
INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 8920578

High performance and high reliability multistage interconnection
networks

Liu, Jyh-Charn, Ph.D.

The University of Michigan, 1989

Copyright ©1989 by Liu, Jyh-Charn. AH rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

fflGH PERFORMANCE AND fflGH RELIABILITY MULTISTAGE
INTERCONNECTION NETWORKS

by

Jyh-Charn Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
1989

Doctoral Committee:

Professor Kang G. Shin, Chairman
Associate Professor John R. Birge
Professor John P. Hayes
Professor Ronald J. Lomax
Assistant Professor Pinaki Mazumder

B

RULES REGARDING THE USE OF

MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations submitted

to The University of Michigan and made available through University Micro­

films International or The University of Michigan are open for inspection,

but they are to be used only with due regard for the rights of the author.

Extensive copying of the dissertation or publication of material in excess of

standard copyright limits, whether or not the dissertation has been copy­

righted, must have been approved by the author as well as by the Dean of

the Graduate School. Proper credit must be given to the author if any

material from the dissertation is used in subsequent written or published

work.

^ Jyh-Charn Liu 1989
All Rights Reserved

To my parents and my wife

ACKNOWLEDGEMENTS

I am most grateful to my thesis advisor, Professor Kang G. Shin, for his persistent inspira­

tion, encouragements, and suggestion of challenging problems. His guidance and continuous

support is the key element to the completion of this dissertation. His enthusiasm and dedication

on research has always inspired me to pursue perfection throughout my dissertation research.

I would like to thank other committee members, Prof. John Birge, Prof. John Hayes, Prof.

R. Loinax, and Prof. P. Mazumder for their coastructive comments. I also like lo thank B.

J. Moganhan for her help on the preparation of this document. Frequent technical discussions

with my colleagues at RTCL make this research a very pleasant experience.

My wife's moral support has been essential for me to cope with the frustrations of a

graduate student. My parents' sacrifice to support my education always remind me of then-

love and care.

Finally, financial support for this dissertation research by the Office of Naval Research

under contract N00014-85-0122 and the NASA under Grants NAG-1-296 and NAG-1-492 is

gratefully acknowledged.

iii

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

LIST OF FIGURES vi

LIST OF TABLES ix

LIST OF APPENDICES x

CHAPTER

1. INTRODUCTION 1

1.1 Research Background

1.2 Organization of the Dissertation

2. NETWORK OVERLAPPING WITH MEMORY INTERLEAVING 8

2.1 Introduction

2.2 Operational Principles of NOMI

2.3 Cost Analysis

2.4 Performance Analysis

2.5 NOMI Optimization

2.6 Conclusion

Appendix 2.A: List of Symbols

3. POLYNOMIAL TESTING OF PACKET SWITCHING NETWORKS 39

3.1 Introduction

iv

3.2 Polynomial Testing Principles

3.3 Fault Models

3.4 PSMIN Diagnosis

3.5 Conclusion

Appendix 3.A: Fault Coverage of Polynomial Testing

Appendix 3.B: List of Symbols

4. ANALYSIS AND OPTIMIZATION OF CONCURRENT NETWORK TESTING 87

4.1 Introduction

4.2 Network Organization and Testing

4.3 Network Behavior Under Concurrent Testing

4.4 Optimal System Testing Strategies

4.5 Conclusion

Appendix 4.A: List of Symbols

5. CONCLUSION 134

BIBLIOGRAPHY 138

LIST OF FIGURES

Figure

1.1 A multiprocessor system 2

1.2 Block diagram of three research topics 6

2.1 An /V x N multiprocessor system connected by a conventional MIN 9

2.2 The hierarchical structure of a multiprocessor system 12

2.3 Illustration of a conventional MIN. (a) A timing chart, (b) Its interconnection

function 15

2.4 Illustration of an OCSMIN. (a) A timing chart, (b) The interconnection function

of an OCSMIN 16

2.5 Examples of different communication protocols, (a) The handshaking protocol.

(b) The non-handshaking protocol 19

2.6 Required circuitry for supporting (a) a conventional MIN, (b) a two-way over­

lapped network, and (c) a «>-way overlapped network 20

2.7 Comparison of SRAM operations in (a) a conventional MIN, and (b) in an

OCSMIN 22

2.8 Different modes of network operations with DRAM, (a) Conventional network,

(b) Simple network overlapping with memory interleaving, (c) Overlapped

network with memory interleaving 23

2.9 Comparison of DRAM and SRAM operations in a conventional MIN 27

vi

2.10 Comparison of access parallelisms between conventional MIN and OCSMIN

when p=l 30

3.1 A baseline PSMIN with switch permutation £'0 and the corresponding cascaded

shift register arrays 42

3.2 The structure of faulty and non-faulty multipliers and divisors 46

3.3 Switches on a RUT and the corresponding word divisor 52

3.4 A testable design of switches for concurrent testing 53

3.5 The structure of a '2 x 2 switch and a C-connected queue 62

3.6 A queue converted into two symmetric PG's 64

3.7 A queue converted into two asymmetric PG's 65

3.8 Detected-faults/detectable-faults vs. number of shifts when r=8 69

3.9 The logic and functional diagrams of a multiplexer with r data inputs and r

enable signals - 71

3.10 An example of the MU/DEX in an /• x r switch 72

3.11 The testing procedures for a 3 x 3 MU/DEX. 74

3.12 Verification of testing response by (a) comparison and signature analysis, and

(b) MILFSR's 75

3.13 An example LFSR implemented with master-slave SR latches 82

4.1 An example destination tree and its corresponding graph model for an S x s

PSMIN 92

4.2 Disjoint subtrees in Tli,\ ;4 98

4.3 The set of track trees in T I \ , T 1 \ , and TP.u respectively 101

4.4 (a) A set of track trees and their lexicographical orders, (b) The canonical

tree's mark and its decoding sequence 108

vii

4.5 The mean root blocking time of 6 trees under different workloads, when N=64

and switch size= 2x2 114

4.6 The mean tree congestion times under different workloads when N=64 and

switch size= 2x2 115

4.7 The mean path locking time of a PSMIN with N = 64, switch size= 2 x 2,

and 2 buffers in each queue 117

4.8 The mean tree dissipation time of a PSMIN with N = 61, switch size= 2 x 2,

2 buffers in each queue, and the testing length = 12 118

4.9 The mean tree dissipation times of a 6-stage PSMIN with different testing

lengths, switch size= 2 x 2, and packet generation rate=0.4 120

4.10 The probability of nodes being blocked when the testing length is 12 121

4.11 Optimal batch sizes with different queue and test pattern lengths 124

4.12 Testing costs under different testing lengths when CV„l(ir = Jj and A = HP". . 127

viii

LIST OF TABLES

Table
3.1 The fault coverage of MSA faults under different conditions 68
4.1 The computational complexity of and 107

ix

LIST OF APPENDICES

Appendix

2.A: List of Symbols 36

3.A: Fault Coverage of Polynomial Testing 80

3.B: List of Symbols 84

4.A: List of Symbols 132

<

X

CHAPTER 1

INTRODUCTION

1.1 Research Background

Many high performance microprocessors implemented with very large scale integration

(VLSI) technology have successfully entered the commercial market in recent years [54, 29,

30]. Multiprocessor systems built with these (relatively) low cost microprocessor chips have

the potential to outperform conventional single instruction single data (SISD) supercomput­

ers if computational parallelism can be exploited. The basic idea of parallel computing is

to decompose a large task into subtasks, which are then executed in parallel by processors

in a multiprocessor system. Since subtasks need to communicate with each other, a task's

completion time is determined by its subtasks' execution time and their communication delay.

While it is relatively easy to increase computing power by adding more processors to a

multiprocessor system, it is often very expensive to build a high performance communication

network. Owing to their high performance, multistage interconnection networks (MINs) are

studied in this dissertation. A typical system with a MIN which intercoiuiects single-chip

processors and memory modules is shown in Fig. 1.1. Since hardware cost is a major concern

in system design, our first research topic is to improve the cost-effectiveness of MINs. In

addition to the improvements on cost-effectiveness, our second research topic is to improve

1

2

Processors Memories

Inter-connection
Network

Figure 1.1: A multiprocessor system.

the reliability of MINs, because the large number of processors and/or memory modules

connected by a MIN may become useless when the network fails. Since the architectures for

improving performance/cost-effectiveness and reliability are compatible with each other, high

network performance and reliability are expected when these two architectures are integrated

in one network.

Research related to important features of MINs like performance analysis, fault-tolerance,

and combinatorial capability, is surveyed next. An excellent introduction to the classification of

interconnection networks can be found in [36]. MINs may be designed to be circuit switched or

packet switched. In general, packet-switching MINs are suitable for short messages, whereas

circuit-switching MINs are more suitable for massive long data streams [36, 88, 2, 112], Thus,

both types of networks have their unique advantages and disadvantages. System performance,

3

programming languages, and construction parameters have been extensively simulated to study

the feasibility of MIN-based systems [28]. Several experimental prototypes have also been

built, e.g., TRAC at the University of Texas Austin [82], the NYU Ultracomputer [48], the

PASM computer at Purdue University [94, 14, 48], the Starnel [111], the Ceder project at the

University of Illinois [43], and the RP3 project at IBM[80], to name a few. These prototypes

can provide realistic system parameters for clock skew minimization [33, 41, 40], modular

design [27, 39, 48, 14], and design optimization [53, 58] of large scale MINs.

The next important feature of MINs is their combinatorial capability. Many network

topologies have been proposed such as perfect-shuffle [100], omega [62], flip [6], banyan

[45], rearrangeable [26, 8], data manipulator [35], and indirect binary N-cube [78]. Permutation

capability and routing control of different network topologies have been of intensive research

interest [101, 19, 99, 115, 74, 100]. Wu and Feng showed that a class of important networks,

such as modified data manipulator, baseline, flip, perfect shuffle, indirect binary N-cube, and

regular SW Banyan networks, are topologically equivalent [110]. Boolean and arithmetic

functions have also been incorporated into MINs [35].

Throughput analysis is one of the most active research topics. Benes introduced basic

mathematical models of MINs [9]. Circuit-switching MINs have been analyzed with proba­

bilistic models [11, 77, 114, 12], or Markov models [85, 102, 111]. It is intractable to analyze

packet switching MINs due to the excessive number of system states. To simplify the analy­

sis, it was usually assumed that stages in a MIN are independent, and queues in each switch

have an infinite capacity [23]. These assumptions may yield good approximations when the

actual buffer size is very large, or the network has light traffic[59, 60], but the dependency

between stages cannot be ignored when the buffer size is small, and the network traffic is

heavy [18, 57, 16].

In addition to the fault-tolerant design of switches [69, 44], the fault-tolerance capability

4

of MINs is improved by providing redundant paths to the system. Graph models have been

proposed to denote paths in a MIN, and redundant paths can be derived from the redundancy

graph [4, 76, 13, 86, 25, 84, 86, 63]. Some researchers proposed to replicate links without

increasing the number of switches [25]. Redundant paths can also be obtained by adding

additional stages to the network. Siegel et al. proposed to add one extra stage of switches

and links while retaining the same combinatorial capability [1]. It has been proposed to

decompose a packet-switching MIN into fanout, transferring, and merging stages [23, 24].

Analysis showed that very little performance improvement can be gained when more than two

extra stages are added. Thus, adding more stages to a MIN will improve its fault-tolerance

capability but decrease its throughput.

Two major processes, fault diagnosis and fault recovery[96], are needed for improving

network reliability. Since fault diagnosis is the most expensive and difficult process, we will

focus on issues related to it in this dissertation. A system's reliability will be degraded seriously

if the system does not have efficient fault-detection mechanisms [91, 105]. In particular, single

faults should be detected and repaired as soon as possible before they are accumulated into

multiple faults, which are far more difficult to handle [92, 66].

It is difficult to test MINs, because they have a large number of components and I/O

ports, and each I/O port is connected to an independent processor. Any testing method should

have the following features: (1) applicable when a large number of processors and/or network

components are faulty, (2) extensible to large scale networks, (3) can be easily handled by each

processor, and (4) can be applied to multi-path networks. Fault masking [61, 108, 98, 46, 51]

and coding techniques [42, 67] can effectively combine fault detection and fault recovery

processes, but are too expensive for MINs due to the large number of components in MENs.

Thus, we will develop easily testable architectures [10, 109] for periodical network testing

during normal operation, and for fast fault diagnosis in case the system operation has been

5

stopped. Testing of circuit-switching baseline MINs with 2 x 2 switches has been studied

thoroughly [38, 3, 37]. Shen c/. at. [64] modeled a CSN using 2 x 2 switches as an iterative

logic array (1LA), which can be tested with a constant number of patterns. Leu and Agrawal

used dynamic full accessibility [90, 89] to develop a high level diagnosis method for MINs

[5]. Lim proposed the use of testing packets to exercise a network periodically [68]. Several

researchers have proposed adaptive testing strategies for packet switching MINs with different

topologies [106, 21, 71, 75, 20, 70, 104, 103]. Since adaptive procedures usually imply

centralized testing evaluation and require human assistance, such a strategy is very inefficient

for multiprocessor systems.

1.2 Organization of the Dissertation

To develop cost-effective high performance and high reliability MINs, three major research

topics, as listed in Fig. 1.2, have been investigated in this dissertation. The correlation of

these three topics are introduced as follows.

The cost of a MIN with N input/output ports is A' log.2 A'. The primary technique to

reduce the network size is to group processors/memory-modules into clusters to reduce the

number of I/O ports of the network. When the clustering technique is applied to a packet

switching MIN, the number of processors (memory-modules) in a cluster can be determined

by matching the bandwidth of processor (memory) clusters with the bandwidth of buffers in

input (output) stage1. On the other hand, there is no buffer in a circuit switching network.

It will be shown in Chapter 2 that the clustering technique alone can only provide very

limited performance improvement in circuit switching MINs. A more sophisticated network

overlapping and memory interleaving (NOMI) teclinique can improve the system performance

at reduced cost.

1 As will be seen In Cliapter 4, each stage in the netwoik may have a different bandwidth.

6

performance
improvement

reliability
improvement analysis

high-performance
high-reliability

MINs

Conclusion &
future work

Network Dynamics
Fault-free model,
path locking time,
blocking tree model,
congestion trees,
dissipation times,
optimal testing length,
optimal fault coverage

Polynomial
Network Testing
high-level & low-
level testing
architectures,
fault model,
fault coverages,
testing speed

NOMI

architecture,
bandwidth,
utilization,
blocking factor,
optimization

Figure 1.2: Block diagram of three research topics.

When the network size is reduced by the clustering technique, the performance loss caused

by a failed network component is more serious, because more processors will be affected by

the failed component. As mentioned earlier, since most fault masking and coding methods

are too expensive for MINs, we will develop easily testable arcliitectures for packet switching

MINs in Chapter 3. The first easily testable architecture supports high-level network testing,

which is periodically applied to the network during normal operation. The second architecture

supports low-level network testing, which is for fast fault diagnosis after stopping normal

operation completely. These two architectures can be easily modified to be used in circuit

switcliing networks, because circuit switching networks can be considered as packet switching

networks with no buffers.

7

In a packet-switching network, a path needs to be locked up before it is tested by the

high-level testing method. To avoid excessive performance loss during network testing, it is

important to understand the network dynamics such as the probability of the network being

congested, and the dissipation time of a congested network. Thus, the analysis of network

dynamics and the optimization of concurrent testing strategies are studied in Chapter 4. The

first objective is to minimize the performance loss caused by testing. Performance loss is

minimized by applying test patterns in small batches, not in a long stream, to avoid blocking

an excessive number of packets. The other objective is to trade the mean fault detection time

for fault coverage. This objective is justified because (1) fault coverage increases with the

length of test patterns, and (2) the probability of system crash increases with the mean fault

detection time.

Several concluding remarks are made in Chapter 5.

CHAPTER 2

NETWORK OVERLAPPING WITH MEMORY INTERLEAVING

2.1 Introduction

In conventional MINs,1 a physical path between a source and destination must be estab­

lished for data transmission. As shown in Fig. 2.1, a conventional MIN contains a forward

network and a backward network. Requests/data generated by processors are routed through

the forward network to memory modules, and service results are returned to the processor

through the backward network. The utilization rate in conventional MINs is low, because a

forward path and a backward path must be locked up simultaneously before the service of a

request is completed.

Pipelined MINs have been proposed to improve network performance [95, 41]. A burst

of data can be transmitted once a pipeline in the network is established. However, when the

size of data burst is not large, the performance of a pipelined MIN could be worse than a

conventional MIN due to setup overhead. Both asynchronous and synchronous multiplexing

have been widely used in telecommunication systems [55, 7]. Asynchronous control schemes

are less useful for large systems for their long delay. Although the synchronous multiplexing

teclinique has been widely used in telephone switches [72, 55, 7], the depth of multiplexing

1 We focus on circuit switching MINs in this chapter, thus, the teim "circuit switching " will be omitted.

8

9

BACKWARD
NETWORK

FORWARD
NETWORK

PROCESSORS MEMORY MODULES

Figure 2.1: An N x N multiprocessor system connected by a conventional MIN.

10

in telephone switches is limited so as to guarantee the quality of voice signals. The network

overlapping and memory interleaving (NOM1) technique proposed in this chapter is a type of

synchronous multiplexing for large multiprocessor systems. For convenience, a MIN equipped

with llie NOMI technique is called an Overlapped Circuit Switching Multistage Interconnection

Network (OCSMIN).

The NOMI technique may increase or decrease the mean system waiting time in an OC­

SMIN based system. To decrease system waiting time, the size of switches can be increased to

lower the network's blocking probability. To improve the network performance at a reduced

cost, a branch and bound procedure is developed to find optimal combinations of switch size

with the depth of overlapping/interleaving.

The rest of this chapter is organized as follows. Section 2.2 describes operating principles of

the NOMI technique. Hardware cost and performance of conventional MIN and OCSMIN are

compared in Section 2.3 and Section 2.4, respectively. Optimization procedures are discussed

in Section 2.5. Concluding remarks on the NOMI technique are given in Section 2.6.

2.2 Operational Principles of NOMI

Clustering is the first step in the design of OCSMINs. A processor cluster pc,• is a set

of processors 1 < j < «\ and an interface unit pn ,• between these processors and the

network, i.e., y«-,- = {/;/; i, I'ij I i < j < »'} for all 1 < / < N', where N is the number

of processors in the system, N' = N/w is the height of the network, and w is the number

of processors in a cluster. The processor subsystem is the collection of processor clusters,

I'S = {/>r, | I < / < A"'j. Similarly, the memory subsystem MS is the collection of memory

c lus t e r s , i . e . , MS = {mc; \ l < i < N ' } , where ma = {/) / /> , . / / / ; ; | .1 < j < i r) , i s

the y-th memory module, and inn; is the interface unit at cluster /, respectively. Note that a

conventional MIN can be considered as an OCSMIN with w = I and /V = A".

11

conventional MIN can be considered as an OCSMIN with w = 1 and N = N ' .

Fig. 2.2 shows a hierarchical system structure containing processor and memory clusters.

A flog,. /V'] stage network must be used to connect processor and memory clusters. In the

forward network, a forward switch is denoted by FSij(mJ), where ij is the coordinate of

the switch, and m and I represent the m-th input port and /-th output port, respectively, (m

and / will be omitted whenever they do not cause any ambiguity.) Similarly, in the backward

network, BS;j(m,I) denotes a backward switch where in represents the m-th output port and

I the /-th input port. The set of switches and links in the network can be represented by

{FSij, BS'u | 1 < i < N\ 1 <j< k), and {F£,v, BLU | 1 < i < N\ l<j< k+ I],

respectively, where FL;j (BLU) is a link in the forward (backward) network. The forward

and backward networks are topologically identical if they have identical network structures

except for the direction of routing.

Definition 1 : When the forward and backward networks are topologically identical, the

switch BSah is called the partner of FScj, BSab = H(F,S'e/), when a = b - /, and

i s s e t u p f o r l a t e r s e r v i c i n g o f a l l t h e r e q u e s t s p a s s i n g t h r o u g h F S , j .

The partner of a forward (backward) link, which is also a backward (forward) link, can

be defined in a similar way. Interconnections between processors and memory clusters can be

represented by the Interconnection Relation :

1 1 i = { (/ • > (' , , i F P j , m c j , j B P i) | I < j < N ') ,

where i F P j = { (i m i . F S \ . r i (i \ , o \) . F L i y i , F S i X 3 (h , o - 2) , F L ? , J 2 . - - - . F S k r k { h - o k) .

F L k + ^ i , h + l , m i i j) } i s t h e s e t o f a l l p a t h s f r o m p c ; t o m c j . S i m i l a r l y , j B P ; = { (/ » / , . B S \ . n

(/i,ri). BL\,n, nS-zJ:2(l'2,r2). II L-2,12, • • • -BSkr^lk. ri;), /?/,/,+ t;/A+|. mil,)} represents all

possible paths from mcj to pc;. In addition to the relation IR, a dynamic model is needed to

distinguish conventional MINs from OCSMINs. At tune instant /, the request pattern .-!(/) is

12

P n l |

pv

PROCESSOR
CLUSTERS

i
MULTISTAGE

INTERCONNECTION

NETWORK

N
— wr

= *

r 3 < r switches

r
I— log

N.
r W I •

mn.

mnNl

MEMORY
CLUSTERS

Figure 2.2: The hierarchical structure of a multiprocessor system.

13

represented by an A"-tuples { (« i (/) , « - 2 (« a t '(/))| «,•(/•) G {(), 1 , • • •, A"), 1 < / <

N'}, where «,(*) = j if pc; requests to access mej at time t, and «,(/) = 0 if no request is

made by pc-,. For each request «, (/), tliere is a corresponding forward path in the forward

network,

We can define the Forward Interconnection Pattern,

F I P (t) = { i F 1 1 , (1) | i < i , j < N ') . where i F I I t (t) = (« ; (') , i F P j (f) . m c j) .

and the Backward Interconnection Pattern as

D I P (l) = { j D I I i (l) | i < / , j < N ' } , where ;/?//;(/) = («,(/), j B P , (l) . m c j) .

At time F 1 F (I) and B I P (I) are established paths on the forward and backward net­

works, respectively. In a conventional MIN, jBIIi and its partner , F U, are simultaneously

locked up for a set of requests, and thus, BlP(t) = U(FIJ'(I)), V7. Operations of MINs

c a n b e r e p r e s e n t e d b y t h e T o t a l I n t e r c o n n e c t i o n P a t t e r n : T I P (l) = F I P (I) x I) I l ' { l)

= { (" , (/) , i F P j (l) , I H C j , j l) P j (t)) } .

Definition 2 : For 1 < /, j < N ' , the function C S F : A (t) — ^ T I P (t) is the interconnec­

tion function of a conventional MIN, such that

j F P j if«;(I) = j and the request is granted

if «,(/) = 0 or not all resources available at time t

and the corresponding backward path

j l) F i (l) =
j B P j if«,(/) = j and the request is granted

<j> if a,(/) = 0 or not all resources available at time t

(i) csF(ui(t))= iFiijd) x j mii(n,

14

(2) ITLPJ (L) is unique for each «,•(/), and D ,3FPj 2(/) = </> V /| ^ /'2,

(3) i U P j (t) = ll{ j F P i { l)) .

When n ,-2 FP/2 = (j), requests u,-, (/) and «,-2 (*) do not have resources contention.

In a conventional MIN, as illustrated in Fig. 2.3, components locked in the forward network

are idle during periods T2 and T3, and gates and links locked in the backward network are idle

during T1 and T2. To increase resource utilization rate, we can relax the total interconnection

relation C'SF into a new operation 01'/':

Definition 3 : The function OVF : A(T) — T I P (I) is an interconnection function of the

OCSMIN satisfying following conditions:

(1) O Y F (a ; (t)) — i F J I j { t) x j * i and j need not be equal to /' and /,

(2) ,'Vl Pj(l.) is unique for each and F /',-,(/•) fl ,-2 F P j 2 (t) = </> if i , ̂ i 2 .

(3) j J I P i (t) = Ji(i F P j (t — A t)) for all /. and some fixed A t .

Functions CSF and OVF describe operational principles of conventional MINs and OC-

SMINs, respectively. The timing chart and interconnection function of an OCSMIN are plotted

in Fig. 2.4. Note that at time l, a processor/memory interface may appear in both , /•'//, and

j H ff, while serving different requests. The maximum number of requests that can be routed

through one path within A/ is called the number of phases, w, or the depth of NOMI. The net­

work cycle or network propagation delay is the time to route one request through the network.

The NOMI technique reserves the partner of a established forward path for use after a

delay of At, and an established path in forward network is immediately released after the

processor's data are transmitted into (he destination memory module.

15

memory

backward
network

forward
network

WSSSSJl resources locked but idle

i * 1 resources utilized

resources free

MmYSSlmM "I

t; Y / A i " s i

fs/Mmmmm i///<• \

2 ? lT lT lT I ? * 1 I 1 1 • t
1 2 3

(a)

N N

N-1
BiP(t)= n (FiP(t))

N-1

• \ Y i \ X / •
• Y Y XA •
• / jf\ /A \ •

2 FIP(t) 2

1 1 1 1

(b)

Figure 2.3: Illustration of a conventional MIN. (a) A timing chart, (b) Its interconnection
function.

MEMORY MODULES
16

phase 1

phase 2

phase 3

]4-Access

I I L

phase W

FORWARD

phase 1

phase 2

phase 3

phase W

BACKWARD NETWORK

phase 1

phase 2

phase 3

phase W

Figure 2.4: Dlustntioii of an OCSMIN. (a) A timing chart.

BIP(t)- n (FIP(t- A t))

FIP(t)

at instant t PHOCESSOR CLUSTERS MEMORY CLUSTERS

BIP(t+ n(FIP(t A t))

at instant
MEMORY CLUSTERS

Figure 2.4(b)The intercoonectioD function of an OCSMIN.

18

OVF can be implemented by (he NOMI technique if and only if A/ = 7',u, and w x

To = Ti\i, where To is the network propagation delay, and Tm is the memory cycle time.

When w x Tp = At = T^, w requests are serviced in a memory cluster in a time period

7)\j. Completed services are routed in the same order through the backward network to the

originating processors. Thus, jBPi(t + Tm) is the partner of iFPj(l) for all /.. When one

completed service is being routed through the backward path, its partner path is available for

o t h e r r e q u e s t s , t h u s s a t i s f y i n g a l l t h r e e c o n d i t i o n s o f t h e f u n c t i o n O V F .

Let J ' p be the mean request time between requests of processors, the number of processors

within one processor cluster is vVyj = where To is the network propagation delay. For

simplicity, it is assumed that one memory cycle is equal to w network cycles, and each cluster

is composed of u> processors or memory modules. In a cluster, only one processor (or memory

module) can access the network at a time. Thus, memory modules in a cluster are physically

interleaved into w phases, plii, 1 < / < tr. However, processors in one cluster are logically

interleaved due to their random request time.

To minimize the path establishing time, instead of using handshaking protocols between

switches [107], a processor's phase number can be transmitted to acknowledge the completion

of service. A message/request will be retransmitted if it is not acknowledged within At. A

comparison between handshaking and non-liandshaking methods is shown in Fig. 2.5. Since

w r e q u e s t s m a y b e r o u t e d t h r o u g h a n y I / O p o r t o f a s w i t c h d u r i n g o n e m e m o r y c y c l e T ^ ,

iv — I switching states can be stored in w - J registers. Fig. 2.6 shows the different designs

to support OCSMINs and conventional MINs.

Static random access memories (SRAMs) and dynamic random access memories (DRAMs)

are the most popular main memory components for commercial machines. Contemporary

commercial DRAM chips are standardized to use multiplexed two phase addressing: row

(ras) and column selection (aw). On the other hand, single phase operation is still a standard

19

request-in r,o

tag t i o

busy b io

request-in n1

tag f.j

busy

request rl+lo

b u s y b M o

request r,-+i

busy bM l

bio fi<£.bi+\Qtiji'b

tie+lijio) +r,0r,1(f,1&i+i1 +7,-^,+^)

r.+io ̂ hiio+riJiftio+rO

rM-ri^+r^t^ (7«0+7l0)

(a)

request-in rlo

tag *;0

request-in r/j
tag

r;+i0=V^+'Vn('«'°+r'o)

r M-r ijio+r^ti ̂ 7^+7lo)

(b)

request r1+1

request ri+ij

Figure 2.5: Examples of different communication protocols, (a) The handshaking protocol,
(b) The nonhandshaking protocol.

20

processo; memoi

backward switch forward switch
overlapping

latches

switching

decision

control
Tags

CLK

overlapping latches

Figure 2.6: Required circuitry for supporting (a) a conventional MIN, (b) a two-way over­
lapped network, and (c) a ie-way overlapped network.

21

for commercial SRAMs [83]. Both DRAMs and SRAMs can be easily used in the NOMI

technique, except when the depth of overlapping is 2. Figs. 2.7 and 2.8 illustrate two-way

NOMI techniques for DRAMs and SRAMs, respectively.

2.3 Cost Analysis

The primary advantage of the NOMI technique is that it has the potential to improve

system performance at reduced cost. To have a fair comparison with conventional systems,

the network cost is defined as follows.

Definition 4 : The cost of a conventional MIN (or an OCSMIN) is defined to be the number

of data gates and links. The cost factor is the ratio of the number of data gates to the number

of processors.

The cost and cost factor of a conventional MIN using r x r switches are rA' log,. A' and

r log,. N, respectively. In an OCSMIN with r x r switches, the total number of gates is

»-rfl PuKr • The total number of gates is changed by /-TV [lug,. vY] - /•[•^•~| [log,. and

the cost factor of an OCSMIN is — [log,. Although the logic circuit and the number of

links increases with the network size as O(jVlogiV), the link length still grows in 0(A"2)

complexity [32]. Since only the number of reduced links has been taken into account, we have

a conservative cost analysis. As an example, 5120 2x 2 switches (20480 gates) are required

for a conventional 10-stage MIN, while only 1024 2x2 switches (4096 gates) are needed, if

the network is overlapped in four ways. Modifications to existing designs to implement the

NOMI technique include: (1) additional w - 1 registers at each switch, (2) a network clock

in times faster than the memory clock, (3) a ie-phase clock for each memory cluster, and (4)

interface units in processors or memory modules.

Note that resource contention among processors increase when processors are clustered.

The performance impact of resource contention caused by clustering can be neutralized by

22

memory

request

request

memory
access

5

4

3

2

request 1-

memory access

| | processor —^memory

tXXXXIj memory —• processor

'///A

1 v///
A A A A 4

A A A A 4

I 1 1 1 1 V

(»)

I 1 I 2 I 3 | 4 | 5 I

i. v///x<m

\ mxm

H 1 1 1 1—

-*• t

+ \ 1—

(b)

Figtve 2.7: Comparison of SRAM operations in (a) a conventkmal MIN, and (b) in an

OCSMIN.

23

memory-

2

request 1-

Y////1 memory access
| J'", J processor • memory

VI memory • • processor
ras precharge

M

1

V/// A A A A M k A A A Al A A A A A

/̂///k== ̂

1 Y///A

A h + •\ 4- + 4- -*• t

(a)

memory •

4

3

2 - _

I 1 I 2 I 3 | 4 |

I Y///>

'««— '+1 w/A&m

H 1 1 1- +
memory

phase 1 •

phase 2

3 •

1 3-

2 '•
I 1

2-

I
pl= l-f-

(b)

t » K v Y / / / A *

tsg&sm

i-vkyyyyi:-!?xi

t * A *«

p2» i |

i '̂W/z&m

H 1 1 h
(c)

Figure 2.8: Different modes of network opendoos with DRAM, (a) Conventional network,
(b) Simple network overlapping with memory interleaving, (c) Overlapped network with

memory interleaving.

24

increasing switch size. The following theorem describes necessary conditions to reduce system

cost while we increase switch size (in order to improve system performance) in the NOMI

technique.

Theorem 1 : The cost of an OCSMIN can be monotonically decreased when

(1) a conventional MIN is replaced by an OCSMIN,

(2) switch size is increased, and

(3) the relative increase in the overlapping (or interleaving) depth is greater than that of

the switch size.

Proof: The cost is r N ("lug,. A'] for an N x N system connected by a network using

r x r s w i t c h e s . T h e c o s t o f a n e w n e t w o r k , C n e w , w i t h o v e r l a p p i n g d e p t h w a n d r ' x r '

switches, is [log,./ . Since /•' > r, [lug,. N] > [lug,./ . We can now consider the

factors rN in Corig and r'^ in C',lcu,. Applying the third condition to these factors, we get

^ < -J7 and thus -j^N < ±N. It follows that Coriil > 1

Corollary 1 : The cost of an OCSMIN satisfying Theorem 1 is always less than or equal to

the cost of a bidirectional MIN.

Proof: In a bidirectional network, the forward and backward networks are essentially combined

into one. The NOMI technique cannot be applied to bidirectional networks. Thus, the cost of

a bidirectional MIN is -^[log,. A'].

The lowest possible NOMI depth is 2 for an OCSMIN. The cost of a two-way overlapped

OCSMIN is ^j-flog,. A7]. Since the network cost decreases monotonically when Theorem 1

holds, OCSMINs are always cheaper than bidirectional networks. I

2.4 Performance Analysis

The performance of conventional MINs is compared with the performance of OCSMINs

25

in this section. In addition to conventional performance parameters, i.e., blocking factors and

network bandwidths, we introduce two additional parameters called the mean system access

time and execution/access parallelism in this section.

2.4.1 Blocking Factors and Bandwidths

Numerous models have been proposed for evaluating blocking factors of the conventional

MINs [77, 114, 85, 11, 65]. For its simplicity and accuracy, the model proposed in [77] with

the following assumptions is used:

A1 Requests generated by processors are independent and uniformly distributed.

A2 Switches in the network have synchronous operations, and it takes one network cycle

to establish a path. In each network cycle, a processor generates a new request with

probability P.

A3 A blocked request is discarded, and new requests will be generated independently.

Although assumption A3 is apparently unrealistic, it greatly simplifies the analysis, and

has been validated by simulation [77]. With the above assumptions, the blocking factor at

stage / can be expressed as

PI+1 = L - (I-•£)•• (2.1)
r

where P; is the probability that a request appears at an output port of an r x r switch located

at stage i, and I u is the request rate of a processor cluster. Let /,• = lug,. N be the number

of stages and PCK(or Pq,.) be the probability that a request can pass through the /,• stages of

the conventional MIN (OCSMIN). The network pass-probabilities of conventional MINs and

OCSMINs are P,\C = and P,\C) = respectively.

In conventional MINs, the second sub-cycle (ras precharge) of a DRAM can be completed

when the data is being transmitted back to the processor. Thus, memory bandwidths of

26

DRAMs and SRAMs are essentially the same, as shown in Fig. 2.9. The memory bandwidths

1116 sJ'd+'J'm anc* max (J\r td) ^or conventional MINs and OCSMINs, respectively, where

To is the network delay, and Tms is the memory cycle time of an SRAM.

Little performance improvement can be achieved if only network overlapping (without

memory interleaving) is implemented. For example, the throughput of an OCSMIN with no

interleaved DRAM memory modules is one half lower than the throughput of a conventional

network with SRAMs. The memory bandwidths of conventional MINs and OCSMINs are

*tJtUd 2 (k,D,rDy respectively.

Bandwidths of a //-stage conventional MIN and an /-stage OCSMIN, where I = [lug,. ^1,

are as follows.

f i i i * 13W c ̂ t5—,•)'/•

I % I I * J NXP. \ , AT „

B W o = 7 7 7 x - ^ x u , = : € r x i - 1 "

where BW' c and BWQ are bandwidths of conventional MINs and OCSMINs, P,\T is the pass

probability of an /-stage network, and w is the depth of interleaving. The maximum utilization

rates of conventional MINs and OCSMINs are]r and 100 percent, respectively.

2.4.2 System Access Time and Access Parallelism

We now discuss the impact of the NOMI technique on system waiting time, which is the

mean time to establish a path and then access the memory module.

In the system access time analysis, a partially established path is assumed to be immediately

released when a request is rejected [65]. After a path is established in a conventional MIN,

T*
there is a average delay before a memory module can actually be accessed. Similarly, in

an OCSMIN, an average delay of ^ is expected before a processor can access (lie network.

Thus, the mean system access time can be expressed as

27

DRAM

SRAM

resources utilized

| | resources locked but idle

Ermri /VWJ r a s precharge A A * a1

I Y//M-. r~

I • < Y///A -I

\ 1 1 1 1 1 1 1 1 h*-1
Tj T2 T3

Figure 2.9: Comparison of DRAM and SRAM operations in a conventional MIN.

28

To = J\ 2Tb + + rAl\i + (1 - PA)Pa2Tm + (1 - rA?P A M, • • - } d F (P)

= f W o + - T \ [P A - ^ r j t d - P s NMP)
J o I o l A ̂

= f \'2To + (± + l) T A I] d F(P)
./0 J .4 *•

(2.2)

and

'J'c = ['/ji/ + rj-'A/ + P a 2 TD + (\ - P A)P a (2 TD+ TO) + • • -] d F (P)

= /' + tAT'^ (E«(•1 - p->)""'2}]^(P)
./O ^ I-J A

/•' 3 I + /' 1
= / [-rA/ + ru-i-^]W)

./o ^ 1 A
(2.3)

where 7'o and TC are the mean system access time in OCSMINs and conventional MINs,

respectively, and F(P) is the distribution function of the request rate.

P,\ is a monotonically decreasing function of the number of stages in the network. '!),

is determined by both the switch delay and the cable delay. The mean system access time

difference between a conventional MIN and an OCSMIN is

that of the conventional MIN if d < and w < For example, in crossbar networks

the network pass probability quickly converges to a constant (« 0.7) [77], and PC < 1,

d < 1. Thus, NOMI can always be applied to crossbar networks without increasing the mean

system access time.

The last performance parameter to be considered is the degree of parallelism in system

execution/access. In an OCSMIN based system, every memory module can be immediately

where d The mean system access time of an OCSMIN is smaller than

29

accessed after its current cycle, and processors can execute their own instructions indepen­

dently. Thus, the access parallelism of the memory subsystem and the execution parallelism of

the processor subsystem are the same as that of a conventional MIN based system. However,

the NOMI technique does affect processors' access parallelism.

A processor cluster can be taken as a w x w switch, because each network access phase in

a cluster can be treated as an output port of a switch. Thus, at each phase />/) ,, the probability

of a request appearing on the interface pn; is Ppilt = L - (1- J1". We can now get the

access parallelism P,:, by plugging in the above equation into I\) of Eq. 2.1, where f is

the number of stages. The NOMI technique must be carefully adjusted to improve the access

parallelism and avoid performance penalty. Access parallelism in three different networks

connecting up to 1024 processors/memory modules are shown in Fig. 2.10. As shown in Fig.

2.10, the access parallelism of an OCSMIN with a four way NOMI using •! x 4 switches is

higher than the access parallelism of a conventional MIN with 2x2 switches, and is close to

the access parallelism of a conventional MIN with 1 x -I switches.

2.5 NOMI Optimization

The NOMI technique can achieve different design goals by adjusting the depth of overlap­

ping/interleaving and switch size. Since MINs have integral number of stages, and most other

design parameters have continuous values, all the related optimization problems are mixed

integer nonlinear programming problems. The optimization problem is solved by a branch and

bound technique, which is illustrated by two examples.

2.5.1 Combinatorial Capability

When N processors communicate with one another, the number of possible permutations is

A'!. For a large /V, /V! can be approximated by the Stirling's equation, A'! « A"V-,v>/iJ^V.

30

PROCESSOR
ACCESS

PARALLELISM

2 4 8 16 32 64 120 256 512 1024 2048 4096 8192

PROCESSOR NUMBER N

Figure 2.10: Comparison of access parallelisms between conventional MIN and OCSMIN
when p=l.

31

In a conventional MIN, the total number of conflict-free permutations 11'fc| is (/•!)T"l,,R',v.

The ratio of conflict-free permutations to the total number of permutations Q\!) decreases to

zero even for small N. For example, = 0.0002, and sa l.(j x 10-'2.

We now derive the number of conflict-free permutations, \L"^'r\, in a network implementing

(/'-way NOMI technique with /• x v switches. When the depth of NOMI is w, one system

X L cycle is composed of w phases. In the first phase, there are w «• combinations of processors

that may present service requests. In the second phase, there are w - 1 selections for each

processor cluster, and thus there are (m — 1) «• selections for the system. By induction, there

are (w\) «• combinations of processors to be interconnected in one system cycle. At each

phase, the network can perfonn (r!)^ '"s' ^ different permutations. Thus, |]

(r!)V7 '"*>•

The combinatorial capabilities of various networks change too radically to be included in

the objective function of the optimization problem. For example, 1021! ss I02(i l°, |/'|2n2,|| =

JO15", | L\[y2\\ » 108'1', | | fa JO'"', | w 107131. Thus, the combinatorial capa­

bility is used as a constraint in the optimization problem to prevent any excessive degradation

of the network's combinatorial capability.

2.5.2 Optimal Design

Many switches can be used to implement the NOMI technique of a specific overlap­

ping/interleaving depth. A configuration wr is defined as the combination of the overlapping

depth w and the switch size r. All feasible configurations form a configuration space il. The

memory and processor subsystems are assumed to have fixed operational parameters, i.e., the

memory access time, the instruction execution speed, etc.

Recall that the cost of a network is (= r [log,. [" The network cost monoton-

ically decreases with the overlapping depth. When N' =] is fixed, and for /•, £ 12, .s £ /+,

32

log,.. N ' € /+, and 0 < log,.. N ' - log,vhs N ' < I, we have [log,,. N '] = [log,,+3 N '] . That

is, Cr,w is a sawtooth function, and /•, is a local minimal point when Pug,,. N'] = log,,. ;V.

Given a fixed w, to find the global minimal cost we only need to examine local minimal

points / |, v'2, • • •, where rmax is determined from the upper bound of cost. r,'s can be

A-. j
derived recursively by r;+\ = e';r-' "g''. When the number of stages is decreased by one,

the network cost is changed by AC',tv, = N' {(r/ - ri+i)ki + rl+i), where r,- - /',+ | is the

increased switch size before decreasing the number of stages by one, and /.•, is the number of

stages. Since A(7Uy, is neither positive nor negative, 7 i through rmiu. must be exhaustively

searched for the global minimal cost.

To demonstrate the optimization technique, mean system access time in Eq. 2.3 is used as

the first example objective function. The mean system access time is composed of two parts:

r I ' I ' . .
the fixed network propagation 2Tp, and the random network delay 4Xa /+ / —'•—<IF(/'),

./U I A„.v

where = P h / P is the pass rate of the network, l\. is the probability that a request can

be transmitted tltrough a /.--stage network, and F is the probability that a request occurs at a

certain phase.

The first constraint in the above optimization problem is the network propagation delay,

which is composed of active components' (switches') delay V\ and passive components'

(cables') delay [14, 81]. The cable delay is determined by the physical size of the network.

Most network topologies will shuffle cables, i.e., the passive network delay is proportional to

the height of the network Thus, cable delay can be expressed as ("i r£l, where <"> is

the unit length delay of the cable used. Reliability sets the other constraint in the optimization

problem: when one cluster fails, the loss of computation power should be bounded by a

constant b. The formal problem statement is then given as follows.

Problem OD: min 27/j„„. + |7'lW + [-—-dl'i /')
10V£ 12 J{} J /I,,,)1

33

subject to constraints :

(1) rDm = kwr(Y + 6%)

(2) />•+, = 1 -(1 -ii)''

(3) PAm. = PkajP

(4) 'I'm > wTUm.

(5) CW.ce > 6V > 4 '«%r£i

(6) b > %

(7) \W | > | Lspec\.

This problem is essentially a mixed integer-nonlinear programming problem. Given Y , h .

]]\i, and b, a brancli-and-bound technique is presented here to find the optimal combination

of w and r.

50. 'Vile = ^- "'inc = Prno = W'

51. Compute an upper bound of w by w,ntu. = [Ar6J.

52. w = 2.

53. Obtain an upper bound of the stage number by solving [-^] ("i] < 7

To , =

54. rmin = ii.r {r log, r f 1 1 < and ,= *,„>{ r\%]\ logj fll <
7 r

55. If then w is infeasible and go to S8 else r =

56. f w r = 27/j . + ± T A r + [l td l ' (l ') . If 7";.,. < 7',„c then = 7'„,r) =
Ju • l""

34

57. r : = r + L V v ^ rjuim- then go to S 6 .

58. w := w 4- 1. If w < wmar then go to S3.

59. If u'inci'inc = 0 then no feasible solution else fapl = f iuc, wopl = w i lH.,

For example, when N = L02 I, = 0.01,1' = <S, Tj\; = 300, it is found that the optimal

network cost occurs when m = 10 and r = 5, and the corresponding mean system access time

is 373.1.

Network cost can be used as another objective function of the optimization problem. With

the same constraints as the above example, the optimal network cost is only 7.5 percent of a

conventional network based on 2 X 2 switches. The optimal mean system access time is 363.2

ns when w = .'I, r = The mean system access time of the network with the optimal network

cost is three percent higher than the optimal mean system access time. On the other hand, the

cost of the network with the optimal mean system access time is tliree times higher than the

network with the optimal network cost. With the above information, die designer can select a

network design with either optimal network performance or optimal network cost.

2.6 Conclusion

In this chapter we have proposed a cost-effective high performance architecture for circuit

switching MINs. This technique is useful in matching bandwidths of subsystems in a large

multiprocessor system. The drastic reduction in the number of switches/gates makes the use of

large switches more attractive. The NOMI technique also shortens the network delay because

of the smaller number of stages required. The cost analysis provides a lower bound for the

improvement made by NOMI since it did not consider the length of data links.

When the network size is reduced, the impact of a network component's failure will be

more serious than in a conventional network. To improve die network reliability, it is important

35

to detect and remove faults in the network as soon as possible. To acliieve this goal, two new

architectures are developed in the next Chapter.

36

Appendix 2.A: List of Symbols

37

pr; Processor cluster i.

met Memory cluster i.

p- , j Processor located in processor cluster / with phase number j.

m;i Memory module located in memory cluster / with phase number j.

pit I Network interface unit of processor cluster i.

in iii Network interface unit of memory cluster /.

r The size, or the number of input/output ports, of switches.

in Depth of overlapping, which is always associated with the memory interleaving

of the same depth.

OCSMIN Overlapped Circuit Switching Multistage Interconnection Network.

NOMI Network Overlapping and Memory Interleaving.

i n) A forward switch located at (i , j) and its input port /.;, and output port i n are

used to form an interconnection.

i n)

A backward switch located at (/, j) and its output port /.•, and input port m are

used to form an interconnection.

FLij A forward link located at (/, j) .

I I f j -,j A backward link located at (/, j) .

/!(/•) The request vector appears on the processor subsystem at time t.

11 (E) The partner of resource E on the forward (or backward) network.

38

iFPj The set of resource on the forward network to support a path from processor

cluster / to memory cluster

iliPj The set of resource on the backward network to support a path from processor

cluster i to memory cluster j .

AI The time interval before the partner of a forward switch (link) is locked after

the forward switch (link) is locked.

C'SF{ t) Interconnection function of a conventional circuit switching network.

O VF(I) Interconnection function of an overlapped circuit switching network.

TA/ Memory subsystem (memory modules and interface) cycle time.

Tp Network propagation delay.

Tp Processor's memory-request cycle time.

N Number of processor (or memory) modules.

N' = ~ Number of processor (or memory) clusters.

P Processor request rate, ()</'< I at each network cycle.

P,tr Network pass probability for a network with switch size r.

CHAPTER 3

POLYNOMIAL TESTING OF PACKET SWITCHING NETWORKS

3.1 Introduction

Large interconnection networks are made feasible by the advances in VLSI technology.

Since VLSI technology greatly degrades testability, an interconnection network must have a

structure that is easily testable.

A path and a route for a source-destination pair are deflned as follows. A path is a

physically-established communication medium between the source and destination to transfer

a request/data. A route is a logical path which can transfer a request from a source to its

destination without total dedication to it; resources on a route are time-shared among several

packets. In a circuit switching MEN, the path from a source to its destination is physically set

up a priori and dedicated to a request until the request is completely serviced. By contrast,

no complete physical path is established a priori for a request in a packet switching network

(PSN). A packet-switching multistage interconnection network (PSMIN) is composed of a

large number of links and switches with buffers. Each PSMJN switch is essentially an r x r

crossbar, in which a queue is placed at each input port to store packets. A request/message

is decomposed into several packets, each of which is independently transferred through an

available route.

39

40

Many PSNs have an undesirable effect called the routing dynamic: the order of arrival of

packets at the destination may be different from the order of their transmission from the source.

Although PSMINs can be designed not to have the routing dynamic, the routing dynamic will

be considered in our testing method to provide better versatility. Clearly, a PSMIN with the

routing dynamic is an asynchronous sequential machine. Although a sequential machine can

be fully tested with a checking sequence derived from its state-transition table [15], no feasible

checking sequence seems to be derivable for large scale asynchronous sequential machines like

PSMINs. Functional testing is an alternative to prove the correctness of some of the machine's

functions within a finite time period.

Several researchers have proposed functional testing procedures for specific networks. A

comprehensive method for diagnosing base-line circuit switching MINs with 2x2 switches

was introduced by Feng and Wu [38], and a simplified version of their fault model and the

corresponding testing strategy can be found in [3]. Lee and Shen modeled a circuit switching

MIN using 2x2 switches as an ILA [64]. Agrawal and Leu used the dynamic full accessibility

of MINs to test their connectivity [5]. Several high level testing strategies for a general PSMIN

have also been studied [21,71,75,68,20,70,104,31], most of which are adaptive procedures

requiring human assistance.

Most existing methods are centralized and off-line, i.e., the whole network is tested off-line

by one tester. Since there are Ar switches in a PSMIN, the complexity of the network

testing problem is 0(^log, lX). Centralized testing methods are usually very inefficient for

large networks, because the problem needs to be handled by the tester grows exponentially with

the size of the network. To improve testing efficiency, we propose two testing strategies: high-

level and low-level testing. In the high-level, every processor can serve as a tester to test part of

the network; thus, there are N testers for the network. Assuming that testers are homogeneous,

the complexity of the testing problem in each tester is reduced to O(\jo<jr N). In the low-level

41

testing, switches are used as testers and designed to have autonomous testing capability [73].

In other words, the complexity of the testing problem in each tester is determined by the

switch size, and is independent of the network size. The high-level testing strategy can test

the network concurrently, but may have a lower fault coverage than the low-level testing. On

the other hand, the low-level testing strategy is an off-line testing method with a small testing

time and high fault coverage.

The high-level testing is based on the topology and functions of the network. To eliminate

the routing dynamic, network operations are first synchronized. Then, an vV x N blocking

network is decomposed into N'2 routes, NT = {Hl)j | I < i,j < yY], where Rl)j is

the route from source / to destination j. ItUTij is the route 7?'/';; under test, and the testing

processors are the processors connected to the route under test (RUT). In the high-level testing,

faults in RUTjj are tested without stopping the normal operations on NT - {IH'Tjj}, where

{liU7)j} € NT and {RUTjj} NT. To test a route without interrupting, or being interrupted

by, normal operations, the testing processors should be able to lock/unlock the RUT. Locking

a route prevents unexpected packets from entering the route. As shown in Fig. 3.1, a route can

be viewed as a cascaded shift register array. The register array can then be easily modified

into divisors, multipliers or other similar structures for polynomial testing.

Each switch functions as a tester in the low-level testing. To obtain high fault coverage

with a small testing time, each switch is designed to have self-testing capabilities. A switch is

composed of buffers, a routing control unit (RCU) and output ports consisting of multiplexers-

demultiplexers (MU/DEXes). Since thorough testing of the RCU may require an intractable

testing length, an on-line checker is proposed to detect malfunctions in the RCU. For the rest

of the network, queues are first self-tested by polynomial generation and comparison. If the

queues are fault-free, they are then used to generate test patterns for links and MU/DEXes.

The testing responses of switches at one stage tire verified at the next stage.

42

14 -Oi

^-DI

(a) A Baseline PM1N with switch permuation E q

(b) The corresponding cascaded shift register array of the PMIN.

Figure 3.1: A baseline PSMIN with switch permutation E0 and the corresponding cascaded
shift register arrays.

43

The rest of this chapter consists of four sections. The polynomial operations necessary for

our testing method are first reviewed. Then, network fault models are introduced, and then

testable designs and the corresponding testing methods for the high and low-level testing are

presented. Finally, concluding remarks are given.

3.2 Polynomial Testing Principles

Basic polynomial operations and their implementations are briefly discussed below. Use

of the polynomial ring, 6'/;,(2)[;i], is well-known for error-control codes [47]. Only those

properties useful for testing PSNs will be introduced below for completeness.

II
Definition 1 : A polynomial P i , (x) = ^ b / x ' in 6'F(2)[;''] is said to be a bit polynomial

1=0

if each of its coefficients is a bit, i.e., /j, G {0, I}, 0 < i < n. A word polynomial is the
H

one whose coefficients are words instead of bits, i.e., P , „ (x) = ^ where for every
1=0

I £ I n = { () , ! , • • • , » } , I N ; = ONE H I • ZERO , and ONE is a h-bit vector of arbitrary

pattern and ZERO = ONE , i.e., ZERO is bit-wise complemented to ONE . Thus, any

two words with maximum Hamming distance can be used as ONE and ZERO , respectively.

II
For notational convenience, let U,i(; r) denote a polynomial ^ cix', c/ = 1 or ONE,

f=U
11

V i € /'(•?) = = >s the complement of 75(.?•), and the
i=U

symbol represents the addition in G F (2) . Unless otherwise specified, we will use the

term "polynomial" to represent both bit and word polynomials. The mechanisms to manipulate

polynomials are called their calculators. The contents of a calculator before operating 011 its

input are called the initial state, which will always be assumed, for clarity of presentation,

to be all zeros. A calculator with the zero initial state is called an inert linear machine

[56]. When a word polynomial operation is applied to a faulty circuit, the closure property

of 2)[.i'] may not hold. However, when a word polynomial is applied to a non-faulty

44

circuit, the resulting polynomial belongs to C F (2)[.r]. Calculators are more hardware-efficient

if ONE and ZERO are composed of all l's and O's, respectively, because for each operation

every bit will require an identical circuit.

3.2.1 Operations on Polynomials

•X'

A periodic polynomial with period p is the series ax' where r, = c,+;i, V i el, and I is
/= j

the set of integers. It can be generated by a linear (or nonlinear) feedback shift register (LFSR)

called a polynomial generator (PG). Registers in a PG can be implemented by different types

of flip-flops, and apparently different test patterns are needed for different implementations.

However, as shown in Appendix 1, at most two inputs are needed to detect faults in a master-

slave SR flip-flop. Since the high-level testing deals with the network topology, we will

consider only the input and output stuck-at faults of registers, i.e., not the stuck-at faults inside

registers. However, the same test patterns can test all the faults in those registers implemented

with the master-slave flip-flops shown in Appendix 1.
V 11

Two polynomials, J \ { . r) - ^ c, , r'and 7'a(.r) = ^ <'2,are equal iff c1(= c 2 j ,
/=() ;=o

V i G I„. Two polynomials can be compared for equality by XOR gates. The following

operations are useful for our discussion.

Addition and Boolean:
H

Let {Pj[.v) = ^2cj,i:v'} be k polynomials in G F (2) [x] , P:i(x) is the addition of l \ (. v) and
;=o

n
l'i(x), denoted by P3 (t) = i f fo r each i e I„ , c s j = < i « |>

;=u

Addition can be implemented with XOR gates. If a Boolean operation A is applied
f t

to l't(x) , l ' - 2 (x) .• • • [)•(•>•), the resulting polynomial P(x) - 's calculated by
1 = 0

= (•• A C; i • • • A V / e I,i, and A is a bit-wise operation when c, is a word. Only

AND and OR, two most important operations, will be considered in this chapter.

Division and Multiplication

45

n n

If P (x) = ^pj-.v' and M (x) = ^m;x' in 67;'(2)[r], the multiplication of M(x)
i=0 i=I)

u
(multiplier) to l } (x) (multiplicand) is l':)(x) - P(x)l\ l (x) = £p3,;x', where V i 6 I„,

;=o

/>:>,; = i ' l] - • •'!'/'i »/,_i11'/'o"'/• On the other hand, given two polynomials l ' (x)
V

(dividend) and D (x) = ^ d : x ' ^ 0 (divisor) in G'.F(2)[:r] there exist two polynomials
;=o

Q (x) and R.(x) in C!F(2)[x] such that I'(x) = D(x)Q(x) + Jl[x) where ll(:v) = () or

dry R{x) < day D{x). In this process, P(x) is said to be divided by D(x), yielding a

q u o t i e n t Q (x) a n d a r e m a i n d e r R (x) .

A bit divisor {multiplier) divides (multiplies) an input stream by a fixed bit polyno­

mial. Similarly, a word divisor (multiplier) performs divisions (multiplications) between two

word polynomials. In a word polynomial divisor/multiplier (PDM), operands are ONE or

ZERO instead of 1 or 0. It has logic operations similar to those of a bit PDM, but special

mechanisms are necessary to preserve the properties of the polynomial ring.

The final contents of a PDM will henceforth be represented by U(x), the input stream

by l'{ .v) and the output stream by Q(x). The general structures of a bit divisor and a bit

multiplier are shown in Fig. 3.2(a). M(x) and V(x) in Fig. 3.2(a) are I + x'2 + x* + x7 + .r8

aud :t:8 + a" + ;r3 + x + 1, respectively. The lowest order position is located in the input

(output) port of the divisor (multiplier). There is an XOR gate, denoted by if, at the D-type

flip-flop's (DFF's) output of stage / only when or d-, is 1. A block D-, is the collection of

DFFs between the (/ - l)-th and /-th XOR gates, counting from the lowest order position, in

a PDM. Thus, a PDM is composed of a set of blocks, {13,]. Let the order (the number of

stages) of JJ•, be In the multiplier of Fig. 3.2(a), r\ = 2, r2 = •'], /•.! = 2, and m = I.

Since a RUT is to be transformed into a polynomial calculator for testing, the effects of

DFFs' Multiple Stuck-At (MSA) faults on a PDM are discussed as follows. A MSA fault,

f t \ i , i n a b l o c k 1 3 { i s c o m p o s e d o f m u l t i p l e S i n g l e S t u c k - A t (S S A) f a u l t s , i . e . , J] \ i = { f ' H } ,

46

*

multiplier

J / («) * 1+**+**+* 7 +* #

divisor

•0-

4
/>(») — #•+*•+#»+#+1

(a) A normal multiplier and divisor

S-A-0

S-A-l

(b) Two faulty multipliers

Figure 3.2: The structore of faulty and non-faulty multiplier! and diviaon

47

where /J is a SSA fault in B{. Let I: be the faulty position nearest to the output port of

Then, e JM will block the effects of all the other SSA faults in Such a is called

the leading SSA fault in B,. There are 2/•,- possible leading faults in and, thus, there are

2?•,- distinguishable stuck-at faults in the block, where is the number of stages in /7,.

A s-a-0 FL changes the attached XOR gates into null operators. Thus, for a multiplier,
k

M ' (x) = ^ 2 where /»'• = 0 if the FL attached to the XOR gale at x ' is stuck at 0,
i= i

and in'i = m; otherwise.

Lemma 1 [56] : The impulse response of a multiplier is ./»„()...(), where the impulse

polynomial is P / (x) = 10...0.

Clearly, an unknown multiplier can be uniquely identified by its impulse response, and the

multiplication of l'i(x) to AI(x) can be viewed as a discrete convolution between them.

Lemma 2 : When a PDM is an inert machine and a s-a-0 fault occurs in 77/., (lie multiplier
" fr— i

M(x) = Y, m.jx' is changed to a new multi p l i e r , i M ' { x) = n i j X j .
1 = 0 i = U

Lemma 3 : Let / be the number of fault-free DFFs between /J,-'s output and the leading faulty

D F F . T h e n , w h e n t h e l e a d i n g f a u l t y D F F 1 i n i s s - a - 1 , Q (x) = A J ' { x) I ' (x) > J » ; j - ' ' 1 1 " „ (. r) ,

where /•' = / + ^ /•/ and A I ' (x) is the new multiplier whose highest order position is
j<k

located at the leading faulty DFF in fj/..

Proof: Let the input (or output) of B; be (or O;). Then we have /,_) = (); + J'{x) and

Oi-1 = ,ir'7,_i. When DFF' is s-a-1, ()/,. = li'„(;r). Thus, /A._i = l'(x) <|> x1 U'„(.r)

a n d = x ' ' k - > (P (x) + B y i n d u c t i o n , w e c a n s h o w t h a t Q { x) = M ' (x)

l ' (x) < b x ' ' I) . I

When ;i,A' of a divisor is s-a-1, the output Q (x) = I " { x) / D ' (x), where l " (x) = { x 1

r r

(£ "i *'-k > * "'/(*>}. E nrx'-" is the initial state of the divisor and I is the poIy-
^H- 1 i=k+1

48

nomial length that is sufficient for testing, and D ' (x) the new divisor with its lowest or­

der position at the output of Bf.. Similarly, a s-a-0 fault at xk makes Q(x) periodic, i.e.,
7*

Q (x) = x 1 (^ 2 m x ' ~ k) / D ' (x) , where the degree of the faulty divisor is r,/ = ^
i=*+i .,>/••

Note that the output Q(x) is independent of the input stream. The structures of s-a-0 and s-a-1

multipliers are shown in Fig. 3.2(b). The resulting AI^x) (for s-a-0) and M[(for s-a-1) are

1 -f- x2 + xr' and respectively.

For testing purposes, it is assumed that every DFF on a route can be simultaneously set to

ZERO by an external signal. Signature analysis examines R(x) after the testing polynomial

P(x) is applied to a circuit under test. The final contents of each DFF must be directly read out

for signature analysis. Unfortunately, this will greatly increase the number of I/O tenninals of

a network. Thus, signature analysis or other similar methods requiring direct access to DFFs

are not followed here and interested readers are referred to other articles such as [97].

The proposed high-level testing method is to diagnose the network by appropriate opera­

tions on the output stream. After the testing polynomial P(x) is applied to a RUT, a fault /,

changes Q(x) into Qi{x), where Q(x) (or Qi(x)) is the correct (faulty) output polynomial of

the RUT. The procedure is then to find a testing polynomial P(x) and an operation 0/, such

that 0 jt (l'{x), Q(x)) — Qi(x). Hie combination of P(x), its output Q(x) and the operation

0 ji is called a testing routine for the fault /,.

3.3 Fault Models

A PSN is composed of links and switches. There are /•! possible interconnection patients

within an /• x /• switch. There are then (>•!)"T '"gi'N different conflict-free interconnection

patterns in an N x N PSMIN. Links' stuck-at faults are equivalent to sluck-at faults of the

switches to which they are attached. Thus, only switch faults are considered for the high-level

testing. That is, link stuck-at faults are implicitly included in the switch fault models.

49

Permanent multiple stuck-at, delay, merging, partial setting, blocking, broadcasting and

misrouting faults are all considered in this chapter. A MSA fault occurs when one or more

signal lines are fixed at 0 or 1. A delay fault occurs when the operation speed of some

component(s) is slower than the specified and, thus, erroneous operations result. A partial

setting fault occurs when some of the identical components in a unit do not provide the same

operation as the others. A blocking fault occurs when an appropriate route within a switch

cannot be established for a request. A handshake signal deadlock is an example of blocking

fault. A switch has a merging (broadcasting) fault when two or more input (output) ports are

connected to one output (input) port. A misrouting fault represents the case when packets are

mis-directed to incorrect output ports. Stuck-line faults at gate level are tested at the low-level

testing.

3.4 PSMIN Diagnosis

we present testable designs and testing methods on the basis of the polynomial operations

and the fault models introduced in Sec. 3.2 and Sec. 3.3, respectively. The network is

designed such that all signal lines have only two states, i.e., 1 or 0, whether or not they

are used to transfer data. The output port of a switch is a combination of multiplexers and

demultiplexers (MU/DEXes). A MU/DEX is basically composed of AND and OR gates.

When multiple requests are assigned to an output port, a combination of OR/AND functions

among the requests will take place.

3.4.1 High-Level Diagnosis

Assume that the PSMIN under test connects N sources and N destinations and is built

with r x r switches. The number of stages in the PSMIN is I: = log,. N. To describe the

PSMIN's topology and permutation, the input (output) ports of all switches in each stage are

50

vertically indexed. The number assigned to an input (output) port is called its global index.

For each r x r switch, there is a one-to-one correspondence between the global index and

the input/output port number: fi(j) = in, where j is the port number of the /'-th switch at a

stage, and m is the port's global index. A link permutation T(, I < / < k, is a one-to-one

mapping from the output ports at stage i - 1 to the input ports at stage i. On the other hand,

a switch permutation, E'm : fi(j) — /,((j + »/) mod r), is a one-to-one mapping from input

ports of a switch to its output ports, 0 < in < r — 1. For simplicity, all the switches on the

R U T a r e a s s u m e d t o h a v e a n i d e n t i c a l p e r m u t a t i o n , i . e . , / , = i 2 , f o r a l l E j ,] , E \ * 6 H U T ,

and will henceforth be used to denote E'„,. More general cases than this can be easily

derived by using the actual permutation at each stage. To allow for simultaneous diagnosis

and normal operation during the high-level testing, the testing processors should be equipped

with complete information of link and switch permutations.

Testable Design

Links are passive components and can be treated as data paths of switches, whereas switches

make all switching decisions and also contain memory elements. To make the network easily

testable, switches are designed to have two operational modes: normal and testing modes.

As mentioned in the Introduction, a RUT can be viewed as a cascaded shift register array.

A FL and XOR gates must be added to transform a 1-bit wide RUT into a bit PDM. Since

links are the predominating cost factor of a PSMIN, the link overhead in improving testability

must be kept as small as possible. A tracer in each switch is thus proposed to minimize the

width of FL. A tracer is composed of a testing pattern masker and mapper, a feedback/feed­

forward selector (F-selector) and a modulo TWO adder, where TWO = { ONE , ZERO }. The

masker examines if bits of the testing pattern are identical and maps the testing pattern from

ONE (ZERO) to 1(0) for the FL. The mapper transforms 1(0) to ONE (ZERO) to use the

51

adder. The F-selector determines the transmission direction of FL.1 An adder is necessary for

each switch to form a block on a route for data path diagnosis.

Four possible operational states, S, A, X and N, are assigned to a switch when the network

is being tested. Once a switch in a RUT is in state S, the switch will not allow any packets,

except those from the same RUT, to enter the RUT, and the operations of switches on the

route are synchronized. State S can be taken as a sub-operation of the other states, because

the tracer in the other states is activated and switch operations are synchronized. When the

switch is in state N, only FL and the F-selector are activated. When a switch at stage i is in

state A, the F-selector blocks the FL signals from stage i + 1, and the current switch's output

is led to the FL. When the switch is in state X, the data on FL is mapped, by the mapper,

from 1 (0) to ONE {ZERO), and the logic operation BIi'u <— lJi„ FL is performed at

the input of the queue, where BUo is the input of the queue and Pi„. the input packet. Fig.

3.3 shows these switch operations in different states. The logic diagram in Fig.3.4 shows a

switch design example of the high-level testing.

A switch can enter/exit the testing mode by command packets. Two formats, data packets

and command packets, are used to control the switch operations. A command packet is

composed of routing tags and a command array {CA(1), • • -,CA(k)}, where /,• is the number

of stages of the network and CA(i) is a 2-bit command word associated with stage i. A switch

at stage i will enter states S, A, N and X, when CA(i) = 00, 11, 10 and 01, respectively.

The type of packets can be identified by a one-bit flag in each packet. As shown below, this

testing method can also identify a misinterpreted command array (by a faulty switch).

Theorem 1 : All misinterpreted command packets can be tested in one testing routine.

Proof: Once a RUT is transformed into a multiplier, the test pattern for misinterpreted com-

1 The F-selector can be eliminated if the RUT is to be transformed into eitlier a multiplier or divisor, but not
both.

52

switch states

N X A S

n n
i |0D n w

/
i-i pi n n

i |0D "T"
U 1

/ 1 f 1
mapper masker

Figure 3.3: Switches on a RUT and the corresponding word divisor

53

A switch

queue 2

MUDEX

queue 1
FL masker mapper

F-selector

Figure 3.4: A testable design of switcbes for concurrent testing.

54

mand packets becomes an impulse polynomial. From Lemma 1, M (x) of the RUT can be

uniquely identified. I

Data Path Stuck-at Faults

All switches are in state X when data path stuck-at faults are being tested. A SSA fault

at the high-level represents a stuck-at fault(s) in a single switch. But a MSA fault at the

high-level implies stuck-at faults in more than one switch. In a conventional approach, upon

detection of a fault on some route, test patterns must be submitted from processors on different

routes to locate the fault. It is shown below that the fault location with the polynomial testing

is much easier than that with the conventional approach,

SSA Faults:

Every switch is set to an identical permutation. When r x r switches are used, r different

switch permutations, {/?, | 0 < i < »"-!}. are necessary to test every data path within a

switch. For any input port of a switch, its data paths to all the output ports are included in

{I < < <''-!}• Thus, in these r permutations every data path from each input port to

every output port is tested.2 The procedure can be generalized as follows: in testing routine

m, the switch permutation E,„, 0 < m < r - i, is performed first. Then, the connection of

source i to destination j is specified by j = Ti:EmTk-i Em • • • 1\ E„J\{ /). The special case

of r = 2 allows data path stuck-at faults to be detected in two permutations, each of which is

composed of two steps [38].

Theorem 2 : When a locked JtUrJ.) j is configured as a multiplier, a SSA fault on the data

path can be located by processor j in one testing routine.

Proof: The testing polynomial for the data path SSA fault is 11 (.r), where n is the total length

1 Only r permutations are needed to lest a data pntli, although H permutations ore requited to test the routing
functions.

55

n

of buffers on RUTij. As discussed earlier, RUTU can be expressed as ;!/;_/(;r) = mix'.
1=0

11

The output at the destination j becomes Q (x) = ̂ m i x ' 11'71 () - Q (x) should then have the
l=o

format of 1 • • • 10 • • • 01 • • •, where a 0(1) —- 1(0) transition takes place at each position of an

XOR gate on RUTij and the number of consecutive l's (0's) in the /-th block is the size of

11;. For example, the output stream of the multiplier in Fig. 3.2(a) is 10011100. When ,1/, ,

changes to A/'• ^ Afij due to a SSA fault, there must be at least one / such that /», ^ /»'•,

1 < i < k, by Lemmas 2 and 3. When the number of 0 — 1 transitions is m /, the faulty
in j

switch can be located by s j = (E ~ 1 T ~ l j) (j), where T ~ l is the inverse of permutation
l=U

T, •

MSA Faults:

A MSA fault on a data path cannot be determined in one testing routine. However, (lie

polynomial testing can be applied to a sequential repairing procedure which locates and then

replaces leading faulty switches/links in each testing routine.

Theorem 3 : A MSA fault on a data path can be repaired in I: testing routines, where /,• is

the number of stages of the network.

Proof A MSA fault is the collection of multiple SSA faults. When the testing polynomial

H*,(.!•) is applied to a PDM, Q(.v) is uniquely determined by the type (s-a-0 or s-a-1) and

location of the leading stuck-at fault. In other words, the lowest-order faulty switch can be

located in each testing routine, regardless of the cardinality of the multiple fault. Since there

are I; switches on a route, at most /,- steps are required to repair the network. I

Delay Faults:

A delay fault on a data path is detectable when its operational speed is at least one clock

cycle slower than specified.

56

Theorem 4 : A single delay fault of longer than one clock cycle can be located in one testing

routine.

k

Proof: The polynomial ^ a-2' can detect all delay faults. However, a polynomial
i=U

k

can be used to distinguish a 1 — 0 transition delay fault of in clock
i=(i

cycles from delay faults of less than m cycles. When an in unit delay fault occurs and /'/•;' (.r)

is applied, the faulty switch's output becomes l l'(x). By forming a PDM on RUTa delay

fault can be located in one testing routine. A testing polynomial for 0 — I delay transitions

i s complemented to become J ' j } 1 (x) and the ou tpu t i s l l ' (. r) . I

Like MSA faults, a multiple delay fault composed of different delay lengths can be repaired

in I: testing routines.

Routing Faults

Methods for locating routing faults are studied in this subsection. Switches are set to state

S when routing functions are tested.

Merging and Broadcasting Faults:

Depending on the implementation details, a merging fault can be located in one testing

routine when appropriate polynomials are applied. A A -merging fault occurs when a A (i.e.,

AND or OR) operation results from the merging of two or more switch input/output ports.

Consider the effect of the OR. merging first. For two routes RUTiI and RU1\, they will

topologically intersect in at most one switch when the network is not redundant.

Theorem 5 : For a given permutation, a multiple OR-merging fault can be located in one

testing routine for both distributed and centralized routing control PSMINs.

/v

Proof The testing polynomial at processor j is P ? 1 (x) = v ' , where r, = ONE and
i=i

e; = ZERO , V /' ^ j. First, consider the case when two RUTs are merged. The two routes

57

from /'i and i2 under the given permutation intersect at most once. When the intersecting

switch has an OR-merging fault, and the testing polynomials P^'{-r) and are applied,

there will be an OR operation between these two polynomials. Without loss of generality,

Pfiix) can be assumed to be merged into P-]'{x), i.e., P'h{a-) = P/)'(;r.) Oil P/7 (•>')•

Since there is no overlap of the positions containing l's in both Pff{.r) and P^{.r), new

information on the merging fault is added to P-J;v). Applying the XOR operation between

P?3 (;r) and P™ (.r) at the destination of P/2 (•>')< we get 1% (:v) = Pf2(:r) ^• P^' (.r). A nonzero

resulting polynomial implies that some polynomial is merged into Pff(.v). The switch with the

merging fault is determined by the topology. That is, P f f (x) merges with p £ (. r) a t S (i j - j j) ,
if

where S (i j , j j) is the the j/-th switch located at stage i j , when (j j - !) / • = ' / (i ,)
i= i

'/ >J •/
- EmTi(h) mod r and - L)r = - JJ EmT;(i-i) niuil /•. It is easy to

i= I i= I /= I

see that no information will be lost when multiple merging faults occur. Thus, all multiple

merging faults can be determined in one testing routine. I

If merging faults are assumed to be independent of the interconnection pattern, they can

be located in one testing routine. Otherwise, we need ;•! tests to set each switch to every

interconnection pattern for fault location. The AND-merging fault can be diagnosed by the

same method with the testing polynomial, f'jv(.r).

A broadcasting fault at one input port of a switch implies a merging fault at the output port

of the broadcast data path. Thus, broadcasting faults can be located by the same procedure

used for testing merging faults.

Misrouting Faults:

There are /•! possible permutations in an r x r switch. To locate a misrouting fault, the

testing polynomial P;(;r) for source i must be unique.

Theorem 6 : One testing routine is sufficient to locate a multiple misrouting fault for both

58

distributed and centralized routing control PSMINs.

Proof: The testing polynomial for merging faults can also be used for testing misrouting

faults. kr\ permutation calculations are required in each testing routine. Given a permutation

j = TuETu-iE • • • EJ\(i), a misrouting fault results when E becomes E', where E' ^ F.

is a faulty permutation. The fault locating procedure is to find E'.of a faulty switch. For a

given processor j which receives an incorrect polynomial, all possible permutations have to

be calculated to find E' of the faulty switch. Since each switch has 7 ! permutations, we need

/,•/•! inverse permutations to locate the faulty switch. I

A misrouting fault may be caused by either the misdecoding of a routing tag in the RCU

of a faulty switch, or a stuck-at link/switch which transmits the routing tag before the routing

tag is actually decoded.

Blocking Faults:

As mentioned earlier, the network is designed such that there are only two logic values,

i.e., 0 and 1, in all signal lines. When a blocking fault occurs, a data path cannot be utilized,

even though it is available.

Theorem 7 : A blocked data path in a centralized routing control PSMIN can be located in

one testing routine.

The proof of this theorem is straightforward. In a centralized routing control network,

a locked route can be established even when its data path is blocked. Since the output of a

blocked switch is fixed at 1 or 0, it has the same output as a stuck-at data path. It is much more

difficult to locate a blocking fault in a distributed routing control network, because routing tags

and data are blocked at the same lime. It can be located by a binary search which requires

log2 l< testing routines.

Partial Setting Faults:

59

When a data path is partially stuck, the testing procedures with multipliers can still be

applied. Test patterns, however, must be determined by the design details of the masker and

the mapper. In case of a partial fault, unaffected data bits have correct outputs but the stuck-at

bit needs the same testing procedures as described above. In such a case, we have to examine

faulty bit(s) instead of a faulty word.

Pattern Generation

Test patterns are generated by pattern generators {6';} which are processors or dedicated

hardware mechanisms. The cost of pattern generators is one of the most important factors

for evaluating the performance of a testing method. Only two testing patterns, II (r) and

{If (:l')}»need to be generated for the high-level testing. Both patterns can be easily generated

when 6','s are ringed through a single bit control line. Denote the input and output of the

r i n g i n < 7 ; b y D i (h l) a n d D i [o u l) , r e s p e c t i v e l y . / ? A r (l > 1 (<) i s c o n n e c t e d t o D] { i l l) , a n d D i { l , n l)

is connected to A+i(,„), V J < i < N — 1. To generate {/'/V(•'')}, the ring is initialized as:

/.)!(,-„) = J, /),(,„) = 0, V /, i 1. Operations of 6', at the /j-th clock cycle are given as:

OPU'i(fc) =
ONE when = 1

ZERO when Afy;,,) = 0 ,

OP2.D; {o,i<)(/• ') ~ /},(,• „)(/ '") <

where is the pattern generated by (7, at the /, -th clock cycle. The other test pattern,

II(;c), can be easily generated by the initialization D,(out) = ONE , V / < N, and applying

OP1 and OP2 in each pattern generator. For a given permutation, there are only possible

merging faults on a route and the above testing polynomial is thus not optimal for testing O H-

merging faults. For testing O /^-merging faults, the length of the testing polynomial can be

reduced to rk, when I\(x) ^ V'/(•!•) for any pair of polynomials I) (x) and r) intersecting

in a switch under a given permutation. However, the testing polynomial allows merging

60

and misrouting faults to be tested simultaneously, and, thus, simplifies testing procedures.

Moreover, G', has a very simple structure and can be easily applied to various interconnection

networks.

Testing Complexity

It is important to consider the testing complexity of the high-level testing. The length of

t e s t p a t t e r n f o r d a t a p a t h s t u c k - a t f a u l t s a n d m i s i n t e r p r e t e d c o m m a n d p a c k e t s i s k m , w h e r e i n

is the queue length in each switch.3 The calculation of a misinterpreted command packet is

straightforward, because the coefficients of the multiplier can be identified directly from the

output stream. The stuck-at-a faults at the inputs of XOR gates, to which the FL are connected

to, can be tested by an all zero polynomial, and its testing length is I,-in. To test single data

path stuck-at (delay) faults, we need one testing routine which is composed of at most /,• steps

of inverse permutations. At most k testing routines are necessary to repair all multiple data

path stuck-at faults, and each testing routine needs k inverse permutations. Thus, a total of

k'1 + /." + 2 inverse permutations is needed for data path diagnosis.

For routing faults, the test pattern length is N . One testing routine is sufficient to identify

all merging and broadcasting faults. To locate a merging (broadcasting) fault, two RUTs are

needed at a time. Since there are /,• switches on a RUT and each switch needs /•! inverse

permutations, k'zrl inverse permutations are required to locate a merging (broadcasting) fault.

Finally, kr\ inverse permutations are required to locate the misrouting faults.

The high-level testing is quite general to handle various circuit implementations and locate

faults without completely stopping the normal operations of the network. The testing time

varies with the size of the network. Note, however, that the high-level testing may not detect

all possible faults for different circuit implementations. When the high-level testing fails to

3 The queue lengths need not be identical.

61

locate some faults, a fast off-line testing method with high fault coverage needs to be called

for. The low-level testing described below is to meet this very need.

3.4.2 Low-Level Testing

A switch is composed of data paths and a RCU. Data paths consist of links, queues and

MU/DEXes. A pool of buffers, HUj, 1 < / < m, in a switch constitutes the j-th queue of

the switch, where in is the number of buffers within the queue. A buffer can store one «>-bit

packet. There are then at least N win lug,. N memory bits in an TV x N PSMIN built with

r x r switches, and a CSN is the special case of in = 0. Let HIand Hl!
l'll+l denote

respectively the input and output ports of a switch. It is shown in Fig. 3.5 that these buffers

are cascaded, or C-connected, and formally described by C'N : BUi — IH[i+\, where "

denotes an interconnection within a queue, called an interlink.

Different implementations of registers need different test patterns. We use random testing

to test the queues. However, when specific test patterns like the one in Appendix 1 is needed,

they are easy to generate. In each switch, queues are tested by generation and comparison of

polynomials. For the generation of a polynomial we can use the natural structure of a queue.

The basic idea is to convert the queue into two PGs. A queue can be taken as a w x in matrix

AI in which each column is a buffer of in DFFs. Note that DFFs in each row j (collection of

the j - Hi DFFs of in buffers), I < j < in, of the matrix are cascaded by its natural structure.

Assuming w to be even, two PGs, PG\ and PG'2, are formed by properly cascading the rows

of M.

Two symmetric PGs can be obtained by (1) horizontally halving the buffers in the queue,

(2) connec t ing Al(i + 1 ,1) to M(i , m) V / < f for 7 '6 ' j , and M(i + l .m) to , ! / (/ . I) ,

V /' > -f + 1 for PG-i, (3) identically connecting registers' outputs to the feedback XOR gates

in PCi and PG2, and (4) connecting the output of the XOR gate outputs of l'G\ and l'G2

62

routing tags

data
packets

MUDEX

a 2X 2 switch

• ••

a C-connected queue

Figure 3.5: The structure of a 2 x 2 switch and a C-connected queue.

63

to A/ (l , J) and A/ (- f + 1 ,1) , respec t ive ly . I t i s we l l -known tha t the maximum per iod o f the

output stream of a PG can be obtained when 2' - i is a prime number, where I is the PG's

length, and the PG's characteristic fimction is irreducible [47]. A fault is detectable when it

yields different output sequences in the two PGs.

The PGs' outputs form a l-out-of-2 codeword when an inverter is added to one XOR

gate's output. An XOR gate with n inputs needs n + I test patterns when » is odd; on

the other hand, three test patterns are sufficient for an XOR gate with an even number of

inputs. The test patterns for the XOR gate with an odd and an even number of inputs are

{()•••(), !()••• 0, 010 •••(), • • •, 0 • • • 01], and { 0 • • • 0, L • • • 1, /,), respectively, where /.,

is any input with an odd number of l's. The test patterns for the XOR gate of a PG can be

easily generated by setting the PG's initial state. Since every component in the PGs is tested,

there is no hard core in this design.

When two symmetric PGs are used, unidirectional stuck-at faults in a buffer cannot be

detected. To solve this problem, PG\ can be modified such that the outputs j1/(/.), V /' < -j,

are connected to the XOR gate whose output is then connected to A/(U -j + J). Although

the phys ica l in te rconnec t ion o f i \ / (1 ,1) to M(- j . m) i s d i f fe ren t f rom tha t o f ,W(- j +1 ,1) to

A/(w, ???), both PGi and PCI2 still have an identical structure. Such a modification can now

detect the unidirectional faults mentioned above. Symmetric and asymmetric PG configurations

are illustrated in Figs. 3.6 and 3.7, respectively.

The optimal testing length of a PG and its fault coverage are important performance

parameters. Any DFF in the MSA fault model can be s-a-1, s-a-0 or fault-free. To evaluate

the MSA fault coverage of the proposed method, we only need to consider the type and position

of leading faulty DFFs in a block. Consider a pair of leading faulty DFFs, st and *•<, which

are in x' and ,i. ' positions of PG\ and PG2, respectively. The effects of faults in and .s2

can be distinguished only when they yield different outputs for at least one clock cycle. We

64

M. 11

•#

-¥

M. 2 1

M 31

M. 41

M 51

M, 6 1

M. 44

M
54

l -out -of -2
codeword

M, 64 i>
PG.

PG

A
* Ik

l-out-of-2
codeword PG'

(a) symmetric PGs

Figure 3.6: A queue converted into two symmetric PG's.

65

£>

M 11 M. 1 4

M. 2 1 Af 2 4

Af
3 1

M. 4 1

M 3 4

M. 4 4

l-out-of-2
codeword

M 5 1

M 6 1

M.
5 4

M, 6 4

l-out-of-2
codeword

is S)
* •u

4k

<1
SS

•U

(b) asymmetric PGs

Figure 3.7: A queue converted into two asymmetric PO's.

66

begin with the simplest special case of the MSA fault model, i.e., the SSA fault model.

Theorem 8 : All SSA faults are detectable, and the maximum testing length is /• + 1, where

r is the order of the PG.

Proof: A SSA fault in a PG is detectable when it generates an output different from that of
r

the other PG. Let the initial state of the PG be n,.r', where n-i = 1 and v; = 0. V/^J.
i'=i

When a s-a-0 is located at output of x', i>i is falsely inverted at the t-th shift. The fault cannot

be revealed during the first i - 1 clock cycles, because the s-a-0 is the same as the preset value

of a fault-free circuit. The worst case occurs when the s-a-0 is located at the output of :rr,

and, thus, r is the maximum testing length.

When a s-a-1 is located at the output of :c', it will change the parity of the output im­

mediately when it propagates to a feedback line. The worst case occurs when feedback lines

emanate from ;i:' and x'', and the s-a-1 is present at the input of The output of the faulty

PG is the same as the non-faulty one until the /• + 1-th clock cycle. Thus, the maximum testing

length for SSA faults is r + I. I

To calculate the MSA fault coverage, the position and type of leading faulty DFFs must

be considered. Each DFF can be s-a-1, s-a-0 or fault-free, and the number of MSA faults

in a queue is 3mw — 1. Due to the fault masking effect, the actual computing time is
k

K + I)2, where /•, is the order of block B, and K the computing time required for
< = i

each iteration. As shown in Table 3.1, various testing strategies are simulated to examine their

MSA fault coverages.

The initial state of each simulation is in = I, //, = 0, V / ^ I. From the simulation

results, the following three conjectures are made:

Conjecture 1: The fault coverage is dominated by the number of feedback lines. It

monotonically increases with the number of feedback lines. The length

67

of a PG has little effect on the fault coverage.

Conjecture 2: For a given PG of length r , and Ij feedback lines, the MSA fault cover­

age attains a maximum when feedback lines are located at a:1 • -r'f1

and x'.

Conjecture 3: The MSA fault coverage increases with the number of testing routines,

each of which uses a different initial state. The optimal testing length

for MSA faults is r for a given initial state and a feedback configuration.

For a given PG configuration and the initial state, theoretically, 2'' shifts are required to

exercise all the states of the PG. However, our simulation results show that testing lengths

are rarely required to be longer than the length of the PG. Although the choice of an initial

state affects the fault coverage, the number and location of feedback lines are the dominating

factors in the fault coverage. It is shown in Fig. 3.8 that about 65% of detectable MSA faults

are immediately detected for most cases. From Theorem 8 and the above conjectures, each

test ing length is found to be r + I •

Unlike the off-line testing of data paths, a faulty RCU can be detected on-line. A RCU

checker is proposed to detect faults in the RCU using its output signals. A RCU has an r lng2 /•-

bi t input and an ; , 2 -bi t output . The RCU output s ignals are denoted by Eij , 1 < i . j < r ,

where E;\ = 1 if queue j is connected to output port and E;j -- 0 otherwise. For any fixed

/•'. {!-ik) or {Eki), 1 < / < forms a 1-out-of-r codeword. Thus, 2r 1-out-of-r self-checking

checkers, one for each {-£',*•} or {E^i}, are needed to detect all non-codeword outputs.

The outputs of the RCU and queues are the inputs of the MU/DEX to which they are

connected. The RCU and queues can be tested first using the above procedures. If they are

fault-free, then the MU/DEX and the links connected to (lie MU/DEX are tested by using

the RCU and queues to generate test patterns for the the MU/DEX and its links. For output

68

feedback
(//) Stage No.(/.)

3 4 5 6 7 8 12 16 20
k,0 .728 .715 .710 .709 .708 .708 .708 .708 .708

k.1.0 .780 .788 .793 .794 .794 .795 .795 .795

k,2,l,0 .827 .828 .831 .831 .832 .831

(a) Fault coverage (CO of different numbers and locations of feedback lines.

8,1,0 8,2,0 8,3,0 8,4,0 8,5,0 8,6,0

C .795 .785 .780 .777 .770 .746

(b) k=8 with three feedback lines.

'N
^

^3

= /•', h = <»

3,2,1 4,2,1 5,2,1 6,2,1 7,2,1 8,2,1 9,2,1 10,2,1 11,2,1 12,2,1

.868 .876 .877 .876 .875 .875 .875 .875 .875 .879
8,1,0 8,3,1 8,3,2 8,4,1 8,4,3 8,5,1 8,5,3 8,5,4 8,6,1 8,6,3

.875 .876 .876 .879 .877 .886 .885 .879 .900 .899
8,6,5 8,7,0 8,7,1 8,7,5 8,7,6 16,1,2 18,10,9 19,10,9 20,11,10 21,12,11
.874 .801 .875 .883 .869 .875 .875 .875 .875 .875

(c) PG's tested twice by two feedback configurations.

C ; first initial condition i n i = 2°

3,1 3,2 4,1 4,2 4,3 5,1 5,2 5,3 5,4 6,1
.762 .809 .748 .764 .805 .745 .749 .764 .803 .743
6,2 6,3 6,4 6,5 7,1 7,3 7,5 7,6 8,1 8,2
.745 .749 .764 .803 .743 .745 .764 .803 .743 .745
8,4 8,6 8,7 9,1 9,3 9,5 9,7 9,8 10,1-5 10,6
.745 .764 .803 .743 .743 .745 .764 .803 .743 .745
10,7 10,8 10,9 12,1-7 12,8 12,9 12,10 12,11 16,1-11 16,12
.749 .764 .803 .743 .745 .749 .764 .803 .743 .745
16,13 16,14 16,15

.749 .764 .803

(d) Feedback lines at /.•,(), and the PGs are tested twice with two different initial states.

Table 3.1: The fault coverage of MSA faults under different conditions.

69

0.9- o
0.8-

0.7-

0.6 i

0.5-\
0.4-

1

0.3- •

0.2-

0.1 -

0-

three feedback lines

four feedback lines

five feedback lines

two different initial states

with three feedback lines

o O •

Figure 3.8: Detected-faults/detectable-faults vs. number of shifts when r=8.

70

verification, the streams from the MU/DEXes of stage i are transmitted through the links and

then verified at stage i + 1 with special mechanisms.

Before we develop the test method for MU/DEXes and links, it is necessary to find the

test patterns of the r x 1 multiplexer shown in Fig. 3.9, where E, and /), are the enable and

data of the /-th input, respectively. The /• x 1 multiplexer is implemented by r two-input AND

gates and an OR gate.

Lemma 4 : All SSA faults in the multiplexer of Fig. 3.9 can be detected in /• -f 2 steps.

Proof: After fault collapsing, the faults that need to be tested are: (1) s-a-0 and s-a-1 primary

output, i.e., output of the OR gate in Fig. 3.9, (2) s-a-0 /l,, V / < r in Fig. 3.9, and (3) s-a-1

J)i(Ei), V i < r. Test patterns can be derived as follows.

PT(1): E j D j = 10, V / < r ,

PT(2): E-,Di = 01, V i < r,

PT(3): E , D , = 11, and E / D , = e,r/, for i ̂ 1

PT(4): E-i D-2 = 11, and EiD; = c,d; for i ^ 2

PT(r+2): E r D r =11, and E j D i = C j d j for i ^ r, where <1; = 0 or c, = 0, V I < i < r.

An r x r MU/DEX connects r queues' outputs to r links. The MU/DEX can be implemented

by two level AND and OR gates, where each MU/DEX's output port is basically a multiplexer.

An example design of MU/DEX is shown in Fig. 3.10, where E;j is the enable signal from

the RCU to route the packet at queue j to output port /. Eu fans-out to w branches to

simultaneously enable the w bits of queue j.

71

(a) logic diagram

= 0

(b) functional diagram

Figure 3.9: The logic and functional diagrams of a multiplexer with r data inputs and r
enable signals.

72

queue 1

from
links

queue 2

• 6 •

RCU

±2
E

MU/DEX
JLL

•D
•{>
•O-
k>

bit-2

bit-3

bit-4

i -
E - E

2 1 f i 2 r

port r

Figure 3.10: An example of the MU/DEX in an /• x r switch.

73

Theorem 9 : Any SSA fault on links or MU/DEXes can be tested in v -f 2 clock cycles.

Proof: Since operations to be applied to each of the w bits of a packet are identical, it is

sufficient to discuss only one bit of the packet. Each output port of the 1-bit MU/DEX is an

r x 1 multiplexer, and there are a total of /• multiplexers in an MU/DEX. Test patterns derived

in Lemma 4 can be directly applied to test the MU/DEX. However, it is important to minimize

the test length when one selects test patterns. The proposed testing procedures are as follows:

At clock cycle 1, all the RCU's outputs are set to 1 and the queues' outputs to 0. Queue

outputs are fixed at 1 for the rest of the procedures. At cycle 2, all the RCU's outputs are set

to 0. During the remaining r cycles, the RCU performs permutation i —• (/ + ./ — J) M O D r

at cycle j, 3 < j < r + 2. When the network uses distributed routing control, the queues

for storing routing tags can be used to generate the desired routing requests to the RCU.

By this permutation and the data queue setting, the r multiplexers in a MU/DEX are tested

simultaneously. The testing procedures are shown in Fig. 3.11. I

The MU/DEX's output stream is two O's followed by /• l's. Since both 0 and 1 appear

at each switch's output, and thus, at each link, the links can be tested without introducing

any additional cost. For test verification, it should be noted that all links in the network have

identical outputs. Thus, the comparison method to verify the test results of queues can be

applied similarly. Without loss of generality, the number of links from each switch is assumed

to be even. Half of the links are connected to the primary inputs of a fan-out free XOR tree,

and the rest are connected to the primary inputs of the other fan-out free XNOR tree. The

outputs of the two fan-out free networks form a l-out-of-2 codeword. A design example for

this method is given in Fig. 3.12 (a).

It has been shown in [49] that a linear function implemented by two-input XOR gates needs

at most four test patterns. The test patterns can be recursively derived from the primary output

of the XOR(XNOR) tree to the primary inputs. Assume that a linear function I',, of n variables

74

3 1 " ^ r

^ v

(i)

port 1

port 2 0

port 3

0

0

0
(2)

(3)

(4)

(5)
Figure 3.11: The testing procedures for a 3 x 3 MU/DEX.

75

ROJ

PG

MUDEX • ••

PG 1 -out-of-2
codeword

RCU

PG

MUDEX • •• 2 O
<2 x

PG

stage i switches links stage i+1
switch

Figure 3.12: («)Veriflcation of testing respooie by compariaoo and signature analysis.

76

PG

PG

MILFSF

VULFSR

MILFSF

ROJ

MUDEX

queues

•••

queues

• • •

PG

PG

MILFSR

MILFSR

MILFSR

RCXJ

MUDEX

queues

queues

•••

stage i switches links stage i+1 switches

Figure 3.12(b) Verification of testing oolputi with NOLFSR'i.

77

is implemented by an XOR tree as in Fig. 3.12(a). Then, Pn can be recursively expressed by

Pn = , where xn is the />-th primary input (variable), and Pn-1 is the linear function

implemented by the sub-network excluding the primary output XOR gate and the primary input

,r„. To test the primary output gate, it is sufficient to have Pn-ixn - 00,01, JO, II. Theinput

stream in x„ is then 0101, and P„_i should be 0011. We want to derive a test pattern which

can be easily generated, e.g., all inputs are identical, or, only one or two inputs are different

from others. Thus, for Pn_i = 0011 and Pn-x = Pn-i we set ;r„_i = 0101

(as a:,,), and thus, 2 = 0110. It can be shown by induction that x, = 0101, V/ ± I,

and ;?'i = 0110 (0011) when the number of gates is even (odd).

It is now clear that we can eliminate the hard core in the XOR and XNOR trees when their

test patterns are applied. Assume that ^ links are connected to inputs ,nr^ of the XOR

tree. To test the XOR (XNOR) tree we need to add one more input ,vu to the tree, and r(l is

controlled by the BIT. Since the output stream of MU/DEX testing is composed of two 0's

and r I's, the XOR (XNOR) tree can be tested simultaneously with the MU/DEXes and links

when 0011 • • • (0110 • • •) are simultaneously applied to .r0 by the BIT. It requires ir r XOR and

XNOR gates in each switch to verify the test response. When the number of XOR (XNOR)

gates is too high, the testing method can be decomposed into two phases as follows. In phase

one(two), all the queues in even(odd)-stage switches serve as pattern generators and those in

odd(even)-stage switches serve as multiple input linear feedback shift registers (MILFSRs). To

test MU/DEXes and links, the outputs of the MILFSRs are compared in a way similar to the

case of testing queues. Thus, the network can be tested in two phases, each phase requiring

r -I- 2 clock cycles. An example design showing such a strategy is given in Fig. 3.12(b).

3.5 Conclusion

A two level testing strategy is developed in this chapter. The high-level testing uses

78

processors as testers to test the network concurrently with normal network operations. On the

other hand, in the low-level testing strategy, switches functions as testers to off-line test the

network in a very short time period.

The first step to ease the high-level testing is to synchronize switches' operations. Then,

the network is tested with different polynomial operations. Although only a few functional

fault models and their corresponding testing procedures are discussed, the basic principle can

be easily extended to detect other faults. For example, it can be used for contention resolving

testing. When two or more requests in a switch competing for the same output port, the RCU

should grant only one. Using the testing polynomials, v) and conflicting routing requests,

an /• x r switch can be tested in /•'' - r! testing routines. Obviously, contention resolving

testing is very expensive, when r is large.

Most of network faults can be diagnosed in a distributed manner by processors with the

proposed testing methods. During each session of testing, a processor need not communicate

with others except the simultaneous submission of polynomials. When the packet width is

more than one bit, one of the data links can be used as a feed-forward line (but not as a

feedback line). However, when a data line is to be transformed into a feedforward line, a

multiplexer should be used to bypass the queue that (he link is connected to. One masker,

a mapper, and an adder of w bits are required for each data queue. For an /• x r switch, at

least r2 logic gates are needed to implement the MU/DEX, and the overhead, relative to the

combinational circuit of the switch to implement the tracer, is It should be noted that the

overhead is an upper bound, because hardware for the data buffers are not considered.

The goal of the low-level testing is to obtain high fault coverage with a small testing tune.

Queues are self-tested first by converting them into polynomial generators. Furthermore, test

patterns for the MU/DEX can also be generated by the PGs. For a C-connected queue, it needs

w extra interlinks to convert a queue into PGs. It is very inefficient to test the RCU, and r

79

1-out-of-r codeword checkers are proposed to monitor the outputs of the RCU. Finally, the

MU/DEXes and links are tested simultaneously. Testing responses are verified by using XOR

and XNOR trees. It is shown that the network testing time is independent of the network

size and the design method can be applied to various types of switch. For the low-level

testing, comparators in the switches are the predominating overhead, which is = £ for

the combinational circuits of switches, and no extra links are needed.

In this chapter we have focused only on the development of testing strategies. Although

the high-level testing can test the network concurrently with normal network operations, a

congestion tree (defined in the next chapter) might be formed if we lock up a path for a long

time period. To prevent formation of congestion trees, which may cause excessive performance

loss, an optimal testing period must be decided. The network dynamics under concurrent testing

and the tradeoff between the performance penalty and expected fault-detection time are the

subject to be analyzed in the next chapter.

80

Appendix 3.A: Fault Coverage of Polynomial Testing

81

Fault coverage of polynomial testing may vary with different circuit implementations of

the network. To obtain a concrete figure on its fault coverage of the low-level testing method,

consider an example LFSR design in Fig. 3.13. The basic structure of a shift-register is

essentially a master-slave S/R flip-flop. The /-th gate in a flip-flop is denoted as (!;, and its

output and j-th input (indexed from up to down) by GO, and G'lj, respectively. It should be

noted that latches usually have two outputs Q and Q. However, since the number of links is

a major concern in the network design, only the Q output of the slave-latch will be used, and

Q is ignored. In other words, a fault is detectable only when an erroneous response can be

observed at the Q output of the slave latch. During normal operations, the S and R inputs are

in the form of dd, 11, dd, 11,..., where d G0,1. It should be noted that the input 11 is inserted

automatically when CLK=0(1) at the master(slave)-latch, and the outputs of a latch are read

out when SR=11. 01, 10, and 11 at the SR inputs are referred to as r, s, and b, respectively.

To derive its test set, the slave-latch composed of 6V, (<s is considered first. Using the

D-algorithm, test patterns for faults in the latch are summarized as follows.

faults/nodes G'/i Git (,'07 67< Gii GO s

s-a-0 sb sb rb rb rb sb

s-a-1 sbrb sbrb sb sb rbsb rb

Testing the master-latch is more complicated, because the slave-latch must be in an appro­

priate initial state, i.e., output, to propagate the erroneous response of the master-latch to the

Q output of the slave-latch. For example, when the (Q,Q) = (0, D) at the master-latch, ''

the initial state of the slave-latch must be (1.0) to obtain D at the output of the slave-latch.

Otherwise, the slave-latch's output is 01, meaning that the fault is not tested. In our case the

master and slave latches have identical test patterns.

Test patterns for <7r, and are summarized below:

'' They are inverted to (1, D) before entering the slave-latch.

82

multiplier

9

JCLK

-e

P(H)

ui-bit shift register

CLK

fln one-bit shift register implemented by a master-slaue
S/R flip/flop

Figure 3.13: An example LFSR implemented with master-slave SR latches.

83

faults/nodes Gin Gt'Z GO 5 67,! 67,? Cf'O0

s-a-0 sbrb sbrb sb rbsb rbsb rb

s-a-1 rb rbsb sbrb sbrb sb rbsb

It can be shown that the above pattern can test G'i,<7'2 simultaneously. G ' f i 0 s-a-1 and

G O t o s - a - 0 c a n b e t e s t e d b y s b r b . T h e o n l y u n d e t e c t a b l e f a u l t s a r e 6 7 m s - a - 0 a n d G O \ {)

s-a-1, because the erroneous responses can only propagate to the Q output of the slave-latch.

67.) s-a-1 and GOy s-a-0 will block the transmission of data, and thus, sbrb is sufficient to

test them. G J >j s-a-0 and GO<j s-a-1 faults do not cause logic faults, and thus, not detectable

by the D-algorithm. However, the memory of the register is lost when the above two faults

occur, i.e., the latch fails to hold the data for a specific period. Assume that the high (low)

period t-j• of testing clock is three times slower than the latch's transition time t,/. Then, such

faults can be tested by the polynomial testing method. For example, when 6'0<i is stuck-at-1,

the data at the input of the register will be shifted to the slave-latch's output after 2/,/. At the

third t,i, the data is erroneously shifted into the next register. Thus, the shift register fails to

perform the ddaij function. Occurrence of such faults in a queue implies that the length of

queue is reduced. Since the polynomial testing can identify the configuration of a LFSR, all

such faults can be detected.

Although the polynomial testing is developed as a high level testing, it can clearly detect

all the detectable stuck-at faults at the logic level of registers. Since only two of the 56 faults

are undetectable in a register, and all other faults, i.e., stuck-at faults on the XOR gates and

feedforward lines, are detectable, the lower bound of the polynomial testing method is 96%.

84

Appendix 3.B: List of Symbols

Four states of a switch on the route under test.

The /-th block in a PDM.

The /'-th buffer in a queue.

,) The ring link input (output) of the /-th pattern generator 6', .

A D type flip-flop with a single input and a single output.

Switch permutation, E',n 1 : (//' + j) f(ir + j + m MOD /•), where

/(/?• + j) and f(ir + j + m mod r) are the global indices of the ,/'-th input

port and the j + m mod / -th output port of the (/ + I)-th switch, respectively,

where ;• is the switch order, and — is the interconnection. is denoted as

Em when all switches have the same permutation.

The inverse of the switch permutation E,n.

An RCU output which enables queue j to be connected to output port /.

The polynomial ring.

I is the set of integers and I„ = {(), 1,2 • • • , n } .

85

M An m x w matrix representing in buffers in a queue of u> bits each. The i-\h

row of M is tlie /-th bits of all buffers and the j-th column of M is the y-th

buffer in the queue.

The multiplier formed by the route connecting source i to destination j .

MUDEX An r x r MU/DEX is the combination of /• multiplexers and r demultiplexers.

It is used to direct packets in a PSMIN switch.

ONE, ZERO Coefficients of a word polynomial, O N E = ZERO.

P (. V) , P (: r]

Pj}1 {*)

PDM

PG

PSMIN

Q (: v)

A polynomial and its complement.

by p

N

^= ̂ 2 a:v', where cj = 1, a = 0, i ^ j, is a test pattern submitted
i=u

ocessor j.

P}!! = ^2 the test polynomial for in unit delay faults.
;=o

Polynomial multiplier or divisor.

Polynomial generator.

Packet switching multistage interconnection network.

The product of P (x) and M (; v) , or the quotient of P (x) / D (x) , or the output

of a PDM.

nu o The remainder of the operation that D (x) divides l ' (x) or the final contents

of a PDM.

RCU Routing control unit.

RUT Route under test.

86

v, The length or order of I);.

SSA Single stuck at fault.

1) The link permutation at stage i.

a-

IVk(x) = £>''. ">) = "W*).
I=u

r

T. nix' The initial state of a PDM or a PG.
;=u

CHAPTER 4

ANALYSIS AND OPTIMIZATION OF CONCURRENT NETWORK TESTING

4.1 Introduction

It is sometimes very expensive to suspend the operation of a switching network for the

purpose of off-line fault diagnosis. For example, signal processing applications require large

amounts of data to be transmitted through the network, and in telephone switching systems,

the revenue loss caused by a system stoppage for fault diagnosis could be unacccptably high.

Concurrent testing strategies, which test a part of the network at a time while letting the other

parts function normally, can alleviate or remedy this problem.

As will become clear later, concurrent testing of a network is much more complex than that

of memory or processors. When a processor or memory undergoes concurrent testing, no other

system components need to be involved with the testing. Thus, it is relatively easy to estimate

the performance loss caused by concurrent processor/memory testing. By contrast, testing

the interconnection network of a multiprocessor system is complex and difficult because the

network is shared by many processors, I/O devices and memory modules. Unless the network

is equipped with a centralized control mechanism, unexpected packets may enter a path under

test (PUT), making it impossible to evaluate testing outcomes correctly. Thus, for the purpose

of concurrent network testing, special care must be taken to prevent unexpected packets from

87

88

entering the PUT. We proposed in the previous chapter a new method, called the high-level

testing, to resolve this problem by synchronizing and locking up switches on the PUT. After a

path is locked up, it can only accept testing packets from the testing processor, which is the only

processor connected to the input of the PUT. Locking up switches prevents unexpected packets

from entering the path, and synchronizing switch operations is necessary to reduce the testing

complexity. Since it requires at most one additional processor to evaluate testing outcomes,

the high-level testing minimizes interactions between processors, and thus, greatly simplifies

the testing problem. Moreover, it has been shown in Chapter 3 that only a few modifications

to existing switch designs are needed to support the high-level testing. However, we addressed

in Chapter 3 only the architectural aspects of the concurrent high-level testing without any

quantitative analysis of its performance. The performance analysis and optimization of the

concurrent high-level testing are the subject of this chapter.

The concurrent high-level testing can be applied to networks with arbitrary topologies and

switches, and/or redundant paths. An /• x r switch in the network has r queues, each of which

is served on a first-in-first-out (FIFO) basis. Packets that are submitted to the network by

processors other than the testing processor and must pass through the locked path will be

blocked. After a packet is blocked at a queue, other packets that must pass through the queue

will also be blocked. Hence, when a path is locked for a long time, all of its source queues—

those queues that have some paths to reach the locked path—will eventually be blocked. When

all the source queues of a node are blocked, they form a congestion tree.

Every packet in a congestion tree cannot advance because packets in front of it are stuck.

Performance loss may become substantial when a congestion tree is formed in the network

for a long time. In order to avoid the formation of congestion trees and shorten the mean

fault detection time, it is essential to analyze the network dynamics under concurrent testing.

Congestion trees are somewhat similar to hot spots in common memory access [81, 22, 116].

89

However, packets stuck in a congestion tree cannot advance at all until the locked path is

released, whereas packets in a hot spot zone move slowly without stopping.

As their name implies, concurrent testing procedures have to be executed according to a

pre-planned schedule during the network's normal operation. Hence, to analyze the behavior

of a network under concurrent testing, one has to know the network's steady-state performance.

Numerous approximation methods have been proposed to model the performance of circuit

and packet switching networks. Probabilistic models and their extensions are reported to yield

a close approximation to the performance of circuit switching networks [77,114, 12]. Markov

chain models are usually used for the performance analysis of packet/circuit switching networks

[34, 102, 23, 59, 60, 117]. Kruskal et. al derived a closed form solution for the asymptotic

analysis of circuit switching networks, and packet switching networks with a large buffer size

[57]. Due to the complexity involved, it is in general intractable to accurately analyze packet

switching networks. We propose a reduced network model to ease this problem.

One can avoid the formation of congestion trees by controlling the time of testing a PUT.

This implies that the probability distribution of time to block an arbitrary node be an important

parameter for the analysis of a congestion tree. We develop several algorithms to derive this

distribution. A congestion tree is said to be dissipated when all the stuck packets exit from

the tree. The time to dissipate a congestion tree is another important performance parameter.

Unfortunately, no simple analytic method appears to be derivable that can be used to calculate

the probability distribution of tree dissipation time. Simulation is thus used to obtain the mean

tree dissipation time, instead of attempting to derive the distribution of tree dissipation time.

The optimal fault coverage is derived to minimize performance loss and maximize testing

efficiency. Finally, it is essential to avoid the repetition of testing the same network component;

otherwise, the network testing time may become excessively long. We must therefore find llie

optimal testing rings, the testing sequence that minimizes the repetition of testing the same

90

component.

The rest of this chapter is organized as follows. Section 4.2 discusses network operations

and the underlying testing method. The network dynamics under concurrent testing are ana­

lyzed in Section 4.3, and optimization of testing strategies is the subject of Section 4.4. This

chapter concludes with Section 4.5.

4.2 Network Organization and Testing

Before analyzing the concurrent network testing, it is necessary to describe the basic

network architecture and the underlying testing method.

4.2.1 Network Organization and Operations

The network under consideration is a packet switching multistage interconnection network

(PSMIN) which connects N processors, ()</'< N - L}, to A7 memory modules,

{Mi, 0 < i < N - 1), where memory module At; is a partner of processor P;, but is allowed

to be accessed by any other processor in the system. When r x /• switches are used in a blocking

PSMIN with a unique path between every processor-memory pair, there are k = log,. /V stages

of switches in the network. Each switch has r queues and an arbiter, where the ;• queues are

locatcd at the r inputs of the arbiter. Packet transmissions are synchronous; that is, an arbiter

grants/denies each request for routing a packet, and the packet, if granted, is routed from one

stage to the next stage in one network cycle. Connection of the /• outputs of each arbiter to

the next stage is determined by the network topology. A switch (arbiter) located at the <-th

row of stage j is denoted by ,S';, j (Mi(J). Sjj = {Q(f_i>,j,0(f-_1)P+lj, Mlij),

where is the f-th queue of ,S()<("<;•- I.

The network topology provides a unique path between every processor-memory pair. In­

terconnections between queues of adjacent stages can be described by backward (!') and

91

forward (A) relations. Physically, V(Qjj) (A(Qjj)) is the set of all immediate source (des­

t i n a t i o n) q u e u e s o f Q j j i n t h e p r e v i o u s (n e x t) s t a g e . F o r a n y Q j j , V (Q j j) = { Q ,

r2(Qj,i) = u:;,=i HQ/',and r»(g.,v) = Um=i r""1 ((?/•„,./-!)•

•Similarly, A((?,,,) = { Q ^ j + u Q r 2 , i + i , - • - , Q i : r , i + i } , and A= U!i,=i A""1 ((?/•„„;+,).

Since a processor can access any memory module, r';(A/,) = {P(, 0 < j < lY - 1), and

A'Vi) = {A/j, 0 < j< N - 1}, 0 < i<N — i. A destination tree with M; as its root,

denoted by '/' /?ju, > is formed by a collection of queues, , !'•' (A/,). A source tree with /', as

its root, denoted by TRpt, is formed by a set of queues, Uj=1 A'(Source or destination

trees can be defined similarly with respect to queues instead of processors or memory modules.

For a queue Q,iU at stage », the notation TP,,„ will be used to denote Tliqr „ =U/'=u' '(Q>.n)

whose height is the same as the associated stage number, n. 7will be written as TI

whenever the value of C becomes immaterial in our discussion.

Each tree TPcmtm in the PSMIN can be modeled by a labeled graph 6', in which nodes

denote arbiters and edges are queues and links. Fig. 4.1 shows an example destination tree and

its corresponding graph model. Having introduced the network organization, we now briefly

discuss the operational principle of the network-level testing.

4.2.2 High-Level Testing

The network-level testing requires locking up only a small number of network components

and processors for each testing session. The lock-up procedure is executed by routing locking

packet(s) through a path to be tested. Note that the polynomial testing method can detect/locate

the lock-up faults caused by mis-routing. Once a path is locked up, it will accept packets only

from the testing processor, whicli is connected to the input of the locked path.

Stuck-at faults in a path J f , j can be located by three test patterns: the impulse, the all l's

and the all O's streams. If no fault is found during the application of these patterns, the set of

92

processors memory

•

•

leuel 2

leuel 4

leuel 1

Figure 4.1: An example destination tree and its corresponding graph model for an H x s

PSMIN.

93

switches ,, i „S'„i2,2.- • •>#»««,.,*} may be tested further for other faults, where Sm f / is the f-th

switch on 7/,j. For example, to test for merging and broadcasting faults in switch two

paths intersecting at must be simultaneously locked up. Thus, any two processors /' and

l\n such that I\,Pm 6 1^(3) j) can function as testers of Sjj. To test two lest patterns,

'!'(and 7'm, must be submitted simultaneously from l\ and /',,,, respectively. As shown in
w k — 1 w k — I

Chapter 3, these test patterns can be represented as 7} = a rX ' and T , „ = ^ brX ' ,
('= u /'=()

where «,• = &,• V/, w is the number of buffers in each queue, k the number of stages, and X

a dummy variable.

When the locking packet is routed through a queue, and thus a switch, we can lock up

either the queue or the switch. When the queue is selected to be locked up, two intersecting

paths can be locked up independently, because they run through different output ports of the

switch where they intersect. If the entire switch, instead of a queue, is selected, two paths'

lock-up procedures must be synchronized to avoid the possibility of deadlock. A deadlock

occurs when two paths' lock-up speed is different, where the slower lock-up operation can

never be completed. To avoid deadlock, we must either synchronize the routing of the two

locking packets, or must design switches so that they can be locked up only after two locking

packets enter a switch. The first type of lock-up operation is much simpler than the second

type, and thus, will be used in the rest of this paper.

As mentioned earlier, concurrent testing is performed according to a predefined schedule.

Further, the system is assumed to be in steady-state when a testing session starts. We shall

develop a network model in the next subsection to facilitate the analysis and simulation of

steady-state system performance before delving into the analysis of the network behavior under

concurrent testing.

94

4.2.3 Probability Distribution of Queue Lengths

A PSMIN can be described by an A/.-tuple, 0 = (lu,j , i'yv-u). where V',,,

is a random variable (or state) denoting the number of packets in Q-h-r The steady-state

joint probability distribution of 0 can be obtained by solving the balance equation v = Pv,

where v is a vector representing the steady-state distributions of] s and P the state tran­

sition matrix. Since the number of system states increases exponentially with the network

size, i.e., (w -f I)A'A', it is necessary to reduce the number of states in order to make system

analysis/simulation manageable. A reduced network model is proposed to meet this need.

Processors' request patterns are assumed to be independent and identically distributed

(i.i.d.), and as a result, address bits generated by processors are also i.i.d. It is further assumed

that arbiters grant routing requests based on a geometric distribution [77,57], and at stage /' of

PSMIN, the parameter of the geometric distribution is / When all arbiters' output ports

have the same routing priority, the packets' interarrival times at arbiters' output ports are i.i.d.,

and the number of packets waiting in each of the queues at one stage is i.i.d. That is, queues

within a stage are statistically identical, and so are arbiters. It makes no difference which buffer

of the previous (next) stage a packet is coming from (going to). Consequently, for the purpose

of steady-state performance analysis, one can assume, without loss of generality, that all the

output links of a switch are logically connected to the input ports of another switch. (Note that

these output links are actually connected to the input ports of several different switches.) This

simplification will reduce the original PSMIN to N/r independent and identical subnetworks.

The reduced network model deals with each of these subnetworks (i) which consists of A-

stages of /• x r switches connecting r processors to r memory modules, and (ii) in which link

connections between adjacent stages are represented by the identity permutation.

The reduced network model can be simplified further as follows. Since queue lengths in a

95

switch are i.i.d., one random variable is sufficient to represent the number of packets in each

stage. The reduced network model can thus be characterized by a /,:-luple 0' = (V|, V'2 • • •)'/,•),

where 1; is the random variable denoting the number of packets in any one of the queues at

stage /. Let the probability of T', = f be and w be the number of buffers in each queue.

Then, the number of states of each queue is w + 1, where the state of a queue is defined by

the number of packets in the queue. Note that 1',-'s are often assumed to be independent as in

[34]. However, this assumption is acceptable only when the network has light traffic, or in is

very large.

Elements of the transition matrix P are determined by the operational principles of arbiters,

and the number of buffers in each queue. For a non-full queue at stage i, the probability of

a packet entering the queue is P;,u; = t - (l - The packet at the head of a

non-empty queue can move to the next stage only when the next destination switch is not full,

and the packet's routing request is granted by the associated arbiter. Assuming that packet

transmissions in the network are synchronized, at any network cycle we get

% C ; > - (s (i) (0 * (^ f j T r)
_ + l f I _ / I _ 1-Pn.. >i\ _ I ~ P w , i + 1 p

' i-'V. V u ' • >) - ' 1 - i \ i I " ' ' "

For a queue at stage i we have

P j , i = J — P o u t , i) I ' j - 1 , 1 + P 1 — P i n , i) P j + l , i +

[P h u i P o u U + (1 -){1 - P o u t . i)) P j J , if o < j < w

P w , i ~ Pin, i (L ~ P (i u t . i) P w — I , i + (1 — P a u l , i) P w , i

P o , i — 1 ' v u i , i (1 — f ' h i , i) P l , i + (1 ~ P i n , i) P o , i -

ri= r! P\^ ^ J £ ~ i> P> ' - /'»«/,/)i'\./»and

P i u , i = T j (1 - ,)P„,_ii(-. To find tlie solutions for s, one must solve the nonnalization

96

k w
equation ^ ̂ T7;,, = 1, that is,

1=1j=o

f f 1 + ' - r r " " + ,) Pout*) ,, ,_J

Let Pw>i = TiPw-iti and /{),,• = Then, the normalization equation is simplified to
A- | _ T._'n+t

T —;—! i'o, = L. Our simulation results in the next section show that when either the
,t? J - r- '
network has light traffic or w is very hirge, arbiters at different stages have nearly identical

parameter values, i.e., r, « Tj,Vi,j. However, when each queue has only a small number

of buffers or the network has heavy traffic, dependence among first few stages cannot be

ignored. The solutions of s appear to be intractable under such a condition, because r, 's

are completely different from one another, and the required solution procedure is extremely

tedious. Consequently, we use the reduced network model in our simulation to derive steady-

state network performance. Once the steady-state performance is determined,1 we can analyze

the network behavior under concurrent testing.

4.3 Network Behavior Under Concurrent Testing

There are several interesting analysis and optimization problems associated with the con­

current network-level testing. We shall investigate such important performance parameters as

path locking time, and times to form and dissipate a congestion tree in the PSM1N.

4.3.1 Time to Form a Congestion Tree

The most important network dynamic parameter under concurrent testing is the probability

distribution of time to form a congestion tree. However, it is very complex and difficult

to derive this distribution due mainly to the excessive number of different locations where

packets may reside at. Hence, the analysis of time to form a congestion tree is decomposed

1 These results will be shown in the next section together with other simulation results.

97

into the following four steps. First, components of a congestion tree are modeled. Second,

the distribution of time to block the root of an arbitrary tree is derived. The third step is

to reduce the computational complexity associated with the derivation of the distribution of

root blocking time. Finally, the probability distribution of time to block an arbitrary node is

derived using the distributions of root blocking times. The probability distribution of time to

form a congestion tree can then be derived from the distributions of node and root blocking

times. Each of these four steps is discussed below in detail.

A. Modeling of a Congestion TVee

A locked path II, j is composed of a set of queues {(,?/,,,n }»=!» where Qc„M is the locked

queue at stage r on the path. As shown in Fig. 4.2, there are Ar disjoint subtrees {'l'Pj}''j=\

within 7'Rmj - {//,•.,}, where Qi„t„ G If ij, 1 < n < /.•, is the root of TP,,. Each such 77',,

is called a blocking tree, because the root of 7'/',, is locked up, and thus, packets may build

up in this tree. A blocking tree becomes a congestion tree when all the queues in the tree are

filled with packets that cannot advance.

TPn s associated with II ij are disjoint, i.e., T P, f| T Pm = 0, W ^ w, I < f.m < /,-,

because V C < m, (1) there is only one path from a queue in TPt to another queue in T P,,, via

the locked path //, ,, and (2) there is no path from TP,,, to TP,> When is locked up for

testing, the testing processor and the output of JIIJ are Pi and I)lj, respectively. Except for

the IIij's queue in the first stage of the network, A fj and all other queues on //,., are shared

between P, and other processors. Since the queues in a locked path //,,, can receive packets

only from its testing processor /',, all packets that are generated by processors other than /',

and need to use lfjtJ and Mj will be blocked until the testing of is completed. Those

packets that need to enter a queue Q\ on IIij are called blocking packets of or

JIi j. Once a packet gets stuck at a source queue on all subsequent packets entering

98

locked path

a set of leading packets in TP3

po IZH
P'IZH

^LJH tx

the corresponding track
tree in

(root)

•

Figure 4.2: Disjoint subtrees in T R\i.r

99

Qx,y will be stuck, and thus become the blocking packets of Qx,y Such a QXt!l (or //,.,) will

not be mentioned specifically when we refer to "blocking/leading packets" (to be described

later) as long as it does not cause any ambiguity.

Those switches having no path to IThj are called free switches? Free switches can function

normally during the testing of II;j. However, all free switches will eventually empty their

queues for the following reason. Since I'lhij contains all processors as its leaves, and all the

queues in TRmj will eventually be blocked, no packet can be submitted to the free switches

after the tree is completely blocked. Consequently, free switches do not have any impact on

the network performance of our interest, and thus, will not be discussed any further.

A blocking packet is called a leading packet if there is no other blocking packet ahead of

it. By definition, there must be no path available among the queues holding leading packets;

otherwise, one leading packet would be ahead of another. Each set of disjoint subtrees within

a blocking tree can be made to correspond to a set of leading packets by placing each leading

packet at the root of one of the disjoint subtrees.

One can observe that in some packet switching networks such as telephone systems, packets

are generated independently, and enter the network constantly. Based on this observation, every

processor in the PSMIN is assumed to have the capability of generating an infinite number

of packets over an infinite time period.3 Those packets not generated yet in a blocking tree

may in future block the root of a subtree just as already-existing packets may. Thus, to

derive the probability distribution of a root's blocking time, we have to consider both blocking

packets already in the network as well as those to be generated in future. Arrivals of packets

are assumed to follow a geometric distribution with parameter p. The probability of a new

blocking packet to be generated by a processor in tree TP-,rjr at the »-lh network clock cycle is

2 However, there could be paths from H,fJ to free switches.

•' If processors do not have Uiis capability, the required analysis will be much simpler than the one presented
here.

100

11 / \
t: I " 1(1 — p)"~'p' (1 — (7 Fr)'~1 (7)'r • Moreover, the probability of the v'-lh blocking packet
;=o \ ' /

to be generated by the processor at the »-th network clock cycle is)(I - pv~'r ^)',

where II > i.

For a set of n leading packcts { /*A",-}, located at n different queues of a blocking tree

TP,-, the set of leading packets' paths to the root of TPX can be viewed as a track tree. The

track tree for Ph\, V A'a, • • •, PK„ is simply TPX — (JJL, TP;, where TP; is the tree whose

root is the queue that holds PKj. Two track trees are distinct when their corresponding sets of

leading packets are different. Fig. 4.3 shows the sets of track trees in T P\, TP-2 and T P:i, with

r = 2. We shall henceforth use the terms "a set of leading packets", "a set of disjoint subtrees",

and "a track tree", synonymously. Let Do denote the set of distinct track trees in TP/,. When

Qi„,,m e 11 i,j is locked up, a set of leading packets, A - {Ph'i, Ph'z. • • •. Pl\'„} £ D,„,

will have a race in the track tree to reach the root, of TPm. The number of leading

packets decreases monotonically as the race progresses. Once a leading packet reaches (he

root, it will be the only leading packet in the tree.

Starting from the root of a /,--level tree, each level of the tree is indexed as /,•, /«• 1.

The lowest common node (LCN) of PI\ ; and PKj, denoted by LCN(PK-„ PK,), is the node

at the lowest level that can be reached by both PI\j and PKj. Thus, LCN(PKj. PKj) is the

node at which one of the two packets will lead the other. Similarly, LCN(7'A'i. • • •. PK,,)

is the LCN of n leading packets, {/ 'A'[, • • •, /'A*„}. In a track tree, every node having more

than one child is the LCN of some leading packets.

Given any non-complete tree .1, one can find another track tree A' with the same prob­

ability distribution of root blocking time, ^l' can be found by exchanging locations of two

hertergeneous subtrees (i.e., subtrees with different structures) under a LCN. That is, given a

set of n track trees Acr = {,1, | f = FY]|..ti = i ^ j, 1 < < »} where

101

Figure 4.3: The set of tuck tree* in TP i t TP2,wad rP3, i*«pectively.

102

„Yi is the root's blocking time, we get \Act = |,lt;r| V/l, G ACT- Fig. 4.4(a)

shows an example set of track trees .11, M, /l:t. A.\ that have an identical distribution of root

blocking time.

Lexicographical ordering of trees in ACT >s used to uniquely identify each of the trees in

ACT- There are several ways to define the lexicographical ordering of trees in ACT- However,

any meaningful lexicographical ordering should be able to distinguish any two different trees

by their lexicographical orders.

Consider an example game to determine the lexicographical order of two track trees, /!,

and /IJ in ACT- Before the game starts, A; and Aj are changed to two complete trees1 and

Tj by adding new nodes and branches to .1, and Aj, and each newly added branch/node is

labeled as a "fake" branch/node (Fig. 4.4(a)). Let two knights (packets) A', and A', traverse

nodes of 7; and Tj in preorder, respectively. A"; (A'j) can always challenge A"; (A',) as

long as A"; (A'j) is not at a fake node, and wins the game if A'; (A',) cannot challenge back

(because it is at a fake node). Challenges will be dismissed and the game will continue if

A"; and A", challenge each other at the same time. The game is ended when one of the two

knights wins, or there are no more nodes to visit. If A", loses the game to A'j, /I, is suid to

be lexicographically smaller than Aj, denoted by A; -< Aj. Aj = Aj if the two knights have

a tie at the end of the game. This example lexicographical ordering can always distinguish

two different trees, and .1/ = Aj only when they have an identical structure. An example set

of track trees with their lexicographical orders are shown in Fig. 4.4(a).

Since the lexicographical ordering can distinguish all trees in /Icr, it can also be used

to distinguish arbitrary trees. However, T; -< Tj does not indicate which tree has more

branches or nodes. An arbitrary tree /!,• G ACT 's said to be lexicographically maximal

if A; y Aj, VAj G ACT• A tree 1)„ is lexicographically maximal if (1) all its subtrees

4 In a complete tree, nil but leaf nodes have ;• children.

103

are lexicographically maximal, and (2) at on arbitrary node Q of T,„, subtrees below Q are

arranged in lexicographically descending order from left to right. Using these properties, an

arbitrary tree can be converted to its lexicographically maximal form (called the canonical tree

C'T) by the following simple recursive routine.

lexjmax(rPj,„)

/*TPj „ is the input tree of height n to be converted*/

begin

if(/f > 1) then

begin

i = 1 ;

while(/ < ;•) do

l e x j n a x C T / j , / * g o d o w n o n e m o r e l e v e l * /

i=i+l;

end-do

end

sort • • •, TPjr]ll-i in lexicographical order;

end

B. Distribution of Root Blocking Time

We now derive the probability distribution of time to block the root of a blocking tree.

Let T„ I < / < in, be the lime required to route a leading packet PK; to the root of a tree,

and .V, be the time the /-th blocking packet arrives at the root, i.e., JV| < A"2 • • • < -V,,,, and

A'i = iniii(Ti, T2, • • •, Tm) is the root's blocking time. (A'j. A'2 • • •. A"„.) is called the set of

order statistics, representing the arrival times of the first w leading packets. The probability

distribution of A'i, denoted by Fxt, can be derived by enumerating all possible locations of

leading packets, and then summing up the probability of the root to be blocked by each leading

packet.

104

Times to route leading packets to (he root of a track tree are not always independent because

they must traverse some common queues and arbiters before reaching the root. However, two

leading packets Ph\ and PKj in a same track tree have independent routing times before one

of them reaches LCN(Ph~i,P Kj). Let Qi,.jr be the root of the tree under consideration, and

the path between PKn and the root contain queues • • •, Qirj, - For a set of leading

packets PKU PK2, • • •, PK„, be located at Q iun ,Qi-2,j.2, • • •, Q-,m j,„, respectively, it takes

time Tn for PKn to travel from Q;„j„ to Tn can be expressed as the summation

of times for PK„ to traverse all the queues and arbiters between Qand i.e.,

'I 'u = 'I),.],- + • • • + 7 where m = » % • • • , m, is the time for a packet to route

through Q: Then,

A i = mi 11(7;,.j,. + h Tifj,, 'Pi,, j,. H 1- , • • •, T,-+ • • • +)

= Ti,-,jr + iiiin(V|. /2. •••,/,„) (4.1)

where Ir = 1 < (< m. Since 7),.,;,, is independent of min (/|. • • •,), we

get fx\ = h)r,Jr * / i i i i i i f / , , F u r t h e r m o r e , f o r in independent random variables .V,'s,

I < j < ^Illill(y1,.V2,...,.V,„)= i - ni'iiC - Fx,)- Thus, if 7,'s in Eq. (4.1) are not

independent, they should be combined into groups G'i, 6'2, • • • ,6V, so that 7, and /, will be

in the same group if and only if there is at least one common variable between 7, and

The probability distribution of each group G; is evaluated separately, and then combined as

f'miii(/|./2~ nU ' ~ IrUi)• As was done in Eq. (4.1), the probability distribution

of each Fa, can be calculated by extracting common variables recursively.

Having calculated /*'v,|^, one can compute /•>, = ^ ̂ /''V||.|, where \l)h\ denotes

the number of ways that leading packets may reside in different queues, and is derived by the

following theorem.

105

Theorem 1 : When every queue is composed of only one buffer, the number of sets of disjoint

subtrees (distinct track trees) in a blocking tree TP(„ b > 1, is

id6| = d + |/-v-j|)r

= d + ••• + (! + (2r_1
V -V •'

6— J

Proof: |Di\ is derived by induction. When b = I, there are r — I unlocked queues in TI\,

and each queue may or may not have a leading packet in it. However, the case that none of

the branches has leading packets must be excluded, because processors can generate infinite

number of packets. Thus, |.D| | = 2' -1 - 1. Suppose Tl\- { has |A—i| track trees. Since

Tl'i, is created by linking r copies of TI_ j to a new root, D/, can be generated from r copies

of •£>(•-!• None or one of the elements of Do-1 can be assigned to a child of the root of Tl\.

Thus, there are (1 + Db-i) combinations of different elements in each child of the root, and

| / A | = (L + •

Corollary 1 : When each queue is composed of w > I buffers, the number of sets of disjoint

subtrees in TP/, is

|Z?,| = (w + I)''"1 — 1

| D t | = (« » + | / J 6 _ i |) r , b > \

Proof: A queue is either full or empty if it has only one buffer. When b = 1, and each queue

has in buffers, a queue may have none or one leading packet located in one of its ir buffers.

Thus, |/;t| = (w -f 11 - 1. Assuming that 77'/,_i has \Db-t \ track trees, I'D, is created

by linking r copies of Tl\-i to a new root. Dtj can be generated from /• copies of A,_|.

One element of Db-i can be assigned to a child of the new root, or the leading packet may

106

be located in one of the w buffers in a new queue. Thus, there are w + combinations of

different elements in each child of the new root, and \ Di,\ = (w + \Db-i)' • I

In enumerating all possible locations of leading packets, one only needs to consider which

queues, instead of which buffers, leading packets may reside at, because the effects of buffer

size have already been included in the distributions of (blocking/leading) packets' queue routing

times. Thus, although Corollary 1 counts the number of track trees in TP,,, 's with multiple-

buffer queues, one should use Theorem 1, instead of Corollary 1, to compute \Di_,\.

C. Reduction of Computational Complexity

The number of disjoint subtrees in a blocking tree increases rapidly with its number of lev­

els. Note that many cases have been redundantly counted in the calculation of the distribution

of root blocking time. Let D '^ t denote the set of canonical trees in TPi„ then \D'l<r\ < m

as will be shown below in Theorem 2. One needs much less effort to compute /• , with

Fx* =Vh\ 1C \CT\ct, than directly computing /•>, =-^ FV||,,.
CT,ED';:.T AEIH

Theorem 2 : When each queue is composed of one buffer, the number of canonical trees in

T P(, of height b is

where l)[.r = (' +1), and each node (except for those nodes located at the lowest level) has

r branches to the next lower level.

Proof: The theorem is proven by induction. Pl\ has only one canonical tree. Tl\ can be

generated by linking the roots of TP\ 's to a new root (with new links). Leading packets in

'Y'/2 may be located at its root, or at i of Us r leaves, where 1 < / < r. Thus, there are

r 4- I canonical trees in Assuming that there are | Dl
cr \ canonical trees in 77',, we now

107

build TPi+i from r TlYs. Since TP,+i contains r TPf s, and each subtree has \D'cr\ + I

canonical trees, \ DCT \ =) follows. I

Table 4.1 shows the number of track trees and canonical trees for b = 1 to b = 5 when

r = 2. As mentioned earlier, the number of canonical trees in a tree is the same as that of

different forms of probability distributions in the tree.

b 1 2 3 4 5 6 7

m 1 4 25 676 458329 w 2.1 x 10" « 4 . 1 x 1 . 0 2 2

\Dhcr\ 1 3 10 66 2278 » 2.0 x 10" « X J O 1 2

Table 4.1: The computational complexity of 1)/, and Dh
CT

Canonical trees can be uniquely encoded by a data structure called a mark. The encoding

sequence is obtained by assigning a level number to each branch of a tree, and branch level

numbers are put into the mark when the tree is traversed in preorder. To decode a mark

i\izh • • • in to its corresponding canonical tree, a cursor is used to point at the current digit of

the mark, and a branch generator to generate branches according to the current and previous

digits. At the beginning, the cursor is located at the leftmost digit of the mark, and the branch

generator points at the root of the tree. The new branch is labeled with i j, the branch generator

is moved to the bottom of the branch, and the cursor is shifted to a2- The rest of the procedure

can be expressed by the following steps. At ij of the mark, 1 < j < n, we either add a branch

at the current node if ij < j, or move the branch generator to the top of the current branch

and then add a new branch there if ij = i, or trace back to the top of the first branch,

which has the same label as / , , and a new branch is added at the top of bx, if /; > /;_t. Then,

the cursor (branch generator) is moved to the next digit (bottom of the new branch), and the

added branch is labeled with Fig. 4.4(b) shows the decoding sequence of mark 321121.

108

horizontal permutation

i<̂ \ /A .A,
Ao A« ^ -<

a fake branch
and node

a complete tree

A "A "A
, v canonical tree
(a)

3 32 321 3211 32112 321121

(b)

Rgure 4.4: (a) A set of track trees and their lexicographical orders, (b) The canonical tree's
mark and its decoding sequence.

109

We now present an algorithm to create the set of canonical trees in TI\ with a given mark.

Similarly to the techniques used in proving Theorem 2, the set of marks in TP; is generated

from the set of marks in TP,_i-

Algorithm: C 1 : D£:r generator

C = •••,«!•} = {11 • • • I,. *••,11,1}; f*C is the set of marks
r

i = 2;

while (/ < /,•) do

C" = 0; /* the new set of marks D'vr*/

j = i ;

while(j < |0'|) do

m = r;

while(m > I) do

CT = i; /*a new mark always starts with /*/

C'T=CTajdi • • •«/;
>

1)1

add CT as the last element of C";

if(?» < /•) then new_mark(CT, m , j) ;

m=m-l;

end-do

j=j+i;

end-do

C = C'\

i=i+l;

end_do

new_ma r k (C T , n , j)

begin

if (n < r) tlien/o = _/'+!;

while (/,• < |r|) do

. j ; =) • — ? ; ;

while (a: > I) do

110

CT=GTaha, •••„!/,
v '

ar

add C'T as the last element of C'\

if (x + n < /•) then new_mark(6T, x,«/,.);

x = :v — J;

end-do

k. = k + I;

end_do

end

The above algorithm can be verified by using r=2 and k=3 to generate Df.r ={3, 32, 3212,

32112, 322, 321, 321121, 32121, 3211, 3211211}. For a given mark C'T, we can calculate

|/lc"r| recursively by the following theorem.

Theorem 3 : In a canonical tree CT whose mark is vi„ = mv' ll_ l l A., where

,• means j copies of />?,,_jthere are \ACT\ different subtrees with the same mark, and

2J ij < |'' 1 c7'I = I1/-1 (' J=0 where is the number of different
, /= i

subtrees with mark

Proof: Since Fx, remains invariant under the horizontal permutation of subtrees of a track

tree, when the locations of mn-i/s are permuted, each location represents a track tree with

the same Fmy,. Since mu~i,i can be further decomposed into |m„| can be derived

recursively, thus leading to |<l<rr| = Yl'i-1 C_^J=nI

D. General Cases

Fx, of TPi, whose root is Qj,j, is derived by the techniques discussed thus far. /•'y2,

/ 'v..,, • • •, Fxu, of TPi can be derived similarly after some pre-processing steps. We now derive

/ 'vfi i < f < i". where id is the number of buffers in each queue. The basic idea is that

for a set Z of blocking packets, and the subset D of leading packets in Z, we first remove

I l l

a leading packet from D. The removed leading packet represents the first blocking packet

reaches the root with routing time X \. After removing one leading packet, blocking packets

under it may now qualify to be new leading packets. For the leading packet removed from

QlCjik, there are | D'k| = \D/,-\ - 1 ways of locating new leading packets below Let A'h

be the set of possible leading packets after removing one leading packet from II, and ,Y{ be

the time the first leading packet arrives at the root of the new track tree, then ,V{ = A\>. Thus,

1'\\.2\b= Jrx\\B= X] The following two pre-processing steps must be applied
''' B'eN0

1

i — 1 times recursively for the calculation of F\-f: (1) remove one leading packet from 11, and

(2) find new leading packets below the packet removed in (1), and form a new track tree. We

must enumerate all possible blocking packets' locations in the above steps.

The queue located at the root Qjn; is full at time Xw, after which leading packets of Qnj

and the /• subtrees TPjlti-i, • • •, TPjrj-\ will start to be blocked. The probability distribution

of time to block the root of TPj(<-,-\, 1 < C < r, can be derived independently of others.

Given a set of packets B , let 67 C D be the subset of blocking packets of Q h - , in T P I (J - 1.

At time Xw, i.e., when the root of 'T l\ is full, r of the blocking packets in (7 may have entered

(Note that packets from subtrees other than TP; may also enter the root.) To calculate

the probability distribution of lime to block the root of 7'/' , f < i, we must enumerate all

possible ways in which these x blocking packets of (Q,;,; can be removed from TP,. After the

root of TPr becomes full with blocking packets, the r subtrees of TPf will have a condition

similar to that of T Pf with Quj as its root.

Let the queues between an arbitrary queue N(and the root Qjni be Nr. j\ l + 1 . A 7 + 2 - • • • .

A'„ = Qj„,n. Given a set of packets C in 77'vf, the following algoritlim is used to calculate

the probability distribution of time to block N, in TPn. The basic idea of this algorithm is to

recursively enumerate all different cases of packets in C to block Ays, and then calculate the

probability distribution for each case.

112

Algorithm: C 2 : I!'xnw+l[c calculator

begin

find Bn, the set of blocking packets of Nn, from C\

find /!„, the set of leading packets of N,„ from //„;

i = 0

while(/ < w) do

R M (/ I n , i V „) ; / " " r e m o v e i leading packets of /V„ from /?„*/

i = i + 1;

end-do

end

RM(.le, B f , i , N e) / * yle is the set of leading packets of Ne

i is (he number of blocking packets to be deleted from B r , and

N,_ is the current queue being worked on*/

begin

if(/ > 0) then

begin

j = l ;

while(j < |/le |) do

remove a leading packet of T P ^ , from A c ;

find a new Ac of 77V, based on current Be, Ar, and C

RM(/1C, Be, i - 1. Nf); /*Remove next leading packets*/

j=j+i;

end-do

end

else

begin

if(«> > 0) then

begin

f i n d W c _ i f r o m C , B r , and A , ;

f i n d / l e _ i b a s e d o n c u r r e n t A c , B c - l t and C\

k = 0;

113

while(/c < i n) do

RM(/I, /,•, /""Remove leading packets of i*/

k=k+l;

end-do

end

else begin

calculate /*A7j|,i;

FND = FJVP + FNV\.-U

end

end

end

The above algorithm calculates the probability distribution of time to block an arbitrary

node under a certain workload. Since every processor can generate an iniinite number of

packets over an infinite period, we can remove as many blocking packets as needed from

any track tree. It is intractable to calculate the probability distribution of time to block an

arbitrary node in a large tree since a very large number of possible locations of the node must

be accounted for. The mean root blocking time and the mean tree congestion time — the time

all nodes on the tree are blocked — under different workloads, are plotted in Figs. 4.5 and

4.6, respectively.

4.3.2 Path Locking and lYee Dissipation Times

After releasing a locked path, it will take time to dissipate blocked packets. A tree is said to

be dissipated when all packets stuck in the tree are routed out of the tree. No simple analytical

method appears to exist which can determine the probability distribution of tree dissipation

time, because the dissipation sequence of packets in cascaded queues depends strongly on each

other. Thus, simulation is used to analyze the path locking time and the tree dissipation time,

Otree 1
Otree 4

• tree 2 A tree 3
• tree 5 Ktree 6

.4
raqiMtt rat*

Figure 4.5: The mean root blocidng time of 6 trees under different workloads, when N=64
and switch size= 2 x 2.

115

250 Otree t
Otree 4

•tree 2 A tree 3
• tree 5 xtrae 6

200.

100.

50

T T T 1 T T T I ' I » I » I » I I 1 I • I I
0 .1 .2 .3 .4 .5 .0 .7

request rate

Figure 4.6: Hie mean tree congestiao times under diffeient workloads when N=*>4 and switch
size= 2 x 2.

116

and the results are analyzed with isotonic regression [87].

Operations of both regular, and reduced networks are simulated, where packets are generated

according to a geometric distribution with parameter p. Memory modules are assumed to be

always available and thus can be accessed at any time. After generating a new packet, it is

submitted to the network if the network has an empty buffer available. It takes one network

cycle for a packet to cross one stage (link transmission time), and a packet must spend at least

one network cycle in each queue after entering it. A locking packet must travel through A-

stages to reach its destination. Thus, a path's locking time can be expressed as L„ = k + C[p),

where f{p) is a random variable determined by the processors' packet generation rate />. A

path's locking lime is the same as a regular packet's routing time, because all packets are

assumed to have the same priority.

The example system we simulated consists of 64 processors, two buffers in each queue,

and 2x2 switches. As expected, the normal operations of regular and reduced networks

exhibited identical packet routing times. We simulated only the testing of a single path, but

testing of other paths can be similarly simulated. The mean path locking time (regular packet

routing time) and tree dissipation time under different workloads (packet generation rates) and

a fixed testing procedure are plotted in Figs. 4.7 and 4.8, respectively. When network traffic is

heavy, the packet routing time in the last few stages (near memory modules) of the PSMIN is

relatively insensitive to the network's input or processors' request rate. The capacity threshold

of a PSMIN is thus defined as the packet generation rate, above which packets start to build

up at the input stages of the network. Other stages of the network are fairly independent of

the packet generation rate.

The network can be modeled by a fluid flow process when it has heavy traffic. That is, the

traffic in those stages near memory modules is at the network's capacity, and a large number

of packets build up at the first few stages of the network. Thus, a more accurate analysis

117

interstage locking time

O stage 1 • stage 2 A stage 3
O stage 4 + stage 5 * stage 6

•°i 1 1 1 1 > 1 • 1 1 1 ' 1 1 1 1 1 1 • 1
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

request rate

Figure 4.7: The mean path locking time of a PSMIN with A' = (Jl, switch size= 2 x 2, and
2 buffers in each queue.

tree dissipation time

118

request rate

Figure 4.8: The mean tree dissipation time of a PSMIN with A' = (j I, switch size= 2 x 2, 2
buffers in each queue, and the testing length =12.

119

should divide the network into three parts: the input, middle and output stages. In the middle

stages of the network, queues have almost identical input and output rates. The output (input)

rate of the first few stages is the I/O rate of the middle stages (the actual network input).

The network's congestion and dissipation speed under different testing lengths are simulated

with the packet generation rate set at 0.4. As shown in Fig. 4.9, queues in the first two stages

get congested and dissipated quickly. In those stages near memory modules, as mentioned

above, their tree dissipation times are almost identical. Congestion probabilities at the various

nodes are also plotted in Fig. 4.10.

4.4 Optimal System Testing Strategies

Network performance changes dramatically with system workloads, and thus, the param­

eters to be optimized (in some sense) must be changed accordingly. As a demonstrative

example, the testing strategy in the previous section is optimized in this section. The perfor­

mance penalty induced by the testing of a path in the PSMIN includes the path locking time,

the waiting time of stuck packets in the network, and the time of dissipating congested packets.

Let T be the length of testing procedure, D'p(T) be the mean dissipation time of congestion

tree Til;, and Il';'(7') be the waiting time of packets stuck in congestion tree /, where p is

the parameter of the geometric distribution describing the generation of packets by processors.

When a set of network level testing procedures is applied, one can reduce the dissipation lime

by decreasing the network traffic. The optimization problem can be formulated as:

I:
m i i y i ' v ' + L ~ l) (i v ; , { T) - \ V ; at)))

i= 1

subject to 0 < // < V

where Lv< is the lock-up overhead. Although the above optimization problem can be easily

solved, it is in general difficult to control the system workload, and thus, its solutions are

not practically useful. Thus, we formulate and solve an alternative problem which minimizes

120

tree 6

trM 5

trM *

trM 3

trM 2

tra« 1

i » i
10 20

» I
30

• i •
40

testing length

i
SO 60 70

Figure 4.9: The mean tree dissipation times of a 6-stage PSMIN with different testing lengths,
switch size= 2x2, and packet generation rate=0.4.

121

0.8-
I P '/ iy

ix
$4

m

t i
||

M i

0.0 4J

testing length=12, switch size a 2x2

I

• tree 6
• tree 5
E3 tree 4
H tree 3
E9 tree 2
• treel

2 3 4
distance of the node from the root of the tree

Ik.

Figure 4.10: The probability of nodes being blocked when the testing length is 12.

122

the performance penalty of concurrent testing under a fixed workload and testing procedures.

That is, given a set of in testing procedures to achieve the required fault coverage, how many

testing procedures should be applied in each batch so that the performance penalty may be

minimized. The optimization problem is then

k
mmuel+ Z(n) = + \f) 5>i+l - 1)(ity „) + l-l^w))

1=1

subject to 1 < n < in.,

where I,p is the lock-up overhead.

According to our simulation results, the mean dissipation times of T J l ; can be approximated

by

n],{ 0 = i.s

"5

6.25 + (f- 1)2.5 f < 3

11.25 C > 3

G.25 + (£- 1)2.5 C < 5

17.5 C > 5

0.25 + ((- 1)2.5 C < (5

21.25 C > 0

0.25 + (C— 1)2.5 (.< 7

23.75 C > 7

where C is the number of testing procedures. D'p are saturated to Z}|"nx (the second line of

each D'v shown above), when the test pattern is longer than some threshold. 11 ;'j(n) is assumed

to be negligible if D'p ^ £>j"nx. Otherwise, YV],(II) = (r'+1 - 1)?;. It is clear that one should

not hold up a path too long in each testing session because too many blocking packets may

build up in the tree. On the other hand, if each session is too short, the path lock-up overhead

X/jjJl./ - u.

D l (() =

d:\{C)

D " (() =

123

relative to the actual testing time (thus fault coverage) will be too high. Given m and /,',

the key features in this problem are: (1) when n is the smallest integer satisfying = /,•,

k will be the smallest integer satisfying prl = (2) for a set of integers {/?; | /' =

I, • • • , / > • , r f f r l = / > ' , »i < "2 < • • • < " a .}, we have Z (v j) < Z (n 2) < < Z (v k) . Thus,

we only have to compare Z (n ,) ' s where s are the minimal integers satisfying = /,•.

We can solve this optimization problem by the following algorithm.

Algorithm: C 3

BO: := oo, n : = 1

Bl: k := 1

B2: if(Z (k) < then v m i n : = Z (k)

B3: if(Z (ff1) < "min) then clniu := Z ([f])

B4: n : = u + I; if(» > /.•) then stop else go to B2.

The problem does not have any solution if c„u„ = oo at the end of execution of the above

algorithm. Otherwise, the optimal solution is stored in r,,,;,,. As shown in Fig. 4.11, the

optimal batch size tends to decrease with the number of buffers in each queue.

4.4.1 Optimal Testing Length

In conventional system reliability analysis, fault detection mechanisms are often assumed

to have instantaneous response. That is, when a fault occurs, the system can immediately

determine whether it should restart the whole task, or roll back to the last checkpoint [93].

This assumption may hold only for those systems with very expensive fault detection and

masking mechanisms, but is not valid for systems with imperfect (and also much cheaper)

124

•q-2
5.5.

4.5.

3.5.

.a u

2
•a
I
8-

2.5-

25 30 10 15 20 5 0
m

Figure 4.11: Optimal batch sizes with different queue and test pattern lengths.

125

fault detection mechanisms. Note that different applications impose different requirements

of fault coverage and fault detection time. For example, when a detectable fault occurs, the

probability of a successful rollback is strongly dependent on the fault detection time, because

the probability of a fault causing multiple errors increases with its detection time.

The constraint on the mean performance loss sets an upper bound on the frequency of

testing. Thus, the time interval between two successive testing procedures is constrained by

the performance loss induced by the application of these testing procedures. Based on this fact,

we want to optimize fault coverage subject to a performance loss constraint. The cost function

to be optimized takes into account the mean fault detection time, called latency cost, and fault

coverage. Since the length of test pattern monotonically increases with fault coverage, the

mean fault detection time increases monotonically with fault coverage. It should be noted

that frequent testing of the system with low coverage test patterns does not improve system

reliability, because a large portion of faults are undetectable in such a case.

Let Ts be the length of test pattern or the test application time to achieve coverage <">,

and let fault arrivals follow an exponential distribution with rate A. The probability of a fault

occurrence during (//,// + l i] is P] (t j) = = c ~ X t ' X (h + ~ e ~ S t > \ h for a small h . The

mean fault detection time is

Several examples with t> = 1 - t> = 1 - jr, or b = I - , ' ̂ , are considered

to examine the different levels of difficulty associated with concurrent testing. In Fig. 4.12,

these three example conditions are denoted by cvgl, cvg2, and cvg3, respectively. Linear

(//C(/) = '•) and exponential (// '(/) = r') latency costs indicate different levels of importance

of the fault detection time. When the fault detection time is deemed very important, the latency

\

(4.3)

126

cost can be expressed as

r', if the fault is detectable
L C (t) = <

6 i f t h e f a u l t i s u n d e t e c t a b l e .

If d = 1 - c1-r«, the testing cost becomes

r'l't

C'i(Tg) = b [* + (1 - 6)Cm a x
J i)

= (S'-r'TTT(1 - e"(A+l)T') + (1 - S)Gma*
a ~r j-

(J - c '~T / i)A(rT f - c- y r>) + r1-7' (4.4)

]£ i) = I - we get

C - 2 (' I [s) = (I " ̂ r) A (. 7 ' - , ~ y r n + 7 p ~ (* i n a . f
If lfi

As shown in Fig. 4.12 with = 5, when the system is easy to test = I — c''s), one

can obtain very high coverage with a short test pattern. Although high fault coverage is easily

achievable with long, extensive test patterns, the associated testing cost may become too high

to be practically useful. A similar condition occurs when the system is difficult to test (e.g.,

<5 = 1- jr), except that C2 is inherently larger than (7j. In these two cases, the exponential

latency cost sets an upper bound for the length of test pattern.

The other class of examples is when the latency cost is linear, such as

/, if the fault is detectable

if the fault is undetectable.

If =1- the testing cost becomes

c m) = (1 - C 1 ~ T *) ('/>(1 - e-XT*) - | + m + i)e-ST^ +

If t> = i - Tg > 1, the testing cost is

CM) = en - j) ('/;>(i - c-v'<)-| + (Ttf + |)c-A7') +

L C (I) =

127

5.5

4.5.

(4 ©

<D
> O U

42
TP

§
</>
8

C6

2.5

C5

C2

cvgl

cvg2

C4

C3

to 12 14
test pattern length

16 18 20 22 24

Figure 4.12: Testing costs under different testing lengths when Gmax = 5 and A = 10~6.

128

The testing cost monotonically decreases within any practically interesting length of test

pattern, as shown in Fig. 4.12.r' C'a(7*) denotes the most desirable condition under which very

high fault coverage can be obtained quickly, and the latency cost is linear. When 6 = I - yr-,

C:i(C'.i) becomes a monotonically decreasing function of T{,. Due to the poor quality of testing

in this case, €3(0,1) is much higher than Ci(C2).

When the test pattern is too short, the cost contributed by undetectable faults is the dom­

inating factor of the cost function. On the other hand, when the test pattern is excessively

long, the latency cost will become the dominating factor. When the system is very hard to

test, e.g., cvg3, the latency cost will be very high. C'5 and CO in Fig. 4.12 represent the linear

and exponential testing costs, respectively.

4.4.2 Optimal Testing Rings

A receiver of testing packets can determine the correctness of the packet's format and its

routing path without interacting with the sender, because the receiver can identify the source

of the packet, and the path that the packet traversed. It is crucial to create testing rings to

minimize the required number of testing procedures. In a testing ring, a processor (sender)

sends testing packets, and testing outcomes are evaluated by another processor (receiver).

Then, the receiver passes the testing packets to the next processor. Except for the first sender,

no processor is allowed to be visited twice in a testing ring. A testing ring is completed when

the testing packet returns to the original sender. Then, the next testing ring is created, and the

same procedure will be repeated, until the network is completely tested.

The longest testing ring occurs when the testing packet does not return to the original

sender until all processors have been visited. It occurs when processor / sends the testing

packet to processor j such that j = i + r/ mod N, and the largest common divisor between N

'' For clarity, the lest pattern length longer than 26 is not shown.

129

and q is 1. The longest testing ring is usually not optimal, because many path segments may

be tested more than once. When the size of switch is r x r, any optimal testing procedure

should test each of the r2 paths in a switch exactly once. Imagining that all processors are

testing the network, an optimal testing procedure results when all switches have conflict free

permutations (packets in queues of the same switch enter different output ports). For example,

an optimal testing ring occurs when all switches have the same permutation, i — i -(- q mod r,

()<r/< r —] ,V7. Since each processor is connected to one input port of a s.witch, and

the input port can be connected to its /• output ports, each processor has to be used to test

(different parts of) the network r times.

The switch permutations mentioned above can be set up when processors send packets

to their appropriate destinations. For example, when the network topology is baseline, and

the size of switch is 2 x 2, the interconnection rules are (1) (uk't-k—i-* 'a\)/—(«/,•• • •«,+1()

«,_j • • -rf-A+i, where i is the stage number, if = 0, and (2) («/,.«/,._! • • •«]),—(«/.•• • •«;+11

«i • •)/+i if «i =1. Optimal testing rings can be created when all switches have straight

or cross settings. When switches are set to have straight (cross) interconnections, testing rings

are formed as follows: (1) Starting with processor P0, P, = («i • ••"*•) sends the testing

packet to processor R; = (n;,. • • • ajn ,)(/?, = (a/.u/,._, • • • ifi) for cross connections) and vice

versa, (2) After receives the testing packet from Rn Pi notifies processor P,+, to start the

next testing ring. If Pl+\ has already acted as a receiver before, it simply passes the testing

task to ri+1.

Another example is flip networks, where the link permutation is a perfect shuffle. 1'• sends

the testing packet to itself or /'v-i through the network. When a processor submits testing

packets to itself, switches will have straight interconnections, i.e., upper (lower) input port

is connected to upper (lower) output port. On the other hand, all switches have the cross

connection, i.e., the upper (lower) input port is connected to the lower (upper) output port,

130

when submits testing packets to /'v-i- If the testing packet does not return to the sender

in a pre-specified time-out period, either the path Jlij or the receiver j is faulty. If /' acts

as the sender and receiver at the same lime, any faulty component can be identified solely

by itself. When P; and Pj test two paths II ij and IIjj, Pj can inform I\ the testing results

of Hi j through IIjj, and vice versa. Thus, except for the switch S 6 H;j f) II jj, all other

faulty queues on IIjj and IIjj can be detected and located by both processors in at most three

steps.

4.5 Conclusion

Concurrent testing strategies for packet switching networks are analyzed and optimized

in this chapter. Most conventional reliability analyses focus on systems with fault masking

capability, yet little work has been done on concurrent fault detection mechanisms. Important

network parameters such as path locking time, and tree congestion time, are analyzed and/or

simulated.

The off-line part of the polynomial testing method, the low-level testing, is not discussed

in this chapter. Analysis of the low-level testing is straightforward, because the network's

normal operation is completely stopped for testing, and then resumed after testing. Testable

design of the low-level testing makes it veiy effective but less flexible than the high-level

testing. Testable design changes with the circuit implementation, and may pose high hardware

overhead for circuit switching networks. Note that a common property between the high-level

testing and low-level testing is that, when they have the same fault coverage and all the testing

procedures are applied to the system within the same period of time, they will have the same

mean fault detection time. Thus, selection between the high-level and the low-level methods

should be based on the cost and reliability requirements.

The probability distribution of an arbitrary node being blocked is derived by a systematic

131

method. The probability distribution of time for the root of a tree to get blocked is first

derived, and then the computational complexity is reduced by avoiding repetitive calculations

of the same distributions. Then, the distribution of time to block the second buffer in the same

queue can be derived by removing one of the leading packets and adding some newly arriving

leading packets. For an arbitrary node in the tree, we must recursively remove from and add

leading packets to different nodes. The probability distribution of node congestion in the tree

can be systematically derived by the proposed method.

The required computation grows quickly as we move from the root to lower levels of

the tree. In such a case simulations are used to derive mean path locking times, mean root

congestion times, and mean tree dissipation times.

The proposed method can be used to derive the probability distribution of communication

delays in networks like a (hexagonal) mesh, or an N-cube. For example, when the method

is used to derive the communication delay of hexagonal mesh networks utilizing the shortest

path routing [17], all possible shortest paths are spanned into a tree with unwanted branches

removed.

Testing is not free, and unless the system has an easily testable structure, a more realistic

assumption is that the length of test pattern monotonically increases with fault coverage.

Since the fault detection time is very important for fault recovery, it is necessary to trade

fault coverage for mean fault detection time. Examples in Section 4.4 show that when the

mean fault detection time is extremely important, only fault masking can meet the system

requirement. However, for most other applications, we can easily achieve the desired fault

coverage and significantly improve the system reliability with concurrent testing strategies.

132

Appendix 4.A: List of Symbols

A, PK' i yl = {PJ\'i, P/1'2, • • •, PKm} is a set of m leading packets, PK;, i = 1. • • •. in .

It can also be represented as a track tree.

ACT The set of track trees with the same distribution of root blocking time.

A Hitj The /-th arbiter at stage j .

Bj(n) The dissipation time of the j-th tree when the packet generation rate is \>, and

the length of test pattern is 11.

C T , A CT C'T is a canonical tree. /If?' is the set of track trees with the same canonical

tree C'T.

Db Sets of disjoint subtrees in a tree of height b.

Dk
CT• \Dct\ A canonical tree of height k, and | D£.t\ is the number of components in D'cr.

1+ The set of positive integers.

LCN The lowest common node of two or more leading packets.

Pi Processor /.

Mi Memory module /, which is the partner of .

Q:j The /-th queue at stage j.

133

Si,j The /-th switch at stage j.

Ti, Xj 'J\ is the time for I'h'i to reach the root of a tree. Xj is the time when the /-th

leading packet reaches the root of a tree. (A't, A'2, • • •, Xm) is called the order

statistics.

Ti ^ Tj Ti is lexicographically less than or equal to Tj.

Tl\m Tl'c,m = TJiQt m, the destination tree of Qc,m. TJ\m is abbreviated as 7'/',,

whenever the value of (' is immaterial.

Tllnii A destination tree, Tl?,\it = U''=u Iv(M;).

Y(Qi,j) The source queues of Qij.

M Q i j) The destination queues of Qij.

0,0' 0 = (V'u,i,)'i,i • • •, V'/v-1,k)• Vi,j is a random variable denoting the number of

packets in Q;j of PSMIN before reduction. 0' = (}'|, V2 • • •.), where V/ is

a random variable denoting the number of packets in Qi of the reduced network

model.

t> is fault coverage, and !]<, is the length of test pattern to achieve <>.

CHAPTER 5

CONCLUSION

The major contributions of this dissertation are three new network architectures and the

analysis of network dynamics. A discussion of these architectures along with potential appli­

cations of the completed work for future research are summarized in this chapter.

First of all, the NOMI technique presented in Chapter 2 is shown to be a useful design

technique to improve system performance at reduced cost. We have shown that the con­

ventional memory interleaving technique should be combined with network overlapping to

improve system performance at reduced cost. The proposed branch and bound optimization

procedure can either optimize system cost subject to performance constraints, or vice versa.

The other two new architectures, discussed in Chapter 3, are aimed at detecting faults

efficiently to improve network reliability. These two architectures support the high-level

concurrent testing and low-level off-line testing of packet-switching MINs, respectively. In

the low-level testing strategy, the network can be tested off-line in a short time period with

very high fault coverage. On the other hand, the high-level testing strategy requires minimal

amounts of interactions between processors, and is suitable for those systems with non-stop

operations.

The last major contribution is the analysis of network dynamics during high-level network

testing. In the high-level network testing, packets will be blocked if they have to traverse

134

135

through a locked path. If a path is locked up for a long time period, a congestion tree, in

which all packets are blocked, will eventually be formed. The probability distribution of the

time to block an arbitrary node in the network under test has been derived. The computational

complexity in calculating the probability distribution of node blockage is drastically reduced by

the proposed canonical tree model. Other network dynamics like the mean tree dissipation time

and mean path locking time have been studied via extensive simulation. We also developed a

reduced network model to reduce the network simulation time substantially. Finally, optimal

testing coverage has been derived by trading the mean fault detection time for fault coverage.

Efficient testing methods are essential to achieve high system reliability. Architectures

proposed in tliis dissertation are intended to fill the gap between on-line fault detection and

off-line fault diagnosis. Circuit-switching MINs do not have buffers, and thus, do not form

congestion trees. Concurrent testing in OCSMINs can be easily implemented by periodically

assigning one of the «• phases for testing. Since network operations are synchronous and every

cluster knows which of the w phases is dedicated to testing, all the routing faults mentioned

in Chapter 3 can be easily tested. It will be more expensive to perform the low level testing

in OCSMINs due to the extra hardware needed for pattern generation. However, the hardware

overhead can be reduced by having one single pattern generator for each stage. It is clear that

the clustering/NOMI technique, developed in Chapter 2, and testable architectures, developed

in the Chapter 3, can be easily combined in both circuit switching and packet switching

networks. When a network component fails, the excessive performance loss caused by a

smaller network size (resulting from the clustering or NOMI technique) is minimized by

detecting and repairing the fault by the easily testable architectures. Furthermore, applying the

clustering or NOMI technique to a network with an easily testable architecture will make its

hardware overhead negligible.

The network dynamics analysis presented in Chapter 4 may become very useful for the

136

design of packet-switching telecommunication systems. The extremely high capacity of optical

libers must be matched with very high bandwidth, e.g., 1 Gbit/s or liigher, packet-switching

MINs [79,113,52], to make broadband integrated services digital networks (BISDNs) feasible.

Data, digitized voice and video signals are packetized for transmission via BISDNs. Testing

large scale packet-switching MINs used in BISDNs is especially challenging, because stopping

normal network operations for testing will result in loss of a large fraction of their bandwidth.

Furthermore, fault symptoms will change dynamically due to continuous input packets. When

a parallel packet transmission format is used [79], our high-level testing strategy can be easily

applied to the design of packet-switching MENs. On the other hand, when a serial packet

transmission format is employed, the easily-testable architecture for the low-level testing can

be applied with a low hardware overhead.

Several different latency cost functions have been considered in optimizing testing strate­

gies. The latency cost is dependent on a system component's functions and the system work­

load. An interesting future research topic is to characterize latency cost functions for different

system components under different workloads. Characterization of latency cost is particularly

crucial for real-time systems that must complete tasks before their hard deadlines.

Most faults in circuit switching networks do not cause serious performance loss. On the

other hand, packet switching MINs are more prone to system crash due to network congestion

and component failures. For example, when a blocking fault occurs in a switch located at the

last stage of the MIN, the whole network could be paralyzed once a congestion tree with the

faulty switch as its root is formed.

The performance impact of congestion trees is determined by the number of packets blocked

in the tree, the blocking times of these (blocked) packets, and the intensity of incoming network

traffic. Since losing a few (voice) packets does not degrade the speech quality significantly[50],

the simplest method to dissipate a congestion tree is to discard blocked packets. This strategy

137

can be implemented by setting time-out periods for packets. Detection of congestion trees,

along with the dissipation of congestion trees, are deemed vital to the success of next generation

large scale telecommunication switching systems.

BIBLIOGRAPHY

138

139

BIBLIOGRAPHY

[1] G. B. Adams and H. J. Siegel, "The extra stage cube: A fault tolerant interconnection
network for supersystems," IEEE Trans. Comput., vol. C-31, no. 5, pp. 443-454, May
1982.

[2] A. K. Adiga and S. R. Deslipande, "Evaluation of effectiveness of circuit based and
packet based interconnection networks via petri net models," Proceeding of Int'I Con­
ference on Parallel Processing, pp. 533-541, 1987.

[3] D. P. Agrawal, "Testing and fault tolerance of multistage interconnection networks,"
Computer, pp. 41-53, Apr. 1982.

[4] D. P. Agrawal, "Graph theoretical analysis and design of multistage interconnection
networks," IEEE Trans, on Comput., vol. C-32, no. 7, pp. 637-648, Jul. 1983.

[5] D. P. Agrawal and J.-S. Leu, "Dynamic accessibility testing and path length optimization
of multistage interconnection networks," IEEE Trans. Comput., vol. C-34, no. 3, pp.
255-266, Mar. 1985.

[6] K. E. Batcher, "The flip network in staran," Proceeding qflnt'l Conference on Parallel
Processing, pp. 65-71, Aug. 1976.

[7] J. Bellamy, Digital Telephony, John Wiley & Sons, 1982.

[8] V. E. Benes, "On rearrangeable three-stage connecting networks," Bell Syst. Tech. Jour­
nal, no. 41, pp. 1481-1492, Sept. 1962.

[9] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic, Aca­
demic, New York, 1965.

[10] R. Bennetts, Design of Testable Logic Circuits, Addison-Wesley, 1984.

[11] D. P. Bhandarkar, "Analysis of memory interference in multiprocessors," IEEE Dans.
Comput., vol. C-24, no. 9, pp. 897-908, Sep. 1975.

[12] L. N. Bhuyan, "An analysis of processor-memory interconnection networks," IEEE
Trans. Comput., vol. C-34, no. 3, pp. 279-283, Mar. 1985.

[13] L. N. Bhuyan and D. P. Agrawal, "Design and performance of generalized interconnec­
tion networks," IEEE Trans. Comput., vol. C-32, no. 12, pp. 1081-1090, Dec. 1983.

[14] R. Bianchini and J. R. Bianchini, "Wireability of an ultracomputer," NYU Ultracomputer
note §43, 1982.

[15] M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of Digital Systems,
Computer Science, Rockville, MD, 1976.

[16] M. S. C. P. Kruskal and A. Weiss, "On the distribution of delays in buffered multi­
stage interconnection networks for uniform and nonuniform traffic," Proceeding of Int'I
Conference on Parallel Processing, pp. 215-219, 1984.

140

[17] M.-S. Chen, K. G. Shin, and D. Kandlur, "Addressing, routing and broadcasting in
hexagonal multiprocessors," IEEE Trans, on Comput., 1988 (in press).

[18] P. Chen et al., "Interconnection networks using shuffles," Computer, pp. 55-64, Dec.
1981.

[19] V. Cherkassky and M. Malck, "On permuting properties of regular rectangular sw-
banyan," IEEE Trans. Comput., vol. C-34, no. 6, pp. 542-546, Jun. 1985.

[20] V. Cherkassky and E. Opper, "Fault diagnosis and permuting properties of cc-banyan
networks," Proc. of Real Time Systems Symposium, pp. 175-183, 1984.

[21] V. Cherkassky, E. Opper, and M. Malek, "Reliability and fault diagnosis analysis of
fault-tolerant multistage interconnection networks," Digest of Papers, FTCS-14, pp. 246-
251, 1984.

[22] A. Chin, Congestion Control in Routing Networks, Master Thesis, MIT, Massachusetts,
1986.

[23] C. Y. Chin and K. Hwang, "Connection principles for multipath packet switching net­
works," 12th Int'l Symposium on Computer Architecture, pp. 99-108, 1984.

[24] C. Y. Chin and K. Hwang, "Packet switching networks for multiprocessors and data
flow computers," IEEE Trans. Comput., vol. C-33, no. 11, pp. 991-1003, Nov. 1984.

[25] L. Ciminiera and A. Serra, "A fault-tolerant connecting network for multiprocessor
systems," Digest of Papers, FTCS-12, pp. 113-122, 1982.

[26] C. Clos, "A study of nonblocking switching networks," Bell Syst. Tech. Journal, vol.
32, pp. 406-424, 1953.

[27] T. H. Cormen, "Efficient multicliip partial concentrator switches," Proceeding of Int'l
Conference on Parallel Processing, pp. 525-532, 1987.

[28] B. Corp., "Numerical aerodynamic simulation facility feasibility study final report,"
NASA Contract Report CR-152285, Mar. 1979.

[29] I. Corp., "Data sheet: Intel's personal supercomputer,", May 1985.

[30] N. Corp., "Ncube handbook,", 1985.

[31] N. J. Davis IV, W. T. Y. Hsu, and H. J. Siegel, "Fault location techniques for distributed
control interconnection networks," IEEE Trans. Comput., vol. C-34, no. 10, pp. 902-
910, Oct. 1985.

[32] J. B. Dennis, "Data flow supercomputers," Computer, pp. 48-56, Nov. 1980.

[33] S. Dhar, M. A. Franklin, and D. F. Wann, "Reduction of clock delays in vlsi structures,"
Intl. Conf. Computer Design, pp. 778-781, 1984.

[34] D. M. Dias and J. R. Jump, "Analysis and simulation of buffered delta networks," IEEE
Trans. Comput., vol. C-30, no. 4, pp. 273-282, Apr. 1981.

[35] T. Y. Feng, "Data manipulating functions in parallel processors and their implementa­
tion," IEEE Trans. Comput., vol. C-23, no. 3, pp. 309-318, Mar. 1974.

[36] T. Y. Feng, "A survey of interconnection network," Computer, pp. 12-27, Dec. 1981.

141

[37] T. Y. Feng and I. P. Kao, "On fault-diagnosis of some multistage networks," Digest of
Papers, FTCS-12, pp. 99-10I, 1982.

[38] T. Y. Feng and C. L. Wu, "Fault-diagnosis of a class of multistage interconnection
networks," IEEE Trans, on Comput., vol. C-30, no. 10, pp. 743-758, Oct. 1981.

[39] J. P. Fisbburn and R. A. Finkel, "Quotient networks," IEEE Trans. Comput., vol. C-31,
no. 4, pp. 288-295, Apr. 1982.

[40] M. A. Franklin, "Pin limitations and partitions of vlsi interconnection networks," IEEE
Trans. Comput., vol. C-30, no. 4, pp. 283-290, Apr. 1981.

[41] M. A. Franklin, S. A. Kahn, and M. J. Stucki, "Design issue in the development of a
multiprocessor communication network," Proc. 6th Annual Sypm. on Computer Archi­
tecture, pp. 182-187, 1979.

[42] W. K. Fuchs, J. A. Abraham, and K. H. Huang, "Concurrent error detection in vlsi
interconnection networks," Digest of Papers, FTCS-13, pp. 309-315, 1983.

[43] D. D. Gajski, D. J. Kuck, D. H. Lawrie, and A. Samesh, "Cedar- a large scale multi­
processor," Proceeding oflnt'l Conference on Parallel Processing, pp. 524-529, 1983.

[44] C. J. Georgiou, "Fault-tolerant crosspoint switching networks," Digest of Papers, FTCS-
14, 1984.

[45] L. D. Goke and G. J. Lipovski, "Banyan networks for partitioning multiprocessor sys­
tems," Proceedings of the 1st Annual Symp. on Computer Architecture, pp. 21-28,1973.

[46] J. Goldberg et al., Development and Analysis of SIFT, NASA Langley Research Center,
Hampton, VA 23665, Feb. 1984.

[47] S. W. Golomb, Shift Register Sequences, Holden-Day, Inc., 1967.

[48] A. Gottlieb et al., "The nyu ultracomputer- designing an mimd shared memory parallel
computer," IEEE Trans. Comput., vol. C-32, no. 2, pp. 175-189, Feb. 1983.

[49] J. P. Hayes, "On realizations of boolean functions requiring a minimal or near-minimal
numbers of tests," IEEE Trans, on Comput., vol. C-20, no. 12, pp. 1506-1513, Dec.
1971.

[50] A. Hills and K. Scott, "Perceived degradation effects in packet speech," IEEE Trans, on
Acoustics, Speech and Signal Processing, vol. ASSP-5, no. 5, pp. 699-701, May 1987.

[51] A. L.. Hopkins et al., "Ftmp - a highly reliable fault tolerant multiprocessor for aircraft,"
Proc. IEEE, vol. 66, no. 10, pp. 1221-1239, Oct. 1978.

[52] J. Y. Hui and E. Arthurs, "A broadband packet switch for integrated transport," IEEE
J. Select. Areas Commun., vol. SAC-5, no. 8, pp. 1264-1273, Oct. 1987.

[53] R. Huslende, "Optimal cost/reliability allocation in communication networks," Digest
of pappers, FTCS-13, pp. 348-355, 1983.

[54] M. Inc., MC68020 32-Bit Microprocessor User's Manual, Prentice-Hall Inc., 1984.

[55] H. Inose, An Introduction to Digital Integrated Communication Systems, Univ. of Tokyo
Press, Tokyo, 1979.

[56] Z. Kohavi, Switching and Finite Automata Theory, McGraw Hill, 1978.

142

[57] C. P. Kruskal and M. Snir, "The performance of multistage interconnection networks for
multiprocessors," IEEE Trans. Compute vol. C-32, no. 12, pp. 1091-1098, Dec. 1983.

[58] C. P. Kruskal and M. Snir, "The importance of being square," Conference Proceeding,
Annual Int'I Symp. Computer Architecture, pp. 91-98, 1984.

[59] M. Kumar, D. M. Dias, and J. R. Jump, "Switching strategies in a class of packet
switching networks," Proc. 10th Annual Symp. on Computer Architecture, pp. 284-300,
Dec. 1983.

[60] M. Kumar, D. M. Dias, and J. R. Jump, "Switching strategies in shuffle-exchange packet
switching networks," IEEE Trans. Comput., vol. C-34, no. 2, pp. 180-186, Feb. 1985.

[61] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design, Prentice-Hall Inc., 1985.

[62] D. H. Lawrie, "Access and alignment of data in an array processor," IEEE Trans, on
Comput., vol. C-24, no. 12, pp. 1145-1155, Dec. 1975.

[63] C. T. A. Lea, "The load-sharing banyan network," IEEE Trans, on Comput., vol. C-35,
no. 12, pp. 1025-1034, Dec. 1986.

[64] D. C. H. Lee and J. P. Shen, "Easily-testable (n,k) shuffle/exchange networks," Proc.
of Int'I Conf. on Parallel Processing, pp. 65-70, 1983.

[65] M. Lee and C. L. Wu, "Performance analysis of circuit switching baseline intercon­
nection network," Proc. 10th Annual Symp. on Computer Architecture, pp. 82-90, June
1984.

[66] Y. H. Lee and K. G. Shin, "Design and evaluation of a fault-tolerant multiprocessor
using hardware recovery blocks," IEEE Dans, on Comput., vol. C-33, no. 2, pp. 113—
124, Feb. 1984.

[67] J. E. Lilienkamp, D. H. Lawrie, and P. C. Yew, "A fault tolerant interconnection network
using error correcting codes," Digest of Papers, FTCS-12, pp. 123-125, 1982.

[68] W. Y.-P. Lim, "A test strategy for packet switching networks," Proc. of Int'I Conference
on Parallel Processing, pp. 96-98, 1982.

[69] W. Lin and C. L. Wu, "Design of a 2 x 2 fault-tolerant switching element," Proceeding
of Conference, Comput. Archit., pp. 181-189, 1982.

[70] J. Y. Maeng, "Self-diagnosis of multistage network-based computer systems," Digest of
Papers, FTCS-13, pp. 324-331, 1983.

[71] M. Malek and E. Opper, "Multiple fault diagnosis of sw-banyan networks," Digest of
Papers, FTCS-I3, pp. 446-449, 1983.

[72] , "Special issue on no.4 ess," The Bell System Technical Journal, Sep. 1979.

[73] E. J. McCluskey and S. Bozorgui-Nesbat, "Design for autonomous test," IEEE Trans.
Comput., vol. C-30, no. 11, pp. 866-875, Nov. 1981.

[74] D. Nassimi and S. Sahni, "Parallel permutation and sorting algorithms and a new gen­
eralized connection network," Journal of ACM, pp. 642-667, July 1982.

[75] E. Opper and M. Malek, "Real-time diagnosis of banyan networks," Proc. of Real Time
Systems Symposium, pp. 27-36, 1982.

143

[76] K. Padmanabhan and D. H. Lawrie, "Fault tolerance schemes in shuffle-exchange type
interconnection networks," Digest of Papers, FTCS-13, pp. 71-75, 1983.

[77] J. H. Patel, "Performance of processor-memory interconnections for multiprocessors,"
- IEEE Trans. Comput., vol. C-30, no. 11, pp. 771-780, Nov. 1981.

[78] M. C. Pease HI, "The indirect binary n-cube microprocessor array," IEEE Trans. Corn-
put., vol. C-26, no. 5, pp. 458-473, May 1977.

[79] G. Perucca, P. Belforte, E. Garetti, and F. Perardi, "Research on advanced switching
tecliniques for the evolution to isdn and broadband isdn," IEEE J. Select. Areas Com-
mun., vol. SAC-5, no. 8, pp. 1356-1364, Oct. 1987.

[80] G. F. Pfister et al., "The ibm research parallel processor prototype (rp3): Introduction
and architecture," Proc. IEEE 1985 Int. Conf. Parallel Processing, Aug. 1985.

[81] G. F. Pfister and V. A. Norton, "Hot spot contention and combining in multistage
interconnection networks," IEEE Trans. Comput., vol. C-34, no. 10, pp. 943-948, Oct.
1985.

[82] U. V. Premkumar et al„ "Design and implementation of the banyan interconnection
network in trac," AFIPS conference Proceedings, vol. 51, pp. 643-653, 1980.

[83] B. Prince and G. Due-Gundersen, Semiconductor Memories, John Wiley & Sons, 1983.

[84] C. S. Raghavendra and A. Varma, "Indra: A class of interconnection networks with
redundant paths," Proc. of Real Time Systems Symposium, pp. 153-164, 1984.

[85] B. R. Rau, "Interleaved memory bandwidth in a model of a multiprocessor computer
system," IEEE Trans. Comput., vol. C-28, no. 9, pp. 678-681, Sep. 1979.

[86] S. M. Reddy and V. P. Kumar, "On fault-tolerant multistage interconnection network,"
Proceeding of Parallel Processing Conference, pp. 155-164, 1984.

[87] D. A. Schoenfeld, "Confidence bounds for normal means under order restrictions, with
application to dose-response curves, toxicology experiments, and low dose extrapola­
tion," Journal of the American Statistical Association, vol. 81, no. 393, pp. 186-195,
March 1986.

[88] M. Schwartz, Telecommunication Networks, Addison-Wesley, 1987.

[89] J. P. Shen and J. P. Hayes, "Fault-tolerance of a class of connecting networks," Proc.
7th Symp. Comput. Arch., pp. 61-71, May 1980.

[90] J. P. Shen and J. P. Hayes, "Fault-tolerance of dynamic-full-access interconnection
networks," IEEE Trans. Comput., vol. C-33, no. 3, pp. 241-248, Mar. 1984.

[91] K. G. Shin and Y. H. Lee, "Error detection process - model, design, and its impact on
computer performance," IEEE Trans, on Comput., vol. C-33, no. 6, pp. 529-540, June
1984.

[92] K. G. Shin and Y.-H. Lee, "Evaluation of error recovery blocks used for cooperating
processes," IEEE Trans, on Software Engineering, pp. 692-700, 1984.

[93] K. G. Shin, T. H. Lin, and Y.-H. Lee, "Optimal checkpointing of real-time tasks," IEEE
Traits, on Computers, vol. C-36, no. 11, pp. 1328-1341, Nov. 1987.

144

[94] H. J. Siegel et al., "Pasm: A partionable simd/mimd system for image processing and,"
IEEE Trans. Comput., vol. C-30, pp. 934-947, Dec. 1981.

[95] H. J. Siegel and R. J. McMillen, "The multistage cube: A versatile interconnection
network," Computer, pp. 65-76, Dec. 1983.

[96] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design,
Digital Equipment Corp., Bedford, MA, 1982.

[97] J. E. Smith, "Measures of effectiveness of fault signature analysis," IEEE Trans. Corn-
put., vol. C-29, no. 6, pp. 510-514, June 1980.

[98] T. B. Smith and J. H. Lala, "Development and evaluation of a fault-tolerant multiproces­
sor (ftmp) computer volume i: Ftmp principles of operation," Technical report, NASA
Contractor Report 166071, May 1983.

[99] D. Steinberg, "Invariant properties of the shuffle-exchange and a simplified cost-effective
version of the omega network," IEEE Trans. Comput., vol. C-32, no. 5, pp. 444-450,
May 1983.

[100] H. S. Stone, "Parallel processing with perfect shuffle," IEEE Trans. Comput., vol. C-20,
no. 2, pp. 153-161, Feb. 1971.

[101] T. H. Szymanski and V. C. Hamacher, "On the permutation capability of multistage
interconnection networks," IEEE Trans, on Comput., vol. C-36, no. 7, pp. 810-822,
July 1987.

[102] S. Thanawastien and V. P. Nelson, "Interference analysis of shuffle/exchange networks,"
IEEE Trans. Comput., vol. C-30, no. 8, pp. 545-556, Aug. 1981.

[103] S. Thanawastien and V. P. Nelson, "Optimal fault detection test sequences for shuf­
fle/exchange networks," Digest of Papers, FTCS-13, pp. 442-445, 1983.

[104] S. Thanawastien and V. P. Nelson, "Diagnosis of multiple faults in shuffle/exchange
networks," Proc. of Real Time Systems Symposium, pp. 184-192, 1984.

[105] W. N. Toy, "Fault-tolerant design of local ess processors," Proceeding of the IEEE, pp.
1126-1145, Oct. 1978.

[106] N. F. Tzeng and P. C. Y. D. Lawrie, "Fault diagnosis in a multiple-path interconnection
network," Digest of Papers, FTCS-16, pp. 98-103, 1986.

[107] D. F. Wann and M. A. Franklin, "Asynchronous and clocked control structures for vlsi
based interconnection networks," IEEE Trans. Comput., vol. C-32, no. 3, pp. 284-293,
Mar. 1983.

[108] J. H. Wensley et al., "Sift: Design and analysis of a fault-tolerant computer for aircraft
control," Proc. of IEEE, vol. 66, no. 10, pp. 1240-1255, Oct. 1978.

[109] T. W. Williams and K. P. Parker, "Design for testability - a survey," Proc. IEEE, vol.
71, no. 1, pp. 98-112, Jan. 1983.

[110] C. L. Wu and T. Y. Feng, "Tutorial: Interconnection networks for parallel and distributed
processing," IEEE, 1984.

[111] C. L. Wu, W. Lin, and M. C. Lin, "Distributed circuit switching starnet," Proceeding
of Parallel Processing Confernce, pp. 26-33, 1982.

145

[112] M. Yasrebi, S. Deshpande, and J. C. Browne, "A comparison of circuit switching and
packet switching for data transfer in two simple image processing algorithms," Proceed­
ing, 1983 Int'l Parallel Processing Conf., pp. 25-28, 1983.

[113] Y. S. Yeh, M. G. Hluchyj, and A. S. Acampora, "The knockout switch: A simple,
modular architecture for high-performance packet switching," IEEE J. on Selected Areas
in Communications, vol. SAC-5, no. 8, pp. 1274—1283, Oct. 1987.

[114] D. W. L. Yen, J. H. Patel, and E. D. Davidson, "Memory interference in synchronous
multiprocessor systems," IEEE Trans. Comput., vol. C-31, no. 11, pp. 1116-1121, Nov.
1982.

[115] P. C. Yew and D. H. Lawrie, "An easily controlled network for frequently used permu­
tations," IEEE Dans. Comput., vol. C-30, no. 4, pp. 296-298, Apr. 1981.

[116] P. C. Yew, T. F. Tzeng, and D. Lawrie, "Distributing hot-spot addressing in large-scale
multiprocessors," IEEE Dans. Comput., vol. C-36, no. 4, pp. 388-395, Apr. 1987.

[117] H. Yoon, K. Y. Lee, and M. T. Liu, "Performance analysis and comparison of packet
switching interconnection networks," Proceeding, 1983 Int'l Parallel Processing Conf.,
pp. 542-545, 1987.

