INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9” black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 8920578

High performance and high reliability multistage interconnection
networks

Liu, Jyh-Charn, Ph.D.
The University of Michigan, 1989

Copyright ©1989 by Liu, Jyh-Charn. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

HIGH PERFORMANCE AND HIGH RELIABILITY MULTISTAGE
INTERCONNECTION NETWORKS

by
Jyh-Charn Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering)
in The University of Michigan
1989

Doctoral Committee:

Professor Kang G. Shin, Chairman
Assaciate Professor John R, Birge
Professor John P. Hayes

Professor Ronald J. Lomax

Assistant Professor Pinaki Mazumder

RULES REGARDING THE USE OF
MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations submitted
to The University of Michigan and made available through University Micro-
films International or The University of Michigan are open for inspection,
but they are to be used only with due regard for the rights of the author.
Extensive copying of the dissertation or publication of material in excess of
standard copyright limits, whether or not the dissertation has been copy-
righted, must have been approved by the author as well as by the Dean of
the Graduate School. Proper credit must be given to the author if any
material fram the dissertation is used in subsequent written or published
work. '

© Jyh-Charn Liu 1989
All Rights Reserved

To my parents and my wife

ACKNOWLEDGEMENTS

I am most grateful to my thesis advisor, Professor Kang G. Shin, for his persistent inspira-
tion, encouragements, and suggestion of challenging problems. His guidance and continuous
support is the key element to the completion of this dissertation. His enthusiasm and dedication
on research has always inspired me to pursue perfection throughout my dissertation research.

I'would like to thank other committee members, Prof. John Birge, Prof. John Hayes, Prof.
R. Lomax, and Prof. P. Mazumder for their constructive comments. I also like to thank B.
J. Moganhan for her help on the preparation of this document. Frequent technical discussions
with my colleagues at RTCL make this research a very pleasant experience.

My wife’s moral support has been essential for me to cope with the frustrations of a
graduate student. My parents’ sacrifice to support my education always remind me of their
love and care.

Finally, financial support for this dissertation research by the Office of Naval Research
under contract N00014-85-0122 and the NASA under Grants NAG-1-296 and NAG-1-492 is

gratefully acknowledged.

iii

TABLE OF CONTENTS

DEDICATION i et e e e e e e e e e ii
ACKNOWLEDGEMENTS it it
LISTOF FIGURESttt it i e vi
LISTOF TABLES i e e e e ix
LISTOF APPENDICES it i iee b3
CHAPTER

L. INTRODUCTION ittt ettt e it e e 1

1.1 Research Background

1.2 Organization of the Dissertation

2. NETWORK OVERLAFPPING WITH MEMORY INTERLEAVING 8
2.1 Introduction
2.2 Operational Principles of NOMI
2.3 Cost Apalysis
2.4 Performance Analysis
2.5 NOMI Optimization
2.6 Conclusion

Appendix 2.A: List of Symbols

3. POLYNOMIAL TESTING OF PACKET SWITCHING NETWORKS 39
3.1 Introduction

iv

3.2 Polynomial Testing Principles
3.3 Fault Models
3.4 PSMIN Diagnosis
3.5 Conclusion
Appendix 3.A: Fault Coverage of Polynomial Testing

Appendix 3.B: List of Symbols

4. ANALYSIS AND OPTIMIZATION OF CONCURRENT NETWORK TESTING 87
4.1 Introduction
4.2 Network Organization and Testing
4.3 Network Behavior Under Concurrent Testing

4.4 Optimal System Testing Strategies

4.5 Conclusion

Appendix 4.A: List of Symbols

§. CONCLUSION ittt i 134

BIBLIOGRAPHY i i e 138

Figure

1.1

12

2.1

22

23

24

25

2.6

27

2.8

29

LIST OF FIGURES

A multiprocessor SYSteIM. . . .« . v v v v v v e e e e e e e e e 2
Block ({iagram of three research topics. 6
An N x N multiprocessor system connected by a conventional MIN. 9
The hierarchical structure of a multiprocessor system. 12

Ilustration of a conventional MIN. (a) A timing chart. (b) Its interconnection

Illustration of an OCSMIN. (a) A timing chart. (b) The interconnection function
of an OCSMIN. i i e e 16
Examples of different communication protocols. (a) The handshaking protocol.
(b) The non-handshaking protocol. 19
Required circuitry for supporting (a) a conventional MIN, (b) a two-way over-
lapped network, and (c) a w-way overlapped petwork. 20

Comparison of SRAM operations in (a) a conventional MIN, and (b) in an

Different modes of network operations with DRAM. (a) Conventional network.
(b) Simple network overlapping with memory interleaving. (c) Overlapped
network with memory interleaving. 23

Comparison of DRAM and SRAM operations in a conventional MIN. 27

vi

2.10 Comparison of access parallelisms between conventional MIN and OCSMIN

3.1 A baseline PSMIN with switch permutation [, and the corresponding cascaded

shift register arrays. o L
3.2 The structure of faulty and non-faulty multipliers and divisors
3.3 Switches on a RUT and the corresponding word divisor
3.4 A testable design of switches for concurrent testicg.
3.5 The structure of a 2 x 2 switch and a C-connected queve.
3.6 A queue converted into two symmetric PG’s.,
3.7 A queue converted into two asymmetric PG’s. L. L L.

3.8 Detected-faults/detectable-faults vs. number of shifts whenr=8.
3.9 The logic and functional diagrams of a multiplexer with r data inputs and r
emable signals. e e
3.10 An example of the MU/DEX inan +x rswitch.
3.11 The testing procedures fora 3 x3MU/DEX.
3.12 Verification of testing response by (a) comparison and signature analysis, and
BYMILESR'S. . . . o v v v e et e e et e e e e e e
3.13 An example LFSR implemented with master-slave SR latches.

4.1 An example destination tree and its corresponding graph model for an 8 X 8

PSMIN. e e
42 Disjointsubtreesin 1'{py,. L L Lo o
4.3 The set of track trees in 7'/, T' %, and T P, respectively.

44 (a) A set of track trees and their lexicographical orders. (b) The canonical

tree’s mark and its decoding sequence.

vii

53

62

69

74

4.5 The mean root blocking time of 6 trees under diﬁ‘erent workloads, when N=64
andswitchsize=2x2. 114

4.6 The mean tree congestion times under different workloads when N=64 and
switchsize=2X 2. e 115

4.7 The mean path locking time of a PSMIN with N = G.{, switch size= 2 x 2,
z;nd 2buffersineachquene. 117

"~ 4.8 The mean tree dissipation time of a PSMIN with N = 6., switch size= 2 x 2,
2 buffers in each queue, and the testing length =12, 118

4.9 The mean tree dissipation times of a 6-stage PSMIN with different testing
lengths, switch size= 2 x 2, and packet generationrate=04. 120
4.10 The probability of nodes being blocked when the testing length is 12. 121
4.11 Optimal batch sizes with different queue and test pattern lengths. 124
4.12 Testing costs under different testing lengths when (7,,,. = Hand A = 1079, | 127

viii

Table

LIST OF TABLES

3.1 The fault coverage of MSA faults under different conditions.

h

4.1 The computational complexity of D, and D¢,

................

LIST OF APPENDICES

Appendix ' w

2A: Listof Symbols 36
3.A: Fault Coverage of Polynomial Testing 80
3B: Listof Symbols e 84
4A:Listof Symbols e, 132

CHAPTER 1

INTRODUCTION

1.1 Research Background

Many high performance microprocessors implemented with very large scale integration
(VLSI) technology have successfully entered the commercial market in recent years {54, 29,
30]. Multiprocessor systems built with these (relatively) low cost microprocessor chips have
the potential to outperform conventional single instruction single data (SISD) supercomput-
ers if computational parallelism can be exploited. The basic idea of parallel computing is
to decompose a large task into subtasks, which are then executed in parallel by processors
in a multiprocessor system. Since subtasks need to communicate with each other, a task’s
completion time is determined by its subtasks’ execution time and their communication delay.

While it is relatively easy to increase computing power by adding more processors to a
multiprocessor syétem, it is often very expensive to build a high performance communication
network. Owing to their high performance, multistage interconnection networks (MINs) are
studied in this dissertation. A typical system with a MIN which interconnects single-chip
processors and memory modules is shown in Fig. 1.1. Since hardware cost is a major concern
in system design, our first research topic is to improve the cost-effectiveness of MINs. In

addition to the improvements on cost-effectiveness, our second research topic is to improve

1

Processors Memories
Inter-connection
Network
[[]
o ®
® o

Figure 1.1: A multiprocessor system.

the reliability of MINs, because the large number of processors and/or memory modules
connected by a MIN may become useless when the network fails. Since the architectures for
improving performance/cost-effectiveness and reliability are compatible with each other, high
network performance and reliability are expected when these two architectures are integrated
in one network.

Research related to important features of MINs like performance analysis, fault-tolerance,
and combinatorial capability, is surveyed next. An excellent introduction to the classification of
interconnection networks can be found in [36]. MINs may be designed to be circuit switched or
packet switched. In general, packet-switching MINs are suitable for short messages, whercas
circuit-switching MINs are more suitable for massive long data streams [36, 88, 2, 112]. Thus,

both types of networks have their unique advantages and disadvantages. System performance,

3

programming languages, and construction parameters have been extensively simulated to study
the feasibility of MIN-based systems [28]. Several experimental prototypes have also been
built, e.g., TRAC at the University of Texas Austin [82], the NYU Ultracomputer [48], the
PASM computer at Purdue University [94, 14, 48], the Starnet [111], the Ceder project at the
University of Hllinois [43], and the RP3 project at IBM[80], to name a few. These prototypes
can provide realiélic system parameters for clock skew minimization [33, 41, 40], modular
design [27, 39, 48, 14], and design optimization [53, 58] of large scale MINs.

The next important feature of MINs is their combinatorial capability. Many network
topologics have been proposed such as perfect-shuffie [100], omega [62], flip [6], banyan
[45], rearrangeable [26, 8], data manipulator [35], and indirect binary N-cube [78]. Permutation
capability and routing control of different network topologies have been of intensive research
interest [101, 19, 99, 115, 74, 100]. Wu and Feng shdwed that a class of important networks,
such as modified data manipulator, baseline, flip, perfect shuffle, indirect binary N-cube, and
regular SW Banyan networks, are topologically equivalent [110). Boolean and arithmetic
functions have also been incorporated into MINs [35].

.Throughput analysis is one of the most active research topics. Benes introduced basic
mathematical models of MINs [9]. Circuit-switching MINs have been analyzed with proba-
bilistic models [11, 77, 114, 12], or Markov models [85, 102, 111]. It is intractable to analyze
packet switching MINs due to the excessive number of system states. To simplify the analy-
sis, it was usually assumed that stages in a MIN are independent, and queues in each switch
bave an infinite capacity [23]. These assumptions may yield good approximations when the
actual buffer size is very large, or the network has light traffic[59, 60], but the dependency
between stages cannot be ignored when the buffer size is small, and the network traffic is
heavy [18, 57, 16].

In addition to the fault-tolerant design of switches [69, 44], the fault-tolerance capability

4

of MINs is improved by providing redundant paths to the system. Graph models have been
proposed to denote paths in a MIN, and redundant paths can be derived from the redundancy
graph [4, 76, 13, 86, 25, 84, 86, 63). Some researchers proposed to replicate links without
increasing the number of switches [25]. Redundant paths can also be obtained by adding
additional stages to the network. Sicgel er al. proposed to add one extra stage of switches
and links while retaining the same combinatorial capability [1]. It has been proposed to
decompose a packet-switching MIN into fanout, transferring, and merging stages [23, 24].
Analysis showed that very little performance improvement can be gained when more than two
extra stages are added. Thus, adding more stages to a MIN will improve its fault-tolerance
capability but decrease its throughput.

Two major processes, fault diagnosis and fault recovery[96], are needed for improving
network reliability. Since fault diagnosis is the most expensive and difficult process, we will
focus on issues related to it in this dissertation. A system’s reliability will be degraded seriously
if the system does not have efficient fault-detection mechanisms[91, 105]. In particular, single
faults should be detected and repaired as soon as possible before they are accumulated into
multiple faults, which are far more difficult to handle [92, 66].

It is difficult to test MINs, because they have a large number of components and YO
ports, and each ¥/O port is connected to an independent processor. Any testing method should
have the following features: (1) applicable when a large number of processors and/or network
components are faulty, (2) extensible to large scale networks, (3) can be easily handled by each
processor, and (4) can be applied to multi-path networks. Fault masking [61, 108, 98, 46, 51]
and coding techniques [42, 67] can effectively combine fault detection and fault recovery
processes, but are too expensive for MINs due to the large number of components in MINs.

‘Thus, we will develop easily testable architectures [10, 109] for periodical network testing

during normal operation, and for fast fault diagnosis in case the system operation has been

5
stopped. Testing of circuit-switching baseline MINs with 2 x 2 switches has been studied
thoroughly [38, 3, 37). Shen ¢l «l. [64} modeled a CSN using 2 x 2 switches as an iterative
logic array (ILA), which can be tested with a constant number of patterns. Leu and Agrawal
used dynamic full accessibility [90, 89] to develop a high level diagnosis method for MINs
[5]. Lim proposed the use of testing packets to exercise a network periodically [68]. Several
rescarchers have proposed adaptive testing strategics for packet switching MINs with different
topologies [106, 21, 71, 75, 20, 70, 104, 103). Since adaptive procedures usually imply
centralized testing evaluation and require human assistance, such a strategy is very inefficient

for multiprocessor systems.
1.2 Organization of the Dissertation

To develop cost-effective high performance and high reliability MINs, three major research
topics, as listed in Fig. 1.2, have been investigated in this dissertation. The correlation of
these three topics are introduced as follows.

The cost of a MIN with N input/output ports is N log, /N. The primary technique to
reduce the network size is to group processors/memory-modules into clusters to reduce the
number of I/O ports of ihe network. When the clustering technique is applied to a packet
switching MIN, the number of processors (memory-modules) in a cluster can be determined
by matching the bandwidth of processor (memory) clusters with the bandwidth of buffers in
input (output) stage'. On the other hand, there is no buffer in a circuit switching network.
It will be shown in Chapter 2 that the clustering technique alone can only provide very
limited performance improvement in circuit switching MINs. A more sophisticated network
overlapping and memory interleaving (NOMI) technique can improve the system performance

at reduced cost.

! As will be seen in Chapter 4, each stage in the network may have a different bandwidth.

high-performance
high-reliability
MINs

performance reliability
improvement analysis improvement
NOMI Network Dynamics Polynomial
- Fault-free model, Network Testing
architecture, path locking time, high-level & 1
bandwidth, blocking tree model S st
e S ’ level testing
utilization, congestion trees, hitectures
blocking factor, dissipation times, ?;fxlt model.
optimization optimal testing length, y
ontimal fault cov fault coverages,
p crage testing speed

e

Conclusion &
future work

Figure 1.2: Block diagram of three research topics.

‘When the network size is reduced by the clustering technique, the performance loss caused
by a failed network component is more serious, because more processors will be affected by
the failed component. As mentioned earlier, since most fault masking and coding methods
are too expensive for MINs, we will develop easily testable architectures for packet switching
MINs in Chapter 3. The first easily testable architecture supports high-level network testing,
which is periodically applied to the network during normal operation. The second architecture
supports low-level network testing, which is for fast fault diagnosis after stopping normal
operation completely. These two architectures can be easily modified to be used in circuit
switching networks, because circuit switching networks can be considered as packet switching

networks with no buffers.

7

In a packet-switching network, a path needs to be locked up before it is tested by the
high-level testing method. To avoid excessive performance loss during network testing, it is
important to understand the network dynamics such as the probability of the network being
congested, and the dissipation time of a congested network. Thus, the analysis of network
dynamics and the optimization of concurrent testing strategies are studied in Chapter 4. The
first objective is to minimize the performance loss caused by testing. Performance loss is
minimized by applying test patterns in small batches, not in a long stream, to avoid blocking
an excessive number of packets. The other objective is to trade the mean fault detection time
for fault coverage. This objective is justified because (1) fault coverage increases with the
length of test patterns, and (2) the probability of system crash increases with the mean fault
detection time.

Several concluding remarks are made in Chapter 5.

CHAPTER 2

NETWORK OVERLAPPING WITH MEMORY INTERLEAVING

2.1 Introduction

In conventional MINs,' a physical path between a source and destination must be estab-
lished for data transmission. As shown in Fig. 2.1, a conventional MIN contains a forward
network and a backward network. Requests/data generated by processors are routed thr(;ugh
the forward network to memory modules, and service results are returned to the processor
through the backward network. The utilization rate in conventional MINs is low, because a
forward path and a backward path must be locked up simultaneously before the service of a
request is completed.

Pipelined MINs have been proposed to improve network performance [95, 41]. A burst
of data can be transmitted once a pipeline in the network is established. However, when the
size of data burst is not large, the performance of a pipelined MIN could be worse than a
conventional MIN due to setup overhead. Both asynchronous and synchronous multiplexing
have been widely used in telecommunication systems [55, 7). Asynchronous control schemes

are less useful for large systems for their long delay. Although the synchronous multiplexing

technique has been widely used in telephone switches [72, 55, 7], the depth of multiplexing

! We focus on circuit switching MINs in this chapter, thus, the temm “circuit switching ” will be omitted.

8

PROCESSORS

Figure 2.1:

BACKWARD
NETWORK

<<

FORWARD
NETWORK

MEMORY MODULES

An V x NV multiprocessor system connected by a conventional MIN.

10

in telephone switches is limited so as to guarantee the quality of voice signals. The nenwork
overlaﬁping and memory interleaving (NOMI) technique proposed in this chapter is a type of
synchronous multiplexing for large multiprocessor systems. For convenience, a MIN equipped
with the NOMI technique is called an Overlapped Circuit Switching Multistage Interconnection
Network (OCSMIN), |

The NOMI technique may increase or decrease the mean system waiting time in an OC-
SMIN based system. To decrease system waiting time, the size of switches can be increased to
lower the network’s blocking probability. To improve the network performance at a reduced
cost, a branch and bound procedure is developed to find optimal combinations of switch size
with the depth of overlapping/interleaving.

The rest of this chapter is organized as follows. Section 2.2 describes operating principles of
the NOMI technique. Hardware cost and performance of conventional MIN and OCSMIN are
compared in Section 2.3 and Section 2.4, respectively. Optimization procedures are discussed

in Section 2.5. Concluding remarks on the NOMI technique are given in Section 2.6.
2.2 Operational Principles of NOMI

Clustering is the first step in the design of OCSMINs. A processor cluster pc; is a set
of processors p;;, 1 < j < w, and an interface unit pn; between these processors and the
network, i.e., pe; = {pn;, pijl 1 £ j < w}forall | </ < N', where N is the number
of processors in the system, N’ = N/w is the height of the network, and w is the number
of processors in a cluster. The processor subsystem is the collection of processor clusters,
S = {pe;| | < i< N’}. Similarly, the memory subsystem /5 is the collection of memory
clusters, ie., MS = {me;} 1 < i < N'), where me; = {mnic mij] 1 < j < w), myjis
the j-th memory module, and 1 n; is the interface unit at cluster /, respectively. Note that a

conventional MIN can be considered as an OCSMIN with «: = | and N = AN,

11

conventional MIN can be considered as an OCSMIN with w = | and N = N,

Fig. 2.2 shows a hierarchical system structure containing processor and memory clusters,
A [log, N'] stage network must be used to connect processor and memory clusters. In the
forward network, a forward switch is denoted by I'S;;(m,!), where {j is the coordinate of
the switch, and m and / represent the m:-th input port and /-th output port, respectively. (i
and [will be omitted whenever they do not cause any ambiguity.) Similarly, in the backward
network, 3.5;;(m,l) denotes a backward switch where n represents the 1:-th output port and
[the [-th input port. The set of switches and links in the network can be represented by
{FSij, BSi;; |1V <i< N, 1<j<k},and {FL;;, BLij | 1 <i< N, 1<j<hk+1),
respectively, where I'L;; (.B];,:;) is a link in the forward (backward) network. The forward
and backward networks are topologically identical if they have identical network structures

except for the direction of routing,

Definition 1 : When the forward and backward networks are topologically identical, the
switch B35S, is called the partner of IS, 7, BSy, = H(FSey), when « = ¢, b= [, and 3S,,

is set up for later servicing of all the requests passing through IS, ;.

The partner of a forward (backward) link, which is also a backward (forward) link, can
be defined in a similar way. Interconnections between processors and memory clusters can be

represented by the Interconnection Relation :
1R = {(peiy (P, mej, ;BP) | L<i, j< N},

where (I'Pj = {(pui. F'S1y(iv,00). FlLyy FSany(i2,02), Flay, <o FSpp in.op).

FLk+l.w,+x , mn;)} is the set of all paths from pc; to mic;. Similarly, iU = pnic S,
(lyori)e BLyy, BS20(l2yr2)e Blayys oo Sk (I rre), BLigrygg, mnj)} represents all
possible paths from mic; to pe;. In addition to the relation IR, a dynamic model is needed to

distinguish conventional MINs from OCSMINs. At time instant /, the request pattern (/) is

pn,

12

PROCESSOR
CLUSTERS

Figure 2.2:

MULTISTAGE
INTERCONNECTION
NETWORK

r x r switches

N
<—|rl°gr '\V] e o

<4 ?.IZ——D'

The hierarchical structure of a multiprocessor system.

MEMORY
CLUSTERS

13
represented by an N'—tuples {(a (), a2({),---, an(t))] a;(t) € {0,1,---, N}, 1 < i<
N'}, where ¢;(t) = j if pe; requests 10 access mc; at time t, and «;(1) = 0 if no request is
made by pc;. For each request «;(!), there is a comresponding forward path in the forward

network,

iI°P; ife;(t) = j and the request is granted
AP =
¢ if «;(1) = 0 or not all resources available at time t

and the corresponding backward path

o ' jBP; ifa;(1) = j and the request is granted
iBr) =
¢ if «;(1) = () or not all resources available at time t

We can define the Forward Interconnection Pattern,
Frei) = { iFIIj(f-)II 1<i, j< N'}. where ;F]I:,-(t) = (ai(1), (FDi(t). mc;).
and the Backward Interconnection Pattern as
BIP(ty = {jBH{t)| 1< 4, j< N'}, where ;BII;(t) = (a;(t), jBIi(1), me;).

At time |, I'1 P(l) and BIP(l) are established paths on the forward and backward net-
works, respectively. In a conventional MIN, ;/3/1; and its partner ;["/l; are simultaneously
locked up for a set of requests, and thus, BI’(1) = 1(FIP(1)), Vi. Operations of MINs
can be represented by the Total Interconnection Pattern: TI1D(1) = FIP() x BIP(1)

= {(ai(l), {FP;(1), mej, jBI())].

Definition 2 : For 1 <4, j < N', the function C'SF : A(t) — T1P(t)is the interconnec-

tion function of a conventional MIN, such that

() CSF(alt)) = "1(1) x jBIL(1),

14

(2 T1P;(l) is unique for each «;(1), and ;, P, (1) N ,FPj(l) = ¢ V iy # iy

3) iB Pty = 1(;17 P(1)).

When ;, I'P;, N, I'P;, = ¢, requests u;, (!) and «;,(¢) do not have resources contention.
In a conventional MIN, as illustrated in Fig. 2.3, components locked in the forward network
are idle dﬁring periods T2.and T3, and gates and links locked in the backward network are idie
during T1 and T2. To increase resource utilization rate, we can relax the total interconnection

relation ('.5'1” into a new operation OV" /"

Definition 3 : The function OV I : A(l) — T1'IP(l) is an interconnection function of the

OCSMIN satisfying following conditions:
$))] OV F(ai(t)) = F'11;(t) x ;131x(1), i and j need not be equal to /' and j',
) i1 P;(1) is unique for each «;{1), and ; FI/; ()N 4, FPo(t) = ¢if iy # iy

3) i DBP(t) =1 ;1°Pi(1 — At)) for all 1 and some fixed Af.

Functiogs C'ST and OV J" describe operational principles of conventional MINs and OC-
SMINS, respectively. The timing chart and interconnection function of an OCSMIN are plotted
in Fig. 2.4, Note that at time /, a processor/memory interface may appear in both ;/'//; and
j 3 H; while serving different requests. The maximum number of requests that can be routed
through one path within A/ is called the number of phases, w, or the depth of NOMI. The net-

work cycle or network propagation delay is the time to route one request through the network.

The NOMI technique reserves the partner of a established forward path for use after a
delay of .\/, and an established path in forward network is immediately released after the

processor’s data are transmitted into (he destination memory module.

15

y'\ r7>77> tesources locked but idle

resources utilized
resources free

memory
backward
network
forward
network
2 2
e
1 2 '3
(a)

BIP(t)= T (FIP(t))

FIP(t)

(b)

Figure 2.3: Ilustration of a conventional MIN. (a) A timing chart. (b) Its interconnection
function.

16
MEMORY MODULES

A l@Access-0} |@AccessD} a-Access -
phase 1 - 4 L

/,.v] I] |

phase 3 I L | I

phase 2

phase W J - J L

FORWARD

phase 1

phase 2

phase 3

phase W -

> ¢

BACKWARD NETWORK

phase 1 —

phase 2

phase 3

phase W —_—

Figure 24: Mustration of an OCSMIN. (a) A timing chart.

w 2

BIP(t)= IT (FIP(t- A t)) w
2

w|® |2

FIP(t) /E

at instant t

BIP(t+ 5)= TI(FIP(t W 41))

FIP(t+A t)
Lt

at instant t+ at
W MEMORY CLUSTERS

Figure 2.4(b)The interconnection function of an OCSMIN.

18

OVF can be implemented by the NOMI technique if and only if Al = 1%, and w x
Tp = Thy, where Ty is the network propagation delay, and 77 is the memory cycle time.
When w x Tp = At = Ty, w requests are serviced in a memory cluster in a time period
T'a;. Completed services are routed in the same order through the backward network to the
originating processors. Thus, ;B P;({ + Tyy) is the partner of ;["P;(() for all /. When one
completed service is being routed through the backward path, its partner path is available for
other requests, thus satisfying all three conditions of the function Q1" [

Let T» be the mean request time between requests of processors, the number of processors
within one processor cluster is Np = iﬁ, where 17 is the network propagation delay. For
simplicity, it is assumed that one memory cycle is equal to w network cycles, and each cluster
is composed of w processors or memory modules. In a cluster, only one processor (or memory
module) can access the network at a time. Thus, memory modules in a cluster are physically
interleaved into w phases, ph;, 1 < i < w. However, processors in one cluster are logically
interleaved due to their random request time,

To minimize the path establishing time, instead of using handshaking protocols between
switches [107], a processor’s phase number can be transmitted to acknowledge the completion
of service. A message/request will be retransmitted if it is not acknowledged within A/, A
comparison between handshaking and non-handshaking methods is shown in Fig. 2.5. Since
w requests may be routed through any 1/O port of a switch during one memory cycle 7},
w — | switching states can be stored in w — 1 registers. Fig. 2.6 shows the different designs
to support OCSMINs and conventional MINSs.

Static random access memories (SRAMSs) and dynamic random access memories (DRAMs)
are the most popular main memory components for commercial machines. Contemporary
commercinl DRAM chips are standardized to use multiplexed two phase addressing: row

(ras) and column selection (cas). On the other hand, single phase operation is still a standard

19

request-in rj ——py

tag t;, —

busy bio 4——J

request-in r;, —
tag t"l

~ busy b,-l <+

— request Tis,
“4—— busy b,

>

request i,

¢— busy b,

bio=rio(bi+lo;io+bi+11 ti,)

biy=rioriy(ty tigHiztio) +righi (ti,bisy +tiy bivr,)

Fislo=Tiotigt iyt (bic*T i)
Fin=rifiotrifty (tigtriy)

(a)

request-in rj, ——

tag tio e

request-in r;, —
tag til —P

——®~ request 7.

——&- request Tis,

Figure 2.5:

ri+l°=ri°ti°+ri‘ti ‘(tl'o"'rl'o) |
ri+1=riotio+ri1ti 1(tio+rio)

(b)

(b) The nonhandshaking protocol.

Examples of different communication protocols. (s) The handshaking protocol.

20

S
, 1
- ‘ I .
processof A memo
o ML S
4 ——
1
backward switch J) m forward switch
overlapping
e— latches ‘J 1Y
-
. switching
' decision [~
I_ —
control T T
Tags
- -
f/f fif - o0 o f/f
— -
L |
B :
® <(:lb_x CLK
: over{apping latches ©

Figure 2.6: Required circuitry for supporting (a) a conventional MIN, (b) a two-way over-
lapped network, and (c) a w-way overlapped network.

21
for commercial SRAMs [83]. Both DRAMs and SRAMs can be easily used in the NOMI
technique, except when the depth of overlapping is 2. Figs. 2.7 and 2.8 illustrate two-way

NOMI techniques for DRAMs and SRAMs, respectively.
2.3 Cost Analysis

The primary advantage of the NOMI technique is that it has the potential to improve
system performance at reduced cost. To have a fair comparison with conventional systems,

the network cost is defined as follows.

Definition 4 : The cost of a conventional MIN (or an OCSMIN) is defined to be the number
of data gates and links. The cost factor is the ratio of the pumber of data gates to the number

of processors.

The cost and cost factor of a conventional MIN using » x » switches are rN lug, N and
rlog, N, respectively. In an OCSMIN with » x r switches, the total number of gates is
r[&][log, &7, The total number of gates is changed by » N [log, N1 — » [Mog, X7, and
the cost factor of an OCSMIN is [log, —,’%] Although the logic circuit and the number of
links increases with the network size as O(/V log V), the link length still grows in Q(N?)
complexity [32]. Since only the number.of reduced links has been taken into account, we have
a conservative cost analysis. As an example, 5120 2 x 2 switches (20480 gates) are required
for a conventional 10-stage MIN, while only 1024 2 x 2 switches (4096 gates) are needed, if
the network is overlapped in four ways. Modifications to existing designs to implement the
NOMI technique include: (1) additional w ~ 1 registers at each switch, (2) a network clock
w times faster than the memory clock, (3) a w-phase clock for each memory cluster, and (4)
interface units in processors or memory modules.

Note that resource contention among processors increase when processors are clustered.

The performance impact of resource contention caused by clustering can be neutralized by

22

m memory access

‘] processor —f~memory

memory ——{g processor

memory = ‘ Y277

request 2e—

AAAA
JEICRX)
LI

request 1—¢ atata%ats
R e e A >
4 (a)
| 1 2 1 3] 4 1 51
memory = G799 T SN A,
access
5-—
4
K =
2
request 1—
"

(b)

Figure 2.7: Comparison of SRAM operations in () a conveational MIN, and (b) in an
OCSMIN.

23
V////7] memory access

processor ~—@= memory

memory —{@ Processor
A E=== ras precharge

memory~t-

2 4

request 1—1—

>t
4 | 1 | 2 i 3 I 4 I
memory == A ——= 1 ——— A= Y —
4 -

request 1 -

memory &

phase 1 -

phase 2 | V= ===

2

Figure 2.8: Different modes of network operations with DRAM. (a) Conventional network.
(b) Simple network overlapping with memory interleaving. (c) Overlapped network with
memory interleaving.

24
increasing switch size. The following theorem describes necessary conditions to reduce system
cost while we increase switch size (in order to improve system performance) in the NOMI

technique.
Theorem 1 : The cost of an OCSMIN can be monotonically decreased when
¢y a conventional MIN is replaced by an OCSMIN,

@) switch size is increased, and

3 the relative increase in the overlapping (or interleaving) depth is greater than that of

the switch size.

Proof: The cost (', is +N [lug, N for an N x N system connected by a network using
r X r switches. The cost of a new network, (*,..., with overlapping depth w and ' x '

switches, is 1'% [log,, %] Since ' > r, flog, N1 > [log, &]. We can now consider the

w iy

factors N in (,,;; and P Chere Applying the third condition to these factors, we get

w

4 < <5 and thus ,'—",';1\’ < =N, It follows that C',p.;y > Chen [|

Corollary 1 : The cost of an OCSMIN satisfying Theorem 1 is always less than or equal to

the cost of a bidirectional MIN.

Proof: In a bidirectional network, the forward and backward networks are essentially combined
into one. The NOMI technique cannot be applied to bidirectional networks. Thus, the cost of
a bidirectional MIN is £X [log, N.

The lowest possible NOMI depth is 2 for an OCSMIN. The cost of a two-way overlapped
OCSMIN is “¥[lug, N7. Since the network cost decreases monotonically when Theorem 1

holds, OCSMINSs are always cheaper than bidirectional networks. |
2.4 Performance Analysis

The performance of conventional MINs is compared with the performance of OCSMINs

25
in this section. In addition to conventional performance parameters, i.e., blocking factors and
network bandwidths, we introduce two additional parameters called the mean system access

time and execution/access parallelism in this section.
2.4.1 Blocking Factors and Bandwidths

Numerous models have been proposed for evaluating blocking factors of the conventional
MINs [77, 114, 85, 11, 65]. For its simplicity and accuracy, the model proposed in [77] with

the following assumptions is used:

Al Requests generated by processors are independent and uniformly distributed.

A2 Switches in the network have synchronous operations, and it takes one network cycle
to establish a path. In each network cycle, a processor generates a new request with

probability .

A3 A blocked request is discarded, and new requests will be generated independently.

Although assumption A3 is apparently unrealistic, it greatly simplifies the analysis, and
has been validated by simulation [77]. With the above assumptions, the blocking factor at

stage / can be expressed as

;.
=y 2.0

Pyy =t - (L= "
where I is the probability that a request appears at an output port of an » X r switch located
at stage i, and /Y is the request rate of a processor cluster. Let & = log, N be the number
of stages and /’c, (or [,) be the probability that a request can pass through the /: stages of
the conventional MIN (OCSMIN). The network pass-probabilities of conventional MINs and
OCSMINs ate Iy, = Z5k and Iy, = 1%, respectively.

In conventional MINS, the second sub-cycle (ras precharge) of a DRAM can be completed

when the data is being transmitted back to the processor. Thus, memory bandwidths of

26

DRAMs and SRAMs are essentially the same, as shown in Fig. 2.9. The memory bandwidths

are for conventional MINs and OCSMINs, respectively, where

zTD-fl-l'Ms and niax (Yl{wsy'l'n)
Tp is the network delay, and T}/, is the memory cycle time of an SRAM.

Little performance improvement can be achieved if only network overlapping (without
memory interleaving) is implcmented. For example, the throughput of an OCSMIN with no

interleaved DRAM memory modules is one half lower than the throughput of a conventional

netwotk with SRAMs. The memory bandwidths of conventional MINs and OCSMINs are

1 1 s
2Tp+Tarp, and 2 max (TaryIn)? respectlvely.

Bandwidths of a /:-stage conventional MIN and an [-stage OCSMIN, where / = [Iug,f%—:],

are as follows.

_ NxDy,
BWe = Tar+2Tp
. NxPy N
By = 11\: X _T—L X W= X Py, ,

where B¢ and BV are bandwidths of conventional MINs and OCSMINs, /,, is the pass
probability of an /-stage network, and w is the depth of interleaving. The maximum utilization

rates of conventional MINs and OCSMINs are 7—+£{7— and 100 percent, respectively.
2.4.2 System Access Time and Access Parallelism

We now discuss the impact of the NOMI technique on system waiting time, which is the
mean time to establish a path and then access the memory module.

In the system access time analysis, a partially established path is assumed to be immediately
released when a request is rejected [65]. After a path is established in a conventional MIN,
there is a .leu average delay before a memory module can actually be accessed. Similarly, in

an OCSMIN, an average delay of Lf,_”- is expected before a processor can access the network.

Thus, the mean system access time can be expressed as

27

A

//] resources utilized

resources locked but idle

ras precharge

DRAM

| L
1

Figure 2.9: Comparison of DRAM and SRAM operations in a conveational MIN.

28

1 1 .
To = /U [2Tp + =Tar + PaTar + (L= Pa)Pa2Tar + (L= Py)2Pa3Ty - JdI(D)

2
= /][27‘ £ 1y < P S PP
=), b +357u MLagp 2 A (P
1 1 !
= [21b + (5o + 5/ Tular) 22
Ju Py 2
and
— ! 1. . . - .
Te = [[Wn + 57 + Pa2lp + (1= Pa)Pa(2Tp +Tp) +--JdF(D)
L3 Py e \
= _'1' o ’ n - _7. n—] :‘ p
[G+ T T = Pay D)
'3 L+ Py
= /[:‘TM + Tp +, Ljd(P) (2.3)
Jo 2 Iy -

where Ty, and T’ are the mean system access time in OCSMINs and conventional MINs,
respectively, and [°() is the distribution function of the request rate.
I, is a monotonically decreasing function of the number of stages in the network. 77,

is determined by both the switch delay and the cable delay. The mean system access time

difference between a conventional MIN and an OCSMIN is

Te — To =3Tn. + Th. %— ~ (2T, + l—,“afj*

=Tp.l + 77 = 20) + T (3 =

where d = -{,—ﬁ-‘c’- and m = j;: o The mean system access time of an OCSMIN is smaller than

that of the conventional MIN if d < —1—},{# and m < ’—’;Q For example, in crossbar networks

the network pass probability quickly converges to a constant (~ 0.7) [77], and '+ < |,

d < 1. Thus, NOMI can always be applied to crossbar networks without increasing the mean
system access time.

The last performance parameter to be considered is the degree of parallelism in system

executionfaccess. In an OCSMIN based system, every memory module can be immediately

29

accessed after its current cycle, and processors can execute their own instructions indepen-
dently. Thus, the access parallelism of the memory subsystem and the execution parallelism of
the processor subsystem are the same as that of a conventional MIN based system. However,
the NOMI technique does affect processors’ access parallelism.

A processor cluster can be taken as a «» x w switch, because each network access phase in
a cluster can be treated as an output port of a switch. Thus, at each phase ph;, the probability
of a request appearing on the interface pn; is P,;,, = 1 — (1 - —,’—;). We can now get the
access parallelism %, by plugging I, in the above equation into I, of Eq. 2.1, where (is
the number of stages. The NOMI technique must be carefully adjusted to improve the access
parallelism and avoid performance penalty. Access parallelism in three different networks
connecting up to 1024 processors/memory modules are shown in Fig. 2.10. As shown in Fig.
2.10, the access parallelism of an OCSMIN with a four way NOMI using | x -| switches is
higher than the access parallelism of a conventional MIN with 2 x 2 switches, and is close to

the access parallelism of a conventional MIN with .| x .| switches.
2,5 NOMI Optimization

The NOMI technique can achieve different design goals by adjusting the depth of overlap-
ping/interleaving and switch size. Since MINs have integral number of stages, and most other
design parameters have continuous values, all the related optimization problems are mixed
integer nonlinear programming problems. The optimization problem is solved by a branch and

bound technique, which is illustrated by two examples.
2.5.1 Combinatorial Capability

When N processors communicate with one another, the number of possible permutations is

N, For a large NV, V'! can be approximated by the Stirling’s equation, N! = N V¢~V /27 N,

30

w=4 r=8
w==4 r=¢

w=] r=2

{ { | i] | | |]]

PROCESSOR
ACCESS
PARALLELISM
.0 .
6.8
-
0.6 -
0.4 _L.
0.2 .
|
l
2

{ l ! { { ! i { ! !

16 32 64 128" 256 512 1024 2048 4036 6192

PROCESSOR NUMBER N

Figure 2.10: Comparison of access parallelisms between conventional MIN and OCSMIN

when p=1.

31

In a conventional MIN, the total number of conflict-free permutations |/I’| is (r1)7 % ¥,
The ratio of conflict-free permutations to the total number of permutations (/N'!) decreases (o
zero even for small N. For example, 18! ' l = 0.0002, and 'P ' ~ L6 x 10712

We now derive the number of conflict-free permutations, | "], in a network implementing
w-way NOMI technique with r x r switches. When the depth of NOMI is «, one system
cycle is composed of w phases. In the first phase, there are w combinations of processors
that may present service requests. In the second phase, there are i — 1 selections for each
processor cluster, and ‘lhus there are {(w — |)J:% selections for the system. By induction, there

are (w!)l-:'{ combinations of processors to be interconnected in one system cycle. At each

phase, the network can perform (r)i 780 5 different permutations. Thus, [Ly"]| = (wlym

The combinatorial capabilities of various networks change too radically to be included in
the objective function of the optimization problem. For example, 1024! =~ 102%1, |P2, | =
LOUS UL L3 & 1037,) Ly | = 1077, [L5E,| ~ 1075!, Thus, the combinatorial capa-
bility is used as a constraint in the optimization problem to prevent any excessive degradation

of the network’s combinatorial capability.
2.5.2 Optimal Design

Many switches can be used to implement the NOMI technique of a specific overlap-
ping/interleaving depth. A configuration wr is defined as the combination of the overlapping
depth « and the switch size r. All feasible configurations form a configuration space 2. The
memory and processor subsystems are assumed to have fixed operational parameters, i.e., the
memory access time, the instruction execution speed, etc.

Recall that the cost of a network is (',.,, = [X][log,[£1]. The network cost monoton-

ically decreases with the overlapping depth. When N/ = ’%’] is fixed, and for r; € (2, s € /¥,

32
log,, N' € I*, and 0 < log,, N’ —log, ., N' < 1, we have [log,, N'] = [log,, ., N']. That
is, (', is a sawtooth function, and r; is a local minimal point when [log,, N'] = log,, N'.
Given a fixed w, to find the global minimal cost we only need to examine local minimal
points 7,72, , Py, Where 1y, is determined from the upper bound of cost. r;’s can be

. . —L‘— log r;
derived recussively by riy = %!

. When the number of stages is decreaseci by one,
the network cost is changed by AC,,, = N ((#i — rig1)i + rig1), where #; — riyy is the
increased switch size before decreasing the number of stages by one, and /; is the number of
stages. Since AC, ,, is neither positive nor negative, »; through r,,,, must be exhaustively
searched for the global minimal cost.

To demonstrate the optimization technique, mean system access time in Eq. 2.3 is used as

the first example objective function. The mean system access time is composed of two parts:

LT

the fixed network propagation 217, and the random network delay %T,\ 1+ / T dF(r),
JO Apr
where Py, = D/ P is the pass rate of the network, P is the probability that a request can

be transmitted through a /:-stage network, and / is the probability that a request occurs at a
certain phase.

The first constraint in the above optimization problem is the network propagation delay,
which is composed of active components’ (switches’) delay }', and passive components'
(cables’) delay [14, 81]. The cable delay is determined by the physical size of the network.
Most network topologies will shuffle cables, i.e., the passive network delay is proportional to
the height of the network [£7]. Thus, cable delay can be expressed as ¢ [&7, where 4 is
the unit length delay of the cable used. Reliability sets the other constraint in the optimization

problem: when one cluster fails, the loss of computation power should be bounded by a

constant 5. The formal problem statement is then given as follows.

| Y
Problem OD: min_ 27}, + %'Ih/ + —{-lll/"(l’)
wre §2 o 1 Awr

33

subject to constraints :

M) T, = kurlY +65)
@ Pp=1-(1-4&y
3 Pay, = P, [P
@ Ty 2uwlp,,

) ("spcc 2 Cr 2 "'[%] l“!;’,',- P‘,%.I

© b2

Zlz

D LN 12| Lopeel-

This problem is essentially a mixed integer-nonlinear programming problem. Given Y, 8.
T’x1, and b, a branch-and-bound technique is presented here to find the optimal combination

of w and »r.

S0. Pine = 0, Wipe = O Thye = 00,
S1. Compute an upper bound of w by w,,,,. = | Nb].
S2. w = 2.

S3. Obtain an upper bound of the stage number by solving k,,,.,.[Y + [%]) < Thpuse
,]bmu.r = lz'ﬁL'
S4. Pamin = i',',r {l- log, (/.—\,_{-l] < /"nlu;r}, and 1y = Sl,l'l’{ "r %I,'][IU%}[%r-” < ("s])n‘}'
SS. If ryay < 4in then e is infeasible and go to S8 else » = r,,;,.
S6. Tr = QT]_)“,,. +"%7“‘[+ / T'i:u— dir(P). ¥ T\, < T;, then T3, = T, Wine =
U AAwr

W, Tine =7

34

S7. =17+ 1. i1 < ryg then go to S6.
S8. w:=w+ 1. If w < w4, then go to S3.

S9. If wincrine = 0 then no feasible solution else T, = Ti,c, Wopr = Winey Popt = Pinee

For example, when N = 102, = 0.01,Y = 8,T)y = 300, it is found that the optimal
network cost occurs when w = 10 and r = 5, and the corresponding mean system access time
is 373.1.

Network cost can be used as another objective function of the optimization problem. With
the same constraints as the above example, the optimal network cost is only 7.5 percent of a
conventional network based on 2 x 2 switches. The optimal mean system access time is 363.2
ns when w = 3,r = J}. The mean system access time of the network with the optimal network
cost is three percent higher than the optimal mean system access time. On the other hand, the
cost of the network with the optimal mean system access time is three times higher than the
network with the optimal network cost. With the above information, the designer can select a

network design with either optimal network performance or optimal network cost.

2.6 Conclusion

In this chapter we have proposed a cost-effective high performance architecture for circuit
switching MINs. This technique is useful in matching bandwidths of subsystems in a large
multiprocessor system. The drastic reduction in the number of switches/gates makes the use of
large switches more attractive. The NOMI technique also shortens the network delay because
of the smaller number of stages required. The cost analysis provides a lower bound for the
improvement made by NOMI since it did not consider the length of data links.

When the network size is reduced, the impact of a network component’s failure will be

more serious than in a conventional network. To improve the network reliability, it is important

35

to detect and remove faults in the network as soon as possible. To achieve this goal, two new

architectures are developed in the next Chapter.

36

Appendix 2.A: List of Symbols

pei
me;
Vij
mi;
i

mn;

i

OCSMIN

NOMI

ISk, m)

BSi(k,m)

FLij

B L

Al

(L)

37

Processor cluster i.

Memory cluster /.

Processor located in processor cluster i with phase number ;.

Memory module located in memory cluster ; with phase number j.

Network interface unit of processor cluster i.

Network interface unit of memory cluster i.

The size, or the number of input/output ports, of switches.

Depth of overlapping, which is always associated with the memory interleaving

of the same depth.

Overlapped Circuit Switching Multistage Interconnection Network.

Network Overlapping and Memory Interleaving.

A forward switch located at (7, j) and its input port k, and output port i are

used to form an interconnection.

A backward switch located at (i, j) and its output port /, and input port i are

used to form an interconnection.

A forward link located at (i, j).

A backward link located at (i, j).

The request vector appears on the processor subsystem at time t.

The partner of resource E on the forward (or backward) network.

B P;

Al

C"IS'F(I)

OV F(1)

Tar

])Ar

38
The set of resource on the forward network to support a path from processor

cluster i to memory cluster j,

The set of resource on the backward network to support a path from processor

cluster ¢ to memory cluster j.

The time interval before the partner of a forward switch (link) is locked after

the forward switch (link) is locked.

Interconnection function of a conventional circuit switching network.
Interconnection function of an overlapped circuit switching network.
Memory subsystem (memory modules and interface) cycle time.
Network propagation delay.

Processor’s memory-request cycle time.

Number of processor (or memory) modules.

Number of processor (or memory) clusters.

Processor request rate,) < /> < | at each network cycle.

Network pass probability for a network with switch size 7.

CHAPTER 3

POLYNOMIAL TESTING OF PACKET SWITCHING NETWORKS

3.1 Introduction

Large interconnection networks are made feasible by the advances in VLSI technology.
Since VLSI technology greatly degrades testability, an interconnection network must have a
structure that is easily testable.

A path and a route for a source-destination pair are defined as follows. A path is a
physically-established communication medium between the source and destination to transfer
a request/data. A route is a logical path which can transfer a request from a source to its
destination without total dedication to it; resources on a route are time-shared among several
packets. In a circuit switching MIN, the path from a source to its destination is physically set
up a priori and dedicated to a request until the request is completely serviced. By contrast,
no complete physical path is established a priori for a request in a packet switching network
(PSN). A packet-switching multistage interconnection network (PSMIN) is composed of a
large number of links and switches with buffers. Each PSMIN switch is essentially an » x »
crossbar, in which a queue is placed at each input port to store packets. A request/message
is decomposed into several packets, each of which is independently transferred through an

available route.

39

40

Many PSNs have an undesirable effect called the routing dynamic: the order of arrival of
packets at the destination may be different from the order of their transmission from the source.
Although PSMINs can be designed not to have the routing dynamic, the routing dynamic will
be considered in our testing method to provide better versatility. Clearly, a PSMIN with the
routing dynamic is an asynchronous sequential machine. Although a sequential machine can
be fully tested with a checking sequence derived from its state-transition table [15], no feasible
checking sequence seems to be derivable for large scale asynchronous sequential machines like
PSMINs. Functional testing is an alternative to prove the correctness of some of the machine’s
functions within a finite time period.

Several researchers have proposed functional testing procedures for specific networks. A
comprehensive method for diagnosing base-line circuit switching MINs with 2 x 2 switches
was introduced by Feng and Wu [38], and a simplified version of their fault model and the
corresponding testing strategy can be found in [3]. Lee and Shen modeled a circuit switching
MIN using 2 x 2 switches as an ILA [64]. Agrawal and Leu used the dynamic full accessibility
of MINs to test their connectivity [5]. Several high level testing strategies for a general PSMIN
have also been studied [21, 71, 75, 68, 20, 70, 104, 31], most of which are adaptive procedures
requiring human assistance. |

Most existing methods are centralized and off-line, i.e., the whole network is tested off-line
by one tester. Since there are L},—'I«)gr N switches in a PSMIN, the complexity of the network
testing problem is O(%loy,.N). Centralized testing methods are usually very inefficient for
large networks, because the problem needs to be handled by the tester grows exponentially with
the size of the network. To improve testing efficiency, we propose two testing strategies: high-
level and low-level testing. In the high-level, every processor can serve as a tester (o test part of
the network; thus, there are V testers for the network. Assuming that testers are homogencous,

the complexity of the testing problem in each tester is reduced to ()(%l og,.N'). In the low-level

41
testing, switches are used as testers and designed to have autonomous testing capability [73].
In other words, the complexity of the testing problem in each tester is determined by the
switch size, and is independent of the network size. The high-level testing strategy can test
the network concurrently, but may have a lower fault coverage than the low-level testing. On
the other hand, the low-level testing strategy is an off-line testing method with a small testing
time and high fault coverage.

The high-level testing is based on the topology and functions of the network. To eliminate
the routing dynamic, network operations are first synchronized. Then, an N x N blocking
network is decomposed into N? routes, NT = {RT;; | | < i,j < N}, where 7}; is
the route from source i to destination j. RUT;; is the route R1;; under test, and the testing
processors are the processors connected to the route under test (RUT). In the high-level testing,
faults in RUT;; are tested without stopping the normal operations on NT' — {RU/T;;}, where
{RUT;;} € NT and { RUT};} # NT. To test a route without interrupting, or being interrupted
by, normal operations, the testing processors should be able to lock/unlock the RUT. Locking
a route prevents unexpected packets from entering the route. As shown in Fig. 3.1, a route can
be viewed as a cascaded shift register array. The register array can then be easily modified
into divisors, multipliers or other similar structures for polynomial testing.

Each swilch functions as a tester in the low-level testing. To obtain high fault coverage
with a small testing time, each switch is designed to have self-testing capabilities. A switch is
composed of buffers, a routing control unit (RCU) and output ports consisting of multiplexers-
demultiplexers (MU/DEXes). Since thorough testing of the RCU may require an intractable
testing length, an on-line checker is proposed to detect malfunctions in the RCU. For the rest
of the network, queues are first self-tested by polynomial generation and comparison. If the
queues are fault-free, they are then used to generate test patterns for links and MU/DEXes.

The testing responses of switches at one stage are verified at the next stage.

42

o 2 G o i
L2 L
Lo — o4
oy g NV — o s
o — O 145
e 16
Lo — O G 4
L 28— @ s
(a) A Baseline PMIN with switch permuation E

o L 4

| 4 o

o L
e a2 g 4

o o

® L 4

® ®

(b) The corresponding cascaded shift register array of the PMIN.

4,8

Figure 3.1: A baseline PSMIN with switch permutation E,, and the corresponding cascaded

shift register arrays.

43
The rest of this chapter coqsists of four sections. The polynomial operations necessary for
our testing method are first reviewed. Then, network fault models are introduced, and then
testable designs and the corresponding testing methods for the high and low-level testing are

presented. Finally, concluding remarks are given.
3.2 Polynomial Testing Principles

Basic polynomial operations and their implementations are briefly discussed below. Use
of the polynomial ring, (VI°(2)[+], is well-known for error-control codes [47]. Only those
properties useful for testing PSNs will be introduced below for completeness.

n
Definition 1 : A polynomial I')(x) = Zb}:ui in (7I°(2)[«] is said to be a bit polynomial

i=0

if each of its coefficients is a bit, i.e., b; € {0,1], 0 < i < n. A word polynomial is the

one whose coefficients are words instead of bits, i.e., P,(x) = Z wiw’, where for every
i=0

ie I, = {0,1,---,n}, w; = ONE or ZERO , and ONE is a l-bit vector of arbitrary

pattern and ZERO = ONE, i.e., ZERO is bit-wise complemented to ONE . Thus, any

two words with maximum Hamming distance can be used as ONE and ZERO , respectively.
H

For notational convenience, let i1",(x) denote a polynomial Z(~,-.-z:", ¢i = 1 or ONE,
i=0

Yiel,. Ta) = t‘é;xi = P(x) & W, (x) is the complement of I’(x), and the
symbol “” represents ‘;1(; addition in (/°(2). Unless otherwise specified, we will use the
term “polynomial” to represent both bit and word polynomials. The mechanisms to manipulate
polynomials are called their calculators. The contents of a calculator before operating on its
input are called the initial state, which will always be assumed, for clarity of presentation,
to be all zeros. A calculator with the zero initial state is called an inert linecar machine

[56]. When a word polynomial operation is applied to a faulty circuit, the closure property

of (V[°(2){x] may not hold. However, when a word polynomial is applied to a non-faulty

44
circuil,. the resulting polynomial belongs to (i 1'(2)[x]. Calculators are more hardware-efficient
if ONE and ZERO are composed of all 1’s and 0’s, respectively, because for each operation

every bit will require an identical circuit.
3.2.1 Operations on Polynomials

o~
A periodic polynomial with period p is the series Z c;x' where ¢; = ¢jqp, Vi €l,and Lis
i=!

the set of integers. It can be generated by a linear (or nonlinear) feedback shift register (LFSR)
called a polynomial generator (PG). Registers in a PG can be implemented by different types
of flip-flops, and apparently different test patterns are needed for different implementations.
However, as shown in Appendix 1, at most two inputs are needed to detect faults in a master-
slave SR flip-flop. Since the high-level testing deals with the network topology, we will
consider only the input and output stuck-at faults of registers, i.e., not the stuck-at faults inside
registers. However, the same test patterns can test all the faults in those registers implemented

with the master-slave flip-flops shown in Appendix 1.
Two polynomials, /' (») = Z('l‘,'.l,". and /() = ng',-.-zr'., are equal iff ¢|; = ¢y,
i=0 =0

Vi € I,. Two polynomials can be compared for equality by XOR gates. The following
operations are useful for our discussion.
Addition and Boolean:

n
Let { () = Z (,'J-,,-:r'.} be k polynomials in (7 1°(2)[x], Puy(2) is the addition of [’ (.r) and
i=0
]’2(.’1,'), denoted by 1)3(l) = Z(':;','.‘I.'i = 1’|(.’L‘)l‘]‘!1)~2(:v) if for each / ¢ I,,, €3 = epith
=0)
c2.i. Addition can be implemented with XOR gates. If a Boolean operation A\ is applied
n
to Iy (x), Pyx) .-+« Ih(r), the resulting polynomial P(a) = Z(‘,‘.’ri is calculated by
=0
¢ = :-} A c;" A A cf-", Viel,, and A is a bit-wise operation when ¢; is a word. Only

AND and OR, two most important operations, will be considered in this chapter.

Division and Multiplication

45

n n
I P(x) = Y pie’ and M(z) = Y mya'in GF(2)[x], the multiplication of M (x)

i=0 i=0
n

(multiplier) to F’(x) (multiplicand) is /3(x) = P(a)Al (v) = 21;3',-;1,-", where V i € I,
Pai = pimngthpipmygdse s bpgmi—pbpgm;. On the other hand, ;\("en two polynomials /()
(dividend) and D(x) = ’Z dia! # 0 (divisor) in /J"'(2)[x] there exist two polynomials
Q(x) and R(2) in (}’F(Z)[:g(;uch that P(x) = D(x)Q(z) + R(x)where R(x) = 0 or
dey R({x) < deg D(x). In this process, I’(x) is said to be divided by D(x), yielding a
quotient (J(:) and a remainder R(x).

A bit divisor (multiplier) divides (multiplies) an input stream by a fixed bit polyno-
mial. Similarly, a word divisor (multiplier) performs divisions (multiplications) between two
word polynomials. In a word polynomial divisor/multiplier (PDM), operands are ONE or
ZERO instead of 1 or 0. It has logic operations similar to those of a bit PDM, but special
mechanisms are necessary to preserve the properties of the polynomial ring.

The final contents of a PDM will henceforth be represented by I2(x:), the input stream
by I’(a) and the output stream by (J{«). The general structures of a bit divisor and a bit
multiplier are shown in Fig. 3.2(a). A (x)and D(x) in Fig. 3.2(a) are 1 + % + 2% + " 4 a8
aud a® + 2% + a? + v + L, respectively. The lowest order position is located in the input
(output) port of the divisor (multiplier). There is an XOR gate, denoted by «», at the D-type
flip-flop’s (DFF’s) output of stage | only when m; or d; is 1. A block DB; is the collection of
DFFs between the (/ — 1)-th and /-th XOR gates, counting from the lowest order position, in
a PDM. Thus, a PDM is composed of a set of blocks, {/3;]. Let the order (the number of
stages) of /3; be r;. In the multiplier of Fig. 3.2(a), 11 =2, ro =3, ry = 2, and ry = 1.

Since a RUT is to be transformed into a polynomial calculator for testing, the effects of

DFFs’ Multiple Stuck-At (MSA) faults on a PDM are discussed as follows. A MSA fault,

fas, in a block [3; is composed of multiple Single Stuck-At (SSA) faults, ie., [y = {/'},

multiplier

JARY

i ek el

M(z)=1+2345%+27428

divisor

N JAR

D

1

D(s) = s%+2%+23+2+1
(a) A normal multiplier and divisor

S-A-O0

M' s)= 1+834+32*
S-A-1

PULPRIYUT

Figure 3.2:

M' (3)=M' (s)+s" W(s)
(b) Two faulty multipliers
The structure of faulty and non-faulty muitipliers and divisors

47

where /! is a SSA fault in /3;. Let be the faulty position nearest to the output port of /3;.
Then, [j‘ € far will block the effects of all the other SSA faults in f;. Sucha [3"' is called
the leading SSA fault in I3;. There are 2r; possible leading faults in [3;, and, thus, there are
27; distinguishable stuck-at faults in the block, where r; is the number of stages in /3;.

A s-a-0 FL changes the attached XOR gates into null operators. Thus, for a multiplier,
M(a) = i m'a!, where m! = 0 if the FL attached .to the XOR gate at ' is stuck at 0,

i=1

and m} = m; otherwise.

Lemma 1 [56] : The impulse response of a multiplier is iy ...m,,0...0, where the impulse

polynomial is P;(x) = 10...0.

Clearly, an unknown multiplier can be uniquely identified by its impulse response, and the

multiplication of I’;(x) to A/(x) can be viewed as a discrete convolution between them.

Lemma 2 : When a PDM is an inert machine and a s-a-0 fault occurs in 3., the multiplier

n k=1
Mx) = Z m;x' is changed to a new multiplier, Al'(x) = Z m;ixi.
i=0 i=0

Lemma 3 : Let / be the number of fault-free DFFs between /3;’s output and the leading faulty
DFF. Then, when the leading faulty DFFYin 3, is s-a-1, Q) = M'(x)P(x) v]»:v"'ll',,(.r),
where ' = | + Z r; and Al'(x) is the new multiplier whose highest order position is
located at the lcadinjg<§aulty DFF in [3;.
Proof: Let the input (or output) of Ij; be /; (or O;). Then we have [;_; = O; + ’(«+) and
Qi_y = a"='1;_;. When DIl is s-a-1, O}, = Wo(x) Thus, Ir_y = P(r) 2010, 0r)
and Op—y = a™='(P(x) + 2'IV,(x)). By induction, we can show that Q(x) = Al'(x)
P(a)p :v"'ll",,(:v)- [|
When ¥ of a divisor is s-a-1, the output Q(xr) = I"(x)/D'(x), where I'(xr) = {u!

r I
(D wmia™*)@ Wi(x)}, D ni'™" is the initial state of the divisor and / is the poly-
i=k+41 i=k41

438
nomial length that is sufficient for testing, and D’(a) the new divisor with its lowest or-
der position at the output of 13;. Similarly, a s-a-0 fault at a* makes Q(x) periodic, i.e.,
Q) = a'(ZT: niz'=*) /D'(2), where the degree of the faulty divisor is r, = Z i
Note that the o::;:tl QQ(x) is independent of the input stream. The structures of s-a-0 ané>sfa-l
multipliers are shown in Fig. 3.2(b). The resulting A/j(x) (for s-a-0) and A/{ (for s-a-1) are
| + 2%+ 2 and ML) o 271V (), respectively.

For testing purposes, it is assumed that every DFF on a route can be simultaneously set to
ZERO by an external signal. Signaturc analysis examines () after the testing polynomial
P(x) is applied to a circuit under test. The final contents of each DFF must be directly read out
for signature analysis. Unfortunately, this will greatly increase the number of I/O terminals of
a network. Thus, signature analysis or other similar methods requiring direct access to DFFs
are not followed here and interested readers bare referred to other articles such as [97].

The proposed high-level testing method is to diagnose the network by appropriate opera-
tions on the output stream. After the testing polynomial /’(x) is applied to a RUT, a fault [;
changes ()(«) into ();(), where Q(:x) (or ();(:v)) is the correct (faulty) output polynomial of
the RUT. The procedure is then to find a testing polynomial P(.:) and an operation © ;, such
that O (P(:r),Q(x)) = Qi(x). The combination of F(x), its output ()(:) and the operation

Oy, is called a resting routine for the fault f;.
3.3 Fault Models

A PSN is composed of links and switches. There are ! possible interconnection patterns

N L . , .
w1 N different conflict-free interconnection

within an » x r switch. There are then (!)
patterns in an N x N PSMIN. Links’ stuck-at faults are equivalent to stuck-at faults of the
switches to which they are attached. Thus, only switch faults are considered for the high-level

testing. That is, link stuck-at faults are implicitly included in the switch fault models.

49

Permanent multiple stuck-at, delay, merging, partial setting, blocking, broadcasting and
nisrouting faults are all considered in this chapter. A MSA fault occurs when one or more
signal lines are fixed at 0 or 1. A delay fault occurs when the operation speed of some
component(s) is slower than the specified and, thus, erroneous operations result. A partial
setting fault occurs when some of the identical components in a unit do not provide the same
operation as the others. A blocking fault occurs when an appropriate route within a switch
cannot be established for a request. A handshake signal deadlock is an example of blocking
fault. A switch has a merging (broadcasting) fault when two or more input (output) ports are
connected to one output (input) port. A misrouting fault represents the case when packets are
mis-directed to incorrect output ports. Stuck-line faults at gate level are tested at the low-level

testing.
3.4 PSMIN Diagnosis

we present testable designs and testing methods on the basis of the polynomial operations
and the fault models introduced in Sec. 3.2 and Sec. 3.3, respectively. The network is
designed such that all signal lines have only two states, i.e., 1 or 0, whether or not they
are used to transfer data. The output port of a switch is a combination of multiplexers and
demultiplexers (MU/DEXes). A MU/DEX is basically composed of AND and OR gates.
‘When multiple requests are assigned to an output port, a combination of OR/AND functions

among the requests will take place.
3.4.1 High-Level Diagnosis

Assume that the PSMIN under test connects N sources and N destinations and is built
with » X r switches. The number of stages in the PSMIN is & = log, N. To describe the

PSMIN’s topology and permutation, the input (output) ports of all switches in each stage are

50
vertically indexed. The number assigned to an input (output) port is called its global index.
For each rr X r switch, there is a one-to-one correspondence between the global index and
the input/output port number: [;(j) = 1, where j is the port number of the /-th switch at a
stage, and m is the port’s global index. A link permutation T;, | < i < Lk, is a one-to-one
mapping from the output ports at stage i — 1 to the input ports at stage i. On the other hand,
a switch permutation, E!, : fi(j) — f:((j + m) mod r), is a one-to-one mapping from input
ports of a switch to its output ports, 0 < m < r — 1. For simplicity, all the switches on the
RUT are assumed to have an identical permutation, i.e., iy = iy, for all [i, [Pz ¢ RUT,
and /%, will henceforth be used to denote]L‘,",,. More general cases than this can be easily
derived by using the actual permutation at each stage. To allow for simultaneous diagnosis

and normal operation during the high-level testing, the testing processors should be equipped

with complete information of link and switch permutations.

Testable Design

Links are passive components and can be treated as data paths of switches, whereas switches
make all switching decisions and also contain memory elements. To make the network easily
testable, switches are designed to have two operational modes: normal and testing modes.

As mentioned in the Introduction, a RUT can be viewed as a cascaded shift register array.
A FL and XOR gates must be added to transform a 1-bit wide RUT into a bit PDM. Since
links are the predominating cost factor of a PSMIN, the link overhead in improving testability
must be kept as small as possible. A tracer in each switch is thus proposed to minimize the
width of FL. A tracer is composed of a testing pattern masker and mapper, a feedback/feed-
forward selector (F-selector) and a modulo TWO adder, where TWO = { ONE , ZERO }. The
masker examines if bits of the testing pattern are identical and maps the testing pattern from

ONE (ZERO) to 1(()) for the FL. The mapper transforms 1(0) to ONE (ZERO) to use the

51
adder. The F-selector determines the transmission direction of FL.! An adder is necessary for
each switch to form a block on a route for data path diagnosis.

Four possible operational states, S, A, X and N, are assigned to a switch when the network
is being tested. Once a switch in a RUT is in state S, the switch will not allow any packets,
except those from the same RUT, to enter the RUT, and the operations of switches on the
route are synchronized. State S can be taken as a sub-operation of the other states, because
the tracer in the other states is activated and switch operations are synchronized. When the
switch is in state N, only FL and the F-selector are activated. ‘When a switch at stage / is in
state A, the F-selector blocks the FL signals from stage ¢ + 1, and the current switch’s output
is led to the FL. When the switch is in state X, the data on FL is mapped, by the mapper,
fiom | (0) to ONE (ZERO), and the logic operation B{/y — P, ¢ I'L is performed at
the input of the queue, where [3{/, is the input of the queue and P, the input packet. Fig.
3.3 shows these switch operations in different states. The logic diagram in Fig.3.4 shows a
switch design example of the high-level testing.

A switch can enter/exit the testing mode by command packets. Two formats, data packets
and command packets, are used to control the switch operations. A command packet is
composed of routing tags and a command array {CA(I), -+ 4CA(K)}, where / is the number
of stages of the network and CA(i) is a 2-bit command word associated with stage i. A switch
at stage i will enter states S, A, N and X, when CA(i) = 00, 11, 10 and 01, respectively.
The type of packets can be identified by a one-bit flag in each packet. As shown below, this

testing method can also identify a misinterpreted command array (by a faulty switch).
Theorem 1 : All misinterpreted command packets can be tested in one testing routine.

Proof: Once a RUT is transformed into a multiplier, the test pattern for misinterpreted com-

! The F-selector can be climinated if the RUT is to be transformed into either a multiplier or divisor, but not
both.

52

switch states

N X A s

100 | st
. AT

mapper masker

Figure 3.3: Switches on a RUT and the corresponding word divisor

53

A switch
]
)
®
queue 2
MUDEX
w
00 ¢ ‘
aflder_ queue 1 ® /
ehable mapper masker FL

F-selec

tor

[/ 4

Figure 3.4

A (estable design of switches for concurrent testing.

54
mand packets becomes an impulse polynomial. From Lemma 1, A (x) of the RUT can be

uniquely identified. |
Data Path Stuck-at Faults

All switches are in state X when data path stuck-at faults are being tested. A SSA fault
at the high-level represents a stuck-at fault(s) in a single switch. But a MSA fault at the
high-level implies stuck-at faults in more than one switch. In a conventional approach, upon
detection of a fault on some route, test patterns must be submitted from processors on different
routes to locate the fault. It is shown below that the fault location with the polynomial testing
is much easier than that with (he conventional approach.

SSA Faults:

Every switch is set to an identical permutation. When r X r switches are used, r different
switch permutations, {[7; | 0 < ¢ < r— |}, are necessary to test every data path within a
switch. For any input port of a switch, its data paths to all the output ports are included in
{£;10 < i <v—1}. Thus, in these + permutations every data path from each input post to
every output port is tested.? The procedure can be generalized as follows: in testing routine
m, the switch permutation [, 0 < m < r — 1, is performed first. Then, the connection of
source i to destination j is specified by j = 1)L, T_1 L, -+ - 15 F,, T (7). The special case
of r = 2 allows data path stuck-at faults to be detected in two permutations, each of which is

composed of two steps [38].

Theorem 2 : When a locked RUT;; is configured as a multiplier, a SSA fault on the data

path can be located by processor j in one testing routine.

Proof: The testing polynomial for the data path SSA fault is |1, (), where n is the total length

? Only r permutations are needed (o test a data path, although ! permutations ure requited to test the routing
functions.

55

of buffers on RUT;;. As discussed earlier, RUT;; can be expressed as Mj(x) = Y mya',

i=0
The output at the destination j becomes (J(x) = i mya! W, (x). Q(x) should then have the
formatof 1---10---01---, where a 0(1) — 1(0;=t:ansition takes place at each position of an
XOR gate on RUT;; and the number of consecutive 1’s (0’s) in the /-th block is the size of
B;. For example, the output stream of the multiplier in Fig. 3.2(a) is 10011100. When 1/;;
changes to Al{; # M;; due to a SSA fault, there must be at least one i/ such that im; # m’,
I < i <k, by Lemmas 2 and 3. When the number of 0 — 1 transitions is my, the faulty

1”.!

switch can be located by s; = (][£-' T;;,1_;) (j), where 77! is the inverse of permutation
i=u

T;. n
MSA Faults:
A MSA fault on a data path cannot be determined in one testing routine. However, the
polynomial testing can be applied to a scquential repairing procedure which locates and then

replaces leading faulty switches/links in each testing routine.

Theorem 3 : A MSA fault on a data path can be repaired in / testing routines, where /: is

the number of stages of the network.

Proof A MSA fault is the collection of multiple SSA faults. When the testing polynomial
W, () is applied to a PDM, Q(.r) is uniqucly determined by the type (s-a-0 or s-a-1) and
location of the leading stuck-at fault. In other words, the lowest-order faulty switch can be
located in each testing routine, regardless of the cardinality of the multiple fault. Since there
are [switches on a route, at most / steps are required to repair the network. |
Delay Faults:
A delay fault on a data path is dctectable when its operational speed is at least one clock

cycle slower than specified.

56
Theorem 4 : A single delay fault of longer than one clock cycle can be located in one testing

routine.

Proof: The polynomial I’} (x) = i:vw can detect all delay faults. However, a polynomial
i=0

Pi(e) = EL: am+ can be used to distinguish a | — 0 transition delay fault of i clock

cycles from :i::a(l’ay faults of less than m cycles. When an i unit delay fault occuss and /°f¥ ()

is applied, the faulty switch’s output becomes 11"(x:). By forming a PDM on 1t{'T};, a delay

fault can be located in one testing routine. A testing polynomial for) — | delay transitions

is complemented to become I’} () and the output is 'l'l—"(;v). [

Like MSA faults, a multiple delay fault composed of different delay lengths can be repaired

in [testing routines.
Routing Faults

Methods for locating routing faults are studied in this subsection. Switches are set to state
S when routing functions are tested.

Merging and Broadcasting Faults:

Depending on the implementation details, a merging fault can be located in one testing
routine when appropriate polynomials are applied. A A-merging fault occurs when a A\ (ie.,
AND or OR) operation results from the merging of two or more switch input/output ports.

Consider the effect of the O R merging first. For two routes RUT;, and RUT i, they will

topologically intersect in at most one switch when the network is not redundant.

Theorem 5 : For a given permutation, a multiple OR-merging fault can be located in one

testing routine for both distributed and centralized routing control PSMINS.

N
Proof The testing polynomial at processor j is PN (x) = > c;a’, where ¢; = ONE and
i=1

¢; = ZERO ,V i# j. First, consider the case when two RUTs are merged. The two routes

57
from i; and i; under the given permutation intersect at most once. When the intersecting
switch has an OR-merging fault, and the testing polynomials l’i’lv () and l’{:’(:v) are applied,
there will be an OR operation between these two polynomials. Without loss of generality,
P}(x) can be assumed to be merged into Y (x), ie., Pl(v) = PN(x)y OR PY(x).
Since there is no overlap of the positions containing 1's in both /*)(«) and I} (.r), new
information on the merging fault is added Ato P/ (x). Applying the XOR operation between
Pl (x) and P () at the destination of I}, (), we get P, (x) = P/ (x) Pl (x). A nonzero
resulting polynomial implies that some polynomial is merged into l"-iv {ar). The switch with the
merging fault is determined by the topology. That is, I’/ () merges with I’)Y(x) at S(iy. jr),
if

where $(iy,jy) is the the j -th switch located at stage iy , when (j; — 1)r = H 15,T:(4)

iy iy iy =!
=1 £, Tiir) mod r and (j; —)r = [] EnTiliz) = [] EwTiliz) mod r. It is easy to
se:llhat no information will be lost when’=mlulliple mergit;; 'faults occur. Thus, all multiple
merging faults can be determined in one testing routine. |

If merging faults are assumed to be independent of the interconnection pattern, they can
be located in one testing routine. Otherwise, we need ! tests to set each switch to every
interconnection pattern for fault location. The AND-merging fault can be diagnosed by the
same method with the testing polynomial, f’}v(.r).

A broadcasting fault at one input port of a switch implies a merging fault at the output port
of the broadcast data path. Thus, broadcasting faults can be located by the same procedure
used for testing merging faults.

Misrouting Faults:

There are i! possible permutations in an r x r switch. To locate a misrouting fault, the

testing polynomial /() for source / must be unique.

Theorem 6 : One testing routine is sufficient to locate a multiple misrouting fault for both

58

distributed and centralized routing control PSMINs.

Proof: The testing polynomial for merging faults can also be used for testing misrouting
faults. /1! permutation calculations are required in each testing routine. Given a permutation
J = TelTp E--- ETy(i), a misrouting fault results when [-' becomes [/, where [# [
is a faulty permutation. The fault Iocating procedﬁre is to find I’ of a faulty switch. For a
given processor j which receives an incorrect polynomial, all possible permutations have to
be calculated to find E’ of the faulty switch. Since each switch has 7! permutations, we need
kr! inverse permutations to locate the faulty switch. |

A misrouting fault may be caused by either the misdecoding of a routing tag in the RCU
of a faulty switch, or a stuck-at link/switch which transmits the routing tag before the routing
tag is actually decoded.

Blocking Faults:

As mentioned earlier, the network is designed such that there are only two logic values,
i.e., 0 and 1, in all signal lines. When a blocking fault occurs, a data path cannot be utilized,

even though it is available.

Theorem 7 : A blocked data path in a centralized routing control PSMIN can be located in

one testing routine.

The proof of this theorem is straightforward. In a centralized routing control network,
a locked route can be established even when its data path is blocked. Since the output of a
blocked switch is fixed at 1 or 0, it has the same output as a stuck-at data path. It is much more
difficult to locate a blocking fault in a distributed routing control network, because routing tags
and data are blocked at the same time. It can be located by a binary search which requires
log, I testing routines.

Partial Setting Faults:

59
When a data path is partially stuck, the testing procedures with multipliers can still be
applied. Test patterns, however, must be determined by the design details of the masker and
the mapper. In case of a partial fault, unaffected data bits have correct outputs but the stuck-at
bit nceds the same testing procedures as described above. In such a case, we have to examine

faulty bit(s) instead of a faulty word.
Pattern Generation

Test patterns are generated by pattern generators {(;} which are processors or dedicated
hardware mechanisms. The cost of pattern generators is one of the most important factors
for evaluating the performance of a testing method. Only two testing patterns, 117, () and
{ PN ()}, need to be generated for the high-level testing. Both patterns can be easily generated
when (/;’s are ringed through a single bit control line. Denote the input and output of the
ring in (7; by Dj(;y) and Dj(,,), respectively. Dy, is connected to Dy, and D,
is connected to ;1 (i), ¥V 1 < i < N — 1. To generate {/ ’,-N (a)}, the ring is initialized as:

Dyiny =1, Diyiny = 0, Vi, i # 1. Operations of (i; at the /-th clock cycle are given as:

ONE when Dj;, =1
OPL.(kk) =
ZERO when Dj;,, =0,
OP2.D;(oui)(F) = Diginy(k)
where P;()) is the pattern generated by (v; at the /-th clock cycle. The other test pattern,
i1, (), can be easily generated by the initialization D;(oul) = ONE .V i < N, and applying
OP1 and OP2 in each pattern gencrator. For a given permutation, there are only rk possible
merging faults on a route and the above testing polynomial is thus not optimal for testing O ;-
merging faults. For testing O R-merging faults, the length of the tesling polynomial can be
reduced to rl, when () # I;j(«x) for any pair of polynomials /’;(a:) and {’.(x) intersecting

in a switch under a given permutation. However, the testing polynomial allows merging

60
and misrouting faults to be tested simultaneously, and, thus, simplifies testing procedures.
Moreover, (7; has a very simple structure and can be easily applied to various interconnection

networks.

Testing Complexity

It is important to consider the testing complexity of the high-level testing. The length of
test pattern for data path stuck-at faults and misinterpreted command packets is /112, where
is the queue length in each switch.® The calculation of a misinterpreted command packet is
straightforward, because the coefficients of the multiplier can be identified directly from the
output stream. The stuck-at-a fauits at the inputs of XOR gates, to which the FL are connected
to, can be tested by an all zero polynomial, and its testing length is /m. To test single data
path stuck-at (delay) faults, we need one testing routine which is composed of at miost /- steps
of inverse permutations. At most A testing routines are necessary to repair all multiple data
path stuck-at faults, and each testing routine needs /: inverse permutations. Thus, a total of
k? + I + 2 inverse permutations is needed for data path diagnosis.

For routing faults, the test pattern length is N. One testing routine is sufficient to identify
all merging and broadcasting faults. To locate a merging (broadcasting) fault, two RUTs are
needed at a time. Since there are) switches on a RUT and each switch needs r! inverse
permutations, .“r! inverse permutations are required to locate a merging (broadcasting) fault.
Finally, k+! inverse permutations are required to locate the misrouting faults.

The high-level testing is quite general to handle various circuit implementations and locate
faults without completely stopping the normal operations of the network. The testing time
varies with the size of the network. Note, however, that the high-level testing may not detect

all possible faults for different circuit implementations. When the high-level testing fails to

% The queue lengths need not be identical,

61
locate some faults, a fast off-line testing method with high fault coverage needs to be called

for. The low-level testing described below is to meet this very need.
3.4.2 Low-Level Testing

A switch is composed of data paths and a RCU. Data paths consist of links, queues and
MU/DEXes. A pool of buffers, I?U;-i , 1 £ i< m, in a switch constitutes the j-th queue of
the switch, where m is the number of buffers within the queue. A buffer can store one «—bit
packet. There are then at least N uun log, N memory bits in an NV x N PSMIN built with
r X r switches, and a CSN is the special case of m = (. Let I}{ /('f and I)(/;f, 4+ denote
respectively the input and output ports of a switch. It is shown in Fig. 3.5 that these buffers
are cascaded, or C-connected, and formally described by C'N : BU; — I3U;y,, where "—"
denotes an interconnection within a queue, called an interlink.

Different implementations of registers need different test patterns. We use random testing
to test the queues. However, when specific test patterns like the one in Appendix | is needed,
they are easy to generate. In each switch, queues are tested by generation and comparison of
polynomials. For the generation of a polynomial we can use the natural structure of a queue.
The basic idea is to convert the queue into two PGs. A queue can be taken as a w X 1 matrix
A in which each column is a buffer of «» DFFs. Note that DFFs in each row j (collection of
the j — th DFFs of m buffers), | < j < w, of the matrix are cascaded by its natural structure.
Assuming w to be even, two PGs, () and I’(7,, are formed by properly cascading the rows
of Al.

Two symmetric PGs can be obtained by (1) horizontally halving the buffers in the queue,
(2) connecting A/(i + L,1) to M(ivm) Vi < % for PG/, and M (i 4 1.m) to M(i. 1),
Vi2> %+ | for PGy, (3) identically connecting registers’ outputs to the feedback XOR gates

in Py and (72, and (4) connecting the output of the XOR gate outputs of /’¢/; and I’/

62

routing tags

RCU

data

packets
s W

a 2X 2 switch

L

— | > {peee» >

a C-connected queue

Figure 3.5: The structure of a 2 x 2 switch and a C-connected queue.

63
to A(1,1)and M (% 4 1, 1), respectively. It is well-known that the maximum period of the
output stream of a PG can be obtained when 2! — | is a prime number, where [is the PG's
length, and the PG’s characteristic function is irreducible [47]. A fault is detectable when it
yields different output sequences in the two PGs.

The PGs’ outputs form a l-out-of-2 codeword when an inverter is added to one XOR
gate’s output. An XOR gate with » inputs needs n 4 1 test patterns when n is odd; on
the other hand, three test patterns are sufficient for an XOR gate with an even number of
inputs. The test patterns for the XOR gate with an odd and an even number of inputs are
{0---0, 10---0, 010---0, ---,0---01 },and { 0---0, L---L,1,]}, respectively, where /,
is any input with an odd number of 1's. The test patterns for the XOR gate of a PG can be
easily generated by setting the PG’s initial state. Since every component in the PGs is tested,
there is no hardl core in this design.

When two symmetric PGs are used, unidirectional stuck-at faults in a buffer cannot be
detected. To solve this problem, /(¥ can be modified such that the outputs A/(i. %), Vi < %,
are connected to the XOR gate whose output is then connected to A/(1,% + [). Although
the physical interconnection of A/(1,1) to M5, m) is different from that of A/ ($+1LhHwo
M(w, m), both ’(/y and P(, still have an identical structure. Such a modification can now
detect the unidirectional faults mentioned above. Symmetric and asymmetric PG configurations
are illustrated in Figs. 3.6 and 3.7, respectively.

The optimal testing length of a PG and its fault coverage are important performance
parameters. Any DFF in the MSA fault model can be s-a-1, s-a-0 or fault-free. To evaluate
the MSA fault coverage of the proposed method, we only need to consider the type and position
of leading faulty DFFs in a block. Consider a pair of leading faulty DFFs, s; and s,, which

are in @' and @/ positions of I’(/y and I’(¥,, respectively. The effects of faults in <; and s,

can be distinguished only when they yield different outputs for at least one clock cycle. We

PG,
> M, > ! — M”-l‘
> M21» —» —§> M24
| MSI_’ M) M34 l-out-oT.Z
codeword
—» M, P —> > M,, —
—» M, [P — ») 4
| =5 >t
| Mg, P —> > M, .
C, Cs PG,
PG,
;z Fz_._ F F
7 H
NS
1-out-of-2
codeword PG,
S = X X
— S FS S

T

(a) symmetric PGs

Figure 3.6: A queue converted into two symmetric PG’s.

65

> M, |- H — MM-I
M,] B oMy,
M31_H a > M34 1-out-of-2
M“—’ : > > M44 godeword
MSI—D 5 P M54-
.»_BDM
— M61—H P P M64
C, Cy
X
1-out-of-2 }
codeword

lyW
V9W
VVW

JE

(b) asymmetric PGs

Figure 3.7: A queue converted into two asymmetric PG's.

66

begin with the simplest special case of the MSA fault model, i.e., the SSA fault model.

Theorem 8 : All SSA faults are detectable, and the maximum testing length is » + 1, where

1 is the order of the PG.

Proof: A SSA fault in a PG is dctectable when it generates an output different from that of
the other PG. Let the initial state of the PG be 'Z no',wheren; = landn; = 0. Vi £ 1.
When a s-a-0 is located at output of ', ny is f;—l;slf:ly inverted at the i-th shift. The fault cannot
be revealed during the first i — | clock cycles, because the s-a-0 is the same as the preset value
of a fault-free circuit. The worst case occurs when the s-a-0 is located at the output of ",
and, thus, » is the maximum testing length.

When a s-a-1 is located at the output of «f, it will change the parity of the output im-
mediately when it propagates to a feedback line. The worst case occurs when feedback lines
emanate from ' and @", and the s-a-1 is present at the input of x''. The output of the faulty
PG is the same as the non-faulty one until the r 4 1-th clock cycle. Thus, the maximum testing
length for SSA faults is » + 1. |

To calculate the MSA fault coverage, the position and type of leading faulty DFFs must
be considered. Each DFF can be s-a-1, s-a-0 or fault-free, and the number of MSA faults
in a queue is 3" — 1. Due to the fault masking effect, the actual computing time is
7y - (2r; + 1)%, where r; is the order of block I}; and i the computing time required for
eacjl=1 'itemlion. As shown in Table 3.1, various testing strategies are simulated to examine their
MSA fault coverages.

The initial state of each simulation is ny = 1, n; = 0, V i # 1. From the simulation

results, the following three conjectures are made:

Conjecture 1: The fault coverage is dominated by the number of feedback lines. It

monotonically increases with the number of feedback lines. The length

67

of a PG has little effect on the fault coverage.

Conjecture 2: For a given PG of length r, and /; feedback lines, the MSA fault cover-
age attains a maximum when feedback lines are located at ' +2,. . .l =1,

and 2"

Conjecture 3: The MSA fault coverage increases with the number of testing routines,
each of which uses a different initial state. The optimal testing length

for MSA faults is » for a given initial state and a feedback configuration.

For a given PG configuration and the initial state, theoretically, 2" shifts are required to
exercise all the states of the PG. However, our simulation results show that testing lengths
are rarely required to be longer than the length of the PG. Although the choice of an initial
state affects the fault coverage, the number and location of fecdback lines are the dominating
factors in the fault coverage. It is shown in Fig. 3.8 that about 65% of detectable MSA faults
are immediately detected for most cases. From Theorem 8 and the above conjectures, each
testing length is found to be » + |,

Unlike the off-line testing of data paths, a faulty RCU can be detected on-line. A RCU
checker is proposed to detect faults in the RCU using its output signals. A RCU has an r log, r-
bit input and an r2-bit output. The RCU output signals are denoted by L;, | < i.j < r,
where I';; = 1 if queue j is connected to output port /, and L;; = () otherwise. For any fixed
ky, { i} or { £y}, | < i < r, forms a 1-out-of-r codeword. Thus, 21 l-out-.of-r self-checking
checkers, one for each {/;.} or {L};]}, are needed to detect all non-codeword outputs.

The outputs of the RCU and queues are the inputs of the MU/DEX to which they are
connected. The RCU and queues can be tested first using the above procedures. If they are
fauli-free, then the MU/DEX and the links connected to the MU/DEX are tested by using

the RCU and queues to generate test patterns for the the MU/DEX and its links. For output

68

Jeedback
(/) Stage No.()

3 4 5 6 7 8 12 16 20
k0 728 | .715 | .710 | .709 | .708 | .708 |.708 |.708 |.708
k1,0 .780 788 793 794 794 795 795 | .795
k2,10 | .827 828 831 .831 832 831

(a) Fault coverage ((') of different numbers and locations of feedback lines.
Jisfoofs | 81,0 8,20 8,3,0 8,4,0 85,0 8,6,0
C 795 785 .780 777 770 746
(b) k=8 with three feedback lines.
SR k=0
32,1 4211521162,1172,118211]92,1 10,2,1 11,2,1 12,2,1
868 876 | 877 | .876 | .875 | .875 | .875 875 875 879
8,1,0 83,11832184,1]18431(8,5,1 8,53 8,54 8,6,1 86,3
875 876 | .876 | .879 | 877 | .886 | .885 879 900 .899
86,5 870(8,71](8,75] 8,761 16,1,2| 18,109 | 19,109 |20,11,10 | 21,12,11
874 801 | .875 | .883 | .869 | .875 | .875 875 875 875
(c) PG's tested twice by two feedback configurations.
(kying=2")
¢! ; first initial condition in, = Y
3,1 3,2 4,1 42 43 5,1 5.2 53 54 6,1
762 809 .748 764 805 |.745 | .749 J64 | .803 743
6,2 6,3 6.4 6,5 7,1 7.3 1.5 7.6 8,1 8.2
.745 749 764 .803 743 | 745 | 764 803 | .743 745
84 8,6 8,7 9,1 9,3 9,5 9,7 9,8 10,1-5 10,6
.745 .764 .803 743 743 | 745 | .764 803 | .743 745
10,7 10,8 10,9 12,1-7 128 | 129 (12,00 [12,11 { 16,1-11 16,12
749 764 .803 743 745 | 749 | 764 803 | .743 745
16,13 | 16,14 | 16,15
749 764 .803

(d) Feedback lines at /-, (), and the PGs are tested twice with two different initial states.

Table 3.1: The fault coverage of MSA faults under different conditions.

69

-M- three feedback lines
-0~ four feedback lines
~0- five feedback lines

-0~ two different initial states
with three feedback lines

Detected-faults/detectable-faults vs. number of shifts when r=8.

Figure 3.8:

70
verification, the streams from the MU/DEXes of stage i are transmitted through the links and
then verified at stage { + | with special mechanisms.
Before we develop the test method for MU/DEXes and links, it is necessary to find the
test patterns of the + X | multiplexer shown in Fig. 3.9, where [; and I); are the enable and
data of the i-th input, respectively. The » x | multiplexer is implemented by » two-input AND

gates and an OR gate.

Lemma 4 : All SSA faults in the multiplexer of Fig. 3.9 can be detected in » + 2 steps.

Proof: After fault collapsing, the faults that need to be tested are: (1) s-a-0 and s-a-1 primary
output, i.e., output of the OR gate in Fig. 3.9, (2) s-a-0 /;, Vi < rinFig. 3.9, and (3) s-a-1

Di(L), Vi < r. Test patterns can be derived as follows.

PT(1): nD; = 10,vi<u,
PT(2): LD = 0L,Viy,
PT(3): LDy =11,and E;D; = ejd; for i £ 1

PT(4): Ey Dy =11,and L;D; = c;d; for i # 2

PT(t+2): [\ D, = ll,and IY;D; = ¢;d; for i # r,where d; =Qorc¢; =0,V <i< .

An r x r MU/DEX connects r queues’ outputs to r links. The MU/DEX can be implemented
by two level AND and OR gates, where each MU/DEX s output port is basically a multiplexer.
An example design of MU/DEX is shown in Fig. 3.10, where [7;; is the enable signal from
the RCU to route the packet at queue j to output port i. [;; fans-out to w branches to

simultaneously enable the w« bits of queue j.

71

L X 1
~

| |

l\Pt\)l'l'l

| | | |
Tooo T \\j
> |

O

(a) logic diagram

(b) functional diagram

Figure 3.9: The logic and functional diagrams of a multiplexer with r data inputs and r
enable signals.

RCU
MU/DEX
queue 1 sce El output
to
link
‘ bit-1 s
s
D@.mt_z port 1
= 1D~ —_j)blt_s
from |||
links
o
queue 2 ®
o
P port 2
‘E Ezl ’Ezr
-
- ()
T L
L
. Pt t—
® —
p —
s port r

Figure 3.10: An example of the MU/DEX in an r x r switch.

73

Theorem 9 : Any SSA fault on links or MU/DEXes can be tested in » 4- 2 clock cycles.

Proof: Since operations to be applicd to each of the w bits of a packet are identical, it is
sufficient to discuss only one bit of the packet. Each output port of the 1-bit MU/DEX is an
X 1 multiplexer, and there are a total of - multiplexers in an MU/DEX. Test patterns derived
in Lemma 4 can be directly applied to test the MU/DEX. However, it is important to minimize
the test length when one selects test patterns. The proposed testing procedures are as follows:
At clock cycle 1, all the RCU’s outputs are set to 1 and the queues’ outputs to 0. Queue
outputs are fixed at 1 for the rest of the procedures. At cycle 2, all the RCU’s outputs are set
to 0. During the remaining r cycles, the RCU performs permutation i — (i 4 — 1) MOD r
at cycle j, 3 < j < r+4 2. When the network uses distributed routing control, the queues
for storing routing tags can be used to generate the desired routing requests to the RCU,
By this permutation and the data queue setting, the » multiplexers in a MU/DEX are tested
simultaneously. The testing procedures are shown in Fig. 3.11. |

The MU/DEX’s output stream is two 0’s followed by » 1’s. Since both 0 and 1 appear
at each switch’s output, and thus, at each link, the links can be tested without introducing
any additional cost. For test verification, it should be noted that all links in the network have
identical outputs. Thus, the comparison method to verify the test results of queues can be
applied similarly. Without loss of generality, the number of links from each switch is assumed
to be even. Half of the links are connected to the primary inputs of a fan-out free XOR tree,
and the rest are connected to the primary inputs of the other fan-out free XNOR tree. The
outputs of the two fan-out free networks form a 1-out-of-2 codeword. A design example for
this method is given in Fig. 3.12 (a).

It has been shown in [49] that a linear function implemented by two-input XOR gates needs
at most four test patterns. The test patterns can be recursively derived from the primary output

of the XOR(XNOR) tree to the primary inputs. Assume that a linear function /’, of » variables

o\~

(1)

[SET R —y

74

=t port 1

o == port 2

“T— port 3

(3)

(2)

(4)

IH

il

| /T& |

(5)

Figure 3.11: The testing procedures for a 3 x 3 MU/DEX.

75

PG"—ﬂ /—

iee MUDEX
PG 1-out-of-2
N\ codeword
006 N (| s
M < 3
- -
S X
- RCU Q
| | B
g,
T g
/ -
(1Y} MUDEX)
Lr7
stage i switches links stagehi+1
switc

Figure 3.12: (a)Verification of testing response by comparison and signature analysis.

76

queues
RCU
quenes ¥ MILFSH
PG ¥ d |
FSR
MUDEX | }~*"¢ | |
(11}) o :
PG "ﬂ P~] °
MILFSR
(NN
queues
B RaJ 1
queues v / FSR
PG ¥ f/ MILFSR|
cee MUDEX LA~ : .
®
PG [P N o °
k FSR
w
stage i switches links stage i+l switches

Figure 3.12(b) Verification of testing outputs with MILFSR's.

77

is implemented by an XOR tree as in Fig. 3.12(a). Then, F, can be recursively expressed by
P, = ay dL,-), where x,, is the n-th primary input (variable), and I, _; is the linear function
implemented by the sub-network excluding the primary output XOR gate and the primary input
x,. To test the primary output gate, it is sufficient to have /’,_,a:,, = 00,01, 10, 11. The input
stream in a,, is then 0101, and P,_, should be 0011. We want to derive a test pattern which
can be easily generated, e.g., all inputs are identical, or, only one or two inputs are different
from others. Thus, for P,y = 00lland P,y = Dy & x,-y, wesetax,, = (10}
(as @), and thus, /’,_; = 0110. It can be shown by induction that »; = 010L.Vi # I,
and i»y = 0110 (0011) when the number of gates is even (odd).

It is now clear that we can eliminate the hard core in the XOR and XNOR trees when their
test patterns are applied. Assume that 4 links are connected to inputs 'y ... & of the XOR
tree. To test the XOR (XNOR) tree we need to add one more input x to the tree, and .y is
controlled by the BIT. Since the output stream of MU/DEX testing is composed of two 0's
and r 1’s, the XOR (XNOR) tree can be tested simultaneously with the MU/DEXes and links
when 0011 --- (0110 ---) are simultaneously applied to x(by the BIT. It requires «*» XOR and
XNOR gates in each switch to verify the test response. When the number of XOR (XNOR)
gates is too high, the testing method can be decomposed into two phases as follows. In phase
one(two), all the queues in even(odd)-stage switches serve as pattern generators and those in
odd(even)-stage switches serve as multiple input linear feedback shift registers (MILFSRs). To
test MU/DEXes and links, the outputs of the MILFSRs are compared in a way similar to the
case of testing queues. Thus, the network can be tested in two phases, each phase requiring

r +- 2 clock cycles. An example design showing such a strategy is given in Fig. 3.12(b).
3.5 Conclusion

A two level testing strategy is developed in this chapter. The high-level testing uses

78
processors as testers to test the network concurrently with normal network operations. On the
other hand, in the low-level testing strategy, switches functions as testers (o off-line test the
network in a very short time period.

The first step to ease the high-level testing is to synchronize switches’ operations. Then,
the network is tested with different polynomial operations. Although only a few functional
fault models and their corresponding testing procedures are discussed, the basic principle can
be easily extended to detect other faults. For example, it can be used for contention resolving
testing. When two or more requests in a switch competing for the same output port, the RCU
should grant only one. Using the testing polynomials, I’V (2:) and conflicting routing requests,
an r X r switch can be tested in »” — r! tesling routines. Obviously, contention resolving
testing is very expensive, when » is large.

Most of network faults can be diagnosed in a distributed manner by processors with the
proposed testing methods. During each session of testing, a processor need not communicate
with others except the simultaneous submission of polynomials. When the packet width is
more than one bit, one of the data links can be used as a feed-forward line (but not as a
feedback line). However, when a data line is to be transformed into a feedforward line, a
multiplexer should be used to bypass the queue that the link is connected to. One masker,
a mapper, and an adder of bits are required for each data queue. For an r X r switch, at
least r? logic gates are needed to implement the MU/DEX, and the overhead, relative to the
combinational circuit of the switch to implement the tracer, is 2. It should be noted that the
overhead is an upper bound, because hardware for the data buffers are not considered.

The goal of the low-level testing is to obtain high fault coverage with a small testing time.
Queues are self-tested first by converting them into polynomial generators. Furthermore, test
patterns for the MU/DEX can also be generated by the PGs. For a C-connected queue, it needs

w extra interlinks to convert a queue into PGs. It is very incfficient to test the RCU, and

79
1-out-of-r codeword checkers are proposed to monitor the outputs of the RCU. Finally, the
MU/DEXes and links are tested simultaneously. Testing responses are verified by using XOR
and XNOR trees. It is shown that the network testing time is independent of the network
size and the design method can be applied to various types of switch. For the low-level
testing, comparators in the switches are the predominating overhead, which is 4 = ,l for
the combinational circuits of switches, and no extra links are needed. -

In this chapter we have focused only on the development of testing strategies. Although
the high-level testing can test the network concurrently with normal network operations, a
congestion tree (defined in the next chapter) might be formed if we lock up a path for a long
time period. To prevent formation of congestion trees, which may cause excessive performance
loss, an optimal testing period must be decided. The network dynamics under con;:mrent testing

and the tradeoff between the performance penalty and expected fault-detection time are the

subject to be analyzed in the next chapter.

80

Appendix 3.A: Fault Coverage of Polynomial Testing

81

Fault coverage of polynomial testing may vary with different circuit implementations of
the network. To obtain a concrete figure on its fault coverage of the low-level testing method,
consider an example LFSR design in Fig. 3.13. The basic structure of a shift-register is
essentially a master-slave S/R flip-flop. The i-th gate in a flip-flop is denoted as (/;, and its
output and j-th input (indexed from up to down) by (/O; and GI;-" , respectively. It should be
noted that latches usually have two outputs () and (). However, since the number of links is
a major concern in the network design, only the output of the slave-latch will be used, and
() is ignored. In other words, a fault is detectable only when an erroneous response can be
observed at the () output of the slave latch. During normal operations, the S and R inputs are
in the form of dd, 11, dd, 11, ..., where d €0,1. It should be noted that the input 11 is inserted
automatically when CLK=0(1) at the master(slave)-latch, and the outputs of a latch are read
out when SR=11. 01, 10, and 11 at the SR inputs are referred to as r, s, and- b, respectively.

To derive its test set, the slave-latch composed of (i, (s is considered first. Using the

D-algorithm, test patterns for faults in the latch are summarized as follows.

faultsiodes | G} | /12 | cio; | G} | Gz | o

s-a-0 sb sb rb rb b sb

s-a-1 sbrb | sbrb | sb sb rbsb| 1b

Testing the master-latch is more complicated, because the slave-latch must be in an appro-
priate initial state, i.e., output, to propagate the erroneous response of the master-latch to the
() output of the slave-latch. For example, when the (,Q) = (0,) at the master-latch, !
the initial state of the slave-latch must be (1.0) to obtain D at the output of the slave-latch.
Otherwise, the slave-latch’s output is 01, meaning that the fault is not tested. In our case the
master and slave latches have identical test patterns.

Test patterns for (V5 and (/y; are summarized below:

1 They are inverted to (1, [7) before entering the slave-latch,

82

multiplier

I__T___T_T_T_.___T_T 7 I CLK

TP
\

w-bit shift register

CLK

An one-bit shift register implemented by a master-siave
S/R flip/flop

Figure 3.13: An example LFSR implemented with master-slave SR latches.

83

faults/nodes | T} | G2 | GOs | GIY | G122 | (10

s-a-0 sbrb | sbrtb| sb | rbsb | tbsb | b

s-a-1 tb [rbsb | sbrb | sbrb | sb | rbsb

It can be shown that the above pattern can test (Vy,(7, simultaneously. /), s-a-1 and
(i(0)p s-a-0 can be tested by sbrb. The only undetectable faults are (i'[y, s-a-0 and (/'()y,
s-a-1, because the erroneous responses can only propagate to the () output of the slave-latch,
('ly s-a-1 and GOy s-a-0 will block the transmission of data, and thus, sbrb is sufficient to
test them. (//y s-a-0 and (/()y s-a-1 faults do not cause logic faults, and thus, not detectable
by the D-algorithm. However, the memory of the register is lost when the above two faults
occur, i.e., the latch fails to hold the data for a specific period. Assume that the high (low)
period 7, of testing clock is three times slower than the latch’s transition time #,4. Then, such
faults can be tested by the polynomial testing method. For example, when (/' () is stuck-at-1,
the data at the input of the register will be shifted to the slave-latch’s output after 2/,,.. At the
third ¢, the data is erroneously shifted into the next register. Thus, the shift register fails to
perform the dclay function. Occurrence of such faults in a queue implies that the length of
queue is reduced. Since the polynomial testing can identify the configuration of a LFSR, all
such faults can be detected.

Although the polynomial testing is developed as a high level testing, it can clearly detect
all the detectable stuck-at faults at the logic level of registers. Since only two of the 56 {aults
are undetectable in a register, and all other faults, i.e., stuck-at faults on the XOR gates and

feedforward lines, are detectable, the lower bound of the polynomial testing method is 96%.

84

Appendix 3.B: List of Symbols

ANSX Four states of a switch on the route under test.
3; The i-th block in a PDM.
BU; The i-th buffer in a queue,

Di(inys Dioury The ring link input (output) of the i-th pattern generator i';.
DFF A D type flip-flop with a single input and a single output.

J o Switch permutation, Eit! : (ir 4 j) — f(ir + j+ m MOD r), where
S(ir + jyand f(ir + j 4+ m mod r) are the global indices of the j-th input
port and the j + m mod r-th output port of the (i + 1)-th switch, respectively,
where r is the switch order, and — is the intcrconnection. [/ is denoted as

m

E,,, when all switches have the same permutation.
) il The inverse of the switch permutation £7,,,.
Yoy An RCU output which enables queue j to be connected to output port /.

GI(2)x] The polynomial ring.

1.7, 1 is the set of integers and I, = {0,1,2 ... ,n}.

M

ﬁ‘[,'_,'(.‘l‘)

MUDEX

ONE, ZERO
P(x), P(r)

PjN(.’v)

Pi{x)
PDM
PG

PSMIN

Q)
R{x)

RCU

RUT

85
An m X w matrix representing m buffers in a queue of w bits each, The i-th
row of M is the i-th bits of all buffers and the j-th column of A/ is the j-th

buffer in the queue.
The multiplier formed by the route connecting source i to destination j.

An r X r MU/DEX is the combination of » multiplexers and » demultiplexers.

It is used to direct packets in a PSMIN switch,
Coefficients of a word polynomial, ON I = ZERO.

A polynomial and its complement.

N .
PN(w) = cia',where ¢; = l,¢; = 0,i# j,is a test pattern submitted
i=0
by processor j.

k
Plx) = Z a{m+1i] (he test polynomial for /. unit delay faults.
i=0
Polynomial multiplier or divisor.
Polynomial generator.

Packet switching multistage interconnection network.

The product of /() and A (), or the quotient of I’(«x)/ D(x), or the output

of a PDM.

The remainder of the operation that (x) divides I’(x) or the final contents

of a PDM.
Routing conlrol unit.

Route under test.

i
SSA
T:

We(a), W(a)

;
}: n;x'

i=0

86

The length or order of ;.
Single stuck at fault.

The link permutation at stage 7.

k
We(e) = Z:zri. IW(a) = We(e)

i=0

The initial state of a PDM or a PG.

CHAPTER 4

ANALYSIS AND OPTIMIZATION OF CONCURRENT NETWORK TESTING

4.1 Introduction

It is sometimes very expensive to suspend the operation of a switching network for the
purpose of off-line fault diagnosis. For example, signal processing applications require large
amounts of data to be transmitted through the network, and in telephone switching systems,
the revenue loss caused by a system stoppage for fault diagnosis could be unacceptably high.
Concurrent testing strategies, which test a part of the network at a time while letting the other
parts function normally, can alleviate or remedy this problem.

As will become clear later, concurrent testing of a network is much more complex than that
of memory or processors. When a processor or memory undergoes concurrent testing, no other
system components need to be involved with the testing. Thus, it is relatively easy to estimate
the performance loss caused by concurrent processor/memory testing. By contrast, testing
the interconnection network of a multiprocessor system is complex and difficult because the
nctwork is shared by many processors, I/O devices and memory modules. Unless the network
is equipped with a centralized control mechanism, unexpected packets may enter a path under
test (PUT), making it impossible to evaluate testing outcomes correctly. Thus, for the purpose

of concurrent network testing, special care must be taken to prevent unexpected packets from

87

88

entering the PUT. We proposed in the previous chapter a new method, called the high-level
testing, to resolve this problem by synchronizing and locking up switches on the PUT. After a
path is locked up, it can only accept testing packets from the testing processor, which is the only
processor connected to the input of the PUT. Locking up switches prevents unexpected packets
from entering the path, and synchronizing switch operations is necessary to reduce the testing
complexity. Since it requires at most one additional processor to evaluate testing outcomes,
the high-level testing minimizes interactions between processors, and thus, greatly simplifies
the testing problem. Moreover, it has been shown in Chapter 3 that only a few modifications
to existing switch designs are needed to support the high-level testing. However, we addressed
in Chapter 3 only the architectural aspects of the concurrent high-level testing without any
quantitative analysis of its performance. The performance analysis and optimization of the
concurrent high-level testing are the subject of this chapter.

The concurrent high-level testing can be applied to networks with arbitrary topologies and
switches, and/or redundant paths. An » X r switch in the network has queues, each of which
is served on a first—in—first—out (FIFO) basis. Packets that are submitted to the network by
processors other than the testing processor and must pass through the locked path will be
blocked. After a packet is blocked at a queue, other packets that must pass through the queue
will also be blocked. Hence, when a path is locked for a long time, all of its source queues—
those queues that have some paths to reach the locked path—will eventually be blocked. When
all the source queues of a node are blocked, they form a congestion tree.

Every packet in a congestion tree cannot advance because packets in front of it are stuck.
Performance loss may become substantial when a congestion tree is formed in the network
for a long time. In order to avoid the formation of congestion trees and shorten the mean
fault detection time, it is essential to analyze the network dynamics under concurrent testing.

Congestion trees are somewhat similar to hot spots in common memory access [81, 22, 116].

89
However, packets stuck in a congestion tree cannot advance at all until the locked path is
released, whereas packets in a hot spot zone move slowly without stopping.

As their name implies, concurrent testing procedures have to be executed according to a
pre-planned schedule during the network’s normal operation. Hence, to analyze the behavior
of a network under concurrent testing, one has to know the network’s steady-state performance.
Numerous approximation methods have been proposed to model the performance of circuit
and packet switching networks. Probabilistic models and their extensions are reported to yield
a close approximation to the performance of circuit switching networks [77, 114, 12]. Markov
chain models are usually used for the performance analysis of packet/circuit switching networks
[34, 102, 23, 59, 60, 117]. Kruskal et. al derived a closed form solution for the asymptotic
analysis of circuit switching networks, and packet switching networks with a large buffer size
[57]. Due to the complexity involved, it is in general intractable to accurately analyze packet
switching networks. We propose a reduced network model to ease this problem,

One can avoid the formation of congestion trees by controlling the time of testing a PUT.
This implies that the probability distribution of time to block an arbitrary node be an important
parameter for the analysis of a congestion tree. We develop several algorithms to derive this
distribution. A congestion tree is said to be dissipared when all the stuck packets exit from
the tree. The time to dissipate a congestion tree is another important performance parameter.
Unfortunately, no simple analytic method appears to be derivable that can be used to calculate
the probability distribution of tree dissipation lime. Simulation is thus used to obtain the mean
tree dissipation time, instead of attempting to derive the distribution of tree dissipation time.

The optimal fault coverage is derived to minimize performance loss and maximize testing
efficiency. Finally, it is essential to avoid the repetition of testing the same network component;
otherwise, the network testing time may become excessively long. We must therefore find the

optimal resting rings, the testing sequence that minimizes the repetition of testing the same

90
component.
The rest of this chapter is organized as follows. Section 4.2 discusses network operations
and the underlying testing method. The network dynamics under concurrent testing are ana-
lyzed in Section 4.3, and optimization of testing strategies is the subject of Section 4.4. This

chapter concludes with Section 4.5.
4.2 Network Organization and Testing

Before analyzing the concurrent network testing, it is necessary to describe the basic

network architecture and the underlying testing method.
4.2.1 Network Organization and Operations

The network under consideration is a packet switching multistage interconnection network
(PSMIN) which connects N processors, {I%, 0 < i < N — 1}, to N memory modules,
{Al;, 0 £i < N -1}, where memory module A/; is a partner of processor /%, but is allowed
to be accessed by any other processor in the system. When r x r switches are used in a blocking
PSMIN with a unique path between every processor-memory pair, there are i = log, N stages
of switches in the network. Each switch has r queues and an arbiter, where the r queues are
located at the » inputs of the arbiter. Packet transmissions are synchronous; that is, an arbiter
grants/denies each request for routing a packet, and the packet, if granted, is routed from one
stage to the next stage in one network cycle. Connection of the » outputs of each arbiter to
the next stage is determined by the network topology. A switch (arbiter) located at the /-th
row of stage j is denoted by .5;,; (418 ;). Sij = {Quic1)rjs Quictyratijo "« Qir—ti AR,
where (Q(;_1),4.¢,; is the (-th queue of 5 ;, 0 < (< r— L.

The network topology provides a unique path between every processor-memory pair. In-

terconnections between queues of adjacent stages can be described by backward (1') and

91

Sforward (A) relations. Physically, 1'(Q;.;) (A(Q;,:)) is the set of all immediate source (des-
tination) queues of (J;; in the previous (next) stage. For any Q;:, I'(Q;i) = { Qr,.i-1,
Qeyictr > Qeimt)s THQi) = Uzt M Qu i1)y and I™(Q0) = Ulzy I 1(Q1, 1)
‘Similarly, A(Q;i) = { Qryit1s Qryitrs * 5Qrpit1}s a0d A™(Q) = Uiz A" (Qryy it 1
Since a processor can access any memory module, I'*(Af;) = {Pj, 0<j<N-1},and
AR = {AM;, 0L j< N ~1},0< i<N — L. A destination tree with A; as its root,
denoted by 7' R,r,, is formed by a collection of queunes, Uj-'___, 1Y{M;). A source tree with I; as
its root, denoted by 1'Rp,, is formed by a set of queues, jfz ,AJ(I%). Source or destination
trees can be defined similarly with respect to queues instead of processors or memory modules.
For a queue)/, at stage »n, the notation 7'/, will be used to denote TRy, =UiL, " (Qr.,))
whose height is the same as the associated stage number, n. 7', will be written as 7'/,
whenever the value of (becomes immaterial in our discussion.

Each tree 7'1;

Lyt

, in the PSMIN can be modeled by a labeled graph (/, in which nodes
denote arbiters and edges are queues and links. Fig. 4.1 shows an example destination tree and
its corresponding graph model. Having introduced the network organization, we now briefly

discuss the operational principle of the network-level testing.
4.2.2 High-Level Testing

The network-level testing requires locking up only a small number of network components
and processors for each testing session. The lock-up procedure is executed by routing locking
packet(s) through a path to be tested. Note that the polynomial testing method can detect/locate
the lock-up faults caused by mis-routing. Once a path is locked up, it will accept packets only
from the testing processor, which is connected to the input of the locked path.

Stuck-at faults in a path //; ; can be located by three test patterns: the impulse, the all 1’s

and the all O’s streams. If no fault is found during the application of these patterns, the set of

TR M4
processors memory

TN
2 BN

3 RN
1
AN
6 YN
7

m]
s - EEE

NN ..

AMNW

S --- -
MNNN N

level 4

level 2
level 1

Figure 4.1: An example destination tree and its corresponding graph model for an 8 x X

PSMIN.

93
switches {.5,,115m2,20° * *+#9m, 1} may be tested further for other faults, where .5, . is the (-th
switch on II; ;. For example, to test for merging and broadcasting faults in switch .5; ;, two
paths intersecting at \5; ; must be simultaneously locked up. Thus, any two processors /I’ and
P, such that I, I, € I¥(S;, ;) can function as testers of 5; ;. To test .9; ;, two (est patterns,
Ty and 7),, must be submitted simultaneously from /’; andil’,”, respectively. As shown in
wh—~1 wh=1

Chapter 3, these test patterns can be represented as T =) arX'and T, = Z be XY,
where a; = b; Vi, w is the number of buffers in each queuei= /l: the number of stag;:,uand RY
a dummy variable.

When the locking packet is routed through a queue, and thus a switch, we can lock up
either the queue or the switch. When the queue is selected to be locked up, two intersecting
paths can be locked up independently, because they run through different output ports of the
switch where they intersect. If the entire switch, instead of a queue, is selected, two paths’
lock-up procedures must be synchronized to avoid the possibility of deadlock. A deadlock
occurs when two paths’ lock-up speed is different, where the slower lock-up operation can
never be completed. To avoid deadlock, we must either synchronize the routing of the two
locking packets, or must design switches so that they can be locked up only after two locking
packets enter a switch. The first type of lock-up operation is much simpler than the second
type, and thus, will be used in the rest of this paper.

As mentioned earlier, concurrent testing is performed according to a predefined schedule.
Further, the system is assumed to be in steady-state when a testing session starts. We shall
develop a network model in the next subsection to facilitate the analysis and simulation of

steady-state system perfortnance before delving into the analysis of the network behavior under

concurrent testing.

94

4.2.3 Probability Distribution of Queue Lengths

A PSMIN can be described by an Nlk—tuple, © = (Yu,1,Y1,1,-+, ¥N_1,), where Y ;
is a random variable (or state) denoting the number of packets in (); ;. The steady-state
Jjoint probability distribution of © can be obtained by solving the balance equation v = Py,
where v is a vector representing the steady-state distributions of 1; ;’s and P the state tran-
sition matrix. Since the number of system states increases exponentially with the network
size, i.e., (w4 |)N’“, it is necessary to reduce the number of states in order to make system
analysis/simulation manageable. A reduced network model is proposed to meet this need.

Processors’ request patterns are assumed to be independent and identically distributed
(i.i.d.), and as a result, address bits generated by processors are also 1.i.d. It is further assumed
that arbiters grant routing requests based on a geometric distribution [77, 57], and at stage / of
PSMIN, the parameter of the geometric distribution is /’,,;;. When all arbiters’ output ports
have the same routing priority, the packets’ interarrival times at arbiters’ output ports are i.i.d.,
and the number of packets waiting in each of the queues at one stage is i.i.d. That is, queues
within a stage are statistically identical, and so are arbiters. It makes no difference which buffer
of the previous (next) stage a packet is coming from (going to). Consequently, for the purpose
of steady-state performance analysis, one can assume, without loss of generality, that all the
output links of a switch are logically connected to the input ports of another switch. (Note that
these output links are actually connected (o the input ports of several different switches.) This
simplification will reduce the original PSMIN to N'/r independent and identical subnetworks.
The reduced network model deals with each of these subnetworks (i) which consists of i
stages of r X r switches connecting r processors to » memory modules, and (ii) in which link
connections between adjacent stages are represented by the identity permutation.

The reduced network model can be simplified further as follows. Since qucue lengths in a

95
switch are i.i.d., one random variable is sufficient to represent the number of packets in each
stage. The reduced network model can thus be characterized by a k-tuple @' = (17,1, ---}}),
where 1; is the random variable denoting the number of packets in any one of the queues at
stage i. Let the probability of }; = (be /I’ », and w be the number of buffers in each queue.
Then, the number of states of each queue is w + 1, where the state of a queue is defined by
the number of packets in the queue. Note that Y’s are often assumed to be independent as in
[34]1. However, this assumption is acceptable only when the network has light traffic, or - is

very large,

Elements of the transition matrix P are determined by the operational principles of arbiters,
and the number of buffers in each queue. For a non-full queue at stage /, the probability of
a packet entering the queue is /%, ; = 1 — (l - '_—l:‘l-'—’—‘y The packet at the head of a
non-empty queue can move to the next stage only when the next destination switch is not full,
and the packet’s routing request is granted by the associated arbiter. Assuming that packet

transmissions in the network are synchronized, at any network cycle we get

| - | — P, ;)i r—1 (1= 1 .).i[)"—l—j.]Z J l ’ 1;1 -t !
out,i (0,741 j="(j) = i 0,i ! = (A:) (1) (r) m

1=Pu, 1—=Pas — ,‘ '—P""'l'l
PR (‘ —(===")) =g D

Il

For a queue at stage i we have

)j,i = Pin,i(J - Pnut,i)}{i-l,i + Paul,i(1 - Pin,i)])j+l,i +
(Lo Powtyi + (1 = Py i) —]V’aul.i))lfi.iv if 0<j<w
Pw,i = I)in,i(1 - 1)(7111.l')l)m—l,i + (L - Pm«(.i)—[)w.i

-l,Ui = Puul.i“ - Pin,i)l,l.i + (I - l,in,i)])(),i-

Let 7= pesbrlotd then 1= /™' 11jy 1< G S w1, Pyi= 2(1= D) Iy and

Py =1l = Py, i)Pr=1,i- To find the solutions for I, ;’S, one must solve the normalization

96

kow
equation Y Y "I ; = 1, that is,

i=t j=0
ﬁ: (l + | - ri‘("'+l) __ Pout,i) Pui= 1.
=1 (L= L)l =) (L= Pa)
Let Pyi = TiPy—y,;and Iy; = rl' 1’ ;. Then, the normalization equation is simplified to
2,3 _1;7_-,-’1:_‘_170,'_ = 1. Our simulation results in the next section show that when either the

=1 - Ti

network has light traffic or w is very large, arbiters at different stages have nearly identical
pacameter values, i.e., 7; ~ 7;,Vi,j. However, when each queue has only a small number
of buffers or the network has heavy traffic, dependence among first few stages cannot be
ignored. The solutions of /; ;’s appear to be intractable under such a condition, because 7;’s
are completely different from one another, and the required solution procedure is extremely
tedious. Consequently, we use the reduced network model in our simulation to derive steady-
state network performance. Once the steady-state performance is determined,! we can analyze

the network behavior under concurrent testing.
4.3 Network Behavior Under Concurrent Testing

There are several interesting analysis and optimization problems associated with the con-
current network-level testing. We shall investigate such important performance parameters as

path locking time, and times to form and dissipate a congestion tree in the PSMIN.
4.3.1 Time to Form a Congestion Tree

The most important network dynamic parameter under concurrent testing is the probability
distribution of time to form a congestion tree. However, it is very complex and difficult
to derive this distribution due mainly to the excessive number of different locations where

packets may reside at. Hence, the analysis of time to form a congestion tree is decomposed

! These results will be shown in the next section together with other simulation results.

97
into the following four steps. First, components of a congestion tree are modeled. Second,
the distribution of time to block the root of an arbitrary tree is derived. The third step is
to reduce the computational complexity associated with the derivation of the distribution of
root blocking time. Finally, the probability distribution of time to block an arbitrary node is
derived using the distributions of root blocking times. The probability distribution of time to
form a congeslioh tree can then be derived from the distributions of node and root blocking

times. Each of these four steps is discussed below in detail.
A, Modeling of a Congestion Tree

A locked path [I; ; is composed of a set of queues {(Q¢, . }*_,, where ()., , is the locked
queue at stage r on the path. As shown in Fig. 4.2, there are /: disjoint subtrees {7'1’;}%_,
within 7'y, ~ {1}, where Q¢ , € Il; j, 1 < n <k, is the root of T'P,. Each such 7'/,
is called a blocking tree, because the root of 1'P’, is locked up, and thus, packets may build
up in this tree. A blocking tree becomes a congestion tree when all the queues in the tree are
filled with packets that cannot advance.

T P,’s associated with Ii; ; are disjoint, i.e., TP, N\T Py = 0, V(2 m, 1 < (,m < I,
because V (< i, (1) there is only one path from a queue in 7' P; to another queue in 7'/, via
the locked path //; ;, and (2) there is no path from 7'/, to 7'1’;. When /I, ; is locked up for
testing, the testing processor and the output of /I; ; are P°; and A/}, respectively. Except for
the //; ;’s queue in the first stage of the network, A/; and all other queues on //; ; are shared
between [7; and other processors. Since the qucues in a locked path //; ; can receive packets
only from its testing processor I”;, all packets that are generated by processors other than /*
and need to use //; ;j and Al; will be blocked until the testing of //; ; is completed. Those
packets that need to enter a queue (J;,, ;,, on II; ; are called blocking packets of ();,, ;. or

11;,;. Once a packet gets stuck at a source queue (.., on I/; , all subsequent packets entering

E3 locked path
B . TH

TR
N
P3 (7A-577 M,
L7 NN AN p
£ RN

AN

l
Il
l
Il

the corresponding track
tree in TE

(root)

M4
=

Figure 4.2: Disjoint subtrees in T 12;y,.

99
),y will be stuck, and thus become the blocking packets of (0. ,. Such a ()., (or //; ;) will
not be mentioned specifically when we refer to “blocking/leading packets” (to be described
later) as long as it does not cause any ambiguity.

Those switches having no path to [7; ; are called free switches.? Free switches can function
normally during the testing of //; ;. However, all free switches will eventually empty their
queues for the following reason. Since 1'[2;; contains all processors as its leaves, and all the
queues in 1'12,;;, will eventually be blocked, no packet can be submitted to the free switches
after the tree is completely blocked. Consequently, free switches do not have any impact on
the network performance of our interest, and thus, will not be discussed any further.

A blocking packet is called a leading packet if there is no other blocking packet ahead of
it. By definition, there must be no path available among the queues holding leading packets;
otherwise, one leading packet would be ahead of another. Each set of disjoint subtrees within
a blocking tree can be made to correspond (o a set of leading packets by placing each leading
packet at the root of one of the disjoint subtrees.

One can observe that in some packet switching networks such as telephone systems, packets
are generated independently, and enter the network constantly. Based on this observation, every
processor in the PSMIN is assumed to have the capability of generating an infinite number
of packets over an infinite time period.” Those packets not generated yet in a blocking tree
may in future block the root of a subtree just as already-existing packets may. Thus, to
derive the probability distribution of a root’s blocking time, we have 1o consider both blocking
packets already in the network as well as those to be generated in future. Arrivals of packets
are assumed to follow a geometric distribution with parameter p. The probability of a new

blocking packet to be generated by a processor in tree 7' %, ;, at the n-th network clock cycle is

2 However, there could be paths from [, , to free switches.

* If processors do not have this capability, the required analysis will be much simpler than the one presented
here.

100

{: (n) (L=p)"~ pi(1—(L)/r)="(L)ir. Moreover, the probability of the i-th blocking packet
;: (I’Je generated by the processor at the n-th network clock cycle is (77/) (1 —pr=dryt=1=i(L)},
where n > 1.

For a set of n leading packets {I’1i’;}!_, located at n different queues of a blocking tree
T P,, the set of leading packets’ paths to the root of TP, can be viewed as a track tree. The
track tree for PNy, 'Ky, -+, Pk, is simply T' P, — Ji=, TP;, where T'I; is the tree whose
root is the queue that holds /”/v';. Two track trees are distinct when their corresponding sets of
leading packets are different. Fig. 4.3 shows the sets of track trees in 7' P, 1'F, and 1" I3, with
r = 2. We shall henceforth use the terms “a set of leading packets”, “a set of disjoint subtrees",
and “a track tree”, synonymously. Let D, denote the set of distinct track trees in 7" ’,. When
Qi € 11;; is locked up, a set of leading packets, A = {PLy,PKNy.---. PN} € D,
will have a race in the track tree to reach the root,);,, ., of 17'P,. The number of leading
packets decreases monotonically as the race progresses. Once a leading packet reaches the
root, it will be the only leading packet in the tree.

Starting from the root of a k-level tree, each level of the tree is indexed as v, k— I, - - -, 1.
The lowest common node (LCN) of I’Ix; and I'I\';, denoted by LC'N(I’I\;, I}), is the node
at the lowest level that can be reached by both ’A’; and I’ K;. Thus, LC'N(PK;, PK ;) is the
node at which one of the two packets will lead the other. Similarly, LCN(PK.---. I’I\,)
is the LCN of »n leading packets, {I’lvy,---, / I,). In a track tree, every node having more
than one child is the LCN of some leading packets.

Given any non-complete tree /1, one can find another track tree /1’ with the same prob-
ability distribution of root blocking time. .\’ can be found by exchanging locations of two

hertergeneous subtrees (i.e., subtrees with different structures) under a LCN. That is, given a

set of n track trees Acr = {Ar | O =1, m, Py 4, = Fxa,s i #£ G, 1 <0, < n) where

102
X is the root’s blocking time, we get I'y, |1, = |Acr| P4y VAi € Acr. Fig. 4.4(a)
shows an example set of track trees .1, Az, Az, 44 that have an identical distribution of root
blocking time.

Lexicographical ordering of trees in A¢:r is used to uniquely identify each of the trees in
Ac7. There are several ways to define the lexicographical ordering of trees in A.;. However,
any meaningful lexicographical ordering should be able to distinguish any two different trees
by their lexicographical orders.

Consider an example game to determine the lexicographical order of two track trees, .|;
and /}; in .1¢'7. Before the game starts, .; and .1; are changed to two complete trees' 7; and
T; by adding new nodes and branches to .i; and /;, and each newly added branch/node is
labeled as‘ a “fake” branch/node (Fig. 4.4(a)). Let two knights (packets) A'; and /' traverse
nodes of T and T; in preorder, respectively. 4; (4\;) can always challenge K; (I\;) as
long as Iv'; (Iv;) is not at a fake node, and wins the game if A'; (/\';) cannot challenge back
(because it is at a fake node). Challenges will be dismissed and the game will continue if
I'; and Iv; challenge each other at the same time. The game is ended when one of the two
knights wins, or there are no more nodes to visit. If ii’; loses the game to h’;, .1; is said to
be lexicographically smaller (han .\;, denoted by A; < Aj. A; = A; if the two knights have
a tic at the end of the game. This example lexicographical ordering can always distinguish
two different trees, and .1; = /1; only when they have an identical structure. An example set
of track trees with their lexicographical orders are shown in Fig. 4.4(a).

Since the lexicographical ordering can distinguish all trees in A¢p, it can also be used
to distinguish arbitrary trees. However, 1; < 1’; does not indicate which tree has more
branches or nodes. An arbitrary tree A; € ¢y is said to be lexicographically maximal

if A; > A, VA; € Acr. A tree T, is lexicographically maximal if (1) all its subtrees

* In a complele tree, all but leaf nodes have r children,

103
are lexicographically maximal, and (2) at an arbitrary node @ of 1;,, subtrees below () are
arranged in lexicographically descending order from left to right. Using these properties, an
arbitrary tree can be converted to its lexicographically maximal form (called the canonical tree
C'T") by the following simple recursive routine.

lex_max(T'P;,,)

[*T P;,, is the input tree of height n to be converted*/

begin
if(n > 1) then
begin
i=1

while(i < 1) do

lex_max (TP, ,,_1); /*go down one more level*/

i=i+1;
end_do
end
sort T'Pj, ,—y,+++,TP;, - in lexicographical order;

end

B. Distribution of Root Blocking Time

We now derive the probability distribution of time to block the root of a blocking tree.
Let T;, | < i < m, be the time required to route a leading packet P i’; to the root of a tree,
and \’; be the time the /-th blocking packet arrives at the root, i.e., X; < X, - < .\, and
Xy = min(Ty, Ty, -+, T,,) is the root’s blocking time. (X;.X,---..X,.) is called the set of
order statistics, representing the arrival times of the first « leading packets. The probability
distribution of X';, denoted by Fx,, can be derived by enumerating all possible locations of
leading packets, and then summing up the probability of the root to be blocked by each leading

packet.

104

Times to route leading packets to the root of a track tree are not always independent because
they must traverse some common queues and arbiters before reaching the root. However, two
leading packets /’i; and I’ /; in a same track tree have independent routing times before one
of them reaches LC'N (P I, I’I;). Let ();,.;, be the root of the tree under consideration, and
the path between P’Ly;, and the root contain queues Q;, ;. Qi, i, F01" a set of leading
packets PIvy, PIz,---,I’I\,, be located at Q;, ;,,Qiy,55s"* s Qi im» TESPectively, it takes
time T}, for 'K, to travel from Q;, ;. to Q. ;. T, can be expressed as the summation
of times for I/, to traverse all the queues and arbiters between (Q;, ;, and @), ;,, ie.,
Ty =1, + -+ 1;,.i,, where 1; , m = r,«+-,m, is the time for a packet to route

i” ‘.i" illl 'j"l

through ¢};,, Then,

vjm .

Xy o= min(Ty o+ Ty Tovie + oo Tiggosoes Linin + oo+ i)

ﬂrvjr + “li“([l . -['29 Tt v]m) (4.1)
where Iy = .-+ Tj,;,, 1 £ (< m. Since T}, ;, is independent of min(/,.---,/,), we
get fx, = [f1,), * Jwin(i - I,,)- Furthermore, for i independent random variables \;’s,

1< j <my By, xzXa)= 1= I (1 = Fx,). Thus, if I}’s in Eq. (4.1) are not
independent, they should be combined into groups (/y, Gz, -+, G\, so that /; and [; will be
in the same group if and only if there is at least one common variable between /; and /,.
The probability distribution of each group (i; is evaluated separately, and then combined as
Fointhy L oo 1y = 1 — I'[’;;,(l — I,). As was done in Eq. (4.1), the probability distribution
of each J;, can be calculated by extracting common variables recursively.

Having calculated /'y |, one can compute Iy, =]T}TJ Z I'x,4» where |1);| denotes

AeDy

the number of ways that leading packets may reside in different queues, and is derived by the

following theorem.

105
Theorem 1 : When every queue is composed of only one buffer, the number of sets of disjoint

subtrees (distinct track trees) in a blocking tree TP, b > 1, is

1Dl = (14 |Dpg))

Il

(Lo (L 27y
b—~1

Proof: |D,| is derived by induction. When) = |, there are r — | unlocked queues in 77,
and each queue may or may not have a leading packet in it. However, the case that none of
the branches has leading packets must be excluded, because processors can generate infinite
number of packets. Thus, || = 2"~! — 1. Suppose 1'1’%_, has |D;_,| track trees. Since
T'D, is created by linking r copies of T'I7,_, to a new root, D, can be generated from r copies
of D;_,. None or one of the elements of D,_, can be assigned to a child of the root of 7'/,
Thus, there are (1 + IJ;_ ;) combinations of different elements in each child of the root, and

D] = (L4 | Dyt) |

Corollary 1 : When each queue is composed of w > | buffers, the number of sets of disjoint

subtrees in TP, is

{D]

(w4 1)y-1-1

| D) (w4 |D—y])'s 0> 1

Proof: A queue is either full or empty if it has only one buffer. When) = 1, and each queue
has w buffers, a queue may have none or one leading packet located in one of its ' buffers.
Thus, || = (w+ 1)"~! — 1. Assuming that 7'/%,_, has |1),_,| teack trees, 7'/’ is created
by linking r copies of 1'1%_; to a new root. D), can be generated from r copies of D;_.

One element of 1), can be assigned to a child of the new root, or the leading packet may

106
be located in one of the w buffers in a new queue. Thus, there are w + D;_, combinations of
different elements in each child of the new root, and |Dy| = (w + |Dp-1)". |
In enumerating all possible locations of leading packets, one only needs to consider which
queues, instead of which buffers, leading packets may reside at, because the effects of buffer
size have already been included in the distributions of (blocking/leading) packets’ queue routing
times. Thus, although Corollary 1 counts the number of track trees in 7' P,,’s with multiple-

buffer queues, one should use Theorem 1, instead of Corollary 1, to compute |D|.
C. Reduction of Computational Complexity

The number of disjoint subtrees in a blocking tree increases rapidly with its number of lev-
els. Note that many cases have been redundantly counted in the calculation of the distribution
of root blocking time. Let D¢, denote the set of canonical trees in 71, then |D?..| < |1y

as will be shown below in Theorem 2. One needs much less effort to compute [y, with

AT | AN . H i Ve =l 7
Fx, = o E |CTi| Fyx,cp, than directly computing F'y, =10 E Fya-
CTieDl L A€l

Theorem 2 : When each queue is composed of one buffer, the number of canonical trees in

T P, of height b is

h-1 .
|Der | = ("D‘""'_' ¥ ’) 42)

T

where 1] = ("!'), and each node (except for those nodes located at the lowest level) has

r branches to the next lower level.

Proof: The theorem is proven by induction. 7'/’ has only one canonical tree. 7'/’ can be
generated by linking the roots of 7°/°’s to a new root (with new links). Leading packets in
T'l, may be located at its root, or at / of its r leaves, where | < i < r. Thus, there are

r + | canonical trees in T'/%. Assuming that there are | Di-| canonical trees in 7'/, we now

107
build 7'/ from r TP;'s. Since T Iy contains r TP;’s, and each subtree has |D}.;| + |
canonical trees, | Dit!| = (1P 3‘3‘”") follows. N
Table 4.1 shows the number of track trees and canonical trees for b = 1 to b = 5 when
r = 2. As mentioned earlier, the number of canonical trees in a tree is the same as that of

different forms of probability distributions in the tree.

b (123 4 5 6 7

[Py |1]4125] 676458329 | ~ 2.1 x 10! | ~ 4.4 x 10

Dyl 1|3 |10 66 | 2278 | ~2.6x10% | ~3.36 x 10'?

Table 4.1: The computational complexity of 1), and D{.,.

Canonical trees can be uniquely encoded by a data structure calle& a mark. The encoding
sequence is obtained by assigning a. level number to each branch of a tree, and branch level
numbers are put into the mark when the tree is traversed in preorder. To decode a mark
i1iziz - -+ i, to its corresponding canonical tree, a cursor is used to point at the current digit of
the mark, and a branch generator to generate branches according to the current and previous
digits. At the beginning, the cursor is located at the leftxﬁost digit of the mark, and the branch
generator points at the root of the tree. The new branch is labeled with 7, the branqh generator
is moved to the bottom of the branch, and the cursor is shifted to iz. The rest of the procedure
can be expressed by the following steps. At i; of the mark, | < j < n, we either add a branch
at the current node if i; < i;_;, or move the branch generator to the top of the current branch
and then add a new branch there if /; = /;_,, or trace back to the top of the first branch, 0,.,
which has the same label as /;, and a new branch is added at the top of b, if {; > ;. Then,
the cursor (branch generator) is moved to the next digit (bottom of the new branch), and the

added branch is labeled with /;. Fig. 4.4(b) shows the decoding sequence of mark 321121,

108

horizontal permutation

%\6/\.\.

a fake brench
and node

a complete tree

AR

canonical tree
(a)

3211 32112 321121

)RS

Figure 4.4: (a) A set of track trees and their lexicographical orders. (b) The canonical tree’s
mark and its decoding sequence.

109

We now present an algorithm to create the set of canonical trees in 7', with a given mark.
Similarly to the techniques used in proving Theorem 2, the set of marks in T'P; is generated

from the set of marks in T'P;_,.

Algorithm: C 1 : D}, generator

C={a.az, +yar} = {\I‘L/_IJ +»+,11,1}; /*C is the set of marks D{-,‘.J!*/
=2
while (i < ') do
C" = @; /* the new set of marks D}, */
i=1 ‘
while(j < |(*]) do
m=r7mr;
while(m > 1) do
C'T = i; [*a new mark always starts with /*/
CT=CTa;a;---aj
N

m

add C'T as the last element of C';
if(m < r) then new_mark(C'T’, m, j);
m=m-1;
end_do
J=itl;
end_do
C =,
i=i+1;
end_do
new_mark(C'T, n, j)
begin
if (n < r)thenk = j+ I;
while (I: < |]) do
rxr=r—n;

while (x > 1) do

110

CT=CT apay -+ az;
[—
M

add C'T" as the last element of C;
if (v + n < r) then new.mark(C'T, «, ar);

t=a-1
end_do
k=k+1;

end.do

end

The above algorithm can be verified by using r=2 and k=3 to generate D}, ={3, 32, 3212,
32112, 322, 321, 321121, 32121, 3211, 3211211}. For a given mark (', we can calculate

| A¢] recursively by the following theorem.

Theorem 3 : In a canonical tree ("/" whose mark is m, = nm)_ 1 ---mjf’_, w» Where

m; _, , means j copies of m,_1,, there are |.\c7| different subtrees with the same mark, and

.n—l,i
k i 1__Zr-| i .
Zij <y feber] = =g (7= VNmy=1,l, where [m,_, | is the number of different
=1

subtrees with mark 2, .

Proof: Since [y, remains invariant under the horizontal permutation of subtrees of a track
tree, when the locations of mn,_1,;’s are permuted, each location represents a track tree with

the same ['y,. Since m,,_1,; can be further decomposed into 1,,_, 1’s, |, | can be derived

. . & '._Z(:l i .
recursively, thus leading to [A¢p) = [T, (77 %&0=0 ey]

i”
D. General Cases

Fx, of T'I;, whose root is ()}, ;, is derived by the techniques discussed thus far. /'y,
Fy,,-+, Iy, of TI; can be derived similarly after some pre-processing steps. We now derive
F'x,, < € < w, where i is the number of buffers in each queue. The basic idea is that

for a set Z of blocking packets, and the subset 3 of leading packets in Z, we first remove

111

a leading packet from . The removed leading packet represents the first blocking packet
reaches the root with routing time _\'). After removing one leading packet, blocking packets
under it may now qualify to be new leading packets. For the leading packet removed from
Qr, > there are | Dy | = [Dy| — 1 ways of locating new leading packets below Q) ;.. Let Np
be the set of possible leading packets after removing one leading packet from /3, and .\'| be
the time the first leading packet arrives at the root of the new track tree, then X'{ = \',. Thus,
Fxyg= Fyxyp=]T]’f‘B,Z; I'x1y:- The following two pre-processing steps must be applied
{ — | times recursively fsi :;le calculation of /y,: (1) remove one leading packet from /3, and
(2) find new leading packets below the packet removed in (1), and form a new track tree. We
must enumerate all possible blocking packets’ locations in the above steps.

The queue located at the root () ;; ; is full at time .Y, after which leading packets of (), ;
and the r subtrees 1'I%, i1, + -+, 'L’ ;-1 will start to be blocked. The probability distribution
of time to block the root of 7', ;_1, | < (< r, can be derived independently of others.

Given a set of packets I3, let ('r C I3 be the subset of blocking packets of (9 ; in TP, ;.
Attime X, i.e., when the root of 7'/, is full, . of the blocking packets in (', may have entered
(;;,i- (Note that packets from subtrees other than 7' P; may also enter the root.) To calculate
the probability distribution of time to block the root of 1'l, (< i, we must enumerate all
possible ways in which these « blocking packets of (;; can be removed from 7' ;.. After the
root of 7'l’; becomes full with blocking packets, the » subtrees of 7', will have a condition
similar to that of 7' P, with ()}, ; as its root.

Let the queues between an arbitrary queue N, and the root (9, i be N Negy. Neggo -+
Ny = Qj,.n- Given a set of packets (' in 1'’y,, the following algorithm is used to calculate
the probability distribution of time to block .V, in 7' /%,. The basic idea of this algorithm is to
recursively enumerate all different cases of packets in (' to block A;’s, and then calculate the

probability distribution for each case.

112

Algorithm: C2 : Iy 11 Calculator

begin
find I3, the set of blocking packets of N, from C';
find A, the set of leading packets of V,, from /3,,;
i=0
while(7 < w) do
RM(A,,, B,,i,N,); [*remove i leading packets of N,, from 3,*/
i=i+1;
end_do
end
RM(A.. B..i, N.) [* A, is the set of leading packets of IV,
i is the number of blocking packets to be deleted from B,, and

N, is the current queue being worked on*/

begin
if(i > 0) then
begin
i=5
while(j < |/1.|) do
remove a leading packet of 7"/’y, from A,;
find a new A, of T'I’y, based on current B,, /., and C'
RM(.\¢, B.,i — 1. N.); *Remove next leading packets*/
j=ith
end_do
end
else
begin

if(w > 0) then
begin
find I3,_., from C, /3., and .|,;
find A._, based on current .., [3._;, and (;

k=0;

113

while(: <) do
RM(I, /i, Nys—1); #Remove leading packets of N, */
k=k+1;
end._do
end
else begin
calculate Fy p).4;
Fyp = Fxp + Fypas
end
end

end

The above algorithm calcuiates the probability distribution of time to block an arbitrary
node under a certain workload. Since every processor can generate an infinite number of
packets over an infinite period, we can remove as many blocking packets as needed from
any track tree. It is intractable to calculate the probability distribution of time to block an
arbitrary node in a large tree since a very large number of possible locations of the node must
be accounted for. The mean root blocking time and the mean tree congestion time — the time
all nodes on the tree are blocked — under different workloads, are plotted in Figs. 4.5 and

4.6, respectively.
4.3.2 Path Locking and Tree Dissipation Times

After releasing a locked path, it will take time to dissipate blocked packets. A tree is said to
be dissipated when all packets stuck in the tree are routed out of the tree. No simple analytical
method appears to exist which can determine the probability distribution of tree dissipation
time, because the dissipation sequence of packets in cascaded queues depends strongly on each

other. Thus, simulation is used to analyze the path locking time and the tree dissipation time,

24,

22

204

18,

164

144

root blocking time

124

104

114

Otrae 1 Otree 2 Atreo 3
Otroe 4 *iree 5 NRtree 6

request rate

Figure 4.5: The mean root blocking time of 6 trees under different workloads, when N=64
and switch size= 2 x 2.

115

2504
Otree 1 Otree 2 Atreo 3
Otree 4 *tree 5 XNitreo ¢
200
&
[—4
S
[%:]
& 1s0d
c
8
8
1004
50,
0 —— T v T M y v p o ¢ 7
0 1 .2 3 4 5 -8 !

request rate

Figure 4.6: The mean tree congestion times under different workloads when N=64 and switch
size= 2 x 2.

116
and the results are analyzed with isotonic regression [87].

Operations of both regular and reduced networks are simulated, where packets are generated
according to a geometric distribution with parameter . Memory modules are assumed to be
always available and thus can be accessed at any time. After generating a new packet, it is
submitted to the network if the network has an empty buffer available. It takes one network
cycle for a packet to cross one stage (link transmission time), and a packet must spend at least
one network cycle in each queue after entering it. A locking packet must travel through /
stages to reach its destination. Thus, a path’s locking time can be expressed as L, = I+ ((p),
where ((p) is a random variable determined by the processors’ packet generation rate p. A
path’s locking time is the same as a regular packet's routing time, because all packets are
assumed to have the same priority.

The example system we simulated consists of 64 processors, two buffers in each queue,
and 2 X 2 switches. As expected, the normal operations of regular and reduced networks
exhibited identical packet routing times. We simulated only the testing of a single path, but
testing of other paths can be similarly simulated. The mean path locking time (regular packet
routing time) and tree dissipation time under different workloads (packet generation rates) and
a fixed testing procedure are plotted in Figs. 4.7 and 4.8, respectively. When network traffic is
heavy, the packet routing time in the last few stages (near memory modules) of the PSMIN is
relatively insensitive to the network’s input or processors’ request rate. The capacity threshold
of a PSMIN is thus defined as the packet generation rate, above which packets start to build
up at the input stages of the network. Other stages of the network are fairly independent of
the packet generation rate.

The network can be modcled by a fluid flow process when it has heavy traffic. That is, the
traffic in those stages near memory modules is at the network’s capacity, and a large number

of packets build up at the first few stages of the network. Thus, a more accurate analysis

117

interstage locking time

Ostage 1 Ostage 2 Astage 3
Ostage 4 +slage 5 A stage 6

4.5

3.5

2.5;

1.54

5 T L] v LA L { ¥ Lf v T ¥ T ¥

v
0 A .2 .3 .4 .5 .6 7 .8 .9
request rate

.

Figure 4.7: The mean path locking time of a PSMIN with A" = (.1, switch size= 2 x 2, and
2 buffers in each queue.

118

tree dissipation time
tree 6
tree 5
254
tree 4
20
tree 3 :
.
15 A
tree 2
-} |
10 []
]
5.4
tree 1
J
N O ® O O O
/ : N
L
0 v Y v T v T v Y v T v ——r—— v T T T
o] .1 .2 .3 .4 5 .6 7 .8 .9

request rate

Figure 4.8: The mean tree dissipation time of a PSMIN with .\ = (1, switch size= 2 x 2, 2
butfers in each queue, and the testing length = 12,

119

should divide the network into three parts: the input, middle and output stages. In the middle
stages of the network, queues have almost identical input and output rates. The output (input)
rate of the first few stages is the I/O rate of the middle stages (the actual network input).
The network’s congestion and dissipation speed under different testing lengths are simulated
with the packet generation rate set at 0.4. As shown in Fig. 4.9, queues in the first two stages
get congested and dissipated quickly. In those stages néar memory modules, as mentioned
above, their tree dissipation times are almost identical. Congestion probabilities at the various

nodes are also plotted in Fig. 4.10.
4.4 Optimal System Testing Strategies

Network performance changes dramatically with system workloads, and thus, the param-
eters to be optimized (in some sense) must be changed accordingly. As a demonstrative
example, the testing strategy in the previous section is optimized in this section. The perfor-
mance penalty induced by the testing of a path in the PSMIN includes the path locking time,
the waiting time of stuck packets in the network, and the time of dissipating congested packets.
Let T be the length of testing procedure,]);,(T) be the mean dissipation time of congestion
tree 1'1¢;, and H’Ii(T) be (he waiting time of packets stuck in congestion tree i, where p is
the parameter of the geometric distribution describing the generation of packets by processors.
When a set of network level testing procedures is applied, one can reduce the dissipation time

by decreasing the network traffic. The optimization problem can be formulated as:

13
ming Ly+ Y (.D;f,,(l‘) + (- T - H’,',',('z‘)))

=1

subjectto 0<p' <p
where 1.,/ is the lock-up overhead. Although the above optimization problem can be easily
solved, it is in general difficult to control the system workload, and thus, its solutions are

not practically useful. Thus, we formulate and solve an alternative problem which minimizes

120

27.5,

254

22.5!

29

17.54

-i
o

-l
o
0

tree dissipation times

101

7.54

54

2.5 tree 1

0 v v v T v T v T v ™ —

0 10 20 30 40 50 60 70
testing fength

Figure 4.9: The mean tree dissipation times of a 6-stage PSMIN with different testing lengths,
switch size= 2 % 2, and packet generation rate=0.4.

121

testing length=12, switch size = 2x2

QW < N .
gggggs
BOSESE

A SRS

O e A DAY

///

%«w«ﬁ%ﬁ)& 5}4@&35.&

///

SNLND
IR

1.0 1

uoisebuoa epou jo Ayqeqoid

0.2 1

0.0+

distance of the node from the root of the tree

The probability of nodes being blocked when the testing length is 12.

Figure 4.10

122
the performance penalty of concurrent testing under a fixed workload and testing procedures.
That is, given a set of i testing procedures to achieve the required fault coverage, how many
testing procedures should be applied in each batch so that the performance penalty may be

minimized. The optimization problem is then
13
"'i"ueI* Z(n) =210, + 2] Z:(r'+1 =~ 1)(Dy,(n) + Wy(n))
i=1

subjectto 1 < n < m,
where 1, is the lock-up overhead.

According to our sitnulation results, the mean dissipation times of T'[?; can be approximated
by

D l',(() = 1.3

DY) = 6.75

j 6254+ (C~1)2.5 (<3

D) =
| 1125 (>3
) IG.25+(C—1)‘2.5 (<5h
Dl,(C) =
17.5 (>5
.y I(3.25+((—1)2.5 (<6
| 2125 (>6
i 6.2+ ((—1)25 (<7
D)y =

23.75 (>7
where (is the number of testing procedures.]),'; are saturated to D!"™* (the second line of
each I)l", shown above), when the test pattern is longer than some threshold. ll',’,'(n) is assumed
to be negligible if D} # D", Otherwise, 1}(n) = (+"*' — L)n. It is clear that one should

not hold up a path too long in each testing session because too many blocking packets may

build up in the tree. On the other hand, if each session is too short, the path lock-up overhead

123
relative to the actual testing time (thus fault coverage) will be too high. Given m and /,
the key features in this problem are: (1) when » is the smallest integer satisfying [2] = I,
k: will be the smallest integer satisfying [4*] = », and (2) for a set of integers {n; | i =
1,eeek, [,’-l':--l =k, my < ng < --- < n}, wehave Z(ny) < Z(ny) < -+ < Z(ny). Thus,

we only bave to compare 7Z(n;)’s where »;’s are the minimal integers satisfying [2] = /.

",

We can solve this optimization problem by the following algorithm.

Algorithm: C 3

BO: Uin 1= 00, Ni=1

BI: = [2]

n

B2: if(Z(k) < o) then vy, i= Z(K)
B3: if(Z(l-"'i"-l) < yin) then vy, 1= Z(. rl/'\"'])

B4 n:=n+ 1; if(n > k) then stop else go to B2,

The problem does not have any solution if »,,;, = oo at the end of execution of the above
algorithm. Otherwise, the optimal solution is stored in 1,,;,. As shown in Fig. 4.11, the

optimal batch size tends to decrease with the number of buffers in each queue.
4.4.1 Optimal Testing Length

In conventional system reliability analysis, fault detection mechanisms are often assumed
to have instantaneous response. That is, when a fault occurs, the system can immediately
determine whether it should restart the whole task, or roll back to the last checkpoint [93].
This assumption may hold only for those systems with very expensive fault detection and

masking mechanisms, but is not valid for systems with imperfect (and also much cheaper)

optimal batch size

S.5,

4.54

3.54

2.5

24

1.54

124

Ogq=1 Oq=2 Aq=3

TTTT

w0

T T Y y — y T v Y

5 Y 15 20 25 30
m

Figure 4.11: Optimal batch sizes with different queue and test pattem lengths.

125
fault detection mechanisms. Note that different applications impose different requirements
of fault coverage and fault detection time. For example, when a detectable fault occurs, the
probability of a successful rollback is strongly dependent on the fault detection time, because
the probability of a fault causing muitiple errors increases with its detection time.

The constraint on the mean performance loss sets an upper ‘bound on the frequency of
testing. Thus, the time interval between two successive testing procedures is constrained by
the performance loss induced by the application of these tésting procedures. Based on this fact,
we want to optimize fault coverage subject to a performance loss constraint. The cost function
to be optimized takes into account the mean fault detection time, called latency cost, and fault
coverage. Since the length of test pattern monotonically increases with fault coverage, the
mean fault detection time increases monotonically with fault coverage. It should be noted
that freciuent testing of the system with low coverage test patterns does not improve system
reliability, because a large portion of faults are undetectable in such a case.

Let T be the length of test pattern or the test application time to achieve coverage ¢,

and let fault arrivals follow an exponential distribution with rate \. The probability of a fault

occurrence during ({7, (; + h] is Py(l;) = = ¢ ML + i‘,f—'l) ~e™ M for a s\iilall l. The
mean fault detection time is
F(Tp) = /U Ny - 1yt
= Tyl =) = S (T e @3)
Several examples with ¢ = 1 —¢'~T¢, 6 = 1 — o, or 6 = | - Ty are considered

to examine the different levels of difficulty associated with concurrent testing. In Fig. 4.12,
these three example conditions are denoted by cvgl, cvg2, and cvg3, respectively. Linear
(L.C'(1) = 1) and exponential (L,('(1) = ¢') latency costs indicate different levels of importance

of the fault detection time, When the fault detection time is deemed very important, the latency

126

cost can be expressed as
o, if the fault is detectable
LC(t) =
Glar If the fault is undetectable,

If § = 1 — ¢1~7T%, the testing cost becomes

,
CUTs) = 6 / e MIACT U AL 4 (1 = 6)Chmas
0

]

4

-7 T, ~\T, T4
=~ (I —c! T JA(¢e7t — ¢ \ 6)+Cl *Clman-

If & = 1 — 7, we get

| - - .
Ca(Ts) = (1 = 7o)M T = ™) 4 o G
§ &

b::T‘ﬁ\-—I(_l — e~ M DTe)+ (1= &) an

“44)

As shown in Fig. 4.12 with (V',,,,,, = 5, when the system is easy to test (§ = | — ¢7%), one

can obtain very high coverage with a short test pattern. Although high fault coverage is easily

achievable with long, extensive test patterns, the associated testing cost may become too high

to be practically useful. A similar condition occurs when the system is difficult to test (e.g.,

6=1- ’11'7)’ except that (', is inherently larger than (";. In these two cases, the exponential

latency cost sets an upper bound for the length of test pattern.

The other class of examples is when the latency cost is linear, such as

1, if the fault is detectable
LC(t) =

(i 1pas If the fault is undetectable,

If 6 =1— ¢!'=T%, the testing cost becomes

Ca(Ts) = (1 = 7T (’r.su —e™Mry _ % +(Ts + —{-)r-"“) L7

Ifo=1- -1%,7‘6 > 1, the testing cost is

. 1 | .
Catly) = (T = 1) (T 1 = ™) = S Ty) 4

127

4.5,

3.5,

costs and fault coverages
)

2.54

24

1.54

10 12 14
test pattem length

o
N <
»
-]
0

Figure 4.12: Testing costs under different testing lengths when Goz = 5 and A = 1078,

128

The testing cost monotonically decreases within any practically interesting length of test
pattern, as shown in Fig. 4.12.5 ('3(T;) denotes the most desirable condition under which very
high fault coverage can be obtained quickly, and the latency cost is linear. When é6 = | - ﬁ,
C'5(C’y) becomes a monotonically decreasing function of 7. Due to the poor quality of testing
in this case, C'3(('y) is much higher than ('\(C').

When the test pattern is too short, the cost contributed by undetectable faults is the dom-
inating factor of the cost function. On the other hand, when the test pattern is excessively
long, the latency cost will become the dominating factor. When the system is very hard to
test, e.g., cvg3, the latency cost will be very high. C'5 and (' in Fig, 4.12 represent the linear

and exponential testing costs, respectively.
4.4.2 Optimal Testing Rings

A receiver of testing packets can determine the correctness of the packet’s format and its
routing path without interacting with the sender, because the receiver can identify the source
of the packet, and the path that the packet traversed. It is crucial to create testing rings to
minimize the required number of testing procedures. In a lésling ring, a processor (sender)
sends testing packets, and testing outcomes are evaluated by another processor (receiver).
Then, the receiver passes the testing packets to the next processor. Except for the first sender,
no processor is allowed to be visited twice in a testing ring. A testing ring is completed when
the testing packet returns to the original sender. Then, the next testing ring is created, and the
same procedure will be repeated, until the network is completely tested.

The longest testing ring occurs when the testing packet does not return to the original
sender until all processors have been visited. It occurs when processor / sends the testing

packet to processor j such that j = i 4 ¢ mod N, and the largest common divisor between N

” For clarity, the fest pattem length longer than 26 is not shown,

129

and ¢ is 1. The longest testing ring is usually not optimal, because many path segments may
be tested more than once. When the size of switch is » x r, any optimal testing procedure
should test each of the 7* paths in a switch exactly once. Imagining that all processors are
testing the network, an optimal testing procedure results when all switches have conflict free
permutations (packets in queues of the same switch enter different output ports). For example,
an optimal testing ring occurs when all swiiches have the same permutation, i — ¢ - ¢ mod »,
0 < ¢ < r-1,Vi. Since each processor is connected to one input port of a switch, and
the input port can be connected to its r output ports, each processor has to be used to test
(different parts of) the network r times.

The switch permutations mentioned above can be set up when processors send packets
to their appropriate destinations. For example, when the network topology is baseline, and
the size of switch is 2 x 2, the interconnection rules are (1) («jeap_q- - ay)i—(ap -+ a;y 10
(ti—y+ -0y)it 1, where i is the stage number, if «; = 0, and (2) (@pp—y -y)i—=(ap il
(j—y*++@y)ig1 if @) = 1. Optimal testing rings can be created when all switches have straight
or cross settings. When switches are set to have straight (cross) interconnections, testing rings
are formed as follows: (1) Starting with processor Fy, P; = (aya, -+ ay) sends the testing
packet to processor R = (wy -+ - agry) (R = (djiij—q - - - 7y) for cross connections) and vice
versa, (2) After J’; receives the testing packet from R;, I’ notifies processor Py, to start the
next testing ring. If %, has already acted as a receiver before, it simply passes the testing
task to 4.

Another example is flip networks, where the link permutation is a perfect shuffle. /% sends
the testing packet to itself or [’y_; through the network. When a processor submits testing
packets to itself, swilches will have straight interconnections, i.e., upper (lower) input port
is connected to upper (lower) output port. On the other hand, all switches have the cross

connection, i.e., the upper (lower) input port is connected to the lower (upper) output port,

130
when [’ submits testing packets to ’y_;. If the testing packet does not return (o the sender
in a pre-specified time-out period, either the path If;; or the receiver j is faulty. If /% acts
as the sender and receiver at the same time, any faulty component can be identified solely
by itself. When I’; and P; test two paths fI; ; and I1;;, I’; can inform P’; the testing results
of JI; ; through II;;, and vice versa. Thus, except for the switch 5 € JI; ; () 1];;, all other
faulty queues on II; ; and /I;; can be detected and located by b.oth processors in at most three

steps.
4.5 Conclusion

Concurrent testing strategies for packet switching networks are analyzed and optimized
in this chapter. Most conventional reliability analyses focus on systems with fault masking
capability, yet little work has been done on concurrent fault detection mechanisms. Important
network parameters such as path locking time, and tree congestion time, are analyzed and/or
simulated.

The off-line part of the polynomial testing method, the Jow-level testing, is not discussed
in this chapter. Analysis of the low-level testiﬂg is straightforward, because the network’s
normal operation is completely stopped for testing, and then resumed after testing. Testable
design of the low-level testing makes it very effective but less flexible than the high-level
testing. Testable design changes with the circuit implementation, and may pose high hardware
overhead for circuit switching networks. Note that a common property between the high-level
testing and low-level testing is that, when they have the same fault coverage and all the testing
procedures are applied to the system within the same period of time, they will have the same
mean fault detection time. Thus, selection between the high-level and the low-level methods
should be based on the cost and reliability requirements.

The probability distribution of an arbitrary node being blocked is derived by a systematic

131

method. The probability distribution of time for the root of a tree to get blocked is first
derived, and then the computational complexity is reduced by avoiding repetitive calculations
of the same distributions. Then, the distribution of time to block the second buffer in the same
queue can be derived by removing one of the leading packets and adding some newly arriving
leading packets. For an arbitrary node in the tree, we must recursively remove from and add
leading packets (o different nodes. The probability distribution of node congestion in the tree
can be systematically derived by the proposed method.

The required computation grows quickly as we move from the root to lower levels of
the tree. In such a case simulations are used to derive mean path locking times, mean root
congestion times, and mean tree dissipation times.

The proposed method can be used to derive the probability distribution of communication
delays in networks like a (hexagonal) mesh, or an N-cube. For example, when the method
is used to derive the communication delay of hexagonal mesh networks utilizing the shortest
path routing [17], all possible shortest paths are spanned into a tree with unwanted branches
removed.

Testing is not free, and unless the system has an easily testable structure, a more realistic
assumption is that the length of test pattern monotonically increases with fault coverage.
Since the fault detection time is very important for fault recovery, it is necessary to trade
fault coverage for mean fault detection time. Examples in Section 4.4 show that when the
mean fault detection time is extremely important, only fault masking can mcet the system
requirement. However, for most other applications, we can easily achieve the desired fault

coverage and significantly improve the system reliability with concurrent testing strategics.

A PL;

1"C’T
AR

.B;',.(n)

T, Acr

Dy
Déps | D¢y
It

LCN

P,

A

Qi

132

Appendix 4.A: List of Symbols

A= {PK,PLy,---,PK,,) is aset of m leading packets, PI;, i = 1.---.m.

It can also be represented as a track tree.
The set of track trees with the same distribution of root blocking time.
The i-th arbiter at stage j.

The dissipation time of the j-th tree when the packet generation rate is p, and

the length of test pattern is ».

C'T is a canonical tree. A. . is the set of track trees with the same canonical

tree C'7'.

Sets of disjoint subtrees in a tree of height b.

A canonical tree of height i, and | D.;| is the number of components in DF,,..
The set of positive integers.

The lowest common node of two or more leading packets.

Processor i.

Memory module /, which is the partner of ;.

The i-th queue at stage ;.

Si g

Ti X

T; 2T}

T PI.’,m

TRy,
Qi)
A(Qi)

0,0’

Id Al
0,1

133

The i-th switch at stage j.

1} is the time for /’\’; to reach the root of a tree. .Y ; is the time when the j-th
leading packet reaches the root of a tree. (X, X2,--+,.X),) is called the order

statistics.
T; is lexicographically less than or equal to 1;.

Tl = TRg,,,, the destination tree of (); .. 1", is abbreviated as 7'/’

whenever the value of (is immaterial.

A destination tree, 7' 12y, = Uj*':[, 19 Al;).
The source queues of (); ;.

The destination queues of (9; ;.

O = (Yu,1,¥1,1 -+ . ¥Nv=1,k). Y is a random variable denoting the number of
packets in (); ; of PSMIN before reduction. ©' = (},Y2---.Y}), where }; is
a random variable denoting the number of packets in (); of the reduced network

model.

¢ is fault coverage, and 1 is the length of test pattern to achieve ¢.

CHAPTER 5

CONCLUSION

The major contributions of this dissertation are three new network architectures and the
analysis of network dynamics. A discussion of these architectures along with potential appli-
cations of the completed work for future research are summarized in this chapter.

First of all, the NOMI technique presented in Chapter 2 is shown to be a useful design
technique to improve system performance at reduced cost. We have shown that the con-
ventional memory interleaving technique should be combined with network overlapping to
improve system performance at reduced cost. The proposed branch and bound optimization
procedure can either optimize system cost subject to performance constraints, or vice versa.

The other two new architectures, discussed in Chapter 3, are aimed at detecting faults
efficiently to improve network reliability. These two architectures support the high-level
concurrent testing and low-level off-line testing of packet-switching MINs, respectively. In
the low-level testing strategy, the network can be tested off-line in a short time period with
very high fault coverage. On the other hand, the high-level testing strategy requires minimal
amounts of interactions between processors, and is suitable for those systems with non-stop
operations,

The last major contribution is the analysis of network dynamics during high-level network

testing. In the high-level network testing, packets will be blocked if they have to traversc
134

135

through a locked path. If a path is locked up for a long time period, a congestion tree, in
which all packets are blocked, will eventually be formed. The probability distribution of the
time to block an arbitrary node in the network under test has been derived. The computational
complexity in calculating the probability distribution of node blockage is drastically reduced by
the proposed canonical tree model. Other network dynamics like the mean tree dissipation time
and mean pntil locking time have been studied via extensive simulation. We also developed a
reduced network model to reduce the network simulation time substantially. Finally, optimal
testing coverage has been derived by trading the mean fault detection time for fault coverage.

Efficient testing methods are esscntial to achieve high system reliability, Architectures
proposed in this dissertation are intended to fill the gap between on-line fault detection and
off-line fault diagnosis. Circuit-switching MINs do not have buffers, and thus, do not form
congestion trees. Concurrenl testing in OCSMINSs can be easily implemented by periodically
assigning one of the « phases for testing. Since network operations are synchronous and every
cluster knows which of the w phases is dedicated to testing, all the routing faults mentioned
in Chapter 3 can be easily tested. It will be more expensive to perform the low level testing
in OCSMINSs due to the extra hardware needed for pattern generation. However, the hardware
overixead can be reduced by having one single pattern generator for each stage. It is clear that
the clustering/NOMI techniqug, developed in Chapter 2, and testable architectures, developed
in the Chapter 3, can be easily combined in both circuit switching and packet switching
networks. When a network component fails, the excessive performance loss caused by a
smaller network size (resulting from the clustering or NOMI technique) is minimized by
detecting and repairing the fault by the easily testable architectures. Furthermore, applying the
clustering or NOMI technique to a network with an easily testable architecture will make its
hardware overhead negligible.

The network dynamics analysis presented in Chapter 4 may become very useful for the

136

design of packet-switching telecommunication systems. The extremely high capacity of optical
fibers must be matched with very high bandwidth, e.g., 1 Gbit/s or higher, packet-switching
MINSs [79, 113, 52], to make broadband integrated services digital networks (BISDNs) feasible.
Data, digitized voice and video signals are packetized for transmission via BISDNs. Testing
large scale packet-switching MINs used in BISDNs is especially challenging, because stopping
normal network operations for testing will result in loss of a large fraction of their bandwidth,
Furthermore, fault symptoms will change dynamically due to continuous input packets. When
a parallel packet transmission format is used [79], our high-level testing strategy can be easily
applied to the design of packet-switching MINs. On the other hand, when a serial packet
transmission format is employed, the easily-testable architecture for the low-level testing can
be applied with a low hardware overhead.

Several different laiency cost functions have been considered in optimizing testing strate-
gies. The latency cost is dependent on a system component’s functions and the system work-
load. An interesting future research topic is to characterize latency cost functions for different
system components urder different workloads. Characterization of latency cost is particularly
crucial for real-time systems that must complete tasks before their hard deadlines.

Most faults in circuit switching networks do not cause serious performance loss. On the
other hand, packet switching MINs are more prone to system crash due to network congestion
and component failures. For example, when a blocking fault occurs in a switch located at the
last stage of the MIN, the whole network could be paralyzed once a congestion tree with the
faulty switch as its root is formed.

The performance impact of congestion trees is determined by the number of packets blocked
in the tree, the blocking times of these (blocked) packets, and the intensity of incoming network
traffic. Since losing a few (voice) packets does not degrade the speech quality significantly[50],

the simplest method to dissipate a congestion tree is to discard blocked packets. This strategy

137
can be implemented by setting time-out periods for packets. Detection of congestion trees,
along with the dissipation of congestion trees, are deemed vital to the success of next generation

large scale telecommunication switching systems.

BIBLIOGRAPHY

138

139

BIBLIOGRAPHY

[1] G. B. Adams and H. J. Siegel, “The extra stage cube: A fault tolerant interconnection
network for supersystems,” IEEE Trans. Comput., vol. C-31, no. 5, pp. 443454, May
1982.

[2] A. K. Adiga and S. R. Deshpande, “Evaluation of effectiveness of circuit based and
packet based interconnection networks via petri net models,” Proceeding of Int'l Con-
ference on Parallel Processing, pp. 533-541, 1987.

[3] D. P. Agrawal, “Testing and fault tolerance of multistage interconnection networks,”
Computer, pp. 41-53, Apr. 1982.

{4] D. P, Agrawal, “Graph theoretical analysis and design of multistage interconnection
networks,” IEEE Trans. on Comput., vol. C-32, no. 7, pp. 637-648, Jul. 1983.

[S] D.P. Agrawal and J.-S. Leu, “Dynamic accessibility testing and path length optimization
of multistage interconnection networks,” IEEE Trans. Comput., vol. C-34, no. 3, pp.
255-266, Mar. 1985.

(6] K. E. Batcher, “The flip network in staran,” Proceeding of Int'l Conference on Parallel
Processing, pp. 65-71, Aug. 1976.

[7] J. Bellamy, Digital Telephony, John Wiley & Sons, 1982,

[8] V.E. Benes, “On rearrangeable three-stage connecting networks,” Bell Syst. Tech. Jour-
nal, no. 41, pp. 1481-1492, Sept. 1962.
{91 V.E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic, Aca-
demic, New York, 1965.
(10] R. Bennetts, Design of Testable Logic Circuits, Addison-Wesley, 1984,
[11] D. P. Bhandarkar, “Analysis of memory interference in multiprocessors,” IEEE Trans.
Comput., vol. C-24, no. 9, pp. 897-908, Sep. 1975.

[12] L. N. Bhuyan, “An analysis of processor-memory interconnection networks,” IEEE
Trans. Comput., vol. C-34, no, 3, pp. 279-283, Mar. 1985,

{13] L. N. Bhuyan and D. P. Agrawal, “Design and performance of generalized interconnec-
tion networks,” IEEE Trans. Comput., vol. C-32, no. 12, pp. 1081-1090, Dec. 1983,

[14] R. Bianchini and J. R. Bianchini, “Wireability of an ultracomputer,” NYU Ultracomputer
note #43, 1982.

[15] M. A, Breuer and A. D. Friedman, Diagnosis and Reliable Design of Digital Systems,
Computer Science, Rockville, MD, 1976.

[16] M. S. C. P. Kruskal and A. Weiss, “On the distribution of delays in buffered multi-
stage interconnection networks for uniform and nonuniform traffic,” Proceeding of Int'l
Conference on Parallel Processing, pp. 215-219, 1984.

140
[17] M.-S. Chen, K. G. Shin, and D, Kandlur, “Addressing, routing and broadcasting in
hexagonal multiprocessors,” IEEE Trans. on Comput., 1988 (in press).

[18] P. Chen et al., “Interconnection networks using shuffles,” Computer, pp. 55-64, Dec.
1981.

[19] V. Cherkassky and M. Maleck, “On permuting properties of regular rectangular sw-
banyan,” IEEE Trans. Comput., vol. C-34, no. 6, pp. 542-546, Jun, 1985,

{201 V. Cherkassky and E. Opper, “Fault diagnosis and permuting properties of cc-banyan
networks,” Proc. of Real Time Systems Symposium, pp. 175-183, 1984,

[21] V. Cherkassky, E. Opper, and M. Malek, “Reliability and fault diagnosis analysis of
fault-tolerant multistage interconnection networks,” Digest of Papers, FTCS-14, pp. 246
251, 1984.

{22] A. Chin, Congestion Control in Routing Networks, Master Thesis, MIT, Massachusetts,
1986.

[23] C. Y. Chin and K. Hwang, “Connection principles for multipath packet switching net-
works,” 12th Int’l Symposium on Computer Architecture, pp. 99-108, 1984.

[24] C. Y. Chin and K. Hwang, “Packet switching networks for multiprocessors and data
flow computers,” IEEE Trans. Comput., vol. C-33, no. 11, pp. 991-1003, Nov. 1984,

[25] L. Ciminiera and A. Serra, “A fault-tolerant connecting network for multiprocessor
systems,” Digest of Papers, FTCS-12, pp. 113-122, 1982.

[26] C. Clos, “A study of nonblocking switching networks,” Bell Syst. Tech. Journal, vol.
32, pp. 406-424, 1953.

[27] T. H. Cormen, “Efficient multichip partial concentrator switches,” Proceeding of Int'l
Conference on Parallel Processing, pp. 525-532, 1987.

[28] B. Corp., “Numerical aerodynamic simulation facility feasibility study final report,”
NASA Contract Report CR-152285, Mar. 1979.

[29] 1. Corp., “Data sheet: Intel’s personal supercomputer,”, May 1985.
[30] N. Corp., “Ncube handbook,”, 1985.

[31] N.J. Davis IV, W. T. Y. Hsu, and H. J. Siegel, “Fault location techniques for distributed
conirol interconnection networks,” IEEE Trans. Comput., vol. C-34, no. 10, pp. 902-
910, Oct. 1985.

[32] J. B. Dennis, “Data flow supercomputers,” Computer, pp. 48—56, Nov. 1980.

[33] S. Dhar, M. A. Franklin, and D. F. Wann, “Reduction of clock delays in vlsi structures,”
Intl. Conf. Computer Design, pp. 778-781, 1984,

[34] D. M. Dias and J. R. Jump, “Analysis and simulation of buffered delta networks,” IEEE
Trans. Comput., vol. C-30, no. 4, pp. 273-282, Apr. 1981.

[35] T. Y. Feng, “Data manipulating functions in parallel processors and their implementa-
tion,” IEEE Trans. Comput., vol. C-23, no. 3, pp. 309-318, Mar. 1974,

[36] T. Y. Feng, “A survey of interconnection network,” Computer, pp. 12-27, Dec. 1981.

141
[37] T. Y. Feng and 1. P. Kao, “On fault-diagnosis of some multistage networks,” Digest of
Papers, FTCS-12, pp. 99-101, 1982.

[38] T. Y. Feng and C. L. Wu, “Fault-diagnosis of a class of multistage interconnection
networks,” IEEE Trans. on Comput., vol. C-30, no. 10, pp. 743-758, Oct. 1981.

[39] J. P. Fishburn and R. A. Finkel, “Quoticnt networks,” IEEE Trans. Comput., vol. C-31,
no. 4, pp. 288-295, Apr. 1982.

[40] M. A. Franklin, “Pin limitations and partitions of vlsi interconnection networks,” IEEE
Trans. Comput., vol. C-30, no. 4, pp. 283-290, Apr. 1981.

[41] M. A. Franklin, S. A. Kahn, and M. J. Stucki, “Design issue in the development of a
multiprocessor communication network,” Proc. 6th Annual Sypm. on Computer Archi-
tecture, pp. 182-187, 1979,

[42] W. K. Fuchs, J. A. Abraham, and K. H. Huang, “Concurrent error detection in vlsi
interconnection networks,” Digest of Papers, FTCS-13, pp. 309-315, 1983.

[43] D. D. Gajski, D. J. Kuck, D. H. Lawrie, and A. Samesh, “Cedar- a large scale multi-
processor,” Proceeding of Int’l Conference on Parallel Processing, pp. 524-529, 1983.

[44] C.J. Georgiou, “Fault-tolerant crosspoint switching networks,” Digest of Papers, FTCS-
14, 1984.

[45] L. D. Goke and G. J. Lipovski, “Banyan networks for partitioning multiprocessor sys-
tems,” Proceedings of the 1st Annual Symp. on Computer Architecture, pp. 21-28, 1973.

{46] J. Goldberg et al., Development and Analysis of SIFT, NASA Langley Research Center,
Hampton, VA 23665, Feb. 1984.

[47] S. W. Golomb, Shift Register Sequences, Holden-Day, Inc., 1967.

[48] A. Gottlieb et al., “The nyu ultracomputer- designing an mimd shared memory parallel
computer,” IEEE Trans. Comput., vol. C-32, no. 2, pp. 175-189, Feb. 1983.

[49] J. P. Hayes, “On realizations of boolean functions requiring a minimal or near-minimal
numbers of tests,” IEEE Trans. on Comput., vol. C-20, no. 12, pp. 1506-1513, Dec.
1971.

[50] A. Hills and K. Scott, “Perceived degradation effects in packet speech,” IEEE Trans. on
Acoustics, Speech and Signal Processing, vol. ASSP-5, no. 5, pp. 699-701, May 1987.

[51] A.L..Hopkins et al., “Ftmp - a highly reliable fault tolerant multiprocessor for aircraft,”
Proc. {EEE, vol. 66, no. 10, pp. 1221-1239, Oct. 1978.

(52] J. Y. Hui and E. Arthurs, “A broadband packet switch for integrated transport,” IEEE
J. Select. Areas Commun., vol. SAC-5, no. 8, pp. 1264--1273, Oct. 1987.

[53] R. Huslende, “Optimal cost/reliability allocation in communication nctworks,” Digest
of pappers, FTCS-13, pp. 348-355, 1983.

[54] M. Inc., MCE8020 32-Bit Microprocessor User's Manual, Prentice-Hall Inc., 1984.

[55] H. Inose, An Introduction to Digital Integrated Communication Systems, Univ. of Tokyo
Press, Tokyo, 1979.

[56] Z. Kohavi, Switching and Finite Automata Theory, McGraw Hill, 1978.

142

[57] C.P.Kruskal and M. Snir, “The performance of multistage interconnection networks for
multiprocessors,” IEEE Trans. Comput., vol. C-32, no. 12, pp. 1091-1098, Dec. 1983,

[58] C. P. Kruskal and M. Snir, “The importance of being square,” Conference Proceeding,
Annual Int’'l Symp. Computer Architecture, pp. 91-98, 1984,

[591 M. Kumar, D. M. Dias, and J. R. Jump, “Switching strategies in a class of packet
switching networks,” Proc. 10th Annual Symp. on Computer Architecture, pp. 284-300,
Dec. 1983.

[60] M. Kumar, D. M. Dias, and J. R. Jump, “Switching strategies in shuffle-exchange packet
switching networks,” IEEE Trans. Comput., vol. C-34, no. 2, pp. 180-186, Feb. 1985.

[61] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design, Prentice-Hall Inc., 1985.

[62] D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. on
Comput., vol. C-24, no. 12, pp. 1145-1155, Dec. 1975.

[63] C.T. A. Lea, “The load-sharing banyan network,” IEEE Trans. on Comput., vol. C-35,
no. 12, pp. 1025-1034, Dec. 1986.

[64] D. C. H. Lee and J. P. Shen, “Easily-testable (n,k) shuffle/exchange networks,” Proc.
of Int'l Conf. on Parallel Processing, pp. 65-70, 1983.

[65] M. Lee and C. L. Wu, “Performance analysis of circuit switching baseline intercon-
nection network,” Proc. 10th Annual Symp. on Computer Architecture, pp. 82-90, June
1984,

[66] Y. H. Lee and K. G. Shin, “Design and evaluation of a fault-tolerant multiprocessor
using hardware recovery blocks,” IEEE Trans. on Comput., vol. C-33, no. 2, pp. 113~
124, Feb. 1984.

[67] J. E. Lilienkamp, D. H. Lawrie, and P. C. Yew, “A faull tolerant interconnection network
using error correcting codes,” Digest of Papers, FTCS-12, pp. 123-125, 1982,

[68] W. Y.-P. Lim, “A test strategy for packet switching networks,” Proc. of Int'l Conference
on Parallel Processing, pp. 96-98, 1982,

[69] W. Lin and C. L. Wu, “Design of a 2 x 2 fault-tolerant switching element,” Proceeding
of Conference, Comput. Archit., pp. 181-189, 1982.

[70] J. Y. Maeng, “Self-diagnosis of multistage network-based computer systems,” Digest of
Papers, FTCS-13, pp. 324-331, 1983,

[71] M. Malek and E. Opper, “Multiple fault diagnosis of sw-banyan networks,” Digest of
Papers, FTCS-13, pp. 446-449, 1983.

[72] , “Special issue on no.4 ess,” The Bell System Technical Journal, Sep. 1979.

[73] E. J. McCluskey and S. Bozorgui-Nesbat, “Design for autonomous test,” IEEE Trans.
Comput., vol. C-30, no. 11, pp. 866—875, Nov. 1981.

[74] D. Nassimi and S. Sahni, “Parallel permutation and sorting algorithms and a new gen-
eralized connection network,” Journal of ACM, pp. 642-667, July 1982.

[75] E. Opper and M. Malek, “Real-time diagnosis of banyan nctworks,” Proc. of Real Time
Systems Symposium, pp. 27-36, 1982.

143

(76] K. Padmanabhan and D. H. Lawrie, “Fault tolerance schemes in shuffle-exchange type
interconnection networks,” Digest of Papers, FTCS-13, pp. 71-75, 1983.

[77]1 J. H. Patel, “Performance of processor-memory interconnections for multiprocessors,”
- IEEE Trans. Comput., vol. C-30, no. 11, pp. 771-780, Nov. 1981.

{78] M. C. Pease III, “The indirect binary n-cube microprocessor array,” IEEE Trans. Com-
put., vol. C-26, no. 5, pp. 458-473, May 1977.

[79] G. Perucca, P. Belforte, E. Garetti, and F. Perardi, “Research on advanced switching
techniques for the evolution to isdn and broadband isdn,” /EEE J. Select. Areas Com-
mun., vol. SAC-5, no. 8, pp. 1356-1364, Oct. 1987.

[80] G. F. Pfister et al., “The ibm research parallel processor prototype (rp3): Introduction
and architecture,” Proc. IEEE 1985 Int. Conf. Parallel Processing, Aug. 1985.

[81] G. F. Pfister and V. A. Norton, “Hot spot contention and combining in multistage
interconnection networks,” IEEE Trans. Comput., vol. C-34, no. 10, pp. 943948, Oct.
1985.

[82] U. V. Premkumar et al,, “Design and implementation of the banyan interconnection
network in trac,” AFIPS conference Proceedings, vol. 51, pp. 643-653, 1980.

[83] B. Prince and G. Due-Gundersen, Semiconductor Memories, John Wiley & Sons, 1983.

[84] C. S. Raghavendra and A. Varma, “Indra: A class of interconnection networks with
redundant paths,” Proc. of Real Time Systems Symposium, pp. 153-164, 1984,

[85] B. R. Rau, “Interleaved memory bandwidth in a model of a multiprocessor computer
system,” IEEE Trans. Comput., vol. C-28, no. 9, pp. 678-681, Sep. 1979.

[86] S. M. Reddy and V. P. Kumar, “On fault-tolerant multistage interconnection network,”
Proceeding of Parallel Processing Conference, pp. 155-164, 1984,

[87] D. A. Schoenfeld, “Confidence bounds for normal means under order restrictions, with
application to dose-response curves, toxicology experiments, and low dose extrapola-
tion,” Journal of the American Statistical Association, vol. 81, no. 393, pp. 186-195,
March 1986.

[88] M. Schwartz, Telecommunication Networks, Addison-Wesley, 1987.

[89] J. P. Shen and J. P. Hayes, “Fault-tolerance of a class of connecting networks,” Proc.
7th Symp. Comput. Arch., pp. 61-71, May 1980.

[90] J. P. Shen and J. P. Hayes, “Fault-tolerance of dynamic-full-access interconnection
networks,” IEEE Trans. Comput., vol. C-33, no. 3, pp. 241-248, Mar. 1984.

[91] K. G. Shin and Y. H. Lee, “Error detection process — model, design, and its impact on
computer performance,” IEEE Trans. on Comput., vol. C-33, no. 6, pp. 529-540, June
1984.

[92] K. G. Shin and Y.-H. Lee, “Evaluation of error recovery blocks used for cooperating
processes,” IEEE Trans. on Software Engineering, pp. 692-700, 1984,

[93] K. G. Shin, T. H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-time tasks,” IEEE
Trans. on Computers, vol. C-36, no. 11, pp. 1328-1341, Nov. 1987.

144

[94] H. J. Siegel et al., “Pasm: A partionable simd/mimd system for image processing and,”
IEEE Trans. Comput., vol. C-30, pp. 934-947, Dec. 1981.

[95] H. J. Siegel and R. J. McMillen, “The multistage cube: A versatile interconnection
network,” Computer, pp. 65-76, Dec. 1983.

[96] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design,
Digital Equipment Corp., Bedford, MA, 1982.

[97] J. E. Smith, “Measures of effectiveness of fault signature analysis,” IEEE Trans. Com-
put., vol. C-29, no. 6, pp. 510-514, June 1980.

[98] T.B. Smith and J. H. Lala, “Development and evaluation of a fault-tolerant multiproces-
sor (ftmp) computer volume i: Ftmp principles of operation,” Technical report, NASA
Contractor Report 166071, May 1983.

[99] D. Steinberg, “Invariant properties of the shuffle-exchange and a simplified cost-effective
version of the omega network,” IEEE Trans. Comput., vol. C-32, no. 5, pp. 444-450,
May 1983.

(100] H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput., vol. C-20,
no. 2, pp. 153-161, Feb. 1971.

[101] T. H. Szymanski and V. C. Hamacher, “On the permutation capability of multistage
interconnection networks,” IEEE Trans. on Comput., vol. C-36, no. 7, pp. 810-822,
July 1987.

{102} S. Thanawastien and V. P. Nelson, “Interference analysis of shuffie/exchange networks,”
IEEE Trans. Comput., vol. C-30, no. 8, pp. 545-556, Aug. 1981.

[103] S. Thanawastien and V. P. Nelson, “Optimal fault detection test sequences for shuf-
flefexchange networks,” Digest of Papers, FTCS-13, pp. 442-445, 1983.

[104] S. Thanawastien and V. P. Nelson, “Diagnosis of multiple faults in shuffle/exchange
networks,” Proc. of Real Time Systems Symposium, pp. 184-192, 1984,

{1051 W. N. Toy, “Fault-tolerant design of local ess processors,” Proceeding of the IEEE, pp.
1126-1145, Oct. 1978.

[106] N.F. Tzeng and P. C. Y. D. Lawrie, “Fault diagnosis in a multiple-path interconnection
network,” Digest of Papers, FTCS-16, pp. 98-103, 1986.

[107} D. F. Wann and M. A. Franklin, “Asynchronous and clocked contro! structures for vlsi
based interconnection networks,” IEEE Trans. Comput., vol. C-32, no. 3, pp. 284-293,
Mar. 1983.

[108] J. H. Wensley et al., “Sift: Design and analysis of a fault-tolerant computer for aircraft
control,” Proc. of IEEE, vol. 66, no. 10, pp. 1240-1255, Oct. 1978.

[109] T. W. Williams and K. P. Parker, “Design for testability — a survey,” Proc. IEEE, vol.
71, no. 1, pp. 98-112, Jan. 1983.

[110] C.L. WuandT. Y. Feng, “Tutorial: Interconnection networks for parallel and distributed
processing,” IEEE, 1984,

[111] C. L. Wu, W. Lin, and M. C. Lin, “Distributed circuit switching starnet,” Proceeding
of Parallel Processing Confernce, pp. 26-33, 1982.

145

[112] M. Yasrebi, S. Deshpande, and J. C. Browne, “A comparison of circuit switching and
packet switching for data transfer in two simple image processing algorithms,” Proceed-
ing, 1983 Int’l Parallel Processing Conf., pp. 25~28, 1983.

[113] Y. S. Yeh, M. G. Hluchyj, and A. S. Acampora, “The knockout switch: A simple,
modular architecture for high-performance packet switching,” IEEE J, on Selected Areas
in Communications, vol. SAC-5, no. 8, pp. 1274-1283, Oct. 1987.

{114] D. W. L. Yen, J. H. Patel, and E. D. Davidson, “Memory interference in synchronous
multiprocessor systems,” IEEE Trans. Comput., vol. C-31, no. 11, pp. 11161121, Nov.
1982,

[115] P. C. Yew and D. H. Lawrie, “An easily controlled network for frequently used permu-
tations,” IEEE Trans. Comput., vol. C-30, no. 4, pp. 296298, Apr. 1981.

[116] P. C. Yew, T. F. Tzeng, and D. Lawrie, “Distributing hot-spot addressing in large-scale
multiprocessors,” IEEE Trans. Conput,, vol. C-36, no. 4, pp. 388-395, Apr. 1987.

[117] H. Yoon, K. Y. Lee, and M. T. Liu, “Performance analysis and comparison of packet
switching interconnection networks,” Proceeding, 1983 Int’l Parallel Processing Conf.,
pp. 542545, 1987.

