider the delay elimination block at node i. The delay elimina-
tion block consists of I — 1 identical subblocks, i.c., one for each other clock it receives as input.
For the interconnection strategy to be put forth later, typically ] < N. Consider the subblock
corresponding to clock input from node j (see Figure 2.2). It has two phase detectors and an
averager. The inputs to the first phase detector, PD;, are the clock signals s; and s;. Since the
signal s; encounters a delay in reaching node i, the phase difference detected by PD; does not
represent the true phase difference ;.

The inputs to the second phase detector, PD,, are signals s; and s; returning from node j.
Because of the transmission delays between the two clocks, the signal s; returning from node j
will be a delayed version of s;. Since a delay in time is equivalent to a phase difference, the
output of the second phase detector will also depend on the transmission delays. However, if the
following four conditions hold, then it is shown in Theorem 2.1 that the a;zcrage of the outputs

of these two phase detectors is proportional to 7;; irrespective of the transmission delays.

TD1. The two phase detectors in each subblock have identical gains.

TD2. d;; = d;; forall ¢, j.

T_q ce

TD3. § < ==.
3 <2
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Figure 2.2: Delay Elimination Block

Toee _

TD4. For all 4, j, and some integer n, nTye. < dij < nTye + 2

TD1 is a reasonable assumption because the effect of the difference in gains of phase detectors
on the worst-case skew is usually much smaller than the effect of transmission delays. TD2 can
be easily satisfied if the signals s;, s; and their retuming signals are routed via almost identical
paths. TD3 bolds because hardware synchronization schemes achieve lock step synchronization.
In fact, in most hardware synchronization schemes § < %—‘5. TD4 should be treated as a design
constraint. Even though two clocks can be physically far apart from each other, they should not
be allowed to be at arbitrary distances. The physical distance between any two clocks should be
such that the transmission delays satisfy TD4.

TD4 is not mentioned in [41], because the output of the phase detector is assumed to always
vary linearly with phase difference. This, however, is not realistic since phase differences between
7 and 7 + nT', for any integer n, cannot be distinguished from each other by just considering the
two signals, i.e., the outputs of phase detectors have a saw-tooth relationship with phase difference

rather than a linear relationship [70].

Lemma 2.1: If integers n; and n, satisfy the following two conditions:
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"T cc T cc
6] 29 < (15 + dji + 1y Tpee) < =25

2
@) 2"’ < (7ij — dji + noTpee) < %
then ny = —njy.

Proof: From TD4, there exists an integer n such that nT,., < dj; < Ty + T‘;—cc — 6. We now

show that n; = —n and n, = n.

By definition, —§ < 7;; < 6. Hence,

T
T . — 1 d Zgee
Nlgee~8 < T+d; < nlg+ > 1)

—nﬁa—% < Tj—dji < —nTh+6.

Substituting for 7;; + dj; and 7;; — dj; from the above two equations, it is easy to verify that
n; = —n and n; = n satisfy the conditions (1) and (2) (i.e., use TD3). Since integers satisfying

(1) and (2) are unique, it follows that n; = ~n,. a

Theorem 2.1: If the conditions TD1-TD4 hold, then the output of the averager, e;; ~ K;; for

some constant K.

Proof: Let v}j and v?j denote the outputs of the phase detectors PD; and PD,, respectively.
Then for a saw-tooth phase detector [70],

v; = Ki(mj+dij+niTge) 22)
v = Ko{mj+dij—(dij + i) + naTyec}
= K3(7j — dji + n2Tye), 2.3)

where K3 and K are constants and n; and n2 are integers so chosen that

T T
—‘% < 7t djiitmTye < —g2—cc'

T, T,
~*——';C° < mj = dji + noTge < '—;“,

respectively.

From Equations (2.2) and (2.3), the output of the averager is
1
€j =3 [K1(7ij + dij + mTyec) + Ka(7ij — dji + naTyec )] - 2.4

From TD1, K; = K2 = K. From Lemma 2.1, n; = —n,. Substituting these relations in

Equation (2.4), we get €;; = Ky + %(d,‘j - d;;). The theorem then follows from TD2. H
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The interface block

The structure of the interface block depends on the synchronization block being used. For
illustration, consider the interface block for the hardware synchronization circuit in [29]. In [29],
the control voltage to the oscillator depends on whether more than m clocks are faster than the
output of the oscillator. From the description of the delay elimination blogk, it is clear that the
clock at node j is faster than the clock at node ¢ if the voltage e;; is negative. A comparator that
outputs a TTL high voltage when the input is negative and a TTL low when the input is positive
can be used along with the “greater than m detector” described in [29] to convert the output of
the delay elimination block into the desired form.

The complexity and cost of the delay elimination and the interface blocks depend on the
number of clock inputs. The following three subsections describe an interconnection strategy and
a modified phase locked algorithm in which the number of inputs to each clock is considerably

less than the total number of clocks in the system.
2.4.2 The interconnection strategy

The total number of interconnections is reduced by grouping the clocks into several clusters
and then treating each cluster as a clock unit. Each clock is synchronized by using the phase-
lmkcd algorithm not only with all the clocks in its own cluster but also v/ith one clock from each
of the other clusters. As a result of this mutual coupling, the clusters remain synchronized with
respect to one another and the system as a whole remains well-synchronized.

Let M be the total number of clusters in the system. Let p; denote the number of clocks in
the i** cluster. Number the clusters from 1 to M, and also number the clocks in each cluster i
from 1 to p;. Let c;; represent the j** clock of the #** cluster and let g;x o [(i-1) mod pg]+1.
Then each clock in the i* cluster receives as inputs not only all the clocks from its own cluster
but also the g;x** clock from each cluster k # i. This interconnection for N = 8, M = 4 and
p; = 2 for all : is shown in Table 2.1, where a 1 in row ¢ and column j indicates that the clock
corresponding to colume j is an input to clock corresponding to row .

There is no particular sanctity associated with this number g;;. As long as each clock receives

a clock from every other cluster, the algorithm will work. However, the above formula ensures
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Table 2.1:  Proposed interconnection scheme for an 8 clock system

that the clock network is symmetric because the formula results in similar fan-out for all the
clocks.

24.3 Madification of the phase-locked algorithm

There are two main differences between the above interconnection strategy and the one in

(33]:

¢ A given clock may receive inputs from clocks to which its own output is not connected.
This was not possible in [33], because every clock received inputs from every other clock

in the system.

¢ Different clocks could receive different number of inputs. This again was not possible in

[33], since every clock received exactly N — 1 inputs, where N i§ the total number of

clocks in the system.

These two differences cause a minor change in the phase-locked algorithm, since a reference
signal is generated for each clock based only on the inputs it receives. That is, if a clock
receives I inputs (including itself), then it assumes there are I clocks in the system and functions
accordingly. If the maximum number of faults to be tolerated is m, then it is shown in [33] that
if (i) I > 3m and (ii) the rcfcrencc signal is generated as follows, then the non-faulty clocks will
remain synchronized. Each clock first orders all the inputs it received in the order of arrival of
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the clock ticks. This ordered set is called the tick sequence of the corresponding clock. Let z be
the position of its own clock in its tick sequence. Then the reference signal‘ chosen by this clock
is the f-(I)™ clock (excluding itself) in its tick sequence where f(I) is any function satisfying

one of the following conditions [33]:
oem+1L f(N)SN-m-1forallz=1,...,N
o fo(N)2m—1+ fym(N) forallz <m+1,
¢ fNem(N) L fz(N) L fnp1(N), forallm+1<z< N —-m,
o fi(N) < fi(N)iffi < j.

This implies that if different clocks in the system receive different number of inputs then they
will have a different function for generating the reference signal. This fortunately has no effect

on the synchronizing capabilities of the network.

2.4.4 Minimization of the number of interconnections

Assume for the time-being that all the clusters have the same size, p. This implies M -p = N.
The goal is to minimize the total number of interconnections J = Mp(p—~1) + Mp(M -
1) = N (M + p — 2) subject to the required level of fault tolerance, which can be stated as
M+ p-2 > 3m from the Byzantine Generals paradigm and the interconnection strategy.
Substituting for pin M 4 p—2 from N = Mp and differcntiating with respect to M, it is easy to
show that M + p— 2 increases with M. Therefore both the total number of interconnections and
the fault tolerance of the network increase with M. So minimizing J is equivalent to minimizing
M. By solving for M in the fault tolerance condition and combining it with the above result, we
can get a unique value for A{ that minimizes the total number of interconnections while satisfying
the fault tolerance requirement.

However, the assumption that all clusters are of the same size is not approprate for all values
of N. For instance, if N were a prime number, then it would not be possible to find two factors
M and p other than NV and 1. This means that if we restrict ourselves to clusters of a single size,
only fully connected networks are possible. On the other hand, any N can be decomposed into

clusters of two different sizes, say p; and p,. This will result in fewer interconnections than a
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fully connected network, There is no need to consider clusters of more than two sizes due to the
reasons outlined belcw.

As p; and p; decrease in magnitude, the network tends to change towards a fully connected
network, i.e., the fault tolerance of the network increases and so does the total number of intercon-
nections. These are the two opposing factors which determine the values of p; and p,. Had there
been no fault tolerance condition the minimum number of interconnections -would have occurred
at py = p2 = V/N. From symmetry considerations, we know that even under fault tolerance
conditions the minimum number of interconnections will occur when p; = p. But since for any
general N it may not be possible to find a p; and p, such that p; = p,, the minimum number
of interconnections occur when p; — p2 = 1. Since any N can be decomposed into this form, at
Wworst, it is necessary to have clusters of two different sizes p; and p; — 1. An algorithm to parti-
tion the clocks into clusters of two different sizes such that the tot;l number of interconnections
is minimized is described below.

Let the N clocks be partitioned into M clusters of p; clocks each and M; clusters of p;
clocks each, where p; > p,. This implies M;p; + M2p2 = N. Number the clusters with p; clocks
(henceforth referred to as CP1) from 1 to M; and the clusters with p, clocks (CP2) from M; +1
to M, + M. Also number the clocks in a given cluster from 1 10 p; or 1 to p, comrespondingly.

Let gy = [(: —1) mod p;] + 1 and ¢; = [( — 1) mod pz] + 1. Then each clock in cluster
i receives the ¢;1** clock from each CP1 and gi2*® clock from each CP2 in addition to all the
clocks from its own cluster. The problem is to determine M,, p;, M-, and p, that minimize
the total number of interconnections and meet the specified fault tolerance requirement. The
solution to this problem is more difficult than the case of single cluster size because there are
three independent variables M1, pi1, p2 as opposed to only one.

The total number of interconnections in this scheme can be derived as follows.

o The total number of inputs to each clock in CP1: M; + M, +p; - 1.

¢ The total number of inputs to each clock in CP2: M; + M2 + p; — 1.

Consequently, the total number of interconnections

J = Mipt (M) + Mz +p1 — 1)+ Map, (M; + M2+ p2 — 1)

= N (Mi+ Mz - 1)+ Myp? + Mpl.
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The decomposition problem can then be formally stated as:
Problem D: Determine non-negative integers My, p1, M>, p» which minimize
J = N(My+M;-1) + Mg} + Map

subject to

Mipr + Map, = N

Mi + My + p2 -2 2 3m

Pt —p220

n<2(M + My - 1).

Since there are only finitely many integers between 0 and N, there are only finitely many
possible solutions for My, Mj, p1, p.. Thus, there definitely exists an integer solution to the
above problem. For small N we can determine the solution by enumerating all the possible
solutions and choosing the one that gives the minimum value for J. For larger N we can take

recourse to non-linear integer programming methods [24].
2.45 Proof of correctness

In this section, it is shown that the above interconnection scheme coupled with the modified
phase-locked algorithm ensures synchronization of a N clock system in the presence of m faults
when N > 3m + 1.

Let CK denote the set of clocks in the system. Consider a clock from this set. There are two
possibilities: either this clock is connected only to all the clocks in its own cluster or it is also
connected to at least one cluster other than its own. CK can therefore be decomposed into two
subsets A and B such that AN B = (), where A is the set of all clocks which are connected to
at least one cluster other than its own, and B is the set of all clocks connected only 10 its own
cluster. Let CL;, i1 € L = {1,2,...,M}, be one of the M clusters in the system. Due to the
interconnection strategy adopted, for any cluster pair, CL; and CL;, there is one and only one
clock in C'L; which serves as an input to all the clocks in CL;. Denote this clock by the ordered
pair (z,7). There is one more clock link between CL; and CL;, but this clock is from CL; to
CLi, ie, itis the input to CL; from CLj, and so will be denoted by (j,i) € CL;. Also, every
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such ordered pair of clusters uniquely represents a clock in set A. On the other hand, a clock
in set A can have more than one such ordered pair representation but definitely has one such
representation. Based on this observation, partition the clocks into four groups with respect to

any given cluster, CL;, as follows:

IN; = {i:ie€ L, (i,j) is non-faulty}
IF; = {i:ie L, (i,j) is faulty}
ON; = {i:ie€L, (j,i) is non-faulty}
OF; = {i:ielL, (j,i)is faulty}.

If i = F, then ¢;; and ¢y are two non-faulty clocks of the same cluster and they are assumed to be
é-synchronized. Theorem 2.2 shows that when i # k, the interconnection scheme is such that c;;
and cy; are 36-synchronized irrespective of the location of the faults in the system. Informally, the
idea of the proof is to show that irrespective of the location of the faults, there exists a non-faulty

link from either CL; to C Ly or vice versa with at most two hops.

Lemma 2.2: For any two clusters CL; and CL;, satisfying |OF;| < [INy|, there exists a non-

faulty paih from CL; to CL; with at most two hops. See Figure 2.3 for an illustration. In the
figure, || denotes the cardinality of a set.

Proof: First, suppose that the clock (i, k) is non-faulty. Then, irrespective of the location of the
faults there is a direct path from CL; to C L; containing exactly one hop. Therefore, the more
interesting case occurs when the clock (i, k) is faulty. In this case the lemma is proved via a
contradiction.

Assume that there exists no cluster CL, € I N such that (2, ) is non-faulty. This means for
any cluster CL, € IN; the clock (3,s) is faulty. In other words, there are at least {IN| faulty
clock outputs from CL;, i.e., |OF;| 2 [INg], a contradiction. u

Theorem 2.2: Let c;; and ¢ be any two non-faulty clocks in the system. Also let § be the
maximum skew that can arise between any two non-faulty clocks in the same cluster as a result
of applying the phase-locked algorithm. Then, |¢;; — ¢ < 36 forall 4, j, k, and [ in L =
{1,2,..., M} under the condition ppqr < 2M — 2, where prmgr = max {p1,D2,---,PM}-
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Figure 2.3: Illustration of case |OF;| < |IN,| for Lemma 2.2
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Proof: Let [IFi| = z and let m be the maximum number of faults that needs to be tolerated.
Since there are a total of M clusters in the system, it follows from the interconnection straiegy

that the total number of external inputs to any cluster is M — 1. In other words,
UHN|=M-z-1, or |[IF|+{IN=M~-1 forallkel.

Consider the following two cases.

Case1: |OF| <min{M -z-1 m+1}.

Since |OF;| < M — z — 1 = |IN;|, by Lemma 2.2 there exists a cluster CL, such that clocks
(i,q) and (g, k) are both non-faulty. From the triangle inequality we get,

leij = el < leij — (GO +1(5,9) = (4 ) + (9, k) — ] < 34

Case2: M—-z-1< |OF] £ m.
In this case it is possible that there is no CL, € IN such that (Z,q) is non-faulty, i.e., there is
no non-faulty link from CL; to CL;. (for example, see Figure 2.4). In such a case, it is shown
that there is always a non-faulty path from CLj to CL;.
[ M
Let r =

Pmin

Pmin = min{p1,p2,..-,pm}. Then, according to the interconnection strategy, every clock

1 where [z] is the smallest integer not less than z and

in the system could go to at mosi r different clusters. Using this along with the hypothesis

—z-1
M -z -1 < |OF, there are at least [M ad

] faulty clocks in CL;. Thus, there are at

most m — I’M——;—_-I-.I faulty clocks in the inputs to CL;, i.c.,

M—a:—l'l

|IF;|$m—|'g.|, or |IN;|2M—1—m+[ (2.5)
Since |[Fi| = z, there are at most m — z faulty clocks in C Ly and, thus,
lOFf < r(m ~ z). (2.6)

If possible let there be no non-faulty path from CLg to CL; of length less than or equal to
two hops. Then, from Lemma 2.2, [0 F| > |IN;|. Therefore, from Equations (2.5) and (2.6),

r(m—z) > (M-l)—m+[£'ﬂd—_-7?:ﬂ] Z(M‘l)—m‘*'(l—:_'—ll

or rP-m+r-m > (r4 1) (M-1)+(r?-1)z.
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Figure 2.4: Illustration of the case |0 F;| > [IN| for Theorem 2.2
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Since z < m, it follows that m > M — 1. Therefore, the maximum number of inputs to any clock

is M + pmaz — 1 Where pmor = max {p1,p2,...,ps}. From the Byzantine Generals paradigm
M+ proz—1

3 > m, leading to

M — .
M-1sm<—+p§“Ll Of  Pmaz > 2M 2.

which contradicts the hypothesis. In other words, [0 Fx| < [IN;|. Then by Lemma 2.2 there
exists at least one ¢ € IN; such that the clock (k,¢) is non-faulty. Applying triangle inequality,
forall ¢, 7, k, and |

lex = eiil < lew = (K, O + (k) — (@9 + [(g,8) —cij| < 36, =

The condition pmar < 2M —2 in the above theorem implies that the connectivity is sufficiently
large to ensure a good synchronization. The maximum fault tolerance is achieved in a fully
connected network, i.e., when p,.. = 1and M = N > 1, in which case case the above condition
is satisfied. In order to reduce the number of interconnections it is necessary to compromise on
the maximum number of faults that can be tolerated. As shown earlier it is sufficient to have
Pmez < VN 10 ensure the least number of interconnections under any fault tplcrance specification
when all the clusters are of the same size. The condition pmar < 2M — 2 is a generalization of

the condition ppmez < VN because pgz < VN implies pmaz < 2M — 2.

2.46 Numerical example

The following results were obtained by solving Problem D using simple enumeration tech-
niques. Table 2.2 illustrates the variation in the total number of interconnections with respect
to the size of the system when the fault tolerance requirement is kept constant. The table also
gives the percentage reduction in the number of interconnections as compared to a fully connected
network. The plot of the variation in percentage reduction with respect to the size of the system
and hence with respect to the number of clocks is given in Figure 2.5.

Figure 2.5 indicates that for a given fault tolerance condition the total number of interconnec-
tions increases proportionately to the size of the system. This is because when the size increases,

the number of clocks in the system increases, and so more interconnections are needed to keep
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Nim|M | |p| M|p J | % Reduction
201 3 2| 3 71 2| 206 45.79
30 6 5 0| 0| 300 65.52
40 2] 6 41 7| 468 70.00
50 11 8 6] 7| 658 73.14
62 21 7 6| 8| 916 75.78
64 1] 8 71 8] 960 76.19
100 10| 10 0] 0] 1900 80.19
200 51 4| 2] 121 1| 328 13.68
30 11 21 14| 2} 48 44.83
40 51 21 10} 3] 670 57.05
50 6| 3 8| 4] 832 66.04
62 21 6] 10| 511004 73.45
64 |1 41 6 8| 5| 1048 74.01
100 | 10|10 0| 0] 1900 80.19
201 7 -l - - - - -
30 14] 1 81 2| 676 22.30
40 4|1 11 18| 2| 916 41.28
50 8| 3| 13| 2]1124 54.12
62 2| 41 18| 3|1372 63.72
64 4| 4| 16| 311424 64.68
100 8y 5| 10) 6| 2260 77.17

Table 2.2: Variations in number of interconnections with size of the system
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Figure 2.5: % Reduction over a fully connected network versus size of the
system

them synchronized. However, while the total number of interconnections increases, the percent-
age reduction in the total number of interconnections also increases with the size of the system.
This is significant because the fault tolerance condition will not usually increase proportionately
with the size of the system. In such a case, reduction in the total number of interconnections will
be one of the main concems and our scheme works well in that situation.

Another aspect that is clear from Table 2.2 is that reductions up to 80% can be achieved
for relatively less stringent fault tolerance condition. However, under those conditions the in-
terconnection scheme in [62] requires fewer interconnections as compared to the scheme here
(see Table 2.3). But as the fault tolerance specification becomes more stringent the percentage
difference between the number of interconnections in both schemes drops fapidly to a very low
value and then remains almost constant through the entire range. This aspect is clearly depicted
by the plots in Figure 2.6. In other words, the scheme in [62] is only marginally better than the

scheme put forth here under almost all fault tolerance specifications.

2.4.7 Comments

The above hardware synchronization scheme provides a tradeoff between fault tolerance and

the total number of interconnections. This scheme can be used to determine a symmetric clock
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N m|M|p|M|p J | Jermp | Yelncrease
201 2 51 4 0] 0| 160 120 33.30
3 21 3 71 2| 206 180 14.44

4 6] 1 71 2] 274 240 14.17

5 41 2| 12| 1| 328 300 9.33

6f 20| 1 0] 0| 380 360 5.55

621 3 21 7 6| 8| 916 558 64.16
5 21 6] 10| 5} 1004 930 790

7 21 4| 18] 3}1372 1302 5.38

8| 10| 2] 14| 311592 1488 6.99

9 81 31 19] 2|1760 1674 5.14

121 12 1] 251 21}2344 2232 5.01

18 71 2| 48| 1] 3424 3348 227

201 20} 1 01 013782 3720 1.67

641 3 8| 8 0] 0} 960 576 66.67
5 4] 6 8| 511048 960 9.17

7 41 4| 16] 3| 1424 1344 595

9| 10| 3| 17| 21}1822 1728 544

121 10 1| 27| 22422 2304 5.12

18 91 2| 46| 1] 3538 3456 237

21| 64| 1 0 0] 4032 4032 0.00

100} 3| 10} 10 0| 0] 1900 900 111.11
6| 10| 10 0] 0} 1900 1800 5.55

10 16| 3| 13| 4| 3152 3000 507

151 10} 3| 35| 24630 4500 2.88

201 22| 1| 39| 26178 6000 297

251 24 2 52| 1| 7648 7500 197

30 91 2} 82} 109118 9000 1.31
331100 1 0| 0} 9%0 9900 0.00

Table 2.3: Variations in number of interconnections with fault tolerance
specification
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network that requires a near minimal number of interconnections for any fault tolerance specifica-
tion. In large systems, up to 80% reduction can be achieved in the total number of interconnections
as compared to other hardware solutions with worst-skews in the order of 30~50 ns.

In spite of this considerable reduction, the cost of additional hardware can be substantial for
many applications. The scheme requires a network of clocks that is different from the intercon-
nection network between the nodes of the system. In addition, each clock is required to have two
phase-detectors for every clock input and some circuitry to select a reference signal and adjust
the local clock.

For systems that cannot afford the cost of additional hardware in the above approach, a
software synchronization scheme is proposed below. This scheme strikes a balance between
the hardware requirement and the clock skews attainable. Unlike other software solutions, the
guaranteed worst-case skews in this scheme can be made insensitive to the message transit delay
in the system. The scheme is also particularly suitable for large partially connected distributed
systems with topologies that support simple broadcast algorithms. Examples of such topologies
include the hypercube and the mesh interconnection structures.
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2.5 A Software Synchronization Scheme

The scheme proposed here is similar to the interactive convergence algorithm (CNV) in [36].
The differences arise mainly because CNV is intended for a fully connecte;d system as opposed
to a partially connected system like the hypercube [53] or the mesh topologies [1]. Although
CNV could be used in a partially connected system, it is not well suited for such a system since
the worst-case skews in CNV are greater than the maximum message transit delay in the system.
In contrast, the worst-case skews in the scheme below are orders of magnitude smaller than the
maximum time required for a reliable broadcast and they do not depend on this maximum time
beyond a certain limit.

Algorithm CNV assumes that the clocks are initially synchronized and that they drift apart only
by a bounded amount during a resynchronization interval. Each node executes a clock process
(CP) that is responsible for maintaining a time base for all the activities on that node. In every
resynchronization interval, each CP reads the value of the clock at all other nodes. If the value of
a clock read differs from the clock at its node by an amount greater than a threshold, CP replaces
that value by its own clock value. CP then computes the average of all such values and sets the
local clock to that average. In [36], it is shown that this algorithm can achieve synchronization,
and requires a minimum of 3m + 1 nodes to tolerate m faults.

Three major problems arise when this algorithm is used in a distributed system that is not fully
connected. First, the clock message received at 2 node may be corrupted by a faulty intermediate
node. Second, the queueing delay for clock messages may cause a substantial difference between
the real time at which a CP sends the clock value and the real time at which another CP receives
that message. Therefore, subtracting the clock value in the received message from the current
clock value will not reflect the actual skew that exists between the clocks of the two nodes. This
problem is aggravated when system is partially connected because the clock message has to be
relayed through intermediate nodes. Third, there may be a delay between the receipt of a clock
message from the network and the time at which it is processed. A similar delay is possible
between the time at which a CP sends the message and the time at which the message is placed
on the network. The first problem is eliminated in the proposed scheme by using a broadcast
algorithm that delivers multiple copies of the message to all CPs through node-disjoint paths.
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The second problem is reduced by requiring the CP at each intermediate node to append to the
message the delay (according to the local clock) incurred at that node. The third problem is
handled by recording the time at which a clock message is sent or received.

In the proposed scheme, a CP broadcasts the local clock value to all other CPs at a specified
time in the resynchronization interval according to its clock. The broadcast algorithm is such that
all CPs receive multiple copies of the clock message through node-disjoint paths. The number of
copies used in the broadcast algorithm depends on the maximum number of faults to be tolerated
and the fault model for the system. When a CP receives a clock message sent by some other
CP, it records the time (according to its local clock) at which the message was received. Then,
in accordance with the broadcast algorithm, it relays the message to other CPs. Before relaying
the message, it appends to the message the time elapsed (according to its own clock) since the
receipt of the message. Atthe end of a rcsynchronization. interval, it computes the skews between
the local clock and the clock of the source node for each one of the copies it has received. It
then selects the (m + 1)** largest value as an estimate of the skew between the two clocks. The
average of the estimated skews over all nodes is used as the correction to the local clock. As in
CNV a minimum of 3m + 1 nodes are required to tolerate m Byzantine faults.

The above steps are explained in terms of four concurrent tasks: CLOCK_SEND, CLOCK-RELAY,
Crock_RECEIVE and CLOCK-CORRECTION. An efficient implementation of these tasks re-

quires some hardware support and a reliable broadcast mechanism.
2.5.1 Hardware support

A clock message contains the following information: the node at which the broadcast was
initiated (namely, the initiator), the node from which the message was most recently relayed
(namely, the immediate sender), and five words Wy, W5, ..., W5 shown below. The relative

ordering of these words in the message depends on the format being used in the system.
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Wi: Clock time of the initiator when this message was transmitted.

W,: Clock time of the immediate sender when it received this
message.

W3:  Clock time of the immediate sender when it relayed this message.

Ws: Accumulated transit delay not counting the delay at the immediate
sender.

Ws: The time on the local clock when this message was received.

The hardware circuitry at each node helps in updating these words. When a clock message
is received it updates Wy with the local time. An interrupt is then generatcd to the processor
that runs the clock tasks at that node. After the clock tasks have completed their processing,
the message is scheduled for forv{arding. While the message is being transmitted the hardware
circuitry inserts the local clock time in W3, The other operations performed on these words are
explained in the formal description of the clock tasks later in this section.

A special circuit is required to maintain a continuous monotone logical clock at each node.
A possible solution is as follows. A high frequency clock generated by a crystal oscillator is
divided by a programmable counter and the divided clock is used to increment a counter that
contains the logical clock. The factor used to divide the high frequency clock depends on the
correction that needs to be applied to the logical clock. If at the end of a resynchronization interval
the correction is positive (negative), then the factor used to divide the high frequency clock is
increased (decreased) from its nominal value. For example, a 32 MHz clock can nominally be
divided by 32 to get a logical clock whose resolution is 1 ps. This factor can be changed either

to 36 or 28 depending on whether the comrection is positive or negative, respectively.
2.5.2 Reliable broadcast

A reliable broadcast mechanism is especially important in a partially connected distributed
system because a process may have to deliver its clock value to the other processes via several
intermediate nodes. However, since the non-fauity CPs need not agree on the clock value at a
faulty node, it is not necessary to use an interactive consistency algorithm [9, 37] to comectly

deliver the clock values.

In the presence of m Byzantine faults, the following scheme can be used to reliably deliver
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the clock values. For each pair of nodes, determine a set of 2m + 1 node-disjoint paths. (If there
does not exist 2m + 1 disjoint paths in the system, it cannot tolerate up to m Byzantine faults
[7].) The CP at a non-faulty node then individually sends 2m + 1 copies of the local clock value
to the CP at each node through the pre-determined paths for that node. As shown in [71] this
scheme does not require authentication. It requires: (i) the network to be 2m + 1 connected, and
(if) a process should be able to identify the node from which a received message originated and
the node from which it was most recently relayed. These two requirements are necessary for any
algorithm that is resilient to m Byzantine faults when authentication is not available [7]. It is
shown in Theorem 2.3 that a CP can reliably estimate the skew between the local clock and the
clock at another node from the multiple copies of the clock message it receives from the CP at
that node.

The above scheme, albeit very general, requires each CP to send large number of messages,
thus resulting in substantial time overhead. However, for interconnection topologies like the
hypercube [53] or a C-wrapped hexagonal mesh [1] there exist reliable broadcast algorithms that
do not require many messages to be sent by a process {27, 47]. As in the scheme described above,
they deliver 2m + 1 copies of the clock message through node-disjoint paths. But they make
use of the properties of the topology to reduce the number of messages that have to be sent by a
process. Due to the importance of a reliable broadcast mechanism for distributed algorithms that
are resilient to Byzantine faults, one can argue that most fault-tolerant distributed systems will use
topologies that support simple broadcast algorithms similar to the ones in [27, 47]. Consequently,
broadcast mechanism will be assumed to exist in the distributed systems being synchronized.

25.3 Detailed description

A CP is comprised of four concurrent tasks. The operations of these four tasks required can
be described in terms of the following basic functions.
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local_time() Retumns the current time on the local clock.

btime(p) Retumns the time at which p is supposed to broadcast its clock
message in the current resynchronization interval.

initiate_bcast(k,t) Initiates broadcast of k copies of a clock message with time set
at t.

wi(M), ..., w5(M) The five clock words in the message M.

receive() Blocks until a clock message arrives and returns the received
message.

initiator(M) Retumns the node at which the broadcast of message M was ini-
tiated,

select(skews, () skews is an array of estimated skews with respect to a particular

node computed from copies of clock messages received from the
CP at that node. The function select(skews, £) orders these skews
and retums the £t* value.

CLOCK._SEND

The CLOCK_SEND task is responsible for initiating a reliable broadcast in each resynchro-
nization interval as shown in Figure 2.7. The time at which the broadcast takes place depends on
the node and is staggered throughout the resynchronization interval. This alleviates the problem
of transient loading which would otherwise occur due to the almost simultaneous broadcast of
clock messages. The reliable broadcast delivers 2m + 1 copies of the message to each CP through
node-disjoint paths if all CPs adhere to the broadcast algorithm. However, if some nodes/links
are faulty, then fewer than 2m + 1 copies may be delivered. Given that there are at most m
faulty nodes in the system, each CP will receive at least m + 1 copies relayed through non-faulty
nodes. It is shown in Theorem 2.3 that the CPs at all non-faulty nodes can reliably estimate the
clock skew from the copies received.

Contention for network resources there may cause a time delay between the initiation of a
broadcast (i.e., line 3 of Figuré 2.7) and the time at which the copies are transmitted on the
network. To account for this delay, the time on the local clock is inserted in W; and W- while

the broadcast is being initiated. During transmission, the hardware circuitry at that node will
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1. loop
2. if (local time( ) = btime(p))
3. initiate_bcast(2m + 1, local_time( ));
4. endif;
5. endloop;
Figure 2.7: CLOCK.SEND task at node p
1. constant MAX BROADCAST.TIME = U;
2. loop
3. M = receive();
4: source := initiator(M); .
S. if ( |local_time( ) — btime(source)] < MAX_BROADCAST.TIME )
6. wd (M) = wad(M) + w3(M) — w2(M);
7. w2(M) := w5(M),
8. relay the message according to the broadcast algorithm;
9. endif;
10. endloop;

Figure 2.8: CLOCK_RELAY task

insert the current time in place of W3. The delay between the initiation of the broadcast and the
time at which the copy was transmitted, indicated by W5 — W,, will be accumulated in Wy by

the CLOCK_RELAY task of the node that is receiving this message.

CLOCK_RELAY

The CLOCK_RELAY task (Figure 2.8) is activated when a clock m&ssagc broadcast by some
other CP is received. It is responsible for relaying the message to other CPs as per the broadcast
algbrithm. 1t is also responsible for updating the words W1, ..., W5 in the clock message.

The CLOCK.RELAY task checks whether the initiator specified in the message is supposed to
be broadcasting its clock value at this time instant. This is used to suppress spurious messages
generated from faulty nedes. This check is possible if there is a bound on the time to complete a
broadcast, say U. If the message is authentic, (W3 — W>) is added to Wy to accumulate the transit
delay incurred by the message at the immediate sender. This node now becomes the immediate
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1. constant MAX BROADCAST.TIME = U;

2. loop

3. M = receive();

4 source := initiator(M);

5 if ( [local_time() — btime(source)] < MAX_BROADCAST-TIME )

6. copy := Current_copy[source];

7. Deltafsource][copy] := w5(M) — (wd(M) + w3 (M) — w2(M)) — wi(M);
8 Current_copy[source] := Current_copy[source] + 1;

9 endif;

1

Figure 2.9: CLOCK.RECEIVE task

sender for the next step.

CLOCK_RECEIVE

When a message is received, the CLOCK_RECEIVE task (Figure 2.9) first verifies the authen-
ticity of the message. It then computes the skew between the local clock and the clock at the
node where the broadcast was initiated and adjusts the skew by subtracting the accumulated delay.
This operation is performed for each copy that is received and the resulting skews are passed on

to the CLOCK_CORRECTION task.

CrLock_CORRECTION

The CLock_CoRrRrECTION task (Figure 2.10) corrects the local clock based on the skews
calculated by CLOCK_RECEIVE. It first selects the estimated skew for a particular node from the
values computed for the copies received from that node. If the estimated skew is greater than a
threshold, A, it is replaced by zero. The choice of A follows from the proof of correctness (see

Lemma 2.7). The correction applied to the local clock is the average of the estimated skews over
all nodes.
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1
2
3
4.
3.
6
7
8
9

10.
11
12.
13.
14.
15.

constant THRESHOLD = A;

loop

if (localtime( ) = resync._time())

endif;

total_skew := 0;

for g = 1 to NUMBER_OF_PROCESSES
Skewlq] := select(Delta[q], m + 1);
if (Skew[q] > THRESHOLD)

Skew[q] = 0;
endif;,
total_skew := total_skew + Skew(q];

endfor;
correction := total_skew / NUMBER_OF.PROCESSES;

initialize Current_copy, etc. for the next resynchronization interval;
endloop;

Figure 2.10: CLOCK-CORRECTION task

2.5.4 Proof of comrectness

Before formally proving the correctness of the above software scheme it is necessary to

introduce the following additional notations and terminology. These notations are similar to the

ones in [36].

¢
R

T(0)
TG)
R®)

&§(T)

The clock at node p.

Resynchronization interval.

The time at which the system began its operation.
Time for i** resynchronization, i.e, T(® + iR.

The interval [7¢), TG+1)],

Logical clock at node p in the interval R®), where c,(f) (D)= cp(T+§,(,i))
for some constant ff.') representing a change in p’s clock during R().

For notational convenience, let 5,50) =0 and c§,°) = ¢p. A node p will be referred to as being non-

faulty up to time TG+ if it is non-faulty during the real time interval [((T®), (TG+1y],

Using the above notation the two clock synchronization conditions can be stated as:
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S1. If nodes p and g are non-faulty up to time 70+, then ¥ T € R()
Icg) (T) - (T)I <§  for some constant §.
S2. If node p is non-faulty up to time TG+1), then
lf,(,"'“) - ff,")l <X  for some constant I.

Intuitively, the first condition states that the difference in clock times on two non-faulty nodes is
always bounded. The second condition states that there is a bound on the amount by which a

clock can change its value during one resynchronization interval. We now show that the software

scheme satisfies S1 and S2 if the following assumptions hold.
Al. For all nodes p and g, lc,,(T(")) - cq(T("))l < 8o, where &, is a constant.

A2. Ifnode p is non-faulty during the time interval [¢;, ], then ¢, is a good clock during
the interval. That is,

lep(t) — ep(t1)] < g(t —t) Viée {t,t2] for some constant p.

A3. In a reliable broadcast initiated from a non-faulty node, all copies relayed through
non-faulty nodes are delivered within a time bound U.

A4. Suppose S1 and S2 hold for i and node p is non-faulty up to time T(+1). Also suppose
that the CP at a non-faulty node ¢ sends a2 message containing g¢’s clock value to p at
some time Tp in R(*) according to ¢’s clock. This message reaches p through a relay
(possibly empty) of nodes. The CP at each relay node alters the words Wy, ..., Ws
in the message as described in CLOCK_RELAY. From the message received, the CP

at p computes a value Ay, as described in CLOCK_RECEIVE. If all the relay nodes

are non-faulty, then
e (To + Agp + Q) = @ - ) (To)| < €

where @ = W5 — (W4 + W3 — W3) is an estimate of the total transit delay incurred

by the message and € is a constant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

AS. The upper bound, U, on the time required to complete a reliable broadcast is such

that U < %, where R is the resynchronization interval, and N is the number of

nodes in the system.

Intuitively, Al states that clocks are initially ép-synchronized to each other. A scheme to
achieve this initial synchronization is described later. A2 states that if a node is non-faulty, then
so is its clock. In other words, no distinction is made between a faulty clock and a faulty node.
A3 states that there is an upper bound U on the time to complete a reliable broadcast. In A4,
c,(,") (To + Agp + Q) is the real time at which the message is received at p and cf;') (To) is the real
time at which the message was sent from ¢. Since @ is the total delay incurred by the message
in transit, cg) (To+ Agp + Q) — Q — ¢ (Tp) is the error in estimating the skew at p based on
this message. Therefore, A4 states that if all CPs adhere to the scheme for broadcasting and
relaying the clock messages, then the error in estimating the skew is bounded. This assumption is
reasonable because the errors occur mainly due to: (i) the transit delay incurred at an intermediate
node is measured using a discrete logical clock as opposed to a continuous clock, and (ii) the
logical clock at an intermediate node drifts from real time while measuring the delay incurred at
anode. The existence of a bound then follows from the observation that the time required for a
broadcast is bounded, the drift rates of non-faulty clocks are bounded, and the non-faulty clocks
have a known finite resolution.

AS5 states that a broadcast initiated by a CP will always complete before the next CP initiates
its broadcast. As a result, at most one CP will be broadcasting its clock value at any given time.
Since in our scheme only one CP broadcasts its clock message at any given instant and since the
increase in delay is more than linear with increase in load, requiring U < -jlé when only one CP
is broadcasting is less restrictive than U < R when all CPs can broadcast.

Given these assumptions it can be proven that the non-faulty clocks will remain synchronized
throughout the operation of the system. Due to the inherent complexity of the notation, an informal
explanation of the lemmas is presented first. The lemmas are similar to the ones in [36]. The
differences arise mainly because the worst-case skews are shown to be less than the maximum
transit delay during a broadcast and because of the modeling assumption that a CP may have

to use a few relay nodes to convey its clock value to other CPs. A few additional lemmas are
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required to show that the faulty relay nodes cannot prevent synchronization.

Lemma 2.3 states that for a good clock II units of clock time elapse in approximately IT units
of real time. Lemma 2.4 deals with the perceived skew between two non-faulty nodes, stating
that there is a bound on the estimated skew between two non-faulty nodes. This bound is used in
Lemma 2.8 to prove that the impact of faulty nodes can be controlled. In Lemma 2.6 it is shown
that it does not matter (to a limited extent) at what time the CP at a non-faulty node initiates a
broadcast of its clock value in a resynchronization interval. Lemma 2.7 states that the difference
between the skew perceived at p between p and r and the skew perceived at ¢ between g and
r is bounded when p, ¢ and r are non-faulty. Theorem 2.3 and Lemma 2.5 deal with the case
when some of the relay nodes are faulty. Finally, Theorem 2.4 combines these lemmas to prove

the correctness of the scheme.

Lemma 2.3: If Clock Synchronization Condition S1 holds for ¢ and node p is non-faulty up to
time 7'G+2), then for any II such that [TI| < R and any T in R():

|(7 + M) - () (7) + W < 1.
Proof: Follows easily from A2. =

Lemma 2.4: Suppose St holds for i, and nodes p and g are non-faulty up to time T0+1), If the
CP at ¢ sends its clock value to the CP at p through several non-faulty relay nodes, then skew
Agp estimated at p for this message usihg the proposed algorithm is such that

5+e+§-U
|Agp| < {7

Proof: Let Ty be the time according to ¢’s clock at which it sent the message to p. Also let
denote the total delay encountered by the message as indicated by words W, ..., Ws. Then by
repeated application of triangle inequality we get,

[Agp] = Iq‘f’ (To) - C;(:i) (lo+Q+Ap)+Q+ Cg) (To+Q + Agp) - Cg) (To)-@Q - qul
< |c§f’ (To) — ) (To+ Q + Agp) + Q! + |c§:') (To+Q + Agp) — [N (To) + Q + Aq,,]|

IA

|e6? (Zo) - 2 (To)]| + |2 (To) = &7 (To + @ + Ag5) + Q| + 2101 + £l Al
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This implies
(1) 18l < [ef) (To) - o (To)| + [0 (o)~ 9 (o + @ + A) + 0| + £l
< b4e+ §|Q[ (hypothesis and Ad)
< S+et -‘23U (by A3).

Hence proved. =B

Informally, Lemma 2.4 states that the A,, calculated from a clock message is bounded if
all the intermediate nodes through which the message was relayed are non-faulty. However, all
the intermediate nodes may not necessarily be non-faulty and a CP may not be able to identify
the messages that have been relayed through faulty intermediate nodes. Similarly, A4 holds
only if all the intermediate nodes are non-faulty. These two problems are overcome by using
a reliable broadcast that dehvers multhlc copies of a clock message to all CPs through node-
disjoint paths. A recciving CP estimates the skew Ay, from the multiple copies it has received as
in CLoCK_RECEIVE. In Theorem 2.3 and its corollary it is shown that the estimated A, satisfies
the bound specified in Lemma 2.4. Furthermore, the bound specified in A4 can be changed to
account for the fact that the selected copy may have passed through some faulty nodes.

Theorem 2.3: Suppose g uses CLOCK_RECEIVE to estimate the skew between p's clock and
its own clock based on the messages it receives in a reliable broadcast initiated from p. Then, the
estimated skew is either equal to the computed skew from a copy that was relayed only through
non-faulty nodes, or there are t% copies that have been relayed only through non-faulty nodes

such that the estimated skew lies between the computed skews for these twb copies.

Proof: Since the system is assumed to have a maximum of m faults, and since the reliable
broadcast tries to deliver 2m + 1 copies, at least m + 1 copies are relayed through non-faulty
nodes. By A3 these m + 1 copies will be delivered within U time units. Consequently, the CP
at ¢ can unambiguously determine the number of copies it will receive.

Suppose 2m 4+ 1 — ¢ copies are received at g for some 1 < ¢ < m. There are two possible
cases: (i)t < m and (ii) t = m. When ¢ < m there are more than m + 1 copies. Since the

skew estimated at g is the (m + 1)** largest value, there arc m computed skews smaller than and
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greater than the estimated skew. The statement of the theorem follows from this observation and
the hypothesis that there are only m faults in the system.

When ¢ = m all the copies that have been relayed through faulty nodes are lost. So all the
copies that have been received were relayed only through non-faulty nodes. Hence proved. ®

Corollary 2.1: Suppose p uses CLOCK_RECEIVE to estimate the skew, A, between ¢’s clock

and its own clock based on the messages its receives in a reliable broadcast initiated by ¢. Then,

6+e+%.U
IAQPI< I—B
2

Proof: Follows from Theorem 2.3 and Lemma 2.4. N

Lemma 2.5: Suppose S1 holds for i, and nodes p and q are non-faulty up to time 70+1), Also
suppose the CP at g uses a reliable broadcast at time Tp according to its‘ clock to convey ¢’s
clock value and p uses CLOCK_RECEIVE and CLOCK_CORRECTION to estimate the skew Agp,.

If @ is the total transit delay as computed from the copy of the clock message that was used to

estimate the skew, then

i i R 6+e+U
[ (To + @+ Agp) - @ - O (T0)| < 2 = e+"((%,,—)-—l.
2

Proof: If the copy used to estimate the skew was relayed only through non-faulty nodes, then
the lemma follows from Lemma 2.5. So the more interesting case is when it was relayed through
at least one faulty node. In this case it follows from Theorem 2.3 there are at least two copies
relayed only through non-faulty nodes, say through paths P, and P,, such that the estimated skew
lies between the computed skews from the two copies. Let Q; and Q- be the accumulated transit
delays, and let Agp(Py) and Agp(P2) be the computed skews from the clock messages that were
relayed through paths P; and P, respectively.

Without loss of generality one can assume that A ,(P1) < Agp < Agp(P,). Starting with the
inequality Ay (Py) < A,y we get

Cg) (To) + @ + 8gp(P1) < C;(f) (To) +Q + Agp — cg) (To+Q+ Ag) + cg’ (To+Q + Agp)-
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This is equivalent to

i i é U). ; i
D (Ty) - ) (Tp) — &2(“15%)_) +Agp(P) < D (To+Q +Ag) - Q — e (T)
2

from Lemma 2.3, A4, and Corollary 2.1. On simplifying the left hand side by using Lemma 2.3
and A4, we get

_e_'p(5+e+U)
(1-%)

This proves one side of the required inequality. To prove the other side, we can start with
Agp £ Ayp(P2) and show that

S (To+Q + Ayp) = @ — ) (To).

. . S+etU
(T +Q+A8p)-Q - (To) < e+ ——-—”((:"j) ),
T2

Hence the lemma follows. =

Lemma 2.6: Suppose S1 holds for 7, and nodes p and g are non-faulty up to time TG+1). Also
suppose that the CP at ¢ uses a reliable broadcast algorithm and that CP at p estimates the
skew, Agp, as in CLOCK.RECEIVE and CLOCK-CORRECTION. If @ is the total transit delay as
computed from the copy used to estimate the skew, then for any II such that [II| < R and any T
in R():

|9 T +T+Q+84)-@ - (T+1)| < &+ 20R.

Proof: Let Tp be as in A4. Then,

| (T +0+Q+Ag) - @ - ) (T + )|
= [c,(,‘)(To+T+n+Q+Aq,,-To)-Q-cg"’(TO+T+11—To)|
<[ T+ Q@+ 8g) - @ - ) ()] + 01T~ To + 1|
<E+2pR (from Lemma 2.5). u

Lemma 2.7: Suppose S1 holds for i, and nodes p, ¢ and r are non-faulty up to time T(+2),
Also suppose the CP at r uses a reliable broadcast to convey its clock value, and suppose p and g
use CLocK RECEIVE and CLOCK-CORRECTION to estimate the skew between their clock and

r’s clock. Let A, p(a) and A,4(b) be the estimated skews at p and g, respectively, at the end of
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line 9 in CLOCK_CORRECTION with threshold A = ———. Let Q@ and Q) denote
(1- -)
the total transit delay computed at p and g, respectively, from the copy used to estimate the skew.

Then for any T in R®):

&) (T) + B,p(a) - [§N(T) + A,q(b)]l <2(é+2pR) + 5 P p)(a +e+U).

. T2

Proof: It follows from Corollary 2.1 that when A is chosen as in the hypothesis, [A,4(a)| < A
and [A,q(b)] £ A. So A,(a) = Ary(a) and A,q(b) = Asy(b), where A,p(a) and A, (b) are
the estimated skews at the end of line 6 of CLocK.CORRECTION. For notational simplicity, let

Ay = App(a), and Ay = A,y(b). Then,

(D) + Arp(a) ~ [)(T) + An(d)]
= (D) + 45 +0@ - Q@ + QO [ (T) + Ary + Q)|
< (T + 40+ Q@) — ) (T + 8 +Q®) +Q® - @@
+£]anm + Q@)+ £]a., + @)
< (T +a,+Q@) — o (T +8,0+Q®) +Q® - Q@
( — _)(6 +e+U)

< | (T + 8, +Q9) - (T) - @O

+ |c“’ (T+ 4,5 +QW) - (1) - Q)|
+

(6+e+0)
7
(1-5)

< 2(é+2pR)+ (
1

p (6+e+U) fromLemma26. =
-3

Lemma 2.8: Suppose S1 holds for i, and nodes p and g are non-faulty up to time T(+2), Also
suppose that p and ¢ use CLOCK_RECEIVE and CLOCK-CORRECTION to estimate the skew
between their clock and the clock at node r. Let A,p(a) and A,4(b) be the estimated skews at p

and q respectively at the end of line 9 in CLocK_CORRECTION. Then for any T in R():

[ (T) + Brp(a) = [0 (T) + Brg (B)]] < 6 + 281,
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Proof: By the hypothesis that S1 holds for i, we have

T~ D (T)| < 6.
Since A,, and A,, are by definition no larger than A, the result follows. =
Theorem 2.4: If A1-AS hold and if

1. 3m < N and the interconnection network is 2m + 1 connected

2.a>max{£NJ;—m) 2(€+2pR)+£(—6(T+£;—£-)- +(6+28) + p(R+ A), 8o+ R §.

then algorithm presented in the previous section satisfies Conditions S1 and S2 with ¥ = A,

Proof: Let A, and A, be the comrection computed at p and g respectively at the end of line 12
in CLock.CoRRECTION. Condition S2 holds because the correction to the local clock is the
average of N terms, each less than A. Condition S1 can be proved by induction on 2. For: = 0,
Al implies that two non-faulty clocks that are synchronized to within &y at time T©) will remain
synchronized to within 6o + pR at time T1) = T(% 4+ R. Condition S1 follows from Al and the
hypothesis. |

Now suppose that S1 holds for i. We need to prove that it holds for : + 1. Assume that p and
q are both non-faulty up to time T(*2), For clarity of presentation, we will use A,, and A,,
without explicitly specifying the nodes through which the clock values were relayed from r to p
and q. Also let T denote T¢+1). Then for any 7’ in R¢+1) we have

PR
< C;(,i+l)(T) - c‘(,""'l)(T)l +pR by A2
= [T +4,)- (T + Aq)l +pR  from the algorithm

< c1(;’) (T)+ A, - [c‘(;') T+ Aq]l +pR + g(AP +4,) from Lemma 2.3

N
= |3 2 (M) + By~ 16 (T) + Ary)

+p(R+ A)
r=1
1 &y, 5 ; A
< 52T+ By = [ (T) + Bopl| + p(R+A)
r=1
< (N;{m) 2(€+2PR)+&%'£]—) +%(6+2A)+p(R+A). m
T2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Initial Synchronization

There are several ways of ensuring that Al is satisfied. The simplest scheme is to assume
that all nodes are non-faulty at startup and select one of them as a master. After making sure all
nodes are operational, the master can broadcast its clock value to all other nodes. The CPs can
use a scheme similar to the one described above to correct the local clock based on the value
they receive from the master.

If it is not possible to ensure that all nodes are non-faulty at startup, then a more complicated
scheme is necessary for initial synchronization. First, use an existing initial synchronization
algorithm such as the ones in [22, 43]. At the end of this phase the worst-case skew will be larger
than the maximum transit delay. Repeatedly use the algorithm proposed here until the skew is
below the required limit. Before each repetition, calculate the worst-case skew at that iteration
and set the threshold A to that value. This scheme will converge exponentially as long as the
total number of nodes N > 3m + 1, which will uéually hold in large distributed systems. The

proof that this will converge follows easily from Theorem 2.4.

Numerical examples

The expression for é in Theorem 2.4 can be simplified by making certain approximations
that bold in most distributed systems, namely, p- U € §, A K R, e K U,and p-U < €.
These approximations are reasonable, since, for most practical applications, € is around 20-30
us, p is around 108, U is around 200-300 ms and R is in the order of seconds. From the
exact expression, it also ciear that § < U. Using these approximations, the second hypothesis in

Theorem 2.4 can be restated as

2(N — m)(e+2pR) + 2me + pRN }
6>ma.x{ ¥ —3m) yé+pRY. (2.7)

One can now characterize 6, the minimum worst-case skew that can be guaranteed in any
given system using our scheme, i.e., 6~ is the minimum value of § that satisfies Equation (2.7)
given N, m, p, €, and U. Since N, m, p, € and U are characteristics of the system, the only

parameter that can be controlled is R. It is easy to verify that given R the minimum é which
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satisfies the Equation (2.7) increases with R. From A5 we know R > N - U and therefore,

- 2
5* = max 2(N —m)(e+ 2pNU) + 2me + pN2U
(N - 3m)

, 60+pNU}. (2.8)

Clearly 6* < U for most practical systems. As a result, the minimum worst-case skew that
can be guaranteed is substantially less than the minimum worst-case skew guaranteed by other
software synchronization algorithms [22, 36, 43, 64] where the worst-case skews are at least
as large as U. This implies the skews that can be guaranteed in our scheme are very tight as
compared to existing software synchronization algorithms.

In addition to this significant advantage, another major advantage of our scheme is that §*
increases gradually with U. This should be contrasted to an almost linear increase in the minimum
worst-case skew with respect to U in the existing software synchronization algorithms. Some
of these aspects are illustrated with examples for C-wrapped hexagonal mesh and hypercube
topologies.

A C-wrapped hexagonal mesh topology [1, 65] is a regular, homogeneous graph in which
each node has six neighbors. The graph can be visualized as a simple hexagonal mesh with wrap
links added to the nodes on the periphery. A simple hexagonal mesh looks like a set of concentric
hexagon with a central node, where each hexagon has one more node on each edge than the one

immediately inside of it. It can be defined succinctly as follows.

Definition 2.6: A C-wrapped hexagonal mesh of dimension e is comprised of 3e(e — 1) + 1
nodes, labeled from O to 3e(e — 1), such that each node s has six neighbors [s + 13.2_3.41,

[s+3e-1s2 3410 [s+3e—2ka geqrr  [5—Usergesrr [5—3e+ 12 o4y, and

[s — 3e + 2]3,2_3.41» Where [a], denotes @ mod b.

Figure 2.11 shows a C-wrapped hexagonal mesh of dimension 3. This topology is currently
being used in the HARTS [1} and the Mayfly systems [4]. An attractive feature of this topology
is that it supports a simple reliable broadcast mechanism that is resilient to two Byzantine faults
with minimal overhead [27].

A hypercube topology is also a regular, homogeneous graph. Each node in an n-dimensional
hypercube, @, has n neighbors. A @, also supports a simple reliable broadcast algorithm
that delivers n copies of the message through node-disjoint paths [47]. It has been used as
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Figure 2.11: A C-wrapped hexagonal mesh of dimension 3
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Figure 2.12: 6™ versus U for a C-wrapped hexagonal mesh when m = 2,
p =105, ¢ =20us

an interconnection topology in both research [54] and commercial systems by Intel, NCUBE,

Floating Point Systems, Ametck, Thinking Machine, to name a few. It can be defined formally

as follows.

Definition 2.7: A hypercube of dimension n is comprised of 2* nodes, labeled from 0 to 2™ -1,
such that two nodes are neighbors if and only if the binary representation of their labels differ by

one and only one bit.

Figures 2.12 and 2.13 show the variation in §* with respect to U for the C-wrapped hexagonal
mesh and hypercube topologies, respectively. It is evident from these figures that skews in the
order 100 us can be guaranteed even in large systems. Also evident is the fact that when U varies
from 50 ms to 250 ms the minimum worst-case skew in our scheme varies from 50 ps to 700 ys
as compared to S0 ms to 250 ms in [22, 36, 43, 64).

Figures 2.14 and 2.15 show the variation in the worst-case skews that can be guaranteed
in the above two topologies with respect to maximum time required for a broadcast when the
resynchronization interval R is significantly greater than the minimum resynchronization interval
required, i.e., when R > N-U. These two figures illustrate how the worst-case skews can be made

insensitive to maximum time required for broadcast at the cost of tightness of synchronization.
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Figure 2.13:  §* versus U for a hypercube when m = 2, p = 1075, ¢ = 20us

This is in sharp contrast to the existing software synchronization algorithms where the worst-case

skews increase linearly with the maximum time required for a broadcast.

2.6_Discussion

Two schemes were proposed for synchronizing the local clocks on the nodes of a distributed
system. The first scheme was a pure hardware solution that can be used to tightly synchronize
large distributed systems. This scheme requires considerably fewer interconnections than the
existing hardware solutions. It also accounts for the transmission delay between the clocks,
thereby allowing the clocks to be physically far apart from each other.

The second scheme was a software solution which requires some hardware support at each
node. This support is similar to the commonly available support to ensure timely delivery of
messages. The guaranteed worst-case skews in this scheme are in the order of 100-200 us
as compared to 20-30 ns in the hardware scheme. The skews stiil about two to three orders of
magnitude tighter than other software solutions. Additionaily, the worst-case skews are insensitive

to maximum time required for a broadcast. Furthermore, the broadcast of clock values from
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different nodes are staggered throughout the resynchronization interval instead of being lumped
at the end of the interval. This avoids sudden increase in network traffic caused by almost
simultaneous broadcast of clock values from all nodes.

By using either of the above schemes it is possible to establish a global time base among all
the nodes of a distributed system. The problem of establishing a time base among the components
in a VLSI circuit is addressed in the following chapter.
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CHAPTER 3

CLOCK DISTRIBUTION WITHIN VLSI CIRCUITS

3.1 Introduction

The focus of this chapter is on node level synchronization which deals with distributing a
clock signal to the components within a node of a distributed system. This work complements
the issues discussed in the previous chapter for establishing a global time base in the system.
Since advances in semiconductor technology have now made it possible to integrate complete
and powerful nodes on a single VLSI chip, the emphasis of this chapter wil_l be on distributing a
clock signal to the functional elements in a VLSI circuit. .

In the context of a VLSI circuit, 2 clock skew can be defined as the undesired difference
between the amival times of the clock signal at any pair of functional elements where these
arrival times are expected to be identical or scparated by less than a specified interval. System
clock skew is the maximum of these undesired differences when considering all pairs of functional
elements. It is essential to control the system clock skew to an acceptable small fraction of the
clock period because it can otherwise hamper the correct and dependable operation of the circuit.

There are four main factors responsible for this clock skew: (i) differences in the length of
lines that deliver the signal to two different functional elements, (ii) differences in delays through
any active elements inserted in these clock lines (e.g., clock buffers), (iii) differences in line
parameters (e.g., resistivity, dielectric constant) that determine the line time constant, and (iv)
differences in threshold voltages of different elements. These factors can be eliminated by using

an appropriate clock distribution scheme.

55
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Wann and Franklin [69] proposed a symmetric distribution scheme that ensures equal line
lengths for all elements. However, this scheme is applicable only when all the elements are
identical and placed in the form of a symmetric array. This scheme is not suitable for distributing
clocks in a general VLSI circuit where the functional elements are typically of different sizes and
where the placement of the elements is governed by their interconnection and usually not in an
array form. To the best of our knowledge, there exists no distribution scheme that will guarantee
equal line lengths under this non-symmetric placement.

Several studies have been undertaken to minimize the clock skew due to the other three factors
[17, 60, 68]. The elimination of process-dependent skew in CMOS chips by careful adjustment
of FET parameters is discussed in [60]. A clock distribution scheme for a standard cell/macrocell
design is presented in [17). The chip is first partitioned hierarchically into several functional
elements. Then, accurate resistive and capacitive interconnect parasitics at the intra-element level
are extracted and used to characterize the interconnect impedances between the functional elements
[45]. The clocks to each functional element are distributed through a central finely-tuned clock
buffer circuit that compensates for the variation in interconnect and fan-out loading of each of
the functional elements. These two schemes have the disadvantage of being very sensitive to the
fabrication technology. In [5], a method was introduced to reduce clock delays in VLSI structures
by using a folding technique to derive a placement for the clock buffer circuits. However, the
scheme results in an appreciable reduction in delays only in the case of long distribution lines.

In this chapter a non-symmetric distribution scheme is proposed that will minimize the clock
skew due to line lengths for functional elements with different sizes and arbitrary placement. It
also accounts for the difference in delays caused by the clock buffers. Unlike the other related
work in this area, both delay and skew are considered in determining routes for the clock. This is
important because layouts that have minimum skew might have long clock lines that result in large
delays, and hence, degraded performance. On the other hand, layouts that have minimum delay
(i.e., minimum line length to each element) might have large skews because of large difference in
line lengths. This can affect the correctness of the circuit. The objective used here for determining
the clock layout minimizes the skew subject to minimum longest delay.

The scheme assumes that a floorplan of the modules is given. This floorplan would have
been determined by using some placement algorithm based on the signals interconnecting the
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sub-modules that constitute that module. For this floorplan, the proposcd‘schemc identifies an
entry point from which the clock is distributed and the layout of the clocks from the entry point
to each of the sub-modules. The entry point is selected in such a way that the delay to the
farthest sub-module from that entry point is minimum. This will minimize the maximum delay in
distributing the clock signals to the sub-modules. The optimal layout of the clock lines from the
selected entry point is determined by an exhaustive search of all paths with intelligent pruning.
The main advantage of the scheme is that the computation of the optimal layout can be easily
parallelized. This makes it suitable for determining the clock layout with a parallel computer
system.

This chapter is organized as follows. The clock layout problem is formally defined in the
following section. An algorithm to sclect the entry point is presented in the third section. The
fourth section describes an algorithm to determine the optimal clock layout from the selected
entry point. An implementation of the proposed scheme is discussed in the fifth section. The

chapter concludes with the sixth section.

3.2 Problem Formulation

As mentioned earlier, the two foremost factors responsible for clock skew in a VLSI circuit are
the difference in the length of lines for delivering clock signals to the different functional elements
and the difference in the number of clock buffers inserted in the clock lines [69]. These two factors
can be eliminated by using an appropriate layout of the clock lines. There are two basic approaches
for determining this layout: (i) a flat routing scheme, and (i) a hierarchical routing scheme. In
the flat routing scheme, the route of clock signals to all the processing elements are considered
simultaneously, whereas in the hicrarchical scheme, the processing elements are first grouped
into several sub-modules, then sub-modules into modules, and so on. The clock is distributed
recursively for the different levels of hierarchy. The main advantage of the hierarchical scheme is
the reduction in complexity and the execution times for distributing the clock signals. However,
the route thus obtained might be sub-optimal because local optimality does not necessarily imply
global optimality.

The scheme proposed here and also in [48] is a combination of both approaches. As in
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a flat routing scheme, the distribution of clock signals to all the sub-modules is considered
simultaneously. However, the complexity of routing is reduced significantly by making use of
the hiérarchy created by the clock buffers. This hierarchy is used to partition the distribution of
clock signals into several levels. The routing of signals at all levels is carried out in parallel. The
delays introduced by the clock buffers are also taken into account when détermining the layout
of clock lines.

A module is a group of processing elements to which the clock signal is being distributed.
A module may be composed of all the processing elements in the VLSI circuit (flat routing
s;cheme), or only some of the processing elements in the circuit (hierarchical routing scheme). The
processing elements contained in the module will be referred to as the sub-modules. A floorplan
is a relative placement of the sub-modules in the routing area. A channel is a rectangular zone
of empty area between the sub-modules through which the signals can be routed. A track is a
sub-unit within a channel through which a single signal can be routed. A channel is said to be
horizontal (vertical) if the tracks within the channel are horizontal (vertical). A channel is said
to be peripheral if it lies in the periphery of the floorplan. There are three possible types of
intersection between a horizontal and a vertical channel: L-type, T-type, and +-type. A decision
point is the point of a T-type or a +-type intersection.

The floorplan can be represented by an undirected, weighted graph referred to as a placement
graph. The vertices of the placement graph are the decision points in the floorplan, the input clock
terminals of all the sub-modules, and the output clock terminals of all clock buffers. Clock buffers
are sub-modules whose output drives the input clock signals of other sub-modules. Vertices v
and v are connected by an edge if and only if there is a channel from v; to v; not containing
any other vertex of the placement graph. Thus, there is a one-to-one correspondence between the
edges of the placement graph and the channels in the floorplan. If a channel is viewed as a line
instead of a region, then one can also associate a one-to-one correspondence between the points
in the channel and the points on the corresponding edge. This is possible if it is sufficient 10
minimize the skew during global routing and the circuit can tolerate the additional skews that may
be introduced when specific tracks are assigned to the clock lines. If the circuit cannot tolerate
the additional skews, then the following heuristic can be adopted. Reserve a few adjacent tracks

in each channel for the clock lines and route the clock lines before routing the other signals.
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Once the clock lines have been routed, the unused tracks can be used for the other signals. If the
floorplan has to be significantly altered due to incomplete routing of the other signals, then the
algorithm has to be re-executed for the new floorplan.

The weight of an edge {v;, v} is equal to the physical distance in the channel between the
two points corresponding to v; and vi except when either v or v is an input clock terminal of
one of the sub-modules. It is therefore proportional to the delay that will be induced on a clock
signal if that channel is used as a part of the clock layout. The weight of edges {v;,vx} in which
one of vy or v is an input clock terminal will be used to account for the delays induced by clock
buffers. The assignment of weights to these edges will be discussed later. One needs to consider
not only the edges of the placement graph but also the line segment between two arbitrary points
on the same edge. The line segment between two points » and v on the same edge will be denoted
by [, v]. The weight of [u,v] is equal to the physical distance in the channel between the points
corresponding to « and v. The weight of [, v] is sometimes referred to as the distance between
u and v and is denoted by d(u,v).

Let P be a floorplan of a module M that is composed of n sub-modules My, M,, ..., and
M,.. There is an entry point into the floorplan from which the clock is distributed to all the sub-
modules. However, all sub-modules may not receive their clock signal directly from this entry
point. Instead, some of the sub-modules will receive their clock signal indirectly from the output
of some other sub-module (i.e., clock buffer) in M. For simplicity of presentation, introduce a
fictitious clock buffer that drives the entry point to the floorplan and assume that the clock signals
of all the sub-modules are driven by a clock buffer. For each sub-module M;, 1 < i < n, itis
then possible to associate a unique level, Level( M;), that is equal to the number of clock buffers
in the route from the clock entry point to the sub-module. In other words, sub-modules directly
driven from the entry point are said to be in Level I, while those driven by sub-modules in Level
1 are said to be in Level 2, and so on. Let max_level = Hmax Level(M;), and Buffer(M;) be the
clock buffer, say, M; that drives the clock signal of M;. Define Buffer(M;) of a sub-module M;
at level 1 as the fictitious clock buffer that drives the clock entry point to the floorplan.

Definition 3.1: In a placement graph, a simple path from s to t is a finite sequence of distinct

points uouy - --ur, 7 > 1, such that: (i) uo = s and u, =, (i) if r > 1, then uy, ug, ..., Ur_;
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are vertices of the placement graph, and (iii) V 7 € {0,...,r — 1}, u; and 41 lic on a common
edge.

We will sometimes use the term “a simple path from M; to M. ;" to refer to the simple path from

the output clock terminal of M; to the input clock terminal of M;.

Definition 3.2: A c-route from an entry point e to a sub-module M is a concatenation of simple
paths from e to By, By to By, Bo to B3, ..., Bi_; to By, and B; to M, where By, Bs, ..., B;
are such that B; = Buffer(M) and Bj_, = Buffer(B;) forall 1 > j > 2.

Definition 3.3: The sum of the distances between adjacent points in a c-route will be referred

to as its c-length.

Definition 3.4: A c-layout from an entry point e is a tuple of c-routes from e to all sub-modules

in the floorplan.

Let SM; denote the set of all sub-modules in level I. Let nf’ denote the c-length of the
shortest simple path from Buffer(M;) to M; in floorplan P when e is the clock entry point. Define
ure o be Dax 17", We are now in a position to define the weights of the edges {v;, v} in
the placement graph in which one of v or v is an input clock terminal of a sub-module. Let I;
be the input clock terminal of sub-module M;. If Level(M;) is max_level or if M; is not a clock
buffer, then the weight of the edge {vy, I;} is equal to the physical distance between v and I;
in the channel, else the weight of the edge is equal to uﬁ'_{ + b + ¢, where | = Level(M;), b
is a constant corresponding to the delay introduced by Mj, and c¢ is equal to the distance in the
channel between the points v; and I;. The intuitive reason for assigning the weights to these
edges in this manner is explained later in Example 3.1.

There are two main objectives in determining a c-layout. The first objective is to minimize
the maximum difference in the c-length to the different sub-modules. The gccond objective is to
minimize the c-length to all sub-modules. The first objective by itself is not sufficient for a good
layout because a c-layout with minimum skew might have long c-routes that, in turn, result in
large delays. Similarly, the second objective by itself is not sufficient for a good layout because a
c-layout with minimum delay might have very large skews. Consequently, both these objectives

are considered here when determining the c-layout.
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More formally, let E be the set of all points in the periphery of the floorplan. It is the set of
points from which an entry point, e, is to be selected. Let Y7 ¢ denote a c-layout from e in the
floorplan P. Let L;(YP¢) denote the c-length of the simple path from Buffer(M;) to M; in the

c-route from e to M; in Y, Then clock distribution problem can be stated as:

Determine e such that

pre<uy® VsekE

Determine Y P ¢ that minimizes

> Ly P —uPe
iESM;

V1 <1< maxlevel.

Since uf ' represents the delay from the entry point to the farthest block (from that entry point),
the first criterion minimizes the longest delay. The second criterion tries to increase the length
of clock lines from the entry point to all the sub-modules 1o equal line length to the farthest sub-
module. Consequently, the overall objective identifies a layout of clock lines that has minimum
skew subject to minimum worst case delay.

A drawback of our scheme is that the delays introduced by clock buffers have to be estimated
prior to executing the proposed algorithm. The difference between the actual and the estimated
delays of these clock buffers can result in additional skews. These skews can be reduced by using
fewer clock buffers in the circuit. This approach has been used in the MIPS architecture {28)
where a single large clock buffer is used to drive the entire circuit. In our scheme, this approach
will increase the execution time required to determine the optimal c-layout. However, the scheme
will account for the skews due to difference in line lengths which is a major factor contributing

to the skews.

Example 3.1: Consider the floorplan in Figure 3.1. The module M is comprised of ten sub-
modules M, Ms, ..., M. Sub-modules M2 and Mg are clock buffers whose input is driven
directly from the clock entry point of M. In addition, the input of sub-module My is also driven
directly from the entry point. M, drives the input clock signals of sub-modules M;, M3, M4, and
Ms while Mg drives the input clock signals of sub-modules M7, Mo, and Mjo. The sub-modules
have been placed within the given area in such a way that there is ample space to route all the
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Figure 3.2: Placement graph.

signals between them. The problem is to determine a clock entry point for the module M, the
route of the clocks from this entry point to the sub-modules M,, Mg and Mg, and the route of
the clocks from the output of M3 and Mg to the input clock terminals of the other sub-modules.

The placement graph for Figure 3.1 is shown in Figure 3.2. In this figure the vertices cor-
responding to the decision points are indicated by e whereas those corresponding to the clock
terminals of the sub-modules are indicated by x. The weight of the edges in this graph are also
indicated in italics.

This example illustrates the reason for assigning larger weights to the edges {v;, v} in which
either v; or v is an input terminal of a clock buffer. Consider the sub-module M7. The clock
input to M7 is not directly driven by the clock entry point but by the output of M. Therefore,
total delay from the clock entry point to the clock input of M7 is equal to the sum of the delays
from the entry point to the input of Ms, delay introduced by M and the delay from the output of
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M 10 the input of M7. It follows from the objective for determining the c-layout that the routing
delay from the output of Mg to the input of M7 will be almost equal to pf;’ ¢. If b is the delay
introduced by Mg, then pf "¢ + b is almost equal to the delay from the input of Mg to the input
of M. If c is the distance between the end-points of the edge on the channel, then by assigning
HE"® 4 b+ c as the weight of the edge {24, 25} we can determine the c-route from the entry point
t0 Mg in parallel with the c-route from Mg to M. In this example, b is assumed to be 5 and ¢

isassumedtobe 1. B

3.3 Selection of the Entry Point

As discussed in the previous section that there are two aspects to the clock distribution problem.
The first problem is to identify one of the points as the entry point, and the second problem is
to determine a c-layout for the clock. An algorithm to select the entry point is discussed in
this section. The next section will address the problem of determining the ¢-layout given the
entry point. The notations used in the rest of this chapter are summarized below. Some of these
notations were introduced earlier but they are included here for complcteneSs.

M Module within which the clock is being routed.
M; ith sub-module of M.

P The given floorplan of sub-modules in M.

GFP Placement graph for floorplan P.

E Set of points in the periphery of the floorplan.
SM;  Set of sub-modules in level [.

n; The c-length of the shortest simple path from Buffer(M;) to M;
when z is the entry point.

P,z
by AL
R A c-route to M; from source point z in P.
YP= A c-layout from z in floorplan P.

Li(Y) Thec-length of simple path from Buffer{ M;) to M; in the c-layout
Yhe
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d(z,y) Distance between points z and y on the same edge in GF.

[z,y] Line segment between points z and y on the same edge.

The goal is to select a point in E that minimizes the longest delay, i.e., select e € E such
that pf * < ;zf *? for all s € E. Clearly, an algorithm to select such an entry point would depend
on the variation of pf '* with respect to s € E. Theorem 3.1 characterizes this variation.

Without loss of generality any point in E can be chosen as the origin and the other points
can be represented as the distance from the origin along the periphery of tﬁe floorplan. In other
words, E can be represented as a set of real numbers from 0 to || E||, where [|E|| is the perimeter

of the floorplan. Let D(s;) denote the distance of s; from the origin along the periphery.

Theorem 3.1: If 3; € E and s, € E are two points on the same edge of a placement graph with
D(s1) < D(s2), then for all z € [s1,3;] and all M; € SM,; the following equation is satisfied.

P,sz_ {’.31 ~-D
pe | M4+ D) - Dis) i D) - D(sy) < B =0+ Dlea) - Pl

2
%= Pz _ P -D
1'% 4 D(s2) = D) if D(z) - Dlsy) > BT~ + Dlea) = Do)

Proof: There are three possible cases. First, there is a shortest c-route, say C, from s; to M;
that contains the edge {31, s2}. In this case, all z € [s, s¢] lic on C. So the part of C from z to
M; is a shortest c-route from z to M;. The result then follows because d(z,s2) = D(z) — D(s2)
for all z € [sy, s2)-

Second, there is a shortest c-route from s, to M; that contains the edge {s;,s2}. The proof
is similar to the first case except the roles of s; and s; are reversed.

Third, there is no shortest path from s; and s, that contains the edge {3;,32}. In this case,
there is a point z € [s1, 3] such that for all z € [s;, 2] the shortest c-route from z to M; is the
concatenation of the segment [z,s;] and the shortest c-route from s; and for all z € (z,s;] the
shortest c-route is the concatenation of the segment [z, s;] and the shortest c-route from s;. The
result follows easily from this observation.

Note that the fourth case where the shortest c-routes from both s; and s; contain the edge

{s1,52} is not possible. =
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Corollary 3.1: Let s; € E and s; € E be two points on the same edge of a placement graph

such that "% > 77;**. Then the functions nf % and nf *Z of z intersect in the interval [s, s5]

P132_ ?,31 _ _P132_ ?131+D3 —.DS
i X ilf +2D(32) D(s1) < i i 5 (s2) ( l). Furthermore, if they
P,s2 _ P _ P,s1 _  Ps
intersect, then point of intersection is given by i L +2D(82) D(s1) + L 3 L

Proof: It follows from Theorem 3.1 that nf '* is a straight line of slope +1 from D(s;)
P: 2 ?r 31 _

to D(Sl) + 7; 7; '{-2D(32) D(sl)

7% — 1" + D(s2) — D(s1)

and a straight line of slope —1 from D(s;) +

to D(sz). Similarly, nf ' is a straight line of slope +1 from
1 —np* + D(s2) ~ D(sa)

D(Sl) to D(81)+ )

7% — " 4 D(s;) — D(s1)
2
The algorithm to determine the entry point is based on Theorem 3.1 and Corollary 3.1. The

and a straight line of slope —1 from D(s;) +

to D(sz). The result follows from this observation. |

basic idea of the algorithm is as follows. Let s1,32,...,3, be the decision points in £ such that
D(3;) < D(8;41) for 1 < i < n — 1. Let 8,41 = ;. First determine the shortest c-routes to the
sub-modules in level 1 from each of the points 31, 32,...,3,. Then, start at s; and move along
the periphery of the floorplan from s; to sz, s2 t0 83, ...8,-1 tO S, and then back to s;. To
go from s; to s;4; it may be necessary to move through several other intermediate points. Each
move is comprised of determining the best entry point based on the path already traveled and

then selecting the next point to move. The pseudo-code of the algorithm is shown in Figure 3.3.

Theorem 3.2: Algorithm ENTRY is correct, i.e., ftopr < ﬂf’ *forall s € E.

Proof: Consider an execution of procedure select. After executing the first two statements, s

will be equal to u and ¢ will be such that M; € SM, is the farthest sub-module from u. Suppose

that the execution of the algorithm is correct till this point, ie., fop: = g{lin , yf ?. We will
s€[sy,u)

show by induction on the executions through the while loop that the algorithm is comrect at the

end of procedure select.

Consider an execution through the while loop. There are two possible cases. First case,
P,v _ _P,u .

D(s)-D(u) < BT +2D (v) - D)

at u, and hence, so is pi*“. Consequently, there is no need to update Eopt.

. In this case, from Theorem 3.1, 0}~ is increasing
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Global Variables
Sopt: the best entry point;
. P, Sopt,
Hopt: 51 ’

procedure select(u, v)
Variables
2;;: point of intersection between n,-P '% and nf 1%,
begin
s =u;
i= argma.x{nf" :M; € SMi};  /* value of 7 that results in maximum r)f" */
while (s # v) do

! (D(s) — D(w) < T =+ D(v) ~ D(w)

then /* n7*® isincreasing at s %/
2 t

s=D1 (D(u) $ o 4 D) - D("));

2
else

s =min{z; : M; € SMy, z; > s}
if (opt > pi'°) then
Bopt = 1"} Sopt = 3
endif
¢ = argmin{z; : M; € SMy,z; > s};  [* value of j that results in minimum z;; */
endif
endwhile

return(Uopt, Sopt);
end;

/* Let {s1,82,...,3,} be the decision points in E such that D(s;) < D(s;41) ¥/
fFforl1 <i<n—-1 Lets,y; =3;. ¥

main( )
begin
determine shortest c-route to all M; € SM; from s1,S2,--.,58x,;
P, s1,
Hopt = I 4

fori=1tondo
select(s;, sit1);
endfor;
print pope and Sopr;
end.

Figure 3.3: Algorithm ENTRY
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Figure 3.4:  Variation in /"¢ for the floorplan in Figure 3.1

- 2" + D(v) ~ D(u)
2
nf '® is decreasing at s and hence so is uf %, It will decrease till nf '* intersects nf *Z for some

Pv
Second case, D(s) — D(u) > L

. In this case, from Theorem 3.1,

j # i. At the point of intersection the c-length of the shortest simple path to M; and M; are
equal. After the point of intersection M; becomes the farthest block. These are precisely the
steps executed in the else clause.

Therefore, if the value of p,,: was correct at the start of the while loop, it is correct at the
end of each execution of the while loop. The theorem thus follows by induction. @&
Example 3.1 (cont’d.): Consider the floorplan in Figure 3.1. Recall that only sub-modules M»,
Ms and Mg are in level 1. Figure 3.4 shows the variation in 17,-P '€ for the three sub-modules in
this floorplan. The plots are based on vertex 0 (see Figure 3.1) as the origin. Clearly, nf’ '€ for
¢ =2,6 and 8 are comprised of straight lines of slopes +1 and —1 as indicated by Theorem 3.1.
Since in this example p1f*® = max{r5*, 72,72} and prope = min ufe, it follows by either
graphically (see Figure 3.5) or by using ENTRY that the optimal entry point is at distance 3.5
units along the periphery from the origin and ., = 28.5 units. [}
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Figure 3.5:  Variation in "¢ for the floorplan in Figure 3.1

3.4 Optimization Problem

The problem addressed in this section can be stated as follows: given a floorplan P and an en-
try point e determine a c-ayout YPe = (R{"c Rf",. ..,RP¢) that minimizes
> |LPey - upe

IESM;
the terms of the summation,

for all 1 < I < maxJevel. Since there is no inter-dependence between

min Y |L(yPe)-pl| = g’;& |L(BF ) — | ¥ i such that M; € SMi. (3.1)

YPe (iom,

i
where L(RT*®) = Liy(YP¢) is used just to emphasize that the right-hand side depends only on
M;. In the rest of this section we will concentrate only on the right-hand side of Equation (3.1).

Consider the placement graph G. Let e be the selected entry point. The point e can be
assumed to be a vertex of GF without loss of generality. (If e is not a vertex of GP, then
modify G” to include e as a vertex by augmenting the vertex sct of GP with e and replacing
the edge {v1,v;} containing e by two edges {v1, e} and {e,v;} of weights d(v;,s) and d(e, v2),

respectively.) Since determining a Rf* ¢ that minimizes IL(R,P €Yy~ ule

is equivalent to finding
a simple path in a graph of length closest to a given length uf '€, the problem is NP-hard [18]. An
exhaustive search with intelligent pruning will therefore be used to find the optimal c-layout. The

reduction in search space due to pruning is illustrated through examples in the following section.
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ROUTE, the algorithm for searching all the paths, is recursive in nature. The basic idea of the
algorithm is as follows. Consider a clock buffer B; that is at level I, It drives the clock signals
of some of the sub-modules in level { 4 1. Let Drives(B;) denote the set of sub-modules driven
by B;. For clarity of presentation, it is convenient to describe the algorithm as if there were only
one sub-module in Drives(B;). Extending the description to the case when Drives(B;) contains
more than one sub-module is relatively simple. So let M; be the only sub-module in Drives(B;).

The algorithm starts out with a partial path that contains only the output clock terminal of B;.
At each step of the algorithm a vertex is added to the partial path until either the clock terminal of
the M; is reached, or when there is no completion of the partial path that will result in a c-route
with better objective value than the best known objective at that step. The algorithm terminates
when it is clear that every path from the output of B; to the clock terminal of M; has been either
investigated or pruned. Although the algorithm is exponential in nature, our simulations show
that the execution time of this algorithm is small even for large designs.

A pseudo-code of the algorithm is shown in Figure 3.6. It is described in terms of the
following three functions.

cost(p) Retums the length of the path p.

mincost(v, M;) Retumns the length of the shoriest c-route from vertex v to sub-
module M;.

objective(p) Retuns the value of the objective for the path p, ie,
lcost( p)— uf **|, where s is the output of M;.

The correctness of ROUTE is proved formally in Theorem 3.3. The pruning of the search
space occurs in the formation of the set of vertices, N(wu). At an intermediate step in the
algorithm a partial c-route wu is to be extended to a valid c-route. At this step an attempt is made
to extend the partial c-route by appending one more vertex to it. The first two conditions! in the
formation of N(wu) ensures the vertex being appended is adjacent to u and does not already lie
on the path. The third condition eliminates vertices from which there is no better completion of

the partial c-route.

Theorem 3.3: Algorithm RoOUTE is correct, i.., at the completion of the algonthm

1 Those conditions for N(wu) in the pseudo-code of ROUTE.
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procedure search( p );
path p;
begin
let p:= wu;
if u is the clock terminal of M; then
if ( objective(p) < min_obj) then
min_obj:= objective(p);

minp = p;
endif;;
retum ( min_obj, minp );

endif;
let N(wu) = {v : {u,v} € EP,v ¢ w, cost(p) + mincost(v, M;) — uf <L min.obj};
for each v € N(wu) do
search ( pv );
endfor;
return ( min.obj, minp );
end;

main ()

begin
search(s); /* s is the clock output of M; */
print min_obj and min_p;

end.

Figure 3.6: Algorithm ROUTE
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. . . P,s
minobj= min |cost(p) — u; *°|.
7091 = ¢ routes pl @ -
Proof: Suppose not.  Then there exists a path p* = sujus---u,]; such that

cost(p®) — p**| < min.obj and I is the input clock terminal of M;. Then,

minobj > lcosz(p") - ,uf, ”!

= Icost(su;) + cost(uquy---I;) — pf '3

> |cost(su1) + mincost(uy, M;) — pf '3

> cost(su1) + mincost(uy, M;) — uf s (32)

Equation (3.2) implies u; € N(s). By using a similar argument one can easily show by induction
that u; € N(swyug---uj_q) forall j =1,...,n+ 1, uj41 = I;. This implies p* was examined

by ROUTE and therefore min.obj < |cost(p*) - uf**|. Contradiction. m

3.5 Implementation

ENTRY and ROUTE were implemented in C on an Apollo DN4000. The placement graph
was the input to the program and the output was the optimal entry point and the route of clocks
to all the sub-modules. This implementation was used to distribute clocks in several examples.
The results for two examples are shown here.

The first example is that of the floorplan in Figure 3.1. As mentioned earlier, in this floorplan,
sub-modules M3, Mg and Mg are driven directly from the entry point, M;, M3 and Ms arc
driven by M2, and M7, Mg, and Mo are driven by Ms. The first task is to identify the entry
point. Once the entry point has been determined, the problem of determining the c-layout can
be partitioned into three independent sub-problems: (i) route of the clock signal from the entry
point to M,, Mg and Mg, (ii) route of the clock signal from M- to My, M3 and M, and (iii)
route of the clock signal from Mg to M7, Mg and M. These three sub-problems can be solved
in parallel with each other.

It follows from Figure 3.5, that the optimal entry point is at a distance 3.5 units from vertex
0. The route of the clocks from this entry point is shown in Figure 3.7. In this layout it is easy
to see how the increased weight on the edges {2,6} and {24,25} accounts for the delays induced
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Figure 3.7: Optimal clock layout for floorplan in Figure 3.1
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by the clock buffers M2 and Mg, respectively. For instance, the delay to Mg from the entry point
is 28.5 units. The delay to M; from the entry point is the delay to M2 (16.5 units) plus the delay
introduced by M, (5 units) plus the delay from M, to M; (10 units), i.e., a total delay of 31.5
units. As this was a small example, the CPU time required to determine all these routes was less
than a second.

The second example was a custom VLSI chip called the routing controller [14]. It is a
microprogrammable unit designed as an intelligent front-end interface to implement the low-level
message routing algorithms in an experimental distributed real-time system called Hexagonal
Architecture for Real-Time Systems (HARTS). It is comprised of six almost identical “ports”?
interconnected through a time-slice bus. One of these ports has been implemented using the
CONCORDE™ silicon compiler in a 2um CMOS process and contains around 20,000 transistors.

A floorplan of the sub-modules (along with the routing of the other signals) in the single port
implementation is shown in Figure 3.8. This floorplan is comprised of sub-modules such as two
64 x 16 bit static RAM, 8 x 8 bit FIFO, datapaths containing registers, ALU, gates and flip-flops,
a single-stage pipelined microsequencer, controlling PLAs, a few logic gates and several clock
buffers. Each of these sub-modules was generated by the silicon compiler. The routing of clock
signals within these sub-modules were left to the silicon compiler.

The routing of clock signals to the sub-modules was also initially carried out using the place-
ment and routing tools in CONCORDE™. Since these placement and routing tools do not take
into account the clock skew problem, the skew (in terms of difference in line lengths) was around
4000 microns between the sub-modules driven by one of the clock buffers. By using ROUTE, the
skew can be reduced to 20 microns for the same set of sub-modules and the algorithm requires
only 4.5 seconds of CPU time on an Apollo DN4000 with 16 MB of memory. This should be
contrasted to the several hours of CPU time that was required to route the other signals in the
floorplan.

These two examples clearly indicate that algorithms ENTRY and ROUTE can be used to
distribute clocks even in large VLSI circuits.

2 The six ports differ from each other only in their address recognition modules.
T™CONCORDE is a wademark of Seattle Silicon Technology Inc.
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Figure 3.8: Floorplan of the custom VLSI chip
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3.6_Discussion

A scheme for laying out the clock lines within a general VLSI circuit was presented. The
unique feature of the scheme is that both delay and skew were considered in determining the
clock layout. The delays and the skews were computed based on the length of clock lines as
well as the number of clock buffers, thus accounting for all the significant factors that affect the
timing within a chip. The proposed scheme is also easily parallelizable. '

Although the scheme was described for a VLSI circuit it can be extended to large systems
such as printed circuit boards. The chips on a printed circuit board are similar to the modules
within 2 VLSI circuit. The scheme can therefore be used to establish a time base among the
components within a node of a distributed system even if the node cannot be implemented on 2
single chip.

Consequently, one can establish a global time base in a distributed system at both system
level as well as at the node level. The following chapter discusses the use of a global time base

in simplifying solutions to an example design problem in real-time systems.
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CHAPTER 4

CHECKPOINTING AND ROLLBACK RECOVERY USING
COMMON TIME BASE

4.1 Introduction

Recall that the three objectives of this dissertation are to develop schemes for establishing
a global time base, to illustrate the use of global time base in simplifying solutions of some
design problems in real-time systems, and to reduce the overhead of establishing the time base
through diagnosis of Byzantine faults. Chapters 2 and 3 dealt with the first objective. This chapter
illustrates the use of global time base in checkpointing and rollback recovery.

A checkpointing and rollback recovery scheme is important because concurrent processes in
a critical real-time system are often required to complete their execution prior to an imposed
deadline. These deadlines cannot be easily met if the processes always have to restart their
execution in case of a failure. A checkpointing scheme avoids this restart by requiring processes
to save their states several times during their execution so that they can foll back to the most
recently saved state and resume their execution in case of an error. In order to be able to
successfully resume execution from a saved state it is essential that all cooperating processes
coordinate while saving their states. Although several techniques have been put forth for achieving
this coordination [31, 32, 50, 51J, it is still the primary cause of the overhead imposed by the
checkpointing algorithm.

A new approach for achieving this coordination is proposed here. Unlike conventional algo-
rithms, this approach is based on the existence of a global time base. The global time base is used
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to predict the relative behavior of the cooperating processes. Since the execution of a process is
controlled by the clock of the node in which it is executing and since the clocks of the nodes are
kept in synchrony by using a synchronization algorithm, the relative behavior of the processes can
be predicted more easily and accurately than when the processes operate completely asynchronous
to each other. This additional ability to predict the relative behavior of the processes is used as
a key element to reduce the time and space overhead of the algorithm. In particular, the scheme
has the advantages of maximum process autonomy, minimal wait for commitment for saving of
states, fewer messages to be exchanged and reduced memory requirement.

This chapter is organized as follows. A survey of related work is presented in the following
section. The proposed checkpointing scheme is described in the third section. The scheme is
discussed in terms of the necessary architectural support, a formal description, analysis of the

overhead and some numerical examples. The chapter concludes in the fourth section.
4.2 Related Research

As mentioned earlier, concurrent processes save their states several times during their execution
so that they can roll back to the most recently saved state and resume their execution in case
of an error. Unfortunately, the rollback of a process can result in a cascade of rollbacks that
can push the processes back to their beginnings, i.e, the domino effect, unless the cooperating
processes save their states in coordinated manner. In order to avoid the domino effect, Randell
proposed a conversation scheme in [50, 51]. Since then, Kim has proposed a similar but more
flexible scheme in {31]. Koo and Toueg have also proposed a similar scheme [32] that requires
much less overhead as compared to the Randell’s scheme.

In the conversation scheme, coopcrating processes enter a conversation in order to interact
with each other. Within a conversation, processes coordinate to save their states before they
interact. Processes exit a conversation only after every process in the conversation has passed
its acceptance test. If a process does not pass its acceptance test, then all the processes in the
conversation roll back to the saved state and redo the computation using an alternative process.
This rollback or checkpointing scheme usually results in an additional wait for the faster processes,

thus degrading the utilization of nodes on which the processes are executing. Furthermore, in
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order to indicate the passing of an acceptance test, each process has to broadcast a message to all
the other processes in the conversation, thereby introducing additional overheads.

To overcome the under-utilization problem, a pseudo-recovery block (PRB) approach was
suggested in [55]. In this approach, processes do not wait for each other to coordinate the saving
of states. Instead, after passing an acceptance test, 2 process broadcasts a message to all other
processes to establish a pseudo-recovery point. A pseudo-recovery poinf (PRP) is defined as
2 recovery point established without a preceding acceptance test. So, when a process receives
a message to establish a PRP, it completes its current step and then saves its state without an
acceptance test. Consequently, a pseudo-recovery line is created whenever a process establishes
a recovery point. On detecting an error, processes roll back to a pseudo-recovery line that has
been validated later by an acceptance test in each of the processes. Though there is no waiting
for commitment in this scheme, substantial overheads in time and space are introduced because
of the large number of PRP’s each process has to establish.

The approach proposed here avoids domino effect with the help of a global time base. The
idea of using a global time base for simplifying fault tolerant algorithms was first suggested by
Lamport [34]. He suggested a simple clock driven algorithm, called the state machine approach,
that was based on absolute time instead of timeout [34]). His approach is based on the following
observation. Given that the nodes of the system are tightly synchronized and given that there is
an upper bound on the message transit delay, there exists a bound A such that when a non-faulty
process broadcasts a message at time 7" according to its clock, it is delivered to all other non-faulty
processes before the time T + A according to their clocks. As a consequence, when the clock
strikes T + A each process can safely execute its part of all the actions initiated at time T' and
broadcast the actions it would like to initiate at time T 4 A.

Lamport developed simple solutions for design problems such as resource allocation, dis-
tributed semaphore management, replicated database management, and transaction processing
based on this idea. These solutions, however, can be guaranteed to be correct only if there is an
upper bound, U, on the message transit delay. Unfortunately, such a bound may not exist in all
distributed systems due to contention for various network resources. Hasegawa et. al use negative
acknowledgments to extend Lamport’s approach to consider the situation in which the probability

of message transit delay exceeding a chosen bound U is non-zero [23]. More recently, Lee and
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Davidson use absolute time to implement communication primitives in the presence of deadlines
in a fault free situation [38, 39]. Absolute time was also used in [21] to implement a fault tol-
erant distributed directory and communication service. It uses atomic broadcasts [3] and group
membership algorithms along with absolute time to update a replicated database synchronously.
Since it is not difficult to equip the system with a global time base, the use of absolute time is

an attractive altemative for checkpointing and other design problems.

4.3 Checkpointing and Rollback Recovery Scheme

The basic idea of the scheme proposed here and also in [46] is as follows. The execution of
each process is first synchronized to the clock of the node on which it is executing. An immediate
consequence of this synchronous execution is that each step in a process takes a known number
of clock cycles. This fact is coupled with the existence of the global time base to predict the
relative behavior of the cooperating processes. The expected time for processes to reach their
acceptance tests is first estimated and these estimated times are used to determine the times at
which all the cooperating processes are asked to establish the pseudo-recovery points.

In order to ensure that a PRP is error free, each process is expected to pass an acceptance test
in between two successive PRP’s. If a process does not pass an acceptance test before the time
for the next PRP, then all the other processes must wait for the process to pass its acceptance test.
Since the clocks of all nodes are tightly synchronized and since the processes are synchronous to
the clocks of the nodes on which they are executing, the times for establishing the PRP’s can be
so chosen that a process will almost always pass an acceptance test before the next PRP. If all
processes complete their acceptance test before the next PRP, then there is no wait for commitment
for establishing a PRP. This fact can also be used to reduce the number of messages processes
have to exchange to establish the pseudo-recovery line. Later in this section analytic expressions
are derived for computing the probability of a process sending a message and the expected waiting
time. These expressions indicate that for a typical numerical example, the expected wait time is
only 10-15% of the expected wait time in the Randell’s scheme [50]. Similarly, the probability
of a process sending a message for checkpointing purposes is only around 4-5%.

Since an acceptance test validates a PRP, each process has to establish only one PRP per
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pseudo-recovery line and preserve only two PRP’s to be able to recover from an error without a
cascade of rollbacks. This should be contrasted to the N — 1 PRP’s per recovery line in the PRB
approach, where N is the number of cooperating processes running concurrently on the system.
As a result, the scheme incurs considerably less space overhead as compared to other algorithms.

A formal description of the scheme is presented below. We begin with the architectural
support that is necessary for the scheme and then present a pseudo-code representation of the

various steps involved. The overheads imposed by the scheme are then analyzed, followed by

some numerical examples.

43.1 Architectural support

To coordinate the establishment of the pseudo-recovery points each process is provided with
a pseudo-clock. The pseudo-clock of each process can be thought of as a counter that normally
increments at every pulse of the corresponding real clock. However, as will be described later,
there are situations where the pseudo-clocks do not increment. In fact, there are situations in which
the pseudo-clocks are forced to roll back instead of keeping up with real time. The pseudo-clocks
of all the processes are always kept tightly synchronized to each other, by keeping the hardware
clocks of all the nodes in lock-step synchronization and by ensuring that when a pseudo-clock
rolls back or stops incrementing all the other pseudo-clocks also do the same.

" Each process is also provided with four interrupts: Pseudo-Recovery Interrupt (PRI), Accep-
tance Test Interrupt (ATY), Error Interrupt (EI) and Timer Interrupt (TT). A process receives a
PRI when its pseudo-clock reaches a value R; for some j € {1, 2, ..., n}, where R;’s are clock
values provided to the processes prior to their execution. It can thus be a hardware interrupt
implemented with the help of a timer. On the other hand, the ATI is a sofiware interrupt triggered
when a process enters an acceptance test, whereas El is either a hardware or a sofiware interrupt
triggered whenever an error is detected in the system during the execution of an acceptance test.
It is generated in the process that detects the error and passed on to the other processes by sending
messages. A TI is generated when an alarm set by a process expires before the alarm is canceled.

To preserve process autonomy, PRI and ATI are generated locally in each process. As a

result, they are not generated at the same time in all the processes. However, since the pseudo-
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clocks of all the processes are always kept in tight synchrony by the checkpointing algorithm, the
PRI’s will be generated within a short time interval as determined by the small skews between
the synchronized clocks. That is, the maximum time interval between the PRI’s at two distinct
processes is equal to the maximum skew that exists between the pseudo-clocks of all the processes
which in tum is determined by the maximum skews that exist between the real clocks and the
maximum number of cycles it takes to execute a single step in a process.

Unlike the PRI’s, the ATT’s in different processes do not necessarily occur within a short
time interval. They are govemned by the presence of loops, recursions, waiting times for shared
resources, and other overheads in each of the processes. The checkpointing algorithm coordinates
the establishment of the pseudo-recovery lines while requiring only a loose synchronization in

the execution of the acceptance tests.
4.3.2 Formal description

Let Py, P, ..., Py be the N cooperating processes in the system. They satisfy the following

assumptions.

Al. Each process executes independently of others except when accessing shared re-

sources.
A2. The processes are executing on reliable nodes.
A3. The processes are synchronous to the clock of the node on which they are executing.

A4. The programmer makes minimal effort to coordinate the interaction between the

processes.

AS5. There is a known upper bound on the message transit delays between any two

processes.

Al is a requirement rather than an assumption. A2 is made for convenience of presentation.
Like almost all checkpointing schemes, the proposed scheme tolerates software design faults
and not hardware operational faults. Hardware operational faults such as failure of modes can

be tolerated by using either redundant or spare nodes. Since the emphasis of the discussion
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here is not on tolerating such hardware failures, we assume that the processes are executing on
reliable nodes. Note that the use of redundant or spare nodes does not obviate the need for a
rollback recovery scheme since software design faults are likely to affect all the redundant copies
simultaneously. Similarly, a rollback recovery scheme cannot obviate the need for redundant
or spare nodes since rollback recovery schemes require redundant or spare nodes to execute the
altemnate block in case of a hardware failure.

A3 and A4 are based on the availability of the global time base and distinguish the approach
here from the other checkpointing algorithms. This is in contrast to the approach in which
processes are assumed completely asynchronous in the sense that the time between successive
“steps” in a given process are not necessarily bounded. AS is required to distinguish between a
failed process not sending a message and unusually large message transit delays. It is well-known
that any form of synchronization is difficult to achieve, if not impossible, in the presence of both
faulty processes and unbounded message transit delays (8, 16].

Let n; be the number of acceptance tests in process P; and let n = miin n;. P; chooses n
out of its n; acceptance tests for the checkpointing algorithm. Even though failure to pass any
one of the n; acceptance tests will trigger a rollback, only the chosen n acceptance tests will
be considered by the checkpointing algorithm to establish the PRP’s. The choice of these n
acceptance tests does not have to be necessarily based on any criteria. However, the overheads
involved in the checkpointing algorithm will be less if the processes choose their acceptance
tests in such a manner that all processes execute a chosen acceptance test at the same time.
So to minimize the overheads, P; should choose an acceptance test that is closest (in estimated
time) to an acceptance test of a process P; that has only n acceptance tests. For clarity of
presentation, assume that all processes have the same number of acceptance tests, namely, the
chosen n acceptance tests. In particular, assume that an ATT occurs only when a process enters
one of the chosen acceptance tests.

The expected time for a process to reach each of its acceptance tests is estimated prior to
its execution. This is made possible by the existence of a global time base and the fact that the
processes are synchronous to the real-time clock. However, it is only “expected” because: (i)
of the presence of loops and recursions, and (ii) the waiting times for shared resources and the

overhead due to interrupts are not known a priori. Using these expected times, the time at which
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all processes establish their PRP’s is calculated. The time for the j** PRP is so chosen that all
processes are expected to have completed their jt* acceptance test but not their § + 1**. Each
process establishes its PRP when its pseudo-clock reaches the determined time (indicated by the
arrival of a PRI).

However, before establishing a PRP, a process checks whether it has passed an acceptance
test since the last PRP. Since the times for establishing the PRP are appropriately chosen in
accordance with the predicted behavior of the process, the process would have almost always
passed an acceptance test since the last PRP. In the rare instances when it has not passed an
acceptance test, the process broadcasts a message to all other processes in the system indicating
it. On receiving such a message every process stops incrementing its pseudo-clock and waits for
those processes that have not yet passed their acceptance test. Once they pass their acceptance
test, messages are once again sent to all processes indicating it. After all processes have passed
their acceptance test, processes start incrementing their pseudo-clocks and resume their normal
operation. Similarly, before executing an acceptance test, each process checks whether or not it
has established a PRP since the last acceptance test. If it has not established one, it waits till it
receives the next PRI, establishes a PRP and then starts executing the acceptance test. In order

to describe this algorithm more formally, it is necessary to introduce the following primitives.

receive(text, process.id) Receives the message text from the process whose identity is
process_id.

broadcasi(text, process_id) Process process_id broadcasts the message fext to all processes.

wait(condition) Process halts until the condition becomes true.

alarm(interval, handler) Cancel any previously set alarm and generate a timer interrupt
after interval time units have elapsed. If interval has value O,
then do not generate any interrupt but cancel all previously set
alarms. If the alarm expires execute the handler.

Implementing these four primitives in the presence of faults is non-trivial. There are several
papers that have addressed this issue [34, 38]. Here we will assume the existence of such an
implementation and concentrate on developing and analyzing a checkpointing algorithm using

these primitives.
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PRI handler

This interrupt handler is executed when a process receives a PRI, i.e., when its pseudo-clock
reaches a time to set up a PRP. A flowchart of the steps executed in this handler and a more formal
description of those steps are in Figures 4.1 and 4.2, respectively. AT_flag indicates whether it
has passed an acceptance test since the last PRP. If it has not passed an acceptance test, it sets
the slow flag and broadcasts a message “not completed AT to all the other processes. Otherwise,
it checks the incoming messages to ensure that all other processes have also passed an acceptance
test since the last PRP.

There are several ways of checking the incoming messages to ensure all other processes have
passed their acceptance test. One easy way is to implement the receive primitive as a non-
blocking call that initializes a simple dedicated hardware to interrupt the process on receiving a
message from the process identified in the call. The processes can then assume that all processes
would have passed their acceptance test and proceed with normal execution. If there is at least
one process that has not passed an acceptance test since the last PRP, then a message “not
completed AT” will be received by all other processes. On receipt of such a message (indicated
by an interrupt), the processes roll back to the state at the time of last PRI. This scheme would be
correct and efficient as long as the upper bound on message transit delay is less than the minimum
time interval between two successive PRI’s.

In rolling back to the time of last PRI, the processes also roll back their pseudo-clocks to the
time of the last PRI and disable its increment until they get a message “completed AT” from all the
slow processes. To prevent a failed process from permanently blocking a non-faulty process, each
process sets an alarm for a duration of Max_Willing To.Wait on receiving the “‘not completed AT”
message. If a “completed AT” message is not received within this duration, then slow process is
considered to have failed and a recovery action such as a rollback is undertaken.

It is not easy to determine an optimal value for Max_Willing_To_-Wait. Choosing a small value
would cause more non-faulty processes 10 be considered faulty while choosing a large value will
cause non-faulty processes to wait for a long time in case a process is faulty. However, it is
not difficult to choose reasonably good values depending on the exact nature of the cooperating

processes.
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Figure 4.1:

Flowchart of the interrupt handler for PRI
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procedure pseudorecovery-interrupt;
begin
pseudo.clock backup := pseudo_clock;
if (not AT flag) then
slow := true;
broadcast (“not completed AT”, my_id);
disable_clock := true;
pseudo_clock := pseudo_clock _backup;
else
for k=1to N, k # i do
if receive (“not completed AT”, k) then
receive flag := true;
count := count + 1;
alarm (Max_Willing_ To_Wait, error_interrupt);
endif;
endfor;
if (not receive_flag) then
checkpoint_valid := checkpoint_new;
checkpoint_new := current_state;
else
disable_clock := true;
pseudo_clock := pseudo_clock_backup;
while receive_flag do
if receive (“completed AT™, k) then
count := count — 1;
if (count = Q) then
receive flag := false;
alarm (0, error_interrupt);
endif
endif;
endwhile;
disable_clock := false;
pseudo_clock := pseudo.clock_backup;
endif;,
endif;
AT flag = faise;
end; /* pseudorecovery-interrupt */

Figure 4.2: Interrupt handler for PRI
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ATI handler

In order to prevent a process from running ahead of all the other processes, a process is
allowed to establish only one of the chosen acceptance tests between any two successive pseudo-
recovery lines. So if a process gets two ATI’s before getting a PRI, then it must wait for a PRI
(see Figures 4.3 and 4.4). This is ensured by checking the AT flag variable whenever an ATI
occurs.

If it is the first ATI after a PRI, then the process checks whether it is running slower than the
others, i.e., are there some processes waiting for it to complete this acceptance test (indicated by
slow). If so, it broadcasts a “completed AT” message to all other processes. If all processes have

finished their acceptance tests, it proceeds with the normal execution. Otherwise, it waits for the

others to finish.

EI handler

This handler is executed whenever an error occurs in the system. The errors are detected
during the execution of an acceptance test!. The error handler rolls back the processes to a valid
state and then allows them to proceed from that point using an alternative path [50, 51] (see
Figure 4.5). In the above checkpointing scheme a valid state is the state of the system at the time
of the second to last PRI because the algorithm guarantees an acceptance test in all processes
between the second to last and the last PRI. Consequently, there is no need to interact with other
processes to determine the state to which a process has to rollback. This simplifies the rollback

procedure to a great extent.

Maintenance procedure for pseudo-clock

Figure 4.6 describes the procedure for incrementing the pseudo-clocks. When the disableclock
is true (which happens when one of the processes is waiting for some other process(es) to finish
their acceptance test), the pseudo clock does not increment. Otherwise the pseudo clock increments

once every clock tick.

! The chosen as well as the additional acceplance tests can trigger an EL.
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Figure 4.3: Flowchart of the interrupt handler for ATI
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procedure at_interrupt;
begin
if AT flag then
wait (pseudorecovery interrupt)
execute (acceptance test)
else
execute (acceptance test)
if slow then
broadcast (“completed AT”, my_id);
AT flag := true;
slow := false;
pseudorecovery.interrupt;
endif;
endif;
end; /* atinterrupt */

Figure 44: Interrupt handler for ATI

procedure error_interrupt;
begin

current_state := checkpoint.valid;
end /* error_interrupt */

Figure 4.5: Interrupt handler of EI

procedure clock;
begin
if (not disable_clock) then
increment (C;);
endif;
end /* clock ¥/

Figure 4.6: Maintenance procedure for pseudo-clock
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Figure 4.7 illustrates the algorithm for three processes Pj, P; and P;. The thick (thin) lines
indicate the estimated (actual) time for establishing the j** and j 4 1% acceptance tests and the
dotted line indicates the time at which the j** PRI was issued. In Figure 4.7(a), all processes
complete their jt* acceptance test before receiving the j%* PRI and no process reaches the j + 1t
acceptance test before receiving the 7% PRI. So, no messages are sent and no process waits for
another process to establish a checkpoint. In Figure 4.7(b), P; does not complete its jt* acceptance
test before receiving the 2% PRI. So itsendsa message to the other two processes when it receives
the j** PRI In Figure 4.7(c), Ps reaches its j + 1?* acceptance test before it receives the j*
PRL It, therefore, waits till it receives the j** PRI before executing the acceptance test. There
are no messages exchanged in this situation.

The highlight of our approach lies in that the need for message exchange and waits in the
above algorithm is minimized by the prediction of process execution bchavfor with a global time

base. A detailed analysis of its performance is the subject of the next section.
43.3 Analysis

In this section, a probabilistic model is developed to characterize the checkpointing scheme
described above. This model will be used to analyze the expected overhead of the proposed

scheme. To facilitate the analysis, we shall use the following notation.
n Number of checkpoints.
AT; The j** acceptance test.

PRP; The j** pseudo-recovery point.

Wi; Random variable representing the uncertainty in the expected time for P;
10 reach ATj.
Ti; (Ai;) Time required by P; to reach AT without (with) the checkpointing
overhead.
S max T;
b4
0i; Waiting time by P; at PRP;.

A% (A?j) The real-time at which P; receives (establishes) the j*% PRI
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fx Density of a random variable X,

R; The pseudo-clock time at which all processes receive their j%* PRL

Probabilistic model

To model the performance of the checkpointing scheme, the following assumptions are nec-

essary.
MA1L. W;; and Wy, k # 1, are independent of each other for all 7,1.

MA2. Given W;;, the time required by P; to reach AT; without waiting for other pro-
cesses for checkpointing, denoted by, T;;, has a density fr,w;;-
MA3.

R M; if M; > mjp
j =
M;+Fkj«(mjpr — M;) ifmjp > M;

where k; is a design parameter.
MA4. Ro= A% =0 forall i.

A programmer inserts the acceptance tests within the processes. For each acceptance test,
there is usually a desired point (time) in the process where the programmer would like to insert
it. The desired point will be based on the number of acceptance tests to be inserted and the
total estimated execution time for the processes [56]. The acceptance tests‘ cannot, however, be
inserted at any arbitrary point in the process since one may not be exactly aware of the state a
process should be in at every point in its execution (for verification by an acceptance test). So the
acceptance tests will be inserted at a feasible point closest to the desired point, i.e., the expected
time to reach an acceptance test will differ from the desired time. One can model this uncertainty
in the expected time to reach an acceptance test as a random variable distributed around the

desired time for inserting that acceptance test.
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MALI states that the random variable representing the uncertainty in the expected time for P;
to reach ATj; is independent of that for Py to reach the AT} for all & # i. This arises from
the assumption that each process executes independently of others except w;hen accessing shared
resources. MA?2 states that due to unpredictable waits for shared resources and other overheads
the actual time for P; to reach its j** acceptance test will differ from the expected time. The
distribution of the actual time of an acceptance test around the expected time is defined by MA2.
MA3 defines the class of functions considered in the analysis for determining the times to establish
the PRP’s. Since the checkpointing algorithm requires every process to have completed the ;*
acceptance test and not the 4+ 1, it is reasonable to assume that the time for the jt* PRI should
be somewhere in between M; and m;y ;. This particular class of functions is chosen to make the
analysis tractable. MA4 specifies the initializing conditions.

Out of the two factors that contribute to the checkpointing overhead, the overhead of saving
states depends directly on the number of times a process has to save its state. It can be reduced
considerably at the cost of additional hardware as shown in [40]. The other factor that contributes
to the overhead, namely the overhead of waiting at PRP, occurs either if one of the n processes
does not complete its j** acceptance test before the j** PRI or if the process receives the j 4+ 1t*
ATI before the j** PRL In the first case a process waits because some process was slower than
expected while in the second case the process waits because it was much faster than expected.
We will henceforth refer to the first case as a slow.wait and the second case as the fast.wait.

Since PRI’s are based on time rather than points in execution whereas ATI’s correspond to
points in execution, the probability of a slow.wait depends on the time interval between the start
of the process and the j** PRL. When the overhead due to the checkpointing scheme is zero, P;
executes for R; time units before tt_le 7% PRI. But in practice, due to the waiting times at the
previous checkpoints, F; gets AY; —JZE O;x. time units for execution before the jt* PRI. Since the

k=1
processes do not increment their pseudo-clocks while waiting at the PRP’s, it is proved below that

j-1
Af - Z Oix 2 R;. To prove this result it is convenient to define a mapping C; from real-time to
k=1
the pseudo-time on process P; such that C;(t) = T means that the pseudo-time on P; at real-time
tisT.
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Theorem 4.1: Let A} and R; be the respective real-time and the pseudo-time at which pro-
cess F; receives the 7** PRL Also let Oy be the P;’s waiting time at the £ PRP. Then,
A:-‘J- - Jz: Oix > R;.
k=1

Proof: Since a process might have to wait for some cther processes (including itself) to complete
the &** acceptance test before establishing the k** PRP, A% is not necessarily equal to A%, where
A, is the real-time at which P; establishes the k** PRP. However, since the processes do not
increment their pseudo-clocks while some process is waiting, C;(4%,) = Ci(A%) for all i.

In the time interval between the establishment of the k** PRP and the receiving of the & + 1t*

PRI, the pseudo-clocks of all processes keep up with real-time. As a result,
Ci(A%41) — C(A%) = A%y — AL forall i, k.

Also, since a process that has not completed its k% acceptance test when it received the k
PRI continues to run while the others are waiting for it to complete the acceptance test, O <

A%, — A%. From these observations, the theorem can be proved as follows.

3 j-1
AL = Y (AR - A%+ (A% - A%
k=1 k=1
J j-1 J
= Y (Bi—Re1)+ ) (A% — A%)
k=1 k=1
i-1
= Rj+) (A% - A%
k=1
j=1
2 Rj+ Z Oik.
k=1
j-1

In other words, A7; - z Oix2R;. ®

The above theorem un;-li}:s that the time interval between two successive PRI's does not depend
on the waiting times at the previous PRI’s. Consequently, the total time that a process gets to
execute before receiving the j** PRI does not depend on the waiting times at the previous PRI’s.
So the probability of a message being sent does not depend on the waiting times at each PRP
and therefore it can be evaluated by considering the situation in which there is no checkpointing

overhead, i.e., the probability of P; sending a message can be evaluated by using T;; instead of
Aij.
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Estimation of the overhead

The overhead due to slow_wait occurs when a process does not complete its j** acceptance test
before the time R; while the overhead due to fast.wait occurs when a process reaches its j + 1%

acceptance test before R;. The overhead due to saving of states occurs each time a process has

to establish a pseudo-recovery point.

In terms of the notations introduced earlier, the wait time at the j** PRP of process P; can be

expressed as

[ S;—T;  ifTy> R

S;i—R; ifS;> R;, Ty < R; and Ty > B
Oij = § Sj—Tijs1 if §j> Rjand Tijy1 < R; (4.1)
Rj—Tijy1 if S; < Rj and Tij41 < R;j

L 0 otherwise.

The first case, namely T;; > R;, corresponds to the situation where P; does not complete its
AT; before receiving the 7¢4 PRI, P; therefore waits from the time it completes its AT; till the
slowest process completes. The second case corresponds to situation where P; completes its j**
acceptance test before the 7** PRI but some other process does not. So P; waits for the slowest
to complete from the time it receives the j** PRI. The third and the fourth cases occur when
P; is so fast that it completes both AT; and ATj4, before receiving the j** PRI. In the third
case, a process other than P; does not complete its AT; before the §* PRI. In this case, P; waits
from the time it receives the j + 1** ATT till the slowest process completes its j¢* acceptance test.
In the fourth case, all processes complete their AT; by R; and therefore F; resumes its normal
execution at the time R;. Finally, if none of the above situation occurs, then P; does not wait
at the j** pscudo-recovery point. The goal is to select a R; such that the final case occurs more

often than the above four cases.

We can then prove the following result about the expected value of O;;, i.e., the expected
wait time of P; at the ji PRP.

Theorem 4.2:
E[0i;] < E[Ti; - R;|Ti; > Rj] + E[Rj — Tij41|R; > Tijpa).
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Proof: From Equation (4.1),

E[0y] = EI[S; - T4ITi; > R;}P{T;; > R;}
+ E[S; — RB;lS; > R;,Tij < Rj, Tijyr > Rj)P{S; > R;,Tij < R;j, Tij41 > Ry}
+ E[Sj — Tij4lS; > R;, Tijs1 < Rj}P{S; > R}, Tijy1 < Rj}
+ E[R; — TijlS; < R, Tij41 < Rj]P{S; < R, Tij1 < Rj}.

Since

E[S; — TijnlS; > Rj, Tijyr S Rj] =  E{S; — R;|S; > Rj, Tija < Ry
+ E[R; — Tij41[5; > B;, Tijy1 < Rj]  and
E[S; - T;|Ti; > Rj] < E[S; — R;|T;; > Ry

we get,

E[0;] < E[S; - Rj|T;; > R;]P{T;; > R;}
+ E[S; — Rj|S; > R;,Tij < Rj, Tij1 > Rj]1P{S; > R;, T;j < R, Tij41 > R}
+ E[S; — Bj|Sj > R}, Tijs1 £ Rj]P{S; > R;, Tij41 < Rj}
+ E[R; - Ti;41|S; > R;j, Tij < RiIP{S; > R;, Tij1 < Rj}
+ E[R; - Tij1(S; < Bj, Tij1 < R;]P{S; < R}, Tij41 < Rj}.
But T;; > R; implies §; > R; and T;j41 > R;. Therefore,
E[Oij] < E[S; — R;|T;; > R;]P{S; > R;,Ti; > R;,Ti;+1 > R;}
+ E[S; - R;|Sj > R;,Ti; < Rj, Tije1 > RiJP{S; > R;, T < R;, Tij11 > Rj}
+ E[S; - R;lS; > R}, Tij1 < Rj]1P{S; > R;,Tij < R;, Tijn S Ry}
+ E[R; - Ti;+1]S; > R;,Tij1 < R;)P{S; > R;,Tij+1 < R;}

+ E[R; — TijnlS; < R;, Tijna < Rj)P{S; < R;, T < R, Tij1 < Bj}. (4.2)
Furthermore,

E[S; - R;|S; > R;] =
E[S; — Ri|T;; > R;]P{S; > R;,Tij > R;, Tijp1 > Rj}
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+E[S; ~ Rj|S; > R;, Tij < R}, Tij1 > Rj]1P{S; > R;,Tij < R}, Tijn > R;}

+E[S; ~ Rj|Sj > Rj, Tij41 < Rj]P{S; > R;,T;; < Rj, Tijy1 < R;}  and
E[R; - Tij|Ti41 < Bj) =

E[R; — Tij41|8; > Rj Tij1 < Rj]P{S; > R;, Tij1 < Rj}

+ E[R; — Tij41lS; < R, Tij1 < R;j)P{S; < R;,Ti; < B;j, Tij1 < Rj}.

Hence from Equation 4.2,
E[0;] < E[S;- R;j|S; > Bj] + E[R; - Tijn|R; > Tijpal.
Simplifying further,
N
E[Sj - Rj\S; > B;] = )_E[Ty; - R;|T;; > R;, Ty; = Sj]P{T; = S;}.
i=1
Since all processes are equally probable of being the slowest P{T;; = §;} = % In other words,

E[0i] < E[Tij - RBj|T;; > Rj] + E[R; —TyjnlRj > Tijpa]. W

Although exact analytic expressions for the expected overhead can be derived, evaluating those
expressions to within an acceptable accuracy is very complicated. So, analytic expressions for the
upper bound in Theorem 4.2 are derived instead of the exact expressions. E[T;; — R;|Ti; > R;]

can be evaluated from the joint distribution of 7;; and R; as follows.

P(Ti<t Bi<a) = [ PTy< timyy < 2202k

=0 kJ

IM; = t1} fm;(t1)dts.

4.3)

Eq. (4.3) can be evaluated from the joint distribution of 7;;, M; and m;;;. Since W;; and Wiy

are assumed to be independent for all k& # i, the joint distribution of T;;, M; and mj4; can be

expressed as:

P{T;; <t M; < z15mj11 > 23} =

P{T;; < ;W5 < 213 Wijy1 > 22} PV # i Wij < 203Wijp > 22}
where,

PNVI#i Wi; <21;Wij > 22} =
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N
I1[" PWiysr > 2lWis =t} fw,,(6)dty and
=1 =0
1%i
P{Ty <t; Wi < 215 Wij1 > 22} =

21
[ PATs < W = 6} P Wi > 5alWiy = 11} o, ().

4=
Similarly, it is possible to evaluate the E[R; ~ T;j+1|R; > Tij+1] from the joint distribution of
Tij41 and R;.

2 z—=(1~-Fk;)t
P{T;js1Lt; R;j<z2} = /t OP{Tij+1 Stimjpr < %M{j =41} fm;(t1)dta.

1= 7

44

Eq. (4.4) can be evaluated from the joint distribution of T;j+1, M; and mj41. Since W;; and
Wi are assumed to be independent for all k # ¢, the joint distribution of T;;, M; and mj4; can

be expressed as:

P{Tijs1 S M5 < z2i3mypn > 22} =

P{Tij41 S;Wij < 23 Wijpr > 22} PV # i Wij < z1;Wijp1 > 22} where

PVl #i Wi; < 215 Wijp1 > 2} =
N .z
II /: _o P Wiis1 > 2|Wij = t1} fw, ()t and
=

P{Tij1 L ;Wi < 215 Wij41 > 22} =

22
/t . P{Tii1 < tWijea = 1} P{Wi; < z1|Wisp1 = t1} fwijy, () b1

1=

The overhead due to saving of states depends on: (i) the number of times a process has to
save its state and (ii) the architecture of the system. In particular, it does not depend on R; or any
other parameter specific to the checkpointing algorithm. Since the algorithm requires a process to
save its states only once every pseudo-recovery line as compared to N — 1 in the PRB approach
[55], where N is the number of cooperating processes in the system, this overhead is substantially
less in the proposed algorithm than in the PRB approach.

The above equations can be used to determine a good value for the design parameter ;.
This value of k; would have been optimal if the exact expressions are used for E[O;;] (instead

of the upper bound) and if the objective is to minimize the expected wait time. On the other
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hand, if the objective is to minimize a different objective such as probability of a long wait or the
probability of a process sending a message, then an appropriate analytical expression has to be
minimized. Here, we will presume that the objective is to select a k; that minimizes the expected
wait time at the j** PRP. Since evaluating the exact expressions for the expected wait time is
very complicated even for some simple distributions, we will minimize the upper bound specified
in Theorem 4.2 to obtain a sub-optima! solution. In other words,

Minimize

E[S; — R;|S; > Rj] + E[R; — Ti;41|Ti41 < Rj] with respect to R;

Subject to:

M; if M; > mjyq

M; + ki (mj41 — M;) if mjg 2 M;

R; =

where k; is a design parameter. Since k; is the only design parameter in R;, choosing value for
R; is equivalent to choosing a value for k;j. The value of k; that minimizes the above objective

can be determined numerically using iterative optimization techniques such as Fibonacci descent
method [42].

434 Numerical examples

The overheads described in the previous section were evaluated using numerical integration
techniques for some known distribution and the following results were obtained. To account for
differences in the processes under consideration, the expected time for processes to reach the
j** acceptance test was assumed to be uniformly distributed over the interval [j « inter.at —
aj, j * inler_at + a;], where a; is known parameter. Given the expected time for a process to
reach its j** acceptance test, the actual time (without the checkpointing overhead) was assumed
to be uniformly distributed around the expected time with parameter b;, i.e., fr. jw;,({|Wi; = t1)
is uniformly distributed over the interval [¢; — b;,%; + b;]. This accounted for the variation in
number of times certain loops were executed, waiting times for shared resources, interrupt service
overhead, etc.

The expected waiting time at the sixth PRP for the best value of k; (obtained by solving

the minimization problem in the previous subsection) is shown in Table 4.1. The values in this
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a6 | b | E[0] Prop.) | E[0;] Rand) | pB:9% | Prob. of mess. %
60| 12.0 132 15.80 13.87 4.14
80| 120 1.95 1725 1130 4.36
90| 120 2.79 18.03 15.47 5.95
00| 120| 442 18.82 23.48 5.76
120 120 6.56 20.49 32,01 5.04
80| 100 122 15.41 7.90 2.61
80| 120 1.95 17.25 11.29 4.36
80| 140 2.62 19.14 1371 7.70
80 | 160 292 21.07 13.87 7.65
80| 18.0 4.06 23.03 17.64 13.53

Table 4.1:  Expected overheads in the proposed checkpointing scheme

table correspond to a inter_at of 25. The minimization problem for determining the best k; was
solved using the Fibonacci descent method. This method would lead to the optimal solution if
the objective being minimized is unimodal. Otherwise, the results would be upper bounds to the
actual value.

The table also shows the variation in the expected waiting times with changes in the parameters
ag and be. It is clear from the table that the expected waiting time increases with ag for a constant
be. This is because an increase in a¢ corresponds to a greater variance between the processes,
and hence it is more difficuit to coordinate the completion of acceptance tests by the processes.
Similarly an increase in bg results in an increase in the expected waiting time. This is because an
increase in bg implies that the estimate of the execution time to reach the j** differs more from the
actual execution time. For the purpose of comparison, the table also contains the expected wait
time in Randell’s checkpointing scheme [50]. Even for large values of a¢ and bg the expected
wait times in the proposed checkpointing scheme are much less than in Randell’s scheme. For
example, ag = 12, bg = 12 and inter_at = 25 corresponds to the case where the actual execution

time 1o reach the sixth acceptance could vary between 126 time units to 174 time units. Even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

for this severe variation in the actual execution time, the expected wait time is only 32% of the
expected wait time in Randell’s scheme.

In addition to the reduced wait times, it also has fewer message exchanges for checkpointing
purposes. The sixth column in Table 4.1 shows the probability of process sending a message at
the sixth PRP for the best value of k;. These values should be contrasted to a 100% probability

of message exchange in Randell’s scheme.
4.4 Discussion

" The checkpointing algorithm described above has several desirable features including reduced
time and space overhead. Processes have to establish only one PRP per pseudo-recovery line and
preserve only two PRP’s. From the analysis presented in this chapter, the expected waiting times
and the probability of a process exchanging messages are shown to be much less as compared to
Randell’s checkpointing scheme [S0].

The additional overheads in this scheme as compared to others are (i) the need for a global
time base and (i) the need to know the expected times for reaching the acceptance tests a
priori. If a hardware synchronization algorithm is used to establish the global time base, then
the time overhead on the system is almost minimal. The cost of the additional hardware is easily
compensated by the reduced overhead in the checkpointing algorithm.

The expected times for reaching acceptance tests have to be estimated only once for every
process. This can be easily done by executing the process repeatedly prior to their actual execution
(mission). Since processes are usually repeatedly executed prior to the mission to ensure that there
are no bugs in the program, these estimates can be obtained at no extra cost. Hence, the proposed

checkpointing algorithm has high potential use for real-time applications.
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CHAPTER §

DIAGNOSIS OF BYZANTINE FAULTS

5.1 Introduction

Distributed systems often require a means by which nodes or cooperating processes can arrive
at a mutual agreement on some information. This information may be clock values, values read
from an input sensor, an output to an extemal actuator, system status, or any other data relevant to
the operation of the system. As in synchronization, guaranteeing this agreement in the presence
of Byzantine faults is not easy.

The problem of distributed agreement can be defined formally as follows. Given an N
node distributed system with a maximum of m faulty nodes, the problem is to ensure consensus
among all the non-faulty nodes on the private value of a particular node, called the initiator, of
the agreement. By consensus we mean the following two interactive consistency conditions are

satisfied.
IC1. All non-faulty nodes agree on the same value.

IC2. If the initiator is non-faulty, then all the non-faulty nodes agree on the initiator’s

private value.

Implicit in IC1 and 1C2 is the idea that the agreement is synchronous in the sense that all the
non-faulty nodes reach this agreement at the same time. In other words, there must be some real
time at which all the non-faulty nodes have decided on the private value of initiator, and this
time must be known in advance. Also implicit in IC1 and IC2 is the idea that the algorithm used

103
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to ensure this agreement should not in any way depend on the anticipated behavior of the faulty
nodes. The above two conditions should be satisfied even if the non-faulty nodes cannot identify
the faulty nodes.

Over the past decade, numerous algorithms have been proposed for ensuring interactive con-
sistency in a distributed system. Pease, Shostak, and Lamport were the ﬁrsi to propose solutions
to the above problem under the Byzantine fault model [37, 44]. Since then this problem has been
studied extensively and several good solutions have been proposed (7, 9, 10, 12, 13, 66]. In fact,
many of these algorithms have achieved the theoretical lower bound on the number of messages
(phases) necessary to tolerate a specified number of faults. In spite of that, the overheads imposed
by these algorithms are still too large to be useful in real-time applications. In addition, these
algorithms do not address the problem of identifying the faulty nodes. They implicitly assume
that the faulty nodes remain in the system until the end of the mission and as a result a larger
number of faults need to be tolerated to meet a specified reliability requirement as compared 0
the case when the faulty nodes are diagnosed and then removed from the system during a mission.

To overcome the above limitations this chapter describes an on-line diagnosis scheme. The
proposed scheme is comprised of a modified distributed agreement algorithm and a fault location
algorithm that can be used in conjunction with each other to identify the nodes with Byzantine
faults. The basic idea of this diagnosis scheme is to let the nodes execute a modified distributed
agreement algorithm (instead of one of the existing algorithms) to reach the necessary consensus
throughout the mission. This is exactly like any other system that tolerates Byzantine faults
except that the agreement algorithm is slightly modified to help in diagnosis. At the end of each
execution, the nodes execute a fault location algorithm in which each node examines the messages
it received in the current execution of the agreement algorithm, identifies a set of suspicious nodes
and conveys their identity to the other nodes in the system. The information from ail nodes along
with similar information from previous executions of the fault location algorithm is used to identify
a set of malicious nodes!.

It may happen that only some of the nodes that exhibited Byzantine behavior in the current

execution of the agreement algorithm are identified. It may also happen that some malicious

1 Nodes with Byzantine fanlts will be referred to as malicious nodes
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nodes that exhibited their Byzantine behavior in a previous execution of the agreement algorithm
are now identified due to the additional information. The fault location algorithm aggregates
all such information and feeds it back to the subsequent executions of the distributed agreement
algorithm. The agreement algorithm adapts itself based on the feedback information to expedite
the identification of the faulty nodes. It is the incorporation of this diagnosis information into the
distributed agreement algorithm that makes this approach unique.

This chapter is organized as follows. A brief survey of related work is presented in the
folloWing section. This includes a survey on the existing agreement algoﬁ@s because they play
key role in the diagnosis scheme. The issues that arise in the diagnosis of Byzantine faults are
presented in the third section. A formal description of a generic distributed agreement algorithm,
the system model, modifications to the agreement algorithm and the fault location algorithm are

described in the fourth section. This is followed by a brief discussion of the merits and limitations

of the proposed scheme.
5.2 Related Research

As mentioned earlier, Pease et. al were the first to propose a solution that guaranteed IC1 and
IC2 in the presence of Byzantine faults [37, 44]. They proved that it is not possible to ensure
IC1 and IC2 by using a simple majority voting algorithm. They also showed that in the absence
of any restriction on the behavior of the faulty nodes, it is necessary and sufficient to have a total
of 3m + 1 nodes in order to tolerate a maximum of m faults. However, their algorithms require
O(N™) messages and m + 1 phases?.

An algorithm that requires polynomial number of messages was proposed in [9]. It requires
only O(Nm + m3) messages and 2m + 3 phases. This algorithm was later shown to be the best
possible to within a constant factor when N > m? [12]. A different class of algorithm referred
to as the authenticated algorithm was considered in {12, 13]. In the authenticated algorithms,
it is assumed that a non-faulty node can authenticate all the messages it generates or relays

by using an unforgeable digital signature [6, 52). In a typical authenticated algorithm, a non-

2 Informally, 2 phasz consists of a synchronized message exchange where nodes first broadcast messages (according
to their state), then wait to receive messages sent by other nodes in the same phase, and change their state accordingly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

faulty node appends its signature to every messages it sends. This signature contains a sample
portion of the message encoded in such a way that any receiver can verify the authenticity of the
message. Since nodes cannot forge the signature of another non-faulty node, they cannot make an
undetectable change in the content of a message or introduce an undetectable spurious message
into the information exchange.

This restriction on the behavior of faulty nodes results in algorithms that are simpler, more
efficient, and tolerate more faults in the system than algorithms without authentication. The
authenticated algorithms require only m+ 1 nodes as opposed to 3m+1 nodes to tolerate m faults.
They also require only O(/Nm) messages and m+1 phases as opposed to O(N m+m3) messages
and 2m + 3 phases in the unauthenticated case [13]. However, the cryptographic techniques
used for generating digital signatures require some computational and communication overhead.
Momovcf, they are not unconditionally secure from attacks by malicious nodes. Malicious nodes
can break such schemes by computing or guessing the signature of another node, although the
probability of such an occurrence is very small.

Srikanth et. al proposed a simple broadcast primitive that simulated authentication without
the use of digital signatures [63]. Using that broadcast primitive they derived an authenticated
algorithm that requires 3m +1 nodes, 2m +1 phases and O(N m?) messages. They also described
an early stopping algorithm in [66] that improved upon Dolev’s algorithm [11] in both number
of phases and messages. These two algorithms [11, 66] do not satisfy the implicit assumption of
synchronous agreement.

As indicated previously, the above agreement algorithms do not attempt to identify the ma-
licious nodes. They concentrate on efficiently masking the faulty nodes during the course of
any information exchange. The problem of identifying the faulty nodes has just started receiving
some attention. Yang and Masson have considered system level diagnosis in the presence of
Byzantine faults [71]. Their diagnosis scheme is based on the assumption tﬁat when a non-faulty
node tests another non-faulty node it can correctly conclude that the node is fault free. The faulty
nodes affect the diagnosis scheme by corrupting the exchange of the “syndromes” between the
non-faulty nodes. In [49], Ramarao and Adams also based their algorithm on the assumption
that there are tests non-faulty nodes can use to correctly conclude that other non-faulty nodes are

fault free. Therefore, the schemes in [49] and [71] are useful only if one can develop diagnostics
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that will efficiently detect the existence of a faulty node. Since several different faults can cause
a Byzantine behavior, it becomes practically impossible to run diagnostics that can detect all
possible faults.

A more natural way of identifying the malicious nodes is to observe the messages exchanged
between the nodes and detect faults by identifying messages that are not consistent with the
message exchange protocol. Since all malicious nodes will eventually exhibit Byzantine behavior®
by not adhering to the specified message exchange protocol, the malicious nodes can be identified
by noting the discrepancies in the messages exchanged between the nodes. This process is
complicated by the fact that a node can exhibit Byzantine behavior even while reporting about
some other nodes, thus making it impossible to rely fully on any report. However, as shown later
in this chapter and also in [58], if the agreement algorithm is modified appropriately, there is an
upper bound on the number of times a faulty node can exhibit such Byzantine behavior without
being identified.

5.3 Issues in diagnosis of Byzantine faults

The foremost issue that distinguishes diagnosis under the Byzantine fault model from that
under any other fault model is the ability of malicious nodes to cause a non-faulty node to accuse
another non-faulty node. In diagnosis schemes that do not consider Byzantine faults, when p
accuses ¢ we can conclude that either p or ¢ is faulty. This is not necessarily the case when some
nodes can exhibit Byzantine behavior.

This issue is not a consequence of using message exchanges in an agreement algorithm to

diagnose malicious nodes. The malicious nodes can cause non-faulty nodes to accuse other non-
faulty nodes even if the diagnosis is based on message exchanges in any distributed computation.
Furthermore, the use of an authentication mechanism does not eliminate this problem.
" The sccond issue in diagnosis under the Byzantine fault model is that malicious nodes can
behave in any way they like. As a result, they cannot be diagnosed as soon as they exhibit their
faulty behavior. Since the diagnosis scheme here is strongly based on these two issues, they are
elaborated below.

3 If not, it does not matter to the system, and thus, they will be treated as non-faulty.
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O Non-faulty

Faulty

(a) (b) (c)

Figure 5.1: An example of a non-faulty node accusing another non-faulty
node

Example 5.1: Consider the three cases shown in Figure 5.1. In the first case none of the nodes
are faulty (Figure 5.1(a)). It therefore shows the comrect execution of a distributed computation.
In this case, p initiates the computation by sending an authenticated message of value v to g. On
receiving this message ¢ appends its own signature and forwards the message to r. In the second
case p is the only faulty node (Figure 5.1(b)). In this case p initiates the computation by sending
an inconsistent message X to ¢ and g realizes that this is an inconsistent message and decides to
ignore the message by not forwarding the message to r. In the third case g is the only faulty node
(Figure 5.1(c)). Just as in the first case p initiates the computation by sending an authenticated
message of value v to g. However, the faulty node ¢ does not forward the message to r.

Since r perceives the same behavior in the latter two cases, it cannot distinguish between
the two cases. But r can sense that something is wrong because the perceived behavior is
different from that in the first case. Since the algorithm that r uses to generate the accusations
is deterministic, r will generate the same accusations in the second and third cases. If r accuses
g, then a non-faulty node would accuse another non-faulty node if the situation were as in
Figure 5.1(b). On the other hand, if r accuses p, then a non-faulty node would accuse another
non-faulty node if the situation were as in Figure 5.1(c). Hence, irrespective of which node (p or
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g) T accuses, there is a case in which r will accuse a non-faulty node.
Furthermore, in this example authentication cannot prevent a malicious node from causing a

non-faulty node to accuse another non-faulty node. This result is true in general and is formalized
in Theorems 5.1and 52. =

Theorem §5.1: A malicious node can cause a non-faulty node to accuse another non-faulty node

if accusations are based on message exchanges in a distributed computation.

Proof: A general distributed computation can be modeled in terms of a function G : P X A X
2M % 2M x R+ x P — M, where P is the set of nodes, A is the set of all possible states a node
could be in, M is the set of all possible messages that can be exchanged .during the execution
of an agreement algorithm, and R* is the set of non-negative reals. G(p, o4, St, Re,t,q) has the
semantics of the message sent by a node p at time ¢ if it is in state o; and it has sent (received)
all messages in S¢ (R;) in the time interval [0, ¢).

Now consider the following two cases. In Case A, p is the only node that exhibits faulty
behavior. In Case B, ¢ is the only node that exhibits faulty behavior. We will then show that
a non-faulty node r cannot distinguish between Cases A and B. Since the algorithm that r uses
t0 generate accusations is deterministic, r will generate the same accusations in both cases. So
irrespective of which node (p or ¢) r accuses, there is a case in which r will accuse a non-faulty
node.

Case A: Suppose no node exhibits faulty behavior il time ¢;. Also suppose that o7, and o
are respective states of p and ¢ at time ¢;, and S}, (R})) and S}, (R{)) are the sets of messages
sent (received) by p and ¢, respectively, prior to ¢;.

At time ?; suppose that p exhibits its faulty behavior by sending a ﬁ%mge XeMrwgqg
where X # G(p,07,, 5%, , R ,11,q). At some time ¢; > ¢;, X will be received by ¢. This would
cause g to send a message G(g,07,, 57, Ri,,i2,7) to r. Note that g could decide not to send
any message to r by setting g(q,a;;, Sf’z, "2,t2, r) to a null message. Suppose that the message
that g sends is different from the message that it would have sent had p not exhibited its faulty

behavior at ¢, i.e.,

a(q, ‘7;1275?27 qzthvr) # g(%dgza sz,cfz,tzﬂ)
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where Cj, = ( Rf, — {X} ) u{G(p,0%,, 5, Y, , 11,0)}

Case B: Suppose no node exhibits faulty behavior till time ¢; and let o, 67, S, RY,, 57, and

Rj beasin Case A. At time t;, p correctly sends the message G(p, a3, 5%, RY, ,t1,) to ¢. At

some time ¢; > {3, this message will be received by q. But now suppose g is faulty and it exhibits

its faulty behavior at time t,. Instead of sending r the message G(g,0%,, S7,, RY,, t2,7), suppose
that g sends the message G(q, 77, , 53,, Dj, , t2, 7) to v, where D], = ( R}, — {G(p, 0}, ,5%,, Ry, ,11,9)} )U
{X}.

Since no other node is assumed to exhibit its faulty behavior, the message that r receives
in both cases are the same. So r cannot distinguish between Cases A and B. Since r has to
accuse either p or g, it will accuse a non-faulty node in one of these two cases. This shows that
even if the diagnosis were made using message exchanges in a general distributed computation,

a malicious node can cause a non-faulty node 1o accuse another non-faulty node. |
Theorem 5.2: Theorem 5.1 holds even if authentication is used for message exchanges.

Proof: Consider the example in the proof of Theorem 5.1. The question is whether both cases
could occur if messages were authenticated. The answer is yes. This is because p is faulty in
Case A. So if the message X does not contain the signature of p, then the message that g sends
to r at time {, also cannot contain the signature of p. This implies that a faulty node ¢ can
generate the same message in Case B even if authentication is being used. Once again, r cannot
distinguish between Cases A and B. Hence, it will accuse a non-faulty node in one of the two
cases. |

The accusations between two non-faulty nodes can, however, be eliminated by carefully pro-
cessing the accusations made by all nodes in the fault location algorithm. During this elimination
process some accusations made by non-faulty nodes on faulty nodes may also get eliminated, thus
rcduéing the evidence against some faulty nodes. In spite of this the diagnosis scheme achieves
the theoretical lower bound on the number of Byzantine behaviors required to identify all the

malicious nodes.

Theorem 5.3: It is impossible to diagnose all malicious nodes as soon as they exhibit their faulty

behavior.
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Proof: This can be reasoned as follows. Let p and ¢ be any two nodes in the system such that p
is faulty. Suppose that p sends a message to ¢ that is not consistent with the message exchange
protocol of the algorithm. When g accuses p of being faulty, the other nodes in the system cannot
conclude that p is faulty because ¢ could be a faulty node that generates a false accusation. There
is no way to distinguish which of the two nodes p or ¢ is actually faulty even if p repeats this
faulty behavior infinitely often. ® '

The modification to the distributed agreement algorithm takes care of this problem by prevent-

ing p and ¢ from exchanging messages with each other once such a faulty behavior is detected.

5.4 Diagnosis Scheme

Given a distributed computing system, the goal is to develop a solution that not only masks
malicious nodes but also detects and identifies them. Assume that the detection is based on the
messages exchanged during a distributed agreement algorithm. This does not restrict the ability
to detect Byzantine behavior because in a system that tolerates malicious nodes all distributed
computations have to use an agreement algorithm for exchanging information.

However, distributed agreement algorithms as proposed in literature are not suitable for di-
agnosis of Byzantine faults. In fact, it can be easily shown that if the detection of Byzantine
behavior is based solely on the existing distributed agreement algorithms, then it is possible for
the malicious nodes to repeatedly exhibit their Byzantine behavior and yet remain unidentified.
To overcome this problem, a modification is proposed to the existing distributed agreement al-
gorithms. This modification is not specific to any particular agreement algorithm. As a result of
using this modified agreement algorithm, it will be shown that there is an upper bound on the
times of a node can exhibit its Byzantine behavior without being identified.

Let P be the set of nodes and let M be the set of all possible messages that can be exchanged
during the execution of the agreement algorithm. M contains messages that are correctly formatted
as well as messages that are incorrectly formatted. Each message has a value associated with it.
The values of a message are taken from a set V. The value of a correctly formatted message
represents the information that the nodes are trying to agree on. The value of an incorrectly

formatted message is assumed to be an arbitrary value denoted by ‘?°. In addition to a value,
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each message may also be associated with a text. The text of a message contains information
relevant to the agreement algorithm. Define a function Vealue : M — V such that V alue(mess)
is the value of the message mess € M.

A distributed agreement algorithm proceeds in rounds. Each round is comprised of three
phases: send phase, receive phase and compute phase. Each round starts with the send phase. In
this phase, nodes send all their messages for this round. The messages sent during the send phase
depend on the messages sent or received in the previous rounds and on the compute phases of the
pre\‘(ious rounds. In the receive phase, nodes receive all the messages sent to them in the current
round. At the end of the receive phase, nodes enter a compute phase where they compute the
messages to be sent in the next round. The algorithm terminates at the end of round max_round.
There are some distributed agreement algorithms where such an upper bound on the number of
rounds does not exist {11, 66]. The algorithms that have an upper bound are said to achieve
immediate Byzantine agreement as opposed to eventual Byzantine agreement. In this dissertation
only algorithms that achieve immediate agreement arc considercd.

The message exchange protocol for the distributed agreement algorithm can be specified in
terms of a function F : P x2M x2M x A" x P — M, where N is the sct of non-negative integers
and F(p, Sk, Rk, k,q) is the message sent by a non-faulty node p to node ¢ in round & when S,
(Ry) is the set of messages sent (received) by p prior to round k. F(p, S, Rk, k,q) = € has the
semantics that no message is to be sent from p to ¢ in round £ when S; and R are the messages

sent and received prior to round k.

Definition 5.1: A message mess sent by p € P to ¢ € P in round [ of the agreement al-
gorithm is said to be consistent with respect to the message exchange protocol, F, if mess =
F(p,S1, Ri,1,q), where S; (R;) are messages sent (received) by p prior to round I. A message

that is not consistent is said to be inconsistent.

Definition 5.2: Node p € P is said to accuse a node g € P, if p claims (in the fault location

algorithm) that it received an inconsistent message from ¢ during the agreement algorithm.

Definition 5.3: Nodes p € P and ¢ € P are said to be a pair of co-faulty nodes if p non-faulty

implies that g is faulty, and vice versa.
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Deﬁnition 5.4: Node p € P is said to suspect q € P if p and ¢ are a pair of co-faulty nodes.

Definition 5.5: An execution of the agreement algorithm is said to be perfect if all messages
sent to the non-faulty nodes are consistent with respect to the message exchange protocol of the

algorithm. If an execution of the agreement algorithm is not perfect, then it is said to be an

imperfect execution.

There are usually several prerequisites for a distributed agreement algorithm. Since they are
essential for masking the malicious nodes, assume that the system satisfies these prerequisites. In

additicn, assume that the system satisfies the following assumptions.

1. Byzantine behavior is caused by an underlying fault in the node. Hence, Byzantine behavior

will recur whenever the fault is exercised.
2. A non-faulty node always sends the message correctly to the immediate receiver.

3. A node can always identify the node that last relayed this message irrespective of whether

the message has the proper format or not.

- 4. Given (i) a node p € P, (ii) a round %, 0 < k < maz_round, (iii) S, the set of messages
sent by p prior to round k, and (iv) R, the set of messages received by p prior to round
k, any node r € P can determine Value( F(p, Sk, Rk, k,q) ), the value of the message
F(p, Sk, Ri,k,q), ¥V q € P.

The first assumption states that a faulty node will repeatedly exhibit Byzantine behavior.
However, it does not restrict the kind of behavior a faulty node will exhibit each time it recurs.
This is a reasonable assumption because a node that rarely exhibits Byzantine behavior would
seldom harm the system. A node that exhibits Byzantine behavior only a few times will be
masked but not always identified. The second and the third assumptions prevent a malicious node
from snooping or altering the messages on direct links beiween two other nodes. They are easy
to satisfy if nodes use dedicated hardware links instead of a broadcast medium to communicate
with each other.

The fourth assumption states that the distributed agreement algorithm is deterministic in the

sense that given all the information the value of the message to be sent can be determined by any
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other node. This does not imply that a node can determine the entire message that some other
node will generate. It can only determine the value of the messages. In particular, in the presence
of authentication the entire message cannot be determined since the message would contain an
unforgeable signature of p. This assumption is not a very restrictive one. To the best of our

knowledge there is no existing agreement algorithm that does not satisfy this assumption.
5.4.1 Modifications to the agreement algorithm

The modifications to the agreement algorithm are clear by comparing Figures 5.2(a) and
5.2(b). Figure 5.2(a) contains the pseudo-code for an unmodified distributed agreement algorithm
as executed by a node p € P. The modified algorithm is shown in Figure 5.2(b).

In this modified algorithm, CoFaulty(p) is the set of all nodes ¢ € P such that p and ¢ are 2
pair of co-faulty nodes. It is the feedback information from the fault location algorithm described
in the following subsection. It is the use of this feedback information in the agreement algorithm
that imposes an upper bound on the number of times a node can exhibit its Byzantine behavior
without being identified.

Theorem 5.4 proves the correctness of the modified algorithm. Theorem 5.7 shows that this
simple modification results in an upper bound on the number of times that a node can exhibit its

Byzantine behavior without being identified.

Theorem 5.4: If the agreement algorithm in Figure 5.2(a) ensures IC1 and IC2, then the modified
algorithm in Figure 5.2(b) also ensures IC1 and IC2.:

Proof: .Thc theorem follows from the argument given below. Consider a non-faulty node p € P.
In the modified algorithm, p € P does not send any message to nodes in CoFaulty(p). On
the other hand, the unmodified algorithm might require p to send a message t0 some nodes in
CoFaulty(p) in certain rounds.

The correctness of the unmodified algorithm cannot depend on the messages being sent to
some faulty nodes. Since all nodes in CoFaulty(p) are faulty if p is non-faulty?, it does not

matter whether p sends messages to them or not. ]

4 This result will be proved later in Theorem 5.5.
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Distributed Agreement Algorithm

Round 0

Send:  If initiator then send F(p,9,8,0,q) to each node g € P.

Receive: Receive all the messages sent during the send phase.

Compute: Update Sy and R;. Compute the messages to be sent in the next round.

Round &, 1 < k < maz_round

Send:  Send F(p, Sk, Rk, k,q) to each node g € P.

Receive: Receive all the messages sent during the send phase.

Compute: Update Si and R;. Compute the messages to be sent in the next round.

Round maz_round

Send:
Receive:
Compute: Decide on the consensus value.

€Y
Madified Distributed Agreement Algorithm

Round 0

Send:  If initiator then send F(p,0,0,0,q) to each node q € P, ¢ ¢ CoFaulty(p).
Receive: Receive all the messages sent during the send phase.
Compute: Update S; and R;. Compute the messages to be sent in the next round.

Round &k, 1 < k < maz_round

Send:  Send F(p, Sk, R, k,q) to each node g € P, ¢ ¢ CoFaulty(p).
Receive: Receive all the messages sent during the send phase.
Compute: Update S and R;. Compute the messages to be sent in the next round.

Round maz_round

Send:
Receive:
Compute: Decide on the consensus value.

®)

Figure 5.2: Unmodified and modified distributed agreement algorithms.
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5.4.2 Fault location algorithm

The fault location algorithm is executed in three phases. In the first phase, nodes scan
the messages they have received during the course of the agreement algorithm and generate
accusations from their point of view. In the second phase, each node that has a non-empty set
of accusations initiates an execution of an agreement algorithm to convey its set of accusations
to all the other nodes. In the third phase, nodes analyze the accusations they have received in
the second phase and generate pairs of co-faulty nodes. After combining the generated pairs of
co-faulty nodes with similar information from the previous executions of the algorithm, each node
identifies a set of faulty nodes. The nodes can then re-execute the fault location algorithm for the
agreement algorithms executed in the second phase. This process will terminate due to the upper
bound on the number of times a node can exhibit its Byzantine behavior without identification.

In the fault location algorithm, CoFaulty(p) is the set of nodes ¢ such that nodes p and ¢
are a pair of co-faulty nodes. Faulty is the set of nodes that have been identified as faulty by
the algorithm, and P = P — Faulty. When the system starts, the sets Faulty and CoFaulty(p)
are empty for all p € P. Nodes are added/removed each time the algorithm is executed. The
algorithm as executed by a node p € P is shown below.

Algorithm LOCATE

Phase 1

[1.1] Form aset C(p) CV x P x P x {0, ..., maz_round} such that (v,p,q,1) € C(p) if and
only if v is the value of a message that p would receive from g in round / of the modified
agreement algorithm if all the nodes in P are non-faulty.

[12] Form a set R(p) € V x P x (P — CoFaulty(p)) x {0,...,maz_round} such that
(v,p,q,1) € R(p) if and only if a message of value v was received from ¢ in round [

of the modified agreement algorithm.
[1.3] Accusations(p) = [C(p)~ R(p)] U [R(p) - C(p)).
Phase 2

[2.1] If Accusations(p) # 0, then initiate the modified agreement algorithm to convey
Accusations(p) to all the other nodes in P.

[2.2] If necessary, participate in the agreement algorithm initiated by other nodes in P and collect
Accusations(q) for all g € P.

[2.3] Accusations = U Accusations(q).
P
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Phase 3

[3.1] Eliminate the accusations on non-faulty nodes by non-faulty nodes caused by malicious
nodes as follows:

begin
for each g € P do
for l = 1 t0 maz_rounds do
for each ,s € P do
if (v1,7,s,1) € Accusations and (vs,q,r,k) € Accusations, k < I, then
Accusations := Accusations — { (v1,7,3,0) };
endfor;
endfor;
endfor;
Suspicions := Accusations;
end;

[32] For each g € P form a set Suspect(q) as:
Suspect(q) = {r : (v,q,r,1) € Suspicions, r ¢ CoFaulty(q)}.

(3.3] Form a scet of definitely faulty nodes, DF:
DF = {q:(v,q,r,l) € Suspicions, r € CoFaulty(q)}.

[3.4] For each g € P update CoFaulty(q) as follows: ,
CoFaulty(q) := CoFaulty(q) U Suspect(q)U {r : q € Suspect(r)}.

[3.5] Update the set of definitely faulty nodes, D F*:
DF =DF U {g: |CoFaulty(q)] > m}.

[3.6] Form a set of allowable fault sets that can give rise to the above CoFaulty(-).
PF={F:FCP, DF CF, |FU Faulty] <m, CoFaulty(q)C F,Vq¢ F}.

[3.7] Calculate Faulty = | () F) U Faulty.
€PF

[3.8] For all g € P set CoFaulty(q) := CoFaulty(q) — Faulty. ®

In Phase 1, C(p) is the set of all messages that p should have received during the course of
the agreement algorithm and R(p) is the set of messages it actually received. Accusations(p) is

the set of inconsistent messages that p has observed.
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In Phase 2, p initiates an agreement algorithm only if Accusations(p) is non-empty. It follows
from the discussions earlier, that even if p is non-faulty, Accusations(p) may contain improper
accusations on other non-faulty nodes. These improper accusations are eliminated in Phase 3.
The operations in Step 3.1 can be informally explained as follows. If r accuses ¢ in round &
and s accuses r in round ! > k, then eliminate the accusation by s and retain the accusation by
r. This is because there is a possibility that a non-faulty node r sent an inconsistent message
only because it received an inconsistent message from a faulty node q. If this were the case, then
the accusation on 7 would have 1o be removed especially if s is non-faulty. This case cannot be
distinguished from the five other possible cases: (i) r is faulty, and g and s are non-faulty, (ii)
q and r are faulty, and s is non-faulty, (iii) ¢, r and s are faulty, (iv) ¢ and s are faulty, and r
is non-faulty, and (v) r and s are faulty, and ¢ is non-faulty. Thus, the accusation on r would
have to be deleted irrespective of the actual fault situation. If the fault situation is one of the
above five cases, there is some loss of information towards the safe side. However, this loss in
information does not affect the capability of diagnosing malicious nodes to a great extent.

Step 3.2 generates the set of nodes each g € P suspects. In generating this set, the accusations
of the form (v, q,7,1), r € CoFaulty(q), are ignored because a non-faulty node will not generate
accusations of that form (see Step 1.2). From this argument it follows that any node that generates
accusations of this form has to be faulty and hence Step 3.3. In Step 3.4, the set of co-faulty
nodes is updated with the set of co-faulty nodes from the current execution. In Theorem 5.5 it
is shown that these updates retain the property of co-faulty sets, i.e., even after the updates p is
non-faulty implies all nodes in CoFaulty(p) are faulty. This property of the sets CoFaulty(-)
can be coupled with the fact that there is a maximum of m faulty nodes in the system, to conclude
that any node ¢ with [CoFaulty(q)| > m is definitely faulty. This fact is used in Step 3.5.

In Step 3.6 all the possible fault sets that could have led to the current sets CoFaulty(-) are
generated. From these sets some more faulty nodes are identified in Step 3.7. Some of these
nodes may not have been suspected by m + 1 non-faulty nodes, but can still be concluded to be
faulty due to their behavior. Finally, in Step 3.8, the sets CoFaulty(-) are updated to eliminate
the nodes that have been identified as faulty.

Identifying each one of the sets in P F in Step 3.6 can be mapped onto a vertex cover problem.

Since a vertex cover problem is known to be NP-hard, some heuristics may have to be used in
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place of Steps 3.6 and 3.7. Several good heuristics that reduced the complexity from O(2V)
to O(max{N 2,2”‘2 }) are described in [49]. If the maximum number of malicious nodes to be
tolerated is small, then it may not be necessary to use any heuristics.

It should be noted that using heuristics instead of Steps 3.6 and 3.7 does not affect the
correctness of the algorithm. Moreover, it also does not affect the upper bound on the number of
faulty béhaviors necessary for a guaranteed identification of all malicious nodes (see Theorem 5.7).
Good heuristics only expedite the identification of the malicious nodes on the average.

A formal proof of comrectness of LOCATE is presented later. An example to illustrate the

various steps in the algorithm is given below.

Example §.2: Consider a ten node example system in which at most three of them can be
maliciously faulty. Denote these nodes by pi1, p2, ..., pio and let p1, p2 and p4 be the malicious
nodes. Suppose further that the following faulty behavior is exhibited by the malicious nodes.

¢ In the first execution of the agreement algorithm, p; sends an inconsistent message to ps.
Also suppose that p» colludes with p3 and accuses p; of sending an inconsistent message.
¢ In the second execution of the agreement algorithm, p4 sends an inconsistent message to

Ps and pe.

Consider the situation at the end of the first execution of the agreement algorithm. At the end of
Step .34,

CoFauliy(m) = {p2,ps}
CoFaulty(p2) = {pi}
CoFaulty(ps) = {p:}
CoFaulty(p;) = 0 fora <i:<10.
Asaresult, PF = { {m}, {p2,p3} } and Faulty = 0 at the end of Step 3.7.
Now consider the situation at the end of the second execution of the agreement algorithm.

The sets CoFadlty(pl), CoFaulty(p;) and CoFaulty(ps) are as above while

CoFaulty(ps) = {ps,pe}

CoFaulty(ps) = {ps}
CoFaulty(ps) = {ps}
CoFaulty(p;) = @ for 7< i< 10.
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As a result, PF = { {p1,ps}, {p2,P3,p1}, {P1,P5,P6} } and again no node can be definitely
identified as faulty.

Finally, suppose that the malicious nodes exhibit their Byzantine behavior once again in the
third and the fourth executions of the agreement algorithm as follows:

o In the third execution, p; sends an inconsistent message to ps.

¢ In the fourth execution, p, sends an inconsistent message to p; and p;.

At the end of Step 3.4 we now get

CoFaulty(p1) = {p2.ps}

CoFaulty(p2) = {p1,ps,p1}

CoFaulty(ps) = {pi}

CoFaulty(ps) = {ps,pe}

CoFaulty(ps) = {p2,p4}

CoFaulty(ps) = {ps}

CoFaulty(pr) = {p}

CoFaulty(p;) = 0 for8<i<10.

Although |CoFaulty(q)] < 3V g € P, all the three faulty nodes can be diagnosed this time
because PF = { {p1,pz,p4} }. W

Note that LOCATE was able to identify malicious nodes that have exhibited their faulty
behavior only once. This is because the faulty behavior of a malicious node often increases the
evidence against other malicious nodes. It also appears from the above example that if malicious
nodes exﬁibit their faulty behavior often enough, then it is possibie to diagnose ail of them using
the above algorithm. This notion is formalized in Theorem 5.7.

5.4.3 Proof of correctness

Lemma 5.1: For all p € P, if p is non-faulty, then every g € Suspect(p) is faulty.

Proof: Suppose not. Then, there exist non-faulty nodes p and ¢ such that ¢ € Suspeci(p). This
implies that at the end of Step 3.1 there exists a (v, p,q,!) € Suspicions for some v; € V and a
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round number ! € {0,1,..., maz_round}. Therefore, (v, r,p,k) & Accusations for all k < I,
v € V, and r € P. In other words, no faulty node exhibited its faulty behavior to p prior to

round /, and p sent an incorrect message 1o ¢ in round /. This is not possible. =
Theorem 5.5: For all p € P, if p is non-faulty, then every ¢ € CoFaulty(p) is faulty.

Proof: Follows from Lemma 5.1 and induction on successive executions of the distributed agree-

ment algorithm. |
Theorem 5.6: Algorithm LOCATE is correct, i.e., if p € Faulty, then p is indeed faulty.

Proof: The result follows directly from the following facts: from Theorem 5.5 if p is non-faulty,
then every ¢ € CoFaulty(p) is faulty. So each element in PF does represent an allowable fault
set that could have led to the current sets CoF'aulty(-). Since PF contains all such allowable

fault sets, a node that belongs to all these sets should indeed be faulty. Hence proved. m

Lemma 5.2: Ifthe n+1' execution of the agreement algorithm is imperfect and if |Faulty(n+
1)] = |Faulty(n)|, then there exists a faulty node ¢ € P such that |{CoFaulty(q,n)| <
|CoFaulty(g,n + 1)|, where Faulty(n) and CoFaulty(q,n) denote the sets Faulty and
CoFaulty(p) at the end of the n** execution of the modified agreement algorithm.

Proof: Since the execution of the agreement algorithm is imperfect, there exists a non-faulty node
p that receives a message that is not consistent with the message exchange protocol. This implies
there existsav € V, | € {0,...,maz_round}, and q € P such that (v,p,q,l) € Accusations
at the end of Phase 2.

Consider Phase 3 of LoCcATE. If Accusations # @, then Suspicions # 0. Therefore, let
(v, 7, ¢, ') € Suspicions. Since |Fauliy(n + 1)| = |Faulty(n)), it follows from Step 3.6 that
DF = {. This implies ¢’ ¢ CoFaulty(p’). Therefore, at the end of Step 3.2 ¢ € Suspect(p’)
and p' € Suspect(¢’). This in tum implies |CoFaulty(p’,n + 1)| > |CoFaulty(p’,n)| and
[CoFaulty(¢,n+1)| > [CoFaulty(q,n)|. The lemma then follows since both p’ and ¢’ cannot
be non-faulty by Theorem 5.5. a

Lemma 5.2 implies that a malicious node cannot exhibit its Byzantine behavior without in-

creasing the evidence against at least one malicious node.
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Theorem 5.7: A maximum of m(m + 1) imperfect executions of the agreement algorithm are

needed to identify all the malicious nodes in the system.

Proof: Since each imperfect execution increases the cardinality of CoF aulty(q) for some faulty
node g € P, the cardinality of CoFaulty(p) for all faulty node p € P will become greater than
m within m(m + 1) imperfect executions. The theorem then follows from Step 3.5. =

We now show that any fault location algorithm requires at least m(m+ 1) imperfect executions
of the agreement algorithm for a guaranteed identification of all the m malicious nodes. In other
words, the above algorithm is optimal.

Theorem 5.8: There is no fault location algorithm that can guarantee identification of all mali-

cious nodes in less than m(m + 1) imperfect executions of the agreement algorithm.

Proof: Let fi, fo, ..., fm be the m malicious nodes in the system. Suppose initially only f;
exhibits Byzantine behavior. After f; has been identified, only f2 exhibits Byzantine behavior,
and so on, till f,,. Also suppose each time a node exhibits its Byzantine behavior it does so by
sending an inconsistent message to only one non-faulty node.

This implies each malicious node would have exhibited its Byzantine behavior m + 1 times
before it can be suspected by m + 1 nodes irrespective of the fault location algorithm. Therefore,
at least m(m + 1) Byzantine behaviors are necessary for a guaranteed identification of all the

malicious nodes. |

3.5 Discussion

The problem of identifying nodes with Byzantine faults was addressed. A modification to
the distributed agreement and an associated fault location algorithm to identify all the malicious
nodes in the system were proposed.

The modification proposed is not specific to any particular agreement algorithm. The key
feature of the modification is that when it is used in conjunction with the fault location algorithm
there is an upper bound on the number of times a node can exhibit its Byzantine behavior without
being identified. More specifically, in a system that tolerates  Byzantine faults all the m
faulty nodes can be identified within m(m + 1) imperfect executions of the agreement algorithm.
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Furthermore, we have shown that this upper bound is optimal in the sense that m(m + 1) is
also the theoretical lower bound on the number of Byzantine behaviors that are necessary for a

guaranteed identification of all nodes.
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CHAPTER 6

DISCUSSION AND FUTURE WORK

The focus of this dissertation has been on problems related to designing distributed systems
that are resilient to Byzantine faults. The main thrust of this work was to ensure synchronization
and distributed agreement in the presence of Byzantine faults. Although these two problems have
been addressed before, most of the existing soiutions are economicai oniy in smaii distributed
systems. The key feature of this work is to develop solutions that are practical in small as well
as large distributed systems.

We first presented solutions to eliminate some of the limitations in the existing algorithms for
system level synchronization. The hardware schemes were extended to large distributed systems
by addressing the associated interconnection and transmission delay problems. The solution to
the transmission delay problem almost doubled the complexity of special éimuitry at each node
for every clock input. However, the number of inputs were reduced by as much 80 percent in
some cases by the solution to the interconnection problem. Therefore, the combination of the two
solutions resulted in a scheme that is considerably less expensive to implement.

In spite of this, the hardware schemes are quite expensive as compared to the software schemes
and hence not suitable for all systems. For synchronizing systems in which hardware schemes
are not cost-effective, a software scheme is proposed in this dissertation. The skews achieved by
the scheme are not only very tight but are also insensitive to the maximum message transit delay
in the system. These two advantages make the scheme ideal for synchronizing large distributed
systems with homogeneous point-to-point interconnection topologies.

A combination of the bardware and software schemes discussed here can also be used to
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hierarchically synchronize a system to different degrees of tightness. As a case in point, real-
time applications can often be partitioned into several groups of closely related tasks. The tasks
belonging to the same group may require a very tight synchronization while the tasks belonging
to different groups may be able to tolerate a looser synchronization. These applications can be
easily mapped onto a distributed system comprised of nodes which are themselves multiprocessor
systems. For example, in AIPS {26] fault tolerant uniprocessors are interconnected through a
virtual bus to form clusters and the clusters are interconnected through gateways to form the
entire system. A good scheme for synchronizing such a system would be to use the hardware
scheme for intra-node and intra-cluster synchronization, and the software scheme for inter-cluster
synchronization.

Node level synchronization was the next subject of the dissertation. A scheme was presented
for delivering a clock signal to the components that constitute a “processor” of a mode in a
distributed system. This processor might either be a single chip or a set of few chips organized
in a printed circuit board. The salient feature of the scheme is that the objective for determining
the layout of the clock lines considers not only the maximum line lengths for delivering the
clock signals but also the difference in the length of such lines. The delays introduced by the
clock buffers were also taken into account when determining the layout by converting them into
equivalent line lengths. This work is fairly unique because, to date, we are not aware of any
scheme that considers the line lengths as well as the clock buffers in such a comprehensive
manner.

A checkpointing scheme is then presented for efficiently recovering from software design
errors during a mission. This is important because software design errors cannot be masked by
using any form of redundancy. The scheme made use of the global time base to reduce the time
as well as the space overhead it imposes. The reduction in the overheads were so significant that
it further demonstrates the advantages of synchronization in a distributed system. It also suggests
that there may be several other algorithms whose overhead can be reduced by making use of the
global time base. Identifying these problems will further simplify the design of real-time systems
and also amortize the cost of establishing a global time base.

Finally, a scheme was presented for identifying nodes with Byzantine faults. This scheme
imposes an upper bound on the number of times a node can exhibit its Byzantine behavior
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without being identified. This work is necessary because several algorithms for synchronization
and distributed agreeinent already achieve the theoretical lower bound on the overheads they
impose for tolerating a specified number of Byzantine faults. Therefore, th;: only way to reduce
the overheads is to reduce the number of Byzantine faults to be tolerated. The identification
of nodes with Byzantine faults is the first step towards realizing this goal. The next step is to
detérmine_ the likelihood of a Byzantine fault occurring during a mission. This will eliminate the
pessimistic éssumption that all faults are Byzantine. It will also help avoid the unnecessary use
of costly algorithms that are necessary to tolerate Byzantine faults.

Characterization of Byzantine faults is a difficult problem because the Byzantine fault model
encompasses all possible faulty behaviors. For example, it is not clear how one would characterize
the behavior of a faulty node that acts as an “evil intelligence”. It might, however, be possible to
characterize Byzantine faults that are a result of random hardware malfunctions. These random
Byzantine faults (as opposed to intelligent Byzantine faults) can be characterized by first specifying
the desired behavior and then studying the deviation from desired behavior in the presence of
faults. Since desired behavior may be described at different levels of abstraction, a variety of
deviations can be associated with a given hardware malfunction.

In order to justify the use of costly algorithms to tolerate Byzantine faults it is necessary to
demonstrate that simple schemes such as encryption are not sufficient to mask all the deviations
that occur at a given level of abstraction. Since faults occur infrequently it is not feasible to collect
statistically significant data on deviations from desired behavior by simply observing the system.
An approach to overcome this limitation is to monitor the behavior of the system after injecting
a fault into it. This approach has the advantage that it can be carried out in simulation instead of

the actual system. However, this approach would require further research in test generation and
structured specification.
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