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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

During the past several years a great deal of attention has been focused on
industrial automation techniques, especially the use of general-purpose robots. Those
industries which in the past have constructed special-purpose devices for manufac-
turing their products are now looking at the possibility of using robots instead.
Unlike special-purpose tools, robots’ behavior can easily be modified, so that retool-
ing is kept t,o.a minimum. In some cases they can also make feasible the manufac-
ture of a product in lots which would be too small to justify the creation of a
special-purpose machine for their manufacture. Mechanical maintenance is also
simpler, since there presumably would be only a few types of robots performing
many different tasks. (It should be noted, though, that maintenance of special-

purpose machines is replaced with maintenance of special-purpose programs.)

Since robots may be controlled in virtually any manner, one legitimately may
ask how a robot should best be controlled. The obvious answer to this question is
that the robot should produce as large a profit as possiblc per unit time. The usual
assumption is that material costs and fixed costs dominate the cost per item pro-

duced, so that it is desirable to produce as many units as possible in a given time.



There are a variety of algorithms available for manipulator control. These algo-
rithms usually assume that the control structure of the robot has been divided into
two levels. The upper level is called path or trajectory planning, and the lower level is
called path control or path tracking. Path control is the process of making the robots
actual position and velocity match some desired values of position and velocity; the
desired values are provided to the controller by the trajectory planner. The trajec-
tory planner receives as input some sort of spatial path descriptor from which it cal-
culates a time history of the desired positions and velocities. (The term “Path
Planner” is often used in the literature; this is a misnomer, since it does not plan
paths but rather supplies timing information to a pre-planned geometric curve. The
term ‘“trajectory planner” will therefore be used here.) The path tracker then com-
pensates for any deviations of the actual position and velocity from the desired

values.

The reason for dividing the control scheme in this way is that the process of
robot control, if considered in its entirety, is very complicated, since the dynamics of
all but the simplest robots are highly nonlinear and coupled. Dividing the controller
into the two parts makes the whole process simpler. The path tracker is frequently a
linear controller (e.g. a PID controller). While the nonlinearities of manipulator
dynamics frequently are not taken into account at this level, such trackers can gen-
erally keep the manipulator fairly close to the desired trajectory. More sophisticated
methods can be used, though, such as resolved motion rate control [33], resolved

acceleration control [24], and various adaptive techniques [4, 8, 7, 14, 16, 17].

Unfortunately, the simplicity obtained from the division into trajectory plan-

ning and path tracking often comes at the expense of efficiency. The source of the



inefficiency is the trajectory planner. In order to use the robot efficiently, the trajec-
tory planner must be aware of the robot’s dynamic properties, and the more accurate
the dynamic model is, the better the robot’s capabilities can be used. However, most
of the trajectory planning algorithms presented to date assume very little about the
robot’s dynamics. The usual assumption is that there are constant or piecewise con-
stant bounds on the robots velocity and acceleration (19,22, 23]. In fact, these
bounds fary with position, payload mass, and even with payload shape. Thus in
order to make the constant-upper-bound scheme work, the upper bounds must be
chosen to be global greatest lower bounds of the velocity and acceleration limits; in
other words, the worst case limits have to be used. Since the moments of inertia
seen at the joints of the robot, and hence the acceleration limits, may vary by an
order of magnitude as the robot moves from one position to another, such bounds

can result in considerable inefficiency or under-utilization of the robot.

As previously mentioned, robot control is usually divided into trajectory plan-
ning and path tracking stages. At the lower (tracking) level, a great deal of work has
been done, and a variety of methods have been used. One of the earliest tracking
schemes was developed for a prosthetic arm by Whitney, and is called resolved-
motion rate control [33]. Resolved motion rate control (RMRC) makes use of the
manipulator Jacobian to transform desired velocities in some coordinate system
which is natural for the task at hand (e.g. Cartesians) into velocities in joint coordi-
nate space. The velocities are then sent to the individual joint servos. The scheme
has the obvious advantage that it allows the robot to be driven in world, rather than
joint, coordinates. However, generating the joint velocities requires the inversion of

the manipulator Jacobian, which may be time-consuming, and may, if the manipula-



tor is at or near a degenerate configuration, be impossible or very inaccurate.

Luh, Walker and Paul have extended RMRC, adding resolution of accelerations
as well as velocities [24]. The result is resolved-acceleration control, or RAC. The
idea here is to generate desired joint accelerations from accelerations in world coordi-
nates, and to use the Newton-Euler dynamics formulation to generate joint torques
in real time. The accelerations, however, are still assumed to be “generated in some
reasonable way”[24]. In order to utilize the robot fully, the trajectory planner must
be aware of the robot’s structure and actuator limits, and must take these factors

into account. This is very difficult to do in world coordinates.

Another approach to path tracking is the use of adaptive controllers. Dubow-
sky and DesForges used the model-referenced adaptive control scheme (MRACS) to
control a six degree-of-freedom manipulator at UCLA [7]. MRACS makes use of a
reference model with the desired joint characteristics and a joint servo with adju-
stable feedback gains. The feedback gains are then adjusted on the fly so as to make
the actual joint look like the reference model as much as possible. The results of
MRACS appear to be quite good, but the system as presented in [7] is a simple posi-
tion servo; this makes precise velocity control, as needed for minimum-time control
schemes, difficult. It should be pointed out, though, that this is one of the few
schemes where the effects of sampling on system stability and performance have been
investigated (7], so that more is known about the theory of MRACS than about

many other techniques.

Koivo and Guo used an auto-regressive discrete-time model for the manipulator
dynamics, and minimized a quadratic error measure while estimating the coefficients

of the time series with a Kalman filter [16, 17]. Chung and Lee use a Kalman filter



in a different way; they assume that the desired trajectory is given, generate nominal
joint torques using the Newton-Euler method, and use a linear model to generate
corrections to the a priori computed torques. They then use a Kalman filter to esti-

mate the parameters for the linear perturbation model [4].

All the work described above either calculates joint actuator inputs blindly, i.e.,
does not take actuator limits into account explicitly, or assumes that accelerations
have been given and computes actuator torques from the accelerations. But in order
to drive the robot in an efficient way, the dynamics and actuator characteristics of
the robot need to be taken into account. This rules out the use of methods such as
RMRC. The computed torque methods, combined with an appropriate trajectory
planner, provide one means of accomplishing this task, i.e., picking accelerations in a

reasonable way.

One of the early minimum-time trajectory planning systems was developed by
Luh and Walker [23]. It describes the desired manipulator path in terms of its initial
and final points and a set of intermediate points. Each branch of the path has a
maximum velocity assigned to it, and each intermediate point is assigned a maximum
acceleration and a maximum position error. The time taken to go from the initial to
the final point is, then, the sum of the times taken to traverse each branch of the
path plus the sum of the times required to make the transitions from one branch to
the next. The minimum possible sum of these times can then be found using linear
programming. In this case, one must still choose appropriate maximum velocities and
accelerations, and this cannot be done properly without either knowing the dynamic
properties and actuator characteristics of the robot or having some experimental

results which give maximum velocities and accelerations for given robot configura-



tions. Also, since maximum accelerations and velocities are assumed to be constant
over some interval, it is necessary to choose them to be lower bounds of the max-
imum values over the given interval, i.e., worst case bounds on acceleration and velo-
city. Since these bounds will in general depend on position and velocity, this could

result in under-utilization of the robot’s capabilities.

Luh and Lin [22] present a modification of the scheme described above which
uses nonlinear programming to generate the minimum-time trajectory. The major
difference between the method of Luh and Lin and that of Luh and Walker is in a
more careful treatment of the calculation of the times required for the transitions
from one path segment to the next. Also, an efficient technique for solving the non-

linear programming problem is presented, along with a convergence proof.

Lin, Chang and Luh [19] present a third variation on this trajectory planning
method. Instead of using path segments which are straight lines in Cartesian space,
they convert points in Cartesian space into the equivalent joint coordinates, and pass
a cubic spline through these points. The maximum velocities and accelerations are,
then, rvjoint velocities and accelerations, which are easier to compute from the robot
dynamics and actuator characteristics. There is, however, still some calculation (or
measurement) required in order to determine these quantities. This work, inciden-
tally, also allows for limits on the jerk (time-derivative of acceleration). Placing lim-

its on jerk helps prevent mechanism wear.

Kim and Shin [12,13] have presented a method which is similar in some
respects to the linear programming methods presented previously, but which uses the
robot dynamic equations to obtain approximate acceleration bounds at each corner

point. They also point out a set of conditions under which the linear programming



problem reduces to a set of local optimization problems, one for each corner point.

This represents a change in computational complexity of from O (n®)to O (n).

Another type of trajectory planner has been developed by Bobrow, Dubowsky,
and Gibson [3] and Shin and McKay [29,30]. In these minimum-time trajectory
planners, it is assumed that the desired path is given in a parameterized form. The
parametric equations of the path can then be plugged into the manipulator dynamic
equations, giving a set of second order differential equations in the (scalar) path
parameter. Given these dynamic equations, bounds on individual joint torques can be
converted into bounds on parametric accelerations (second time-derivatives of the
path parameter); the allowable sets of second derivatives (one set per joint) are inter-
sected, giving a single allowable set. Bounds on velocities (first derivatives of the
path parameter) can also be found from these equations, since at some velocities
there are no admissible accelerations. Then, using the fact that the minimum-time
solution will be bang-bang in the acceleration, it is possible to construct phase plane
plots which give the optimal trajectory in terms of the parameter and its derivatives.

(The results found in [30] will be presented in Chapter 4.)

The papers [3] and [30] differ primarily in two respects: first, in the method of
Bobrow et. al. the required search for trajectories is carried out by actually con-
structing trajectories and seeing where they go; in Shin and McKay, the search has
been reduced to the problem of finding a sign change in an easily computable func-
tion. Second, some complications may arise with respect to computation of the
admissible velocities for a given manipulator position. It is possible that there may be
several distinct allowable velocity ranges for a given position. In [3] no mention is

made about this possibility, and their search technique may fail if there are distinct



regions. Shin and McKay present a second algorithm to take care of this possibility.

While most people have taken the separate trajectory planning/trajectory
tracking approach, several authors have made attempts at unified approaches to
robot control. One early attempt was the near-minimum time control of Kahn and
Roth [11], who linearized the dynamic equations, transformed the equations so as to
eliminate coupling terms, and generated switching curves for this linear approxima-
tion. The result is a sub-optimal control which seems to give fairly good results if the
initial and final states of the robot are fairly close. It does, however, have some prob-

lems with overshoot, as one would expect from such an approximation.

Another controller using an approximate dynamic model to generate optimal
controls is the near-minimum time-fuel method of Kim and Shin [14]. They use a
model which is linear over one sample périod, and use coefficients in their linear
model which result from averaging the coefficients at the current point on the trajec-
tory and at the final point. The controls which result from this approximation
depend upon whether time or fuel is the predominant term in the objective function,
and ﬁpon the sampling rate. The trajectories for minimum fuel were slower than
those for minimum time but had less overshoot. Increasing sampling rate also had
the effect of reducing overshoot; thus here two parameters could be varied so as to

find a good compromise between manipulator speed and overshoot.

One level up from trajectory planning is spatial planning, the process of finding
collision-free paths for the manipulator to follow. Although the spatial planning
problem is still largely unsolved, some work has been done, mostly with objects
which are assumed to be spheres, cylinders, or convex polyhedra. Lozano-Perez [20]

has reduced the spatial planning problem to two problems: find-space and find-path.



The find-space problem amounts to determining ‘“‘safe’ positions for the object being
moved, i.e., positions where the object does not overlap any obstacles. Find-path is
the process of finding a continuum of safe positions which takes the object from its
initial configuration to a desired final configuration. In [20], Lozano-Perez presents
algorithms for solving these problems in both two and three dimensions, though the
three-dimensional algorithm does not in general give the ‘‘best” (minimum-distance)
solution. In [21], Lozano-Perez describes the manipulator spatial planning problem in
terms of volumes swept out by the links of the manipulator, and introduces
polyhedral approximations of these swept volumes in order to use the results which

are available for polyhedra.

Luh and Campbell [25] describe spatial planning in terms of obstacles and
‘“‘pseudo-obstacles’” which the manipulator must avoid. The pseudo-obstacles arise
because all the links, and not just the payload, must avoid the real obstacles. Luh
and Campbell determined the shapes of some of these pseudo-obstacles for the Stan-
ford arm. In particular, they considered the problem of keeping the back end of the
Stanford arm’s single prismatic link from bumping into things, which has the effect
of creating a pseudo-obstacle on the opposite side of the arm from the real obstacle
which generates it. They also generated polyhedral approximations to these pseudo-

obstacles.

More recently, Gilbert and Johnson [8] have developed a technique for deter-
mining optimal controls in the presence of obstacles. Their technique starts with
some feasible path, given as a cubic spline. They then apply a gradient technique
which both moves the points interpolated by the spline and changes the robot’s velo-

city in such a way as to optimize some performance measure. Obstacle avoidance is
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accomplished by including penalty functions in the performance index.

Another aspect of the trajectory planning problem is the actual generation of
path planners. For those methods which require the manipulator dynamic equations,
this means that the equations must be derived. Since this process involves large
amounts of symbolic calculation and is therefore highly susceptible to human error,
several authors have attempted to mechanize the process of deriving the manipulator
dynamic equations. In particular, Bejczy and Paul (1] and Luh and Lin [26] have
done work in this area. Bejczy and Paul describe methods .for determining when cer-
tain dynamic coefficients must be zero for geometric reasons or because of symmetry.
Lub and Lin describe a method for manipulating the dynamic coefficients symboli-

cally, and give criteria for eliminating insignificant terms in the dynamic equations.

This thesis assumes that the geometric path planner has generated a parameter-
ized curve in joint space, as described in [3] and [30]. The trajectory planning prob-
lem can then be reduced to a problem of small dimension by converting all the
dynamic and actuator constraints to constraints on the single parameter which is
used to describe the path, and the parameter’s time derivatives. Within this frame-
work, a variety of optimization techniques can be applied. The optimization
methods described here apply to both minimum time problems and to more general
minimum cost control problems. It is also possible to modify the constraints to take

uncertain dynamics into account at the trajectory planning stage.

The remainder of this thesis is structured as follows: Chapter 2 introduces the
mathematical notation used throughout the following chapters, and gives a deriva-
tion of the dynamic model of a manipulator. Chapter 3 formally states the problems

to be solved. Chapter 4 presents three related but distinct trajectory planning
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algorithms, and gives results of these algorithms as applied to either a simple two
degree-of-freedom arm or the first three joints of the Bendix PACS robot arm.
Chapter 5 gives some results on selection of near-optimal (in the minimum-time
sense) geometric paths. Chapter 6 presents a modification of one of the trajectory
planners described in Chapter 4 which allows for uncertainties in the dynamic
characteristics of the manipulator which is being controlled. Chapter 7 discusses how

trajectory planners can be generated automatically. The thesis concludes with

Chapter 8.



CHAPTER 2

MATHEMATICAL PRELIMINARIES

Much of the discussion in subsequent chapters involves the dynamic equations
of robot arms, and makes use of tensor analysis and Riemannian geometry. This
brief introduction should help those who are familiar with the ideas of vector and
matrix notation and elementary differential geometry but are unfamiliar with tensor

analysis.

2.1. Tensors and Tensor Notation

Tensor notation is much like vector notation except that the symbols used in
tensor equations may have subscripts and/or superscripts. A vector is written as a
symbol with one index, and a matrix will have two. It is possible in tensor notation
to write arrays of three or more dimensions; a three-dimensional array simply has
three indices. Tensor notation also provides some useful tools for dealing with curves

in spaces of an arbitrary number of dimensions.

Formally, a tensor is a quantity or set of quantities which obeys certain rules
when transformed from ore set of curvilinear coordinates to another. The transfor-
mation rules are of two types, as indicated by the position of the tensor's indices.

Superscripts indicate that the index is contravariant and subscripts indicate that it is

12
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covariant. A contravariant tensor of order one, or a contravariant vector, transforms
from one set of curvilinear coordinates to another (in this case, from unprimed to

primed coordinate systems) according to the law

aq'*

T"= A
1 9q’

|| ™=

T/ (2.1.1)

where N is the dimension of the space under consideration and the q' and q'’ are
the coordinates in the unprimed and primed coordinate systems [32]. Likewise, a

covariant vector transforms according to the rule [32]

dq’

T, = o T, (2.1.2)

|| ™M=

Note that the differentials of the coordinates, d q°, transform according to the con-
travariant rule, though in general the coordinates themselves do not. Writing out the
contravariant transformation rule with dq’ written for T/ and dq'’ written for

T'’ and dividing by dt shows that velocities are contravariant vectors.

A single quantity which retains its value when transformed from one coordinate
system to another is called an invariant or a scalar. It is easily verified that the par-
tial derivatives of an invariant with respect to the coordinates transform according

to the covariant rule.

The generalization to tensors of higher order is straightforward. Tensors of
order two can have two subscripts, two superscripts, or one subscript and one super-
script. These are called covariant, contravariant, and mixed tensors of order two, and

they transform according to the laws



N ] da’
y 3T, (2.1.3)

NN . ;
7] a rs
T =Yy y L 2T (2.1.4)

. .
3q" g
Yy o2 ST/ (2.1.5)

. N
Ti=3 .
r= q

The generalization to tensors of order three and higher follows the obvious pattern.

An important notational tool is the so-called summation convention. If an

index appears twice in a product of two tensor expressions, then the expression is

. N .

summed from 1 to N over the repeated index. Thus a; b’ is shorthand for )] a;b'.
i=1

Using this shorthand, the transformation rules for tensors of orders one and two are

written as

. "noo )
™ — %%7 T T, = % T, (2.1.6)
_ 9q" aq’ i _ 99" 8q’
T‘U _— _5;;-‘ ——q'—’ T'. T” - ‘5;: a_q' Tr' (2.1.7)
. r 1y .
=90 997 g, (2.1.8)

aqu' aqa

It is important to note that a given index should not appear more than twice in any
term of a tensor equation, and that repeated indices should appear once as a sub-
script and once as a superscript. If a repeated index appears, for example, twice as a

subscript, then the resulting quantity will not in general be a tensor. If, on the other
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hand, the index appears once as a subscript and once as a superscript, it is easily ver-
ified that the expression is a tensor whose character is indicated by the remaining
(non-repeated) indices. For example, T;; x’ is a covariant tensor of order one; the j

indices ‘‘cancel’’.

2.2. Riemannian Spaces and Properties of Curves

Another advantage of tensor notation is that it is also the language of Rieman-
nian geometry, so that the tools of this field of mathematics are available. As the
reader may be aware, Riemannian geometry consists of the study of the metrical pro-
perties of spaces of an arbitrary number of dimensions. The space is described by its
metric tensor, which gives the square of the differential line element as a quadratic

form in the differentials of the coordinates, i.e.,
ds? =J;;dq' dq’ (2.2.1)

where J;; is the metric tensor and the q' are the coordinates. J ;j may without loss
of generality be assumed to be symmetric, so that J,; = J;. It also will be
assumed throughout this work that the metric tensor is positive definite, i.e., that
Jij x'x’ > 0 for all x 7 0. Geometries in which this is not true can be developed,
and indeed are used in general relativity theory, but for the cases dealt with here,

J,; will always be positive definite.

The introduction of the metric tensor allows distances and angles to be meas-
ured, and allows the computation of norms of vectors. Distances along curves are cal-
culated by integrating the formula for the differential line element ds . The norm of a

contravariant vector is given by the formula
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Ix* |2 = J;;x*x’ (2.2.2)
The angle between two vectors is given by the formula

J.‘j X‘ yj

S hll A (2.2.3)
il -1l yl

cosfd =

If J;; is positive definite, then it can be shown that the righthand side of equation
(2.2.3) is always between +1 and -1, so that 0 is a real angle. Even if J is not positive

definite, two vectors x and y are said to be orthogonal if and only if J ii x'y! =0.

Note that the expression J;; x'y’ behaves much as the scalar product behaves
in Euclidean space, and indeed reduces to the scalar product in Euclidean space with

Cartesian coordinates.

The curves in a Riemannian space corresponding to straight lines are geodesics,
or curves of minimum distance. The differential equation which describes these
curves can be found from the form of the line element ds using variational tech-

niques. Using such techniques, the differential equation obtained is

d%q’ 4 dq’ dqt
J,, -—;;—2- + [Jl‘ ,'] s —dd— =0 (224)

The symbol [jk ,i] is a Christoffel symbol of the first kind, and is defined by

3J, aJy Al
k,i]=< |22 ¢ 22 4 2ot (2.2.5)
2 aq aq’ aq'

It should be noted that these symbols are not tensors.

Since the metric tensor J;; is positive definite, it is also invertible. The inverse

of this matrix is denoted by J’*, and we have the relationship
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I 3" =6 = {o if § 5£ k (2.2.6)

Multiplying a contravariant tensor x’ by Jij and summing over j gives a new
covariant tensor x; = J; x’. This operation is called lowering a suffiz. Likewise, a
suffix can be raised by multiplying by J* and summing. Thus x' = J¥ x j-

If equation (2.2.4) is multiplied by J™ and summed over i we obtain the equa-

tion

d’q™ {m} dq’ dq*
I R e =0 (2.2.7)

The symbol {;'l:} is the Christoffel symbol of the second kind, and is defined as

{;’,’c} = J™ [jk ,i] (2.2.8)

As a special case, consider ordinary euclidean space with rectangular cartesian
coordinates. Then the metric tensor is just the identity matrix (or Kronecker delta)

6;; ;-and the Christoffel symbols are zero. Reassuringly, equations (2.2.4) and (2.2.7)

d2qm
2

, == 0, the differential equations which describe straight lines.
]

then reduce to

Equation (2.2.7) is often written

75‘ [iﬁf ] —0 (2.2.9)

where the operator ! is called the absolute derivative with respect to s. The abso-

08

lute derivative of a contravariant tensor of order one with respect to the scalar ¢ is

defined as
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»

7k

86 d¢ é

Likewise, the absolute derivative of a covariant tensor is

ST, 4T, (1. dqt
= ) .89
5 de {'k}T' s

(2.2.10)

(2.2.11)

Each of these derivatives consists of the ordinary derivative followed by a term

involving a Christoffel symbol. The absolute derivative of a tensor of order two has

two terms involving Christoffel symbols, tensors of order three have three additional

terms, and so forth. The absolute derivative of an invariant is just the invariant’s

ordinary derivative. It can be shown that the absolute derivative of a tensor is itself

a tensor, unlike the ordinary derivative; this property makes the absolute derivative

a useful quantity.

In many ways the absolute derivative behaves as an ordinary derivative

behaves; it obeys the same rules for derivatives of sums and products, and obeys

something like the chain rule. In particular

5 (Al +pi) o SA L B

n[A +B') = R

§ (aAim. ) — SA' o 3

%(AB,)—6¢B,+A, 7

5 (AiR.) — A’ o :4

%(AB,)—-MB,+A, 5
A SA* dy

(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)
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A curve in a Riemannian space can be written parametrically as
q =/ (2.2.18)

1)
where X\ is some scalar parameter. The derivative of this position vector, dq , is the

A

tangent to the curve. In particular, if A\ is the line element s then it is the unst
tangent to the curve. The absolute derivative of the unit tangent, — [ ], is the

curvature vector. Note that for a geodesic the curvature vector is zero.

As in ordinary differential geometry, the curvature vector is orthogonal to the

unit tangent. To see this, consider the identity

1=J,p'p’ (2.2.17)

i
where p' is the unit tangent —1- dq y . Taking the absolute derivative of both sides of
s

the equation,

8y i 6’ ; ; 8p’
- . Sp’ . p 2.18
0=——p'p +J;—=p +J;p — (2.2.18)

It can be shown that the absolute derivative of the metric tensor is identically zero,

1]

,' .
s

Thus the unit tangent and the curvature vector are orthogonal.

2.3. Robot Arm Dynamics

In order to control a robot properly, the robot’s dynamics must be known.

There are a number of ways of obtaining a robot’s dynamic equations, the two most
y g y
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commonly used methods being Lagrange's method [9, 28] and the Newton-Euler
method [24]. The Newton-Euler formulation gives a set of recursive equations. These
recursive equations require relatively few numerical calculations, but are not well
suited to use in control problems. Lagrange’s equations, on the other hand, express
the joint torques/forces in terms of differential equations. Most commonly, these
equations are written non-recursively, though recursive formulations do exist [31].
For the problems to be dealt with here, the (non-recursive) Lagrangian form is the

easiest form to use.

2.4. Derivation of the Lagrangian Dynamic Equations

The Lagrangian equations of motion are [9, 28]

s dt a(i. aq‘ )

where u; is the i** generalized force, q' is the +** generalized coordinate, and the
Lagrangian L = K - P = kinetic energy minus potential energy. For a robot arm,
or any other system of mechanical linkages for that matter, the kinetic energy K has

the form
K =2 3;(q’ ¢ 2.4.2
—2 Ik q)9° q (..)

where J; is a symmetric, positive-definite matrix describing the inertia of the robot
and the inertial coupling between the robot’s joints. (See [28] for a method of obtain-
ing this matrix.) The Einstein summation convention has been used here, as
described in Section 2.1. The index values range from 1 to N, where N is the

number of joints the robot has.
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The potential energy P is a function of gravity and of the position of the robot

arm, so that we can take P = P(q). The value of L is then

L ==J;(a)d’q" - P(q) (2.4.3)

rol—

Computing the partial derivative 3L/ 851‘ ,

oL
aq'

Y ™

Ta(@a* + 3 (e’ (2.4.4)

Making use of the symmetry of J and changing dummy indices,

Ti(@a’ +53;(@a’ =3 (@) (2.45)

[Ty

Differentiating this with respect to time gives

— [ = J;(q)a’ q,, q’q (2.4.6)
Differentiating L with respect to qf,
aL 33e(a) -+ 3P(q)
22 22 q gt - 2209 (2.4.7)
dq 2 dq dq
Plugging the results from (2.4.6) and (2.4.7) into (2.4.1) gives
i, (9ii(@) 1 8J;(q) aP
u, = J'-l-(q)q’ + lk - - Jk.. sy ‘q) (2.4.8)
q 2 dq dq

Using the symmetry of J,;, a simple manipulation of dummy indices shows that the

term
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83i;(a) 1 03,(q) ).,
- ; 2.4.9
may be written as
1(98J;i(a)  0Ju(q) 09Jj(q))-;- R
3 [ = ¢ ——— - L gl gt =[jk,ila'q* (2.4.10)
q q dq

The square bracket symbol is the Christoffel symbol of the first kind computed with

respect to the metric J,; .

The dynamic equations of an N-degree-of-freedom robot arm thus take the gen-

eral form
q = (2.4.11)
w =J; (v +R;;v/ + Cip(av'v! +5i(q) (2.4.12)
where
qi = ¢ generalized coordinate

i'* generalized velocity

<
|

u; = i'* generalized force

J;j = the inertia matrix
g = -‘;—?—]—? = gravitational force on the i** joint
q

C,ii = [jk,i] = array of Coriolis and centrifugal coefficients
and

R;; = viscous friction matrix.
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Note the correction for frictional effects, i.e., the introduction of the term involving
R', .

As an alternative, the definition of the absolute derivative, equation (2.2.10),

may be used to rewrite equation (2.4.12) as

s
u; =]J.. bv

if _«-S_t- + R,‘j Vj + g (Q) (2.4.13)

This equation is a tensor equation. To see this, consider each term on the right side
of (2.4.12) individually. J;; is known to be a covariant tensor of order two, since the
(invariant) kinetic energy is given by J;; v'v/ for any arbitrary velocity v'. Since
J" is symmetric, this proves that J;; has the tensor character indicated [32]. Since

ot

- . 6v? .
v' is a tensor, so is 5 and hence so is J;;

Likewise, the power consumed by frictional effects is an invariant, and is given
by R;; v'v/. By an argument similar to that used to prove that J;j is a tensor, R,;
must also be a tensor, and hence also R;; v’ . The gravitational term g; is the partial

derivative of the potential energy, which is of course invariant, so it is a covariant

tensor of order one, as indicated by its single subscript.

Since the right-hand side of equation (2.4.12) is a tensor, the left-hand side
must also be a tensor. Hence the equation (2.4.12) is in tensor form. This implies that
(2.4.12) will have the same form in any system of curvilinear coordinates, and all the
quantities in the equation transform according to the temsor transformation laws

given in the previous chapter. (Note, however, that these transformation laws break

"
down if the determinant of the Jacobian matrix, _t')_qT , is zero.)
q



24

In Chapter 5 it will prove useful to express the dynamic equations (2.4.13) in
terms of absolute derivatives with respect to arc length s . For our purposes, we will
define arc length ds by the quadratic form ds? = Ji; dq'dq’. Since the kinetic

energy of the manipulator is given by

1, dq' dq’
K=§J,-,.-73"t-—;—', (2.4.14)

it can be seen that the infinitesimal arc ds in this space is related to the kinetic

energy of the manipulator by the formula [% ] = 2K .

The dynamic equations may now be expressed in terms of the arc length s and

the time derivatives of s. We have, since the absolute derivative obeys the chain

rule,
u; J,—,-% -%: + R,-,-vj +8g- (2.4.15)
Using the relationship v/ = !-(1—1 i: , then
u; = J"’Téa pi%: j: +R,,p'—‘;-‘: +g; (2.4.18)
dq’

where p/ = — is the unit tangent to the manipulator’s path. But
s

6 [ ; ds ép’ da i 6 [da]
% (P dt] B R A
. (2.4.17)
_ bp’ d: da ; d [ ds
= oa’ [ ]
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since the absolute derivative of a scalar is just the ordinary derivative. Plugging this

into the dynamic equations (2.4.16),

d ds
u, = u 68 ] u' = = l ] R,,p d + 8. (2.4.18)
da d%s
Using the ldentlty [ ] [ & ] = 5
] |] 6 1y dt ] 2.

It is interesting to consider the form of the last equation. The left-hand side
consists of externally applied forces. There are four terms on the right-hand side: a
term proportional to the square of the velocity, a term proportional to the accelera-
tion, a viscous friction term which is proportional to the velocity, and a gravitational
term which is a function only of position. The first two terms are of particular
interest. They are just the Coriolis and tangential acceleration terms respectively.

The Coriolis term is just the (vector) curvature of the path multiplied by the square
2
of the speed, and so has a form analogous to the familiar _'."rl term encountered in

uniform circular motion. The second term, likewise, looks like the classical ma term
one sees in one-dimensional Newtonian mechanics. The most important fact to note
is that it is clear from this form of the dynamic equations that the Coriolis terms

result directly from the curvature of the path in the manipulator’s inertia space.

The work W done on the manipulator is
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W = fu dq' = fu, da = fu;p‘ ds. (2.4.20)

Plugging in the expression for u; from Eq. (2.4.18),
Sp? do d
e[ genre )]

+ fR,-,-p‘p’%: d + [gipids. (2.4.21)

] .
Using the facts that the curvature vector 6Tp is orthogonal to the unit tangent p’
b

and that p' is a unit vector, i.e., that J;; p'p’ =1, Eq. (2.4.21) transforms to
ds i g ds i
W= f[ ] ds [_Jt ]d" + fR"fp' P 'Zt_d" + f‘fp ds

1 (ds i g ds i

The power consumed by the manipulator at any given time is just

_ _ ds ds
P=— = ” +R,;p'p’ [ tl +g;p' T (2.4.23)



CHAPTER 3

PROBLEM STATEMENT

The goal of automation, as previously stated, is to produce goods at as low a
cost as possible. In practice, costs may be divided into two groups: fixed and vari-
able. Variable costs depend upon details of the manufacturing process, and include,
in the cases where robots are used, that part of the cost of driving a robot which
varies with robot motion, and some maintenance costs. Fixed costs are those which
remain constant on a per-unit-time basis. Fixed costs include taxes, heating costs,
building maintenance, and, in the case of a robot, the portion of the electric power
which the robot uses to run its computer controller and other peripheral devices. If
one aésumes that the fixed costs dominate, then cost per item produced will be pro-
portional to the time taken to produce the item. In other words, minimum cost is
equivalent to minimum production time. This important special case will be treated
in some detail later. A loose statement of the minimum-cost path planning problem

is as follows:

What control signals will drive a given robot from a given initial configuration
to a given final configuration with as small a cost as possible, given constraints
on the magnitudes of the control signals and constraints on the intermediate
configurations of the robot, i.e., given that the robot must not hit any obsta-
cles?

27



While the problem of avoiding obstacles in the robot’s workspace is not easily
formulated as a control theory problem, the problem of moving a mechanical system
with minimum cost is. One way to sidestep the collision avoidance problem, then, is
to assume that the desired path has been specified a priori, for example as a
parameterized curve in the robot’s joint space. If this assumption is added, then one

obtains a second, slightly different problem statement:

What controls will drive a given robot along a specified curve in joint space
with minimum cost, given constraints on initial and final velocities and on con-
trol signal magnitudes?

This form of the problem reduces the complexity of the control problem by introduc-
ing a single parameter which describes the robot's position. The time derivative of
this parameter and the parameter itself completely describe the current state (joint
positions and velocities) of the robot. The control problem then becomes essentially a
two dimensional minimum-cost control problem with some state and input con-

straints,

In this thesis, the minimum-cost control problem will be divided into two sub-

problems:

1. Given a curve in the robot’s joint space (or some equivalent coordinate sys-
tem), the robot’s dynamic properties, and the robot’s actuator characteristics,
what set of signals to the actuators will drive the robot from its current state
to a desired final state with minimum cost?

2. Given the solution to problem 1, what curve should be selected, i.e., what
curve will give the best (minimum-cost) solution?

This thesis will present several methods for solving the first problem, and some

approximate methods for solving the second.



To state problem 1 more formally, assume that the geometric path is given in

the form of a parameterized curve, say

q" =f ‘(X), OSXSXmu (3'1)

where q' is the position of the i** joint, and the initial and final points on the tra-
jectory correspond to the points A=0 and A=)\_,,. Also assume that the bounds on
the actuator torques can be expressed in terms of the state of the system, i.e., in

terms of the robot’s speed and position, so that

u€E(q,q) (32)

where u is a vector of actuator torques/forces, and E:RY XRN —R¥ is a set func-
tion. N is the number of joints the robot has. Given the functions f *, the set func-
tion E, the desired initial and final velocities, and the manipulator dynamic equa-
tions (2.4.11) and (2.4.12), problem 1 is to find the controls u(\) which minimize the

cost functional C' given by

xm

C = [ #u(M)a(A).a(\)dX (3.3)
0

Problem 2 may be stated in much the same way as problem 1, except that one
set of constraints, the set of geometric path constraints, is replaced by a more gen-
eral set of constraints. These more general constraints state that the robot must not
pass through any configuration in which it hits obstacles in its workspace. There will
in general be an infinite number of ways in which the robot can do this, even when
many obstacles must be avoided in the workspace. In the past, paths have fre-

quently been constructed simply by connecting a set of corner points with straight
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lines and then allowing the path planner to “round off” the corners. But straight
lines are not simple motions to produce for most robots, and so are probably not the
best paths to choose. It should also be noted that the shortest path may not be the
minimum-cost path. In particular, the shortest cartesian path may have one or more
corners, and the robot would have to come to a complete stop at these points. If the
objective is, for example, to minimize traversal time, then one would almost certainly

not want a path with any corners in it.

There are several other problems which must be surmounted in order to make a
path planning scheme practical. In particular, in minimum-time path planning, one
or more joints are driven at maximum torque. If there are any errors in the com-
puted torques, such as those caused by modeling errors, then the path planner may
ask the path tracker to use a higher torque than it is capable of generating. The
robot will then stray from the desired path. It is therefore necessary to carry out
path planning calculations with this in mind, so that any variation in the parameter
measurements can be accommodated by the path tracker without saturating the

actuators. In other words, if the robot’s nominal dynamic equations are given by

u; = F(q,q,9) (3.4)

and its actual dynamic equations are given by

u; = Fyq,q,q) (3.5)

then it is desired that changes in the required torque due to the error F, - F; not
result in a torque request which exceeds the capacity of the actuators. This leads to

the problem
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3. Given bounds on the modeling errors for the robot’s dynamics, how can the
trajectory planning scheme be altered so that the modelling errors do not
make the actual required torques exceed the torques which the actuators can
provide!

Another practical aspect of the trajectory planning problem is that of the
description of curves and the actual calculation of actuator torques. Some suitable
method of representing curves is required, and all computations involving those
curves should be done automatically. In particular, it should be possible, given a
robot’s dynamic equations, to generate a path planner for that robot. This is espe-
cially desirable in view of the fact that the dynamic equations of all but the simplest
robots are very complicated, and any manipulation of such equations will be prone to

human error. This gives rise to another problem, namely

4. Given a robot’s dynamic equations, is it practical to generate a path planner
for that robot automatically?

In summary, the robot path planning problem can be divided into four parts:

1.  Trajectory planning: Given a geometric path in joint space expressed as a
parameterized curve, actuator torque limits expressed in terms of the robot’s
position and velocity, the dynamic equations of the robot, desired initial and
final velocities, and (possibly) externally-imposed constraints on velocity and
jerk (the time-derivative of acceleration), how can the joint torques which
minimize a particular cost functional be generated?

2. Generation of geometric paths: How does one generate a geometric path which
avoids collisions with obstacles but can also be traversed at low cost?

3. Handling uncertainties: How sensitive will the generated torques be to varia-
tions in the robot’s dynamic parameters, and how can these variations be taken
into account at the trajectory planning stage?

4. Automatic calculation: Can all calculations be handled mechanically, and if so,
is there a systematic way of generating a path planner for a given robot?

Solutions to these problems are the subjects of the next four chapters.



CHAPTER 4

TRAJECTORY PLANNING

The trajectory planning problem is basically an optimal control problem. One
possible approach to the solution of this problem is to apply one of the standard
tools of optimal control theory, Pontryagin'’s minimum principle. However, this
approach requires solving a two-point boundary value problem for a non-linear sys-
tem of differential equations with non-linear constraints; clearly, this does not lead to
a tractable solution. The minimum principle also sheds little or no light on the other
auxiliary problems, such as sensitivity to parameter variations. Therefore, we will

take a more intuitive but systematic approach.

Three trajectory planners will be presented here. The first method will be
referred to as the phase plane method. It is so called because it makes use of plots of
the “pseudo-velocity” p = X vs. the position parameter A\. (Recall that the robot is
to move along a geometric path in which the joint positions q' are given by a set of
parametric functions, i.e., ¢' = f *(\).) Such a plot, in which a velocity is plotted as
a function of position, is generally referred to as a ‘“‘phase plane plot”, hence the
name. Actually all three trajectory planners described here make use of this idea in
one way or another, and from here on, the term ‘“‘trajectory” will be taken to mean

‘‘phase trajectory’’, or A\-p plot.

32
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The phase plane methed is in general applicable only to minimum time prob-
lems, but this is often the case in which we are most interested. Since only
minimum-time solutions are to be considered, it is useful to consider how this restric-
tion on the objective function can be used. Obviously, minimizing traversal times is
equivalent to maximizing traversal speed. Given this fact, it is easy to see that, at
least in the simplest case, the minimum time solution consists of an accelerating and
a decelerating part; the robot should accelerate at its maximum rate, then “put on
the brakes” at precisely that time which will bring it to a stop at the destination
point. Of course, there will in general be some velocity limits as well as acceleration
limits. The velocity limits are imposed by the interaction of velocity-dependent force
terms in the dynamic equations and the actuator torque limits; the actuators must
generate enough torque to overcome these forces and keep the manipulator on the
desired path. If the robot is to avoid these velocity limits, then the trajectory must
alternately accelerate and decelerate, and the switching points should be timed so
that the trajectory just barely misses exceeding the velocity limits. A more precise
desgription of this method appears in the next section of this chapter, including a
derivation of the velocity limits and an algorithm for generating the optimal trajec-

tories. Other complications are also discussed.

As an alternative, dynamic programming can be used to solve the trajectory
planning problem. Dynamic programming is an impractical method for solving the
general path planning problem for an arm with a large number of joints, since there
are two state variables per joint, thus requiring a 2n dimensional grid. (This is a
classic example of the ‘“curse of dimensionality”.) However, when the path is given,

there are only two state variables; thus only a 2-dimensional grid is required.
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To use dynamic programming, the grid is set up so that the position parameter
X is used as the stage variable. Thus a ‘“‘column” of the grid corresponds to a fixed
value of A\, while a “‘row” corresponds to a fixed p value. One starts at the desired
final state (the last column of the grid, with the row corresponding to the desired
final u value) and assigns that state zero cost. All other states with position A, are
given a cost of infinity. Then the usual dynamic programming algorithm can be
applied. The algorithm starts at the last column. For each point in the previous
column one finds all the accessible points in the current column, determines the
minimum cost to go from the previous to the current column, and increments costs
accordingly. For each of the previous grid points, the optimal choice of the next grid
point is recorded. When the initial state is reached, the optimal trajectory is found
by following the pointer chain which starts at the given initial state. In the case at
hand, determining which points are accessible from one column to the next is simply
a matter of checking to see if the slope of the curve connecting the two points gives
a permissible value. (The slope limits can be found from the limits on the actuator
torques.) The incremental cost is easily computed for minimum time-energy prob-

lems, so a running sum can easily be kept for the total cost.

Dynamic programming has the advantage that it is a well-established and well-
understood optimization method. It also gives the control law for any point on the
curve, and so makes provision for the robot to vary its speed if necessary. (This of
course assumes that the robot stays on the desired path.) On the other hand, if it is
implemented in the most obvious and straightforward manner, it requires a large
array for computations, and if the array size is to be known in advance then an

upper bound on the velocity is needed. In practice, there may be artificially imposed
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velocity bounds, but in general it would be necessary to either calculate velocity
bounds in advance or create a new (larger) grid and start all over if the trajectory
left the grid. The computation times also increase rather quickly as the density of
the grid, and hence the accuracy of the solution, increases. Some modifications to the

algorithm will be suggested which should considerably increase its speed.

It should also be noted that dynamic programming may still be used even if the
robot’s actuator torque constraints are not independent of one another; this is not
the case with the phase plane method. Making the phase plane algorithm work for
non-independent actuators would require that the space of actuator torques be
searched for an acceleration bound. Dynamic programming only requires that a
function be available which returns a yes-or-no answer to the question “if this
acceleration is desired, will the required torques be realizable!”’. The dynamic pro-

gramming algorithm itself performs the search of the actuator torque space.

A third algorithm, called the perturbation trajectory improvement algorithm,
will be presented. This algorithm is in some respects similar to the dynamic program-
ming Aalgorithm, though like the phase plane method it is only applicable to
minimum time problems, at least in the form in which it is presented here. This algo-
rithm starts with an initial feasible trajectory, and perturbs the trajectory in such a
way that the traversal time for the trajectory decreases, while the trajectory remains
feasible. This method has most of the advantages of the dynamic programming
method, and can be modified to generate minimum-time trajectories when there are
limits on the jerk, or the derivative of the acceleration, as well as limits on joint

torques.
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4.1. Parameterization of the Robot Dynamic Equations

Before delving headlong into the trajectory planning problem, the effects of res-
tricting the manipulator’s motion to a fixed path will be investigated. In what fol-

lows, the manipulator will be restricted to some geometric path

e f'(X), 0<Xx< Amax (4.1.1)

Plugging this into the dynamic equations (2.4.11) gives an expression for the velocity

g =LA _drty dff
vi=gq o & X A e (4.1.2)

where p=\ is the pacudo-vélocity of the manipulator. Equation (2.4.12), the equation

for the joint torque/force vector, becomes

u; = J,,(X)% [l + J,',' (X)d—z-f-—{ [12 (4.1.3)
. |
+CuA A i r A g0

2]

The equations of motion along the curve (i.e., the geometric path) then become

= B (4.1.4)
df 7 - d®tr?
u, = J.,(X)—Ff; p+ J,‘,‘ (\) d£2 [.12 (4.1.5)
df 7 dft df’
+CuMA Ly, A g0
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It is of course assumed that the coordinates q‘ vary continuously with X. It is also

] 274 '
assumed that the derivatives 47 and 1—{—2- exist, and that the derivatives 47’

d)\ dX
are never all zero simultaneously. This ensures that the path never retraces itself as
X goes from O to Ap,,. Such a retrace would force the parameter A\ to take a discon-

tinuous jump in order for the point q' to move forward continuously.

It should be noted that in practice the spatial paths are given in Cartesian coor-
dinates. While it is in general difficult to convert a curve in Cartesian coordinates to
that in joint coordinates, it is relatively easy to perform the conversion for individual
points. One can then pick a sufficiently large number of points on the Cartesian
path, convert to joint coordinates, and use some sort of interpolation technique (e.g.

cubic splines) to obtain a similar path in joint space (see [19] for an example).

Introducing some shorthand notation, let

df’
MiEJiy_'f—X'v
ooy 4 o 4 dft
Ql —"Ju dxz +Cu dN dX\ ’
=g, 47
Ri=R,; d\’
SiESi‘
We then have
u, =Mp+ Qu'+Rip+S5 (4.1.8)

Note that the quantities listed above are functions of . For the sake of brevity, the
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functional dependence is not indicated in what follows.

4.2. The Phase Plane Method

With the details of curve parameterization out of the way, the phase plane tra-
jectory planning method may now be derived. (This derivation is substantially the
same as that found in [30]. ) As was mentioned earlier in this chapter, the phase
plane algorithm determines a series of alternately accelerating and decelerating phase
trajectory segments. The acceleration and deceleration along these segments are the
maximum allowable and minimum allowable values of the pseudo-acceleration p.

These values will now be derived.

4.2.1. Derivation of Pseudo-Acceleration Limits

Consider the constraints on the inputs, namely u,-mi"(q,c.l) <u; < u,-m“(q,(‘l).
The torque constraints along the parameterized curve can be found by inserting
'

f'(\) for q' and % p for (.1‘. This gives constraints of the form

uim}“()‘,p) < u; < u™{\p). The dynamic equations (4.1.8) can be viewed as hav-

ing the form

u =¥, (Mg + 0Q;(\ p)

where ¥, (X\) = M;()\) and Q;(\,p) = Q;(\)u® + R;(A\)u + S;(\). For a given state,
i.e., given X\ and p, this is just a set of parametric equations for a line, where the
parameter is p The admissible controls, then, are those which are on this line in the
input space and alsé are inside the rectangular prism formed by the input magnitude

constraints. Thus the rectangular prism puts bounds on p. The reason for



converting from bounds on the input torques/forces to bounds on the pseudo-
acceleration p is that all the positions, velocities, and accelerations of the various
joints are related to one another through the parameterization of the path. Given the
current state (\,u), the quantity g, if known, determines the input torques/forces for
all of the joints of the robot, so that manipulation of this one scalar quantity can
replace the manipulation of n scalars (the input torques) and a set of constraints

(the path parameterization equations).

For evaluating the bounds on s explicitly, (4.1.8) can be plugged into the ine-

qualities u™® < u; < u®* so that

u () < Mip + Qi + Rip + 5; < uP¥(\p) (4.2.1.1)

If M; =0, then these inequalities put no constraints on p. However, the inertia

matrix J;; is positive definite, and by hypothesis the derivatives % are not all

zero simultaneously at any point on the curve. Therefore,

for all values of \. But then we must have at least one non-zero M;, so that there
will always be some constraint on the pseudo-acceleration. In those cases where
M; 5 0, manipulation of inequalities (4.2.1.1) gives

u - Qu* - Rip- S
| M; |

. mx_ w2 _R.u-S:
| M; |

(4.2.1.2)

or
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LB; < p < UB; (4.2.1.3)

where

u ™ M; >0) + uP>(M; <0) - (Q; p*+R; p+5; )
M;

LB, (4.2.1.4)

and

u (M >0) + u(M; <0) - (Q; p*+R; p+5; )
M.

UB;

(4.2.1.4)

The expression (M; >0) evaluates to one if M; >0, zero otherwise. Since these con-

straints must hold for all n joints, » must satisfy

max LB; < p < min UB; or GLB(\p) < p < LUB(\p) (4.2.1.6)
s )

Note that it has not been assumed here that u™® and u®** are constants; they
may indeed be arbitrary functions of A and u. Later these quantities will be
assumed to have specific, relatively simple forms, but these forms should be adequate

to describe most of the actuators used in practice.

The difference between the trajectory planning algorithm to be presented and
those which are conventionally used can be seen in terms of equation (4.2.1.6).
Assume that the parameter X is arc length in Cartesian space. Then p is the speed
and p the acceleration along the geometric path. Since most conventional trajectory
planners put constant bounds on the acceleration over some set of position intervals,
one would have GLB(A\ ) < pigin < #t < Ppux < LUB(X\,p), where ppi, and pp,,
are constants. The conventional techniques, then, restrict the acceleration more than

is really necessary. Likewise, constant bounds on the velocity will also be more
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restrictive than necessary.

4.2.2. Formulation of the Optimal Control Problem

With the manipulator dynamic equations and joint torque/force constraints in
suitable form, we can address the actual control problem. Problems which require
the minimization of cost functions subject to differential equation constraints can be
expressed very naturally in the language of optimal control theory. The usual
method of solving such a problem is to employ Pontryagin’s maximum principle[8].
The maximum principle yields a two-point boundary value problem which is, except
in some simple cases, impossible to solve in closed form, and usually is difficult to
solve numerically as well. We will therefore not use the maximum principle, but will
use some simpler reasoning, taking advantage of the specific form of the cost func-

tion and of the controlled system.

In the case considered here, minimum cost is equated with minimum time, thus

maximizing the operating speed of the robot. The cost function can then be

¢
! . . .
expressed as T = fo 1-dt where the final time ¢; is left free. It is assumed here
that the desired geometric path of the manipulator has been pre-planned, and is pro-

vided to the minimum-time controller in parametric form, as described earlier.

With this parameterization, there are two state variables, i.e., A\ and p, but

(n +1) equations. One way to look at the system is to choose the equation i=u and

one of the remaining equations as state equations, regarding the other equations as

constraints on the inputs and on p However, the problem has a more appealing sym-

metry if a single differential equation is obtained from the n equations (4.1.8) by
]

multiplying the i equation by 4/ and sum over 1, giving

dX\
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or
U=MMNs+QM\Np*+RM\n+ S(\) (4.2.2.2)

where, expanding the values of M;, @,, R;, and S;, we have

MO) = 3,004 4L (4223)
o =3, LIy o 40 4 AL (122.4)
R(\) =R, -‘%-‘ % (4.2.2.5)
S\ = s.'(k)—dg (4.2.2.6)
U\ = "df)‘ (4.2.2.7)

This formulation has a distinct advantage. Note that the coefficient of p is quadratic
in the vector of derivatives of the constraint functions. Since a smooth curve an
always be parameterized in such a way that the first derivatives never all disappear
simultaneously, and since the inertia matrix is positive definite, the whole equation
can be divided by the non-zero, positive coefficient of p, providing a solution for g in
terms of A and p. Now there are only two state equations, and the original n

dynamic equations can be regarded as constraints on the inputs and on p

The M term in (4.2.2.2) is a quadratic form reminiscent of the expression for

the manipulator’s kinetic energy. In fact, if the parametric expressions for the q. are
p P p q,
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plugged into the formula for kinetic energy, one obtains the expression K ===-% Myl

The @ term represents the components of the Coriolis and centrifugal forces which
act along the path plus the fictitious forces generated by the restriction that the
robot stay on the parameterized path. The R term represents frictional components,
and S gives the gravitational force along the path. U is the projection of the input

torque vector onto the velocity vector.

With this formulation, the state equations become

A=p (4.2.2.8)

p=— [U -Qu-Rp- s] (4.2.2.9)

The traversal time of the path, T, can be written in terms of X\ and p as
> Mo

xll.-
dt 1
T =t; = |1l:dt = —_—d\ = —_d ) (4.2.2.10)

! { 0 dX { l‘(’\)

Given these forms for the dynamic equations and the cost function, we have the
Minimum Time Path Planning (MTPP) problem as follows.
Problem MTPP:
Find p*(\) and u;(A\,z°()\)) by minimizing T subject to (4.2.2.8), (4.2.2.9),
w00 (A)<u e (V) SuP¥(Aps’(A), 0 < X < Mgy, and the boun-

dary conditions p*(0)=pg and p° (A pax)=p; .
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4.2.3. Phase Plane Plots

At this point, it is instructive to look at the system's behavior in the phase
plane. The equations of the phase plane trajectories can be obtained by dividing

equation (4.2.2.9) by (4.2.2.8). This gives

ap

ﬂ‘:.‘.‘i=i‘=_1_[u_ 2 _ _]

75N iy v Quw' -Rp-S§ (4.2.3.1)
dt

Noting again that the total time T that it takes to go from initial to final states is

ku.(
T = f 71‘ d), it is easily seen that minimizing time requires that the pseudo-
0

velocity p be made as large as possible, a result which would be expected intuitively.

The constraints on g have two effects. One effect is to place limits on the slope

of the phase trajectory. The other is to place limits on the value of u. To obtain the

limits on :—i‘ , one simply divides the limits on p by p, since %i; =¥#,

B

To get the constraints on p, it is necessary to consider the bounds on p. If, for
particular values of A and pu, we have LUB(\,p)< GLB(\,1) then there are no per-
missible values of y Therefore, for each value of A\ we can assign a set of values of u
as determined by the inequality LUB(\,u) - GLB(\,)>0. This inequality holds if
and only if UB;(\,p) -~ LB;(\,u)20 for all i and j. The intersection of the regions
determined by these inequalities produces a region of the phase plane outside of
which the phase trajectory must not stray. This region will hereafter be referred to
as the admisaible region of the phase plane. Using the equations for the lower and

upper bounds for all ¢ and 5,
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u¥(M; >0) + u™™(M; <0) - (Q;p> + R;p + S, )

(4.2.3.2)
M;
u (M, >0) + uP(M; <0)- (Q;p*+ R;p + ;)
- 7
Rearranging this inequality,
Q Qi |, R, R; S, 8
[ﬁ' -A'l'; B+ Tl: VJ s+ 7’ - 7’ (4.2.3.3)

. [u,”’“(M,v <0) - uPR(M; >0)  uPHM; <0) - uP(M; >0) ]20
| M; | | M; |

It will prove convenient to “‘symmetrize” the input torque bounds in the discus-

sion which follows. Each joint has a mean torque u A', and a maximum deviation A’

. . g g g i . gmax _ ymin
given by u, = '—-—5—-'— , A' = —3——-2—u'—— . The inequality (4.2.3.3) can
then be rewritten as
Qi Qj 2 Ri R;
v v L v val 4234
[M,- M, A (4.2.3.4)

uy uf Al Al
A >
[M; M~]+[|M,-| ¥ IM,-I]‘O
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At this point, a specific form for the torque bounds will be assumed. If the
maximum and minimum torques for each joint are functions only of the states q'
and c.;‘ (i.e., the actuator torques are all independent of one another) and are at most
quadratic in the velocities ti‘, then this inequality yields a simple quadratic in u.
This allows one to solve for the velocity bounds using the quadratic formula. A par-
ticularly simple and useful special case is that encountered when the actuator is a
fixed-field D.C. motor with a bounded voltage input. In this case, the torque con-
straints take the form uP®=V!, . + k,f.:;‘ and uPP=Vi. + k! &‘ where V..
and Vi _ are proportional to the voltage limits and k is a constant which depends

upon the motor winding resistance, voltage source resistance, and the back EM.F.

Vi + Vi . Vi - Vi
generated by the motor. Let V,,, ==-—-43--f-“--é——"3—n and A' = ——m—"-’-‘-?——mg . Then,
we get

i i ] df'.
uy =V, + knq =V, + k,.-:ix B (4235)

From here on, the case outlined above will be used for the sake of simplicity.
The only changes required for the more general case of quadratic velocity dependence
of the torque bounds is a re-definition of the coefficients in some of the equations

which follow.

Introducing yet more shorthand notation, let

A= [.9:‘ _ 8 ] (4.2.3.6)

M,‘ M}'



i df’ - df !
1 Vaue + km Ty chc + kn’u Ty
po=|B _Bi|_ ot D (a2a)
Y M,’ s M M, .
[ A A7
Cij= + 4.2.38
T T T ] (4.23.8)
b= |5 _ 5
[ Ml M’ M. (4.2-3.9)

Noting that (at least in this case) A;;=-A, B;j=-Bj;, C;j=C};, and

D,;=-D,;, we have the inequalities
A,',' [12 + B,',‘ p+ C,',' + D,',' 20 (4.2.3.10)

~Ai;; ¥’ - Bjp+ Cij - D;; >0 (4.2.3.11)

The second inequality is obtained by interchanging i and j and using the symmetry

or anti-symmetry of the coefficients. Only the cases where § %5 need be considered,

so there are ﬂ%.—l-) such pairs of equations, where n is the number of degrees of

freedom of the robot.

If Aj; =B;; =0, we have C;; -D;; >0 and C;; + D;; 2 0, which are
always true if the robot is “strong” enough so that it can stop and hold its position
at all points on the desired path. If A;; = 0 and B;; 0, then we have a pair of
linear inequalities which determine a closed interval for u. If A;; 7% 0, then, without
loss of generality, we can assume that A;; >0. Then the left-hand side of the first of

the inequalities (4.2.3.10) is a parabola which is concave upward, whereas for the
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second it is concave downward. When the parabola is concave downward, then the
inequality holds when p is between the two roots of the quadratic.rlf the parabola is
concave upward, then the inequality holds outside of the region between the roots
(Figure 4.2.1). Thus in one case p must lie within a closed interval and in the other it
must lie outside an open interval, unless of course the open interval is of length zero.
In that case, the inequality constraint is always satisfied and the roots of the qua-

dratic will be complex.

Since the admissible values of g are those which satisfy all of the inequalities,

the admissible values must lie in the intersection of all the regions determined by the

inequalities. There are ﬂ%i) inequalities which give closed intervals, so the inter-

section of these regions is also a closed interval. The other 2-(—';—:!-) inequalities,

when intersected with this closed interval, each may have the effect of ‘“punching a

hole” in the interval (Figure 4.2.2). It is thus possible to have, for any particular

value of )\, a set of admissible values for p which consists of as many as a( ";1)'*'2

distinct intervals. When the phase portrait of the optimal path is drawn, it may be
necessary to have the optimal trajectory dodge the little “islands” which can occur
in the admissible region of the phase plane. (Hereafter, these inadmissible regions will
be referred to as sslands of inadmisssbility, or just sslands.) It should be noted,
though, that if there is no friction, then B;; =0, which means that in the concave
upward case the inequality is satisfied for all values of p. Thus in this case there will

be no islands in the admissible region.

In addition to the constraints on p described above, we must also have p > 0.

This can be shown as follows: if 4 < 0, then the trajectory has passed below the line
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p = 0. Below this line, the trajectories always move to the left, since p = 4 <0.

dt

Since the optimal trajectory must approach the desired final state through positive
values of u, the trajectory would then have to pass through g = 0 again, and would
pass from s < 0 to p > 0 at a point to the left of where it had passed from u > 0
to p < 0. Thus in order to get to the desired final state, the trajectory would have
to cross itself, forming a loop. But, then, there is no sense in traversing the loop; it
would take less time to just use the crossing point as a switching point. Thus we

need consider only those points of the phase plane for which g > 0.

Another way of thinking about the system phase portrait is to assign a pair of
vectors to each point in the phase plane. One vector represents the slope when the
system is accelerating (i.e., p is maximized) and the other represents the slope for
deceleration (i.e., B is minimized). This pair of vectors looks like a pair of scissors,
and as the position in the phase plane changes, the angles of both the upper and
lower jaws of the pair of scissors change. In particular, the angle between the two
vectors varies with position. The phase trajectories must, at every point of the phase
plane, point in a direction which lies between the jaws of the scissors. At particular
points of the phase plane, though, the jaws of the scissors close completely, allowing
only a single value for the slope. At other points the scissors may try to go past the
closed position, allowing no trajectory at all. This phenomenon, and the condition
p >0, determine the admissible region of ihe phase plane. This is illustrated in Fig-
ure 4.2.3. Note that the boundary of the admissible region passes through those
points which have only a single vector associated with them, corresponding to those

states where only a single acceleration value is permitted.
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4.2.4. Determination of Optimal Trajectories

For illustrative purposes, we first present an algorithm for finding the optimal

trajectories for which there are no islands in the phase plane which need to be

dodged. The only restrictions, then, will be that 4 must lie between a pair of values

which are easily calculable, given \. The optimal trajectory can be constructed by

the following steps called the Algorithm for Constructing Optimal Trajectories, No

Islands (ACOTNI).

S1.

S2.

S3.

S4.

Start at A=0, p==p, and construct a trajectory that has the maximum
acceleration value. Continue this curve until it either leaves the admissible
region of the phase plane or goes past A==\,.. Note that “leaves the admissible
region” implies that if part of the trajectory happens to coincide with a section
of the admissible region’s boundary, then the trajectory should be extended
along the boundary. It is not sufficient in this case to continue the trajectory

only until it touches the edge of the admissible region.

Construct a second trajectory that starts at A==Ap,,, p=p; and proceeds
backwards, so that it is a decelerating curve. This curve should be extended

until it either leaves the admissible region or extends past A\=0.

If the two trajectories intersect, then stop. The point at which the trajectories
intersect is the (single) switching point, and the optimal trajectory consists of
the first (accelerating) curve from A==0 to the switching point, and the second

(decelerating) curve from the switching point to A=\, (Figure 4.2.4).

If the two curves under consideration do not intersect, then they must both

leave the admissible region. Call the point where the accelerating curve leaves



S5.

S6.
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the admissible region A\;. This is a point on the boundary curve of the admissi-
ble region(Figure 4.2.5). If the boundary curve is given by p==g()\), then search

along the curve, starting at \,, until a point is found at which the quantity

¢(A)E%-‘-; ——dd—i changes sign. (Note that since g()\) determines the boundary of

the admissible region, there is only one allowable value of %i; . Also note that if

g

g(\) has a discontinuity, 5y

must be treated as +o00 or -oo depending upon

the direction of the jump.) This point is the next switching point. Call it X,.

Construct a decelerating trajectory backwards from A, until it intersects an

accelerating trajectory. This gives another switching point (see point A in Fig-

ure 4.2.6).

Construct an accelerating trajectory starting from \;. Continue the trajectory
until it either intersects the final decelerating trajectory or it leaves the admissi-
ble region. If it intersects the decelerdting trajectory, then the intersection gives
another switching point (see point C in Figure 4.2.6), and the procedure ter-

minates. If the trajectory leaves the admissible region, then go to S4.

This algorithm yields a sequence of alternately accelerating and decelerating

curves which give the optimal trajectory. Before discussing the optimality of the tra-

jectory, one has to show that all steps of the ACOTNI are possible and that the

ACOTNI will terminate.

Addressing the first question, S1, S2, S3, S5, and S6 are clearly possible. S4

requires finding a sign change of the function ¢()\). Since ¢()\) must be greater than

zero where the accelerating trajectory leaves the admissible region and less than zero

where the decelerating trajectory leaves, there must be a sign change. Therefore all
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steps are possible.

In order to prove that ACOTNI terminates, it is must be shown that the search
for switching points in step S4 will be performed a finite number of times. To prove
this, it is sufficient to prove that the number of isolated zeros of ¢()\), the number of
intervals of positive extent over which ¢()\) is zero, and the number of intervals over
which ¢()\) does not exist are all finite. To do this, some assumption about the form
of the functions f ‘(\) must be made. It will be assumed here that the f* are real
valued, piecewise analytic, and composed of a finite number of pieces. (In other
words, the f* are analytic splines.) Under these assumptions, the following theorem

proves the convergence of ACOTNI within a finite number of iterations.

Theorem 4.2.1: If the functions f° are composed of a finite number of ana-

lytic, real-valued pieces, then the function #()\) has a finite number of intervals over
which it is identically zero and a finite number of zeros outside those intervals.

Proof: The inertia matrix, Coriolis array, and gravitational loading vector are
all piecewise analytic in the q', and since the f ‘()\) are analytic in ), the inertia
ma;rix, etc. when expressed as as functions of A (as in Eqs. (4.2.2.3) and (4.2.2.4)) are
piecewise analytic and have a finite number of analytic pieces. The functions
M;, Q;, R;, S; of Eq. (4.1.8) are, therefore, also piecewise analytic. Since a real-
valued analytic function with no singularities in a finite interval must either have a
finite number of zeros in that interval or be identically zero, the quantities M; must
either be identically zero in the interval considered or have a finite number of zeros.

We cannot have all of the M; zero, for if that were the case we would have

godLiArt

i ax = M 0, which is not allowed by hypothesis. If only one of
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the M; is non-zero, then there is no boundary curve to deal with, and so no zeros.
With two or more not identically zero, there will be a boundary curve. The curve is
given by one of the equations (4.2.3.10) (with “>" replaced by “=") for some pair
of indices s and j. Since the coefficients A ,B,C, and D in Eq. (4.2.3.10) are ana-
lytic except at the zeros of the M;, and because the M; have a finite number of
zeros, we can divide the interval under consideration further, using the zeros of the
M; as division points. Within each subinterval, then, only one of the equations
(4.2.3.10) holds. Since Eq. (4.2.3.10) determines g as an analytic function of A\ within
this interval, the bounding curve g()\) is piecewise analytic. The curve ¢(\), then, is
also piecewise analytic and is either identically zero or has a finite number of zeros in
each subinterval. Thus, since ¢()\) either is identically zero in each subinterval or has
a finite number of zeros in the subinterval, the number of subintervals is finite, and

the number of intervals is finite, the number of zeros and zero-intervals is finite. Il

Finally, the following theorem proves the optimality of the solution generated

by the ACOTNI.

Theorem 4.2.2: Any trajectory generated by the ACOTNI is optimal in the

sense of minimum time control.

Proof: Proof of this theorem is straightforward. First, make three observa-
tions: (i) From the form (4.2.2.10) of the cost T, there must be some A\, such that
the point (\y,u') on the new trajectory is higher than the point (A\y,u) on the
ACOTNI trajectory, i.e., u'>p. Otherwise, we would not have a trajectory with a
smaller travel time. (ii) The trajectory produced by ACOTNI consists of alternately
accelerating and decelerating segments, and can therefore be divided into sections

which consist of one accelerating and one decelerating segment. (iii) The admissible
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portions of these sections which lie above the ACOTNI trajectory are bounded on
the left and right by either the line A = 0, the line A\ = \,,, the boundary of the
admissible region, or the ACOTNI trajectory itself. Now consider the point (\,pn')
and the trajectory on which it lies. This trajectory, if extended backward and for-
ward from (\g,p#’') must intersect a single section of the ACOTNI trajectory at two or
more points, since otherwise it would either leave the admissible region or not meet
the initial or final boundary conditions. One such point must occur for A < \, and
one must occur for A > X\,. But since the accelerating segment of the trajectory pre-
cedes the decelerating segment, the new trajectory must either intersect the
accelerating part of the ACOTNI trajectory twice, intersect the decelerating part
twice, or first intersect the accelerating part then the decelerating part. But since the
torques were chosen so as to minimize or maximize U in equation (4.2.3.1), any of
these situations leads to a contradiction of a theorem on differential inequalities

presented in [18], pp. 41-43. I

The whole idea of the algorithm is to generate trajectories which come as close
as possible to the edge of the admissible region without actually passing outside it.
Thus the trajectories just barely touch the inadmissible region. In practice this
would, of course, be highly dangerous, since minute errors in the control inputs or
measured system parameters would very likely make the robot stray from the desired

path. Theoretically, however, this trajectory is the minimum-time optimum.

We are now in a position to consider the general case, i.e., the case in which
friction, copper losses in the drive motor, etc., are sufficient to cause islands in the
phase plane. In this case, the algorithm is most easily presented in a slightly different

form. Since there may be several boundary curves instead of one, it is not possible to
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search a single function for zeros, as was done in ACOTNI. Thus instead of looking
for zeros as the algorithm progresses, we look for them all at once instead, and then
construct the trajectories which “‘just miss’ the boundaries, whether the boundaries
be the edges of the admissible region or the edges of islands. The appropriate trajec-
tories can then be found by searching the resulting directed graph, always taking the
highest trajectory possible, and backtracking when necessary. More formally, the

Algorsthm for Construction of Optimal Trajectories (ACOT) is:
S1. Construct the initial accelerating trajectory. (Same as ACOTNI.)
S2. Construct the final decelerating trajectory. (Same as ACOTNI.)

S3. Calculate the function ¢(\) for the edge of the admissible region and for the
edges of all the islands. At each of the sign changes of ¢()\), construct a trajec-
tory for which the sign change is a switching point, as in ACOTNI S5 and S6.
The switching direction (acceleration-to-deceleration or vice-versa) should be
chosen so that the trajectory does not leave the admissible region. Extend each

trajectory until it either leaves the admissible region, or goes past Ap,,.
S4. Find all intersections of the trajectories. These are potential switching points.

S5. Starting at A=0, p=p,, traverse the grid formed by the various trajectories in
such a way that the highest trajectory from the initial to the final points is fol-

lowed. This is described below in the grid traversal algorithm (GTA).

Traversing the grid formed by the trajectories generated in S3 and S4 above is
a search of a directed graph, where the goal to be searched for is the final decelerat-
ing trajectory. If one imagines searching the grid by walking along the trajectories,

then one would try to keep making left turns, if possible. If a particular turn lead to
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a dead end, then it would be necessary to backtrack, and take a right turn instead.
The whole procedure can best be expressed recursively, in much the same manner as

tree traversal procedures.

The algorithm consists of two procedures, one which searches accelerating
curves and one which searches decelerating curves. The algorithm is:

AccSearch:

On the current (accelerating) trajectory, find the last switching point. At this
point, the current trajectory meets a decelerating curve. If that curve is the
final decelerating trajectory, then the switching point under consideration is a
switching point of the final optimal trajectory. Otherwise, call DecSearch,
starting at the current switching point. If DecSearch is successful, then the
current point is a switching point of the optimal trajectory. Otherwise, move
back along the current accelerating curve to the previous switching point and

repeat the process.

DegSearch:

On the current (decelerating) trajectory, find the first switching point. Apply
AccSearch, starting on this point. If successful, then the current point is a
switching point of the optimal trajectory. Otherwise, move forward to the next

switching point and repeat the process.

These two algorithms always look first for the curves with the highest velocity,
since AccSearch always starts at the end of an accelerating curve and DecSearch
always starts at the beginning of a decelerating curve. Therefore the algorithm finds

(if possible) the trajectory with the highest velocity, and hence the smallest traversal
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time.

The proofs of optimality and convergence of this algorithm are virtually identi-
cal to those of ACOTNI, and will not be repeated here. Note that in the convergence
proof for ACOTNI the fact that there is only a single boundary curve in the zero-

friction case is never used; the same proof therefore applies in the high-friction case.

4.2.5. Numerical Examples

To show how the minimum-time algorithm works, a numerical example follows.
The robot used in the example is a simple two-degree-of-freedom robot with one
revolute and one prismatic joint, i.e., a robot which moves in polar coordinates.
Despite its simplicity, the example robot is sufficient to show most important aspects
of the phase plane trajectory planning method. (More complicated examples are
given later.) The path chosen is a straight line. Before applying the minimum-time
algorithm, we must derive the dynamic equations for the robot. This requires calcula-
tion of the inertia matrix, so masses and moments of inertia of the robot must be

given.

A drawing of the hypothetical robot is shown in Figure 4.2.7. The robot consists
of a rotating fixture with moment of inertia Jy through which slides a uniformly
dense rod of length L, and mass M, . The payload has mass M, and moment of iner-
tia J;, and its center of mass is at the point (z,y) which is L, units of length from
the end of the sliding rod. (The full dynamic equations for this arm are derived in

the Appendix.)
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In the examples presented here, the robot will be moved from the point (1,1) to

the point (1,-1). The equation of the curve can be expressed as r = sec 4, where #

ranges from +—Z to ——: . Introducing the parameter )\, one possible parameterization

is

@
i

g
>

r = sec(-g -\) (4.2.5.1)

Now introduce the shorthand expressions M; = M, + M, , K = M, (L, +2L,),

L 2
and J; = Jy+ J, + M, (L,,2 + L/ L, + —é ). Plugging these expressions and the

expressions for the derivatives of r and @ into the dynamic equations for the polar

manipulator gives (see the Appendix for a detailed derivation)

u, =-M, sec(—: -\) tan(-: -\ p -k, sec(—: -\) ta.n(-{ By (4.2.5.2)

+ [M, sec(—: -)\) [sec"(-;' -\) + tanz(ir 2N+ -’é{ - M, sec(—: -\) | p?

+ u? |2M, sec(%r—)‘) -K sec(-: -\) tan(—:-)\)

Solving for p, we have
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p= 1 [u, + k. p sec(-f{-—)‘) tan(—:—)\)

M, sec(—: -2) tan({—k)

(4.2.5.4)

- p? {M, sec(-:—)‘) (sec"’(—:—k) + tanz(%;—)‘)) + -I—; - M, sec(—:—)\)}}

and

ug+ kyp- p2{2M sec(-g—)‘) -K }sec(—: -\) tan(—: -2)
po= (4.2.5.5)
J - Ksec(-: -A) + M, sec2(-g -\)

The signs of the coefficients of u, and uy are

-1 o<x<§

agn(u,) = and egn (uy) =1 (4.2.5.8)

T T
+1 Tang?
1 <M<

The limits on p imposed by the & joint are the same over the whole interval.

For simplicity, let un';u = -u,,"nx for s = r, 0, then the limits are

wlo+ [{2M, sec(-’-r—)‘) - K} see(< -\) tan(< N |pi-kyn
. 4 4 4
p < J (4.2.5.7)
g - Ksec(—: -A) + M, secz(-g—k)

and
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-un{'m + [{2M, sec(—: -\)-K} sec(—: -2) ta.n(.f.!r N|pt -k
b2 (4.2.5.8)
h-K SCC({{ -A) + M, sec"’(—: -2)

For the r joint, consider the case when A<-¥ . Then we also have

i‘ < 1 {ll r
- max

M, sec(< -)\) t,an(_’r_)‘) (4.2.5.9)

4 4
+ 2M‘ SCC(—”—X) tanz(_zr -X) + i{ ”2
4 4 9
T T
- - __x A
k, psec(4 )tan(4 )‘)}

and

= 1 {_u"r’“ (4.2.5.10)

M, Sec(—:—)\)tan({-)‘) -2.5.

+ [2M, sec(-g—)s) tanz(.;r -\ + _15{ ]pz

-k p sec(-f-:—k) tan(ir—)‘)}
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For X>—: the limits have the signs of u_,, reversed.

Equating upper and lower limits on p gives the boundary of the admissible

region. For k<-3r , Egs. (4.2.5.8) and (4.2.5.9) give

ApP+Bp+C 20 (4.2.5.11)
where
A = -KM, sec‘({-)‘) + 2M, secs(g—)‘) + gKM, sec"’({—k) (4.2.5.12)
K? r KJ,
-(eM Jy + = Jsec(L -\) + —F
eM g + 2 Jsec( y )+ 2
B = (J;k - M, k,)sec(-g -—X)tan(-j{ -\) - K&, secz({ -X)tan(—’; -)\) (4.2.5.13)

+ Mk, tan(-:{ —X)secs(—: -))

C = gy (J - Ksec(-)) + My sec’(7-)) (4.25.14)

+ul. M, tan(-;r -\) sec(-g -\)

Likewise, Eqs. (4.2.5.7) and (4.2.5.10) give
-Ap*-Bu+C >0 (4.2.5.15)

The same inequalities, with u_,, negated, work when X Z-j-; .
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Finally, we need to determine the differential equations to be solved. These

equations are

. 1 [
B = —Uy

J - K sec(ir “\) + M, sea(_:i' -)) (4.2.5.16)

-u, sec(-g -A) tan(-: -\) + 2p° M, sec‘(—:—X) tan(T:r =)

- {k, tan’( -X) sec’(£ ) + ka}u]

A=p (4.2.5.17)

The numerical values of the various constants which describe the robot are
given in the Appendix in Table A.l1. Using these data, the differential equations

were solved numerically using the fourth-order Runge-Kutta method, the program

being written in C and run under the UNIX' operating system on a VAX-11/780°.
The derivative of the boundary curve g()\) (needed to compute the function ¢(\))
was calculated numerically, and the sign changes of ¢()\) found by bisection. The
graphs of the resulting trajectories and of the boundary of the admissible region are
given in Figure 4.2.8 for the zero-friction case and in Figures 4.2.9 and 4.2.10 for the

high-friction case.

'UNIX is a trademark of Bell Laboratories.
*VAX is a trademark of Digital Equipment Corporation.
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Note in particular the shape of the admissible region boundary in Figure 4.2.9.
For values of A less than about 0.42 there is not a single range of admissible veloci-
ties, but two ranges. Thus there is an “‘island” ip the phase plane, though the island
is chopped off by the constraint that X\ be positive. While the existence of such
islands may at first seem to defy intuition, the example shows that they do indeed
exist. In this case, the island does not really come into play in the calculation of the
optimal trajectory. Nevertheless, the example does demonstrate that there may be
situations where the admissible region has a fairly complicated shape. Since most
practical manipulators have more than two joints and have more complicated
dynamic equations than those of the simple robot used here, it is conceivable that
the admissible region of the phase plane for a practical robot arm could have quite a

complicated shape.

As a final example, to demonstrate clearly the existence of islands in the phase
plane, we include a sketch of the admissible region of the phase plane for a two-
dimensional Cartesian robot moving along a circular path. In this case, the dynamic

equations are a simple pair of uncoupled, linear differential equations with constant

coefficients, i.e., u, == mz + k,i, u, = mg + kyg} where m = mass of z and y
joints, k, = coefficient of friction of z joint, and k, = coefficient of friction of y
joint.

Moving this manipulator in a unit circle, say in the first quadrant, requires that

z =cos\, y =sin\, 0<\< 12' (4.2.5.18)

Plugging these expressions and their derivatives into the dynamic equations gives
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u, = -m p sin\ - m p® cos\ - k, p sin) (4.2.5.19)

u, = m p cos\ - m p’ sin\ + k, p cosh (4.2.5.20)

Now let the torque bounds be -7 <u, ,u, <+7T. Then the bounds on g are
54y

-T - mp? cos.)‘ - k; psin\ <a< +T - mp? COSOX - k; p sin) (4.2.5.21)
m sin\ m sin)
and
2 g i
T A mpsioh by peosh AT+ m p” sin - ky p cos (4.2.5.22)

m cos\ m cos\

The admissible region consists of the region where the inequalities given above allow
some value of the acceleration g, as previously described. Simplifying the resulting

inequalities gives the admissible region as that area of the phase plane where
mp® + (k, - ky )p sinX cosX + T'(sin\ + cosh) > 0 (4.2.5.23)
and

-mp® - (k, - ky)u sinX cos\ + T (sin\ + cosk) > 0 (4.2.5.24)

Using the values m =2, k, =0, k, =10, and T =2 gives the region plotted in

Figure 4.2.11 and clearly shows the island.
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Figure 4.2.1. Admissible regions of p determined by parabolic constraints
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Figure 4.2.4. Case when accelerating and decelerating curves intersect
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Figure 4.2.7. The two degree-of-freedom polar robot
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Optimal trajectory
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Figure 4.2.8. Optimal trajectory, zero friction case
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4.3. The Dynamic Programming Method

The algorithms presented in the previous section are adequate for solving the
minimum-time trajectory planning problem, provided that the actuator torque limits
do not depend on the joint velocity in a complicated way and are independent of one
another. However, in situations where driving the robot consumes large amounts of
power, the assumption that minimum time is equivalent to minimum cost may not
be valid; then the phase plane algorithm gives a solution to the wrong problem.
Interdependence of actuator torque constraints is another very real possibility that
‘the phase plane method cannot handle. This interdependence may occur, for exam-
ple, when a robot uses a common power supply for the servo amplifiers for all joints,
or when all joints of a hydraulic robot are driven from a common pump. Finally, it
is assumed that the joint torques can be changed instantaneously. This is only
approximately true, and indeed it is sometimes desirable to limit the derivatives of
the joint torques (or, equivalently, the jerk, or derivative of the acceleration) to

prevent excessive mechanism wear.

. One meéns of eliminating these limitations is to use a more general optimization
technique. The method proposed here is to use dynamic programming [15] to find
the optimal phase plane trajectory. The dynamic programming technique places few
restrictions on the cost function that is to be minimized. Putting limits on jerk is
also (theoretically) possible, and interdependence of torque bounds can be handled
fairly painlessly, as will be seen later. One of the major drawbacks of dynamic pro-
gramming, the “curse of dimensionality”, is not an issue in the trajectory planning
problems considered here, since the use of the parametric functions (4.1.1) reduces

the dimension of the state space from 2n for an n -jointed manipulator to two.



77

4.3.1. Problem Formulation

As before, the manipulator is assumed to move along a path given by (4.1.1),
and the dynamics are written in the form of (4.1.8). Initially, it is also assumed that
the set of realizable torques can be given in terms of the state of the system, i.e., in

terms of the robot’s position and velocity. Then we have
P

u=(u,uy, - u,)" €E(qq) (4.3.1.1)

where q is the first derivative of q with respect to time, and u; is the i actuator
torque/force. E is a function from R"™ XR" to the space of sets in R". In other
words, given the position and velocity, £ determines a set in the input space. The
input torques u; are realizable for position q and velocity q if and only if the torque
vector u is in the set E ('q,ti). Note that indepenidence of the actuator tofque limits

is not assumed.

If limits on the derivatives of the joint torque (or, equivalently, derivative of the
acceleration, or the jerk) are also to be applied, then we also must satisfy the ine-
qualities

lu; | < K;(\p) (4.3.1.2)

The cost C given by (3.3) may be transformed into

xm
C=[ LOupu)dX (4.3.1.3)

The minimum-cost trajectory planning problem then becomes that of finding
p=p‘(\) which minimizes (4.3.1.3) subject to Eq. (4.1.8) and the inequalities

(4.3.1.1) and (4.3.1.2).
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4.3.2. Trajectory Planning Using Dynamic Programming

To see how dynamic programming can be applied to this problem, first note
that by using the parameterized path (4.1.1), the dimensionality of the problem has
been reduced; there will be only two state variables \ and p, regardless of how many
joints the robot has. The ‘‘curse of dimensionality” has therefore been avoided. To
apply dynamic programming, one first must divide the phase plane into a discrete
grid. Then, the cost of going from one point on the grid to the next must be calcu-
lated. Note that since u; will be determined as a function of A and u, Eq. (4.3.1.3)
can be written strictly in terms of A and p; thus the cost computation can be done
entirely in phase coordinates. Once costs have been computed, the usual dynamic
programming algorithm can be applied, and positions, velocities and torques can be

obtained from the resulting optimal trajectory and Eqgs. (4.1.1) and (4.1.8).

The informal description given above describes the general approach to the
MCTP problem. In detail, there are some complications. Therefore, some simplifying

but realistic assumptions will be made as we proceed. First, the grid’s \-divisions are
. i
assimed to be small enough so that the functions M;, Q,, R;, S, and % do not

change significantly over a single A-interval. Then, the coefficients of Eq. (4.1.8) are
effectively constant. So are the coefficients of (4.2.3.1), which we will use as our (sin-
gle) dynamic equation. (Other assumptions, such as piecewise linearity, are possible.
However, these assumptions complicate the analysis considerably.) Note that (4.2.3.1)
does not explicitly depend on time. Therefore, for purposes of carrying out the
dynamic programming algorithm, we may treat the quantities A\ and u as a stage
variable and a single state variable rather than two state variables. Using (4.2.3.1)

as our (single) dynamic equation, and noting that M, Q, R, and S are
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approximately constant over one A-interval, we need to find a solution to (4.2.2.2)

which meets the boundary conditions

B¢ )=p0, B(\i+1)=m (4.3.2.1)

in the interval [ Mg, \; ] (see Figure 4.3.1). In order to do this, some form for the
inputs u; needs to be chosen. It should be noted that as the DP grid becomes finer,
the precise form of the curves joining the points of the grid matters less. As long as
the curves are smocth and me:_ionic, the choice of curves makes a smaller and
smaller difference as the grid shrinks. The implication of this is that we may choose
virtually any curve that is convenient, and as long as the grid size is small, the

results should be a good approximation to the optimal trajectory.

We will use the form

u, = Q,‘ }12 + R.‘[l + V, (4322)

for the input, where the V; are constants that may be chosen to make the solution
meet the boundary conditions (4.3.2.1). Form (4.3.2.2) was chosen because it yields

particularly simple solutions.

In what follows, we first obtain a solution without torque bound interaction,
and then extend the solution to accommodate torque constraints of a much mocre

general type.

4.3.3. Case of Non-Interacting Torque Bounds

When the joint torque bounds do not interact, the sets E in (4.3.1.1) are given
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E(qq) = {(“1: o uy)T fudi(qq) S u; < u.{;ax(q,é)} (4.3.3.1)

Taking the projection of the input torque vector, as given by (4.3.2.2), onto the

i i
velocity vector 45’ gives U= Qp’+ Rp+ V, where V = V~ﬂ— . Plugging

dX\ A\
this into the differential Eq. (4.2.3.1) gives
dp 1 2
—4- +Qp+R +-(S-Qp°-Rp-V)=0 (4.3.3.2)
dX\ m
or
dp _ _1(5-V)
D (4.3.3.3)
Solving this equation, we have
M _ .
A=K - .
Tk (4.3.3.4)

Evaluating the constant of integration K and the constant V so that (4.3.3.4) meets
the boundary conditions (4.3.2.1), one obtains

M (B2-1%) + M a(p’-pd)

=
I‘12'ﬂ02

(4.3.3.5)

Solving for p in terms of \ gives

\ -\ 2 _ 2
. \/ (g = M@ + (0 = Mg (1336)
Aes1— N
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Now that the path is known over one A-interval, we need to know the inputs

u; and the components of the incremental cost.

To evaluate the input torques, we may use Eq. (4.1.8) and the value of p Not-

ing that ”EL pr-Z—L; and using Eq. (4.3.3.3), we obtain

p= -(-l/-;TS-) = constant. (4.3.3.7)

The quantities M and S are given, and, using Egs. (4.3.3.6) and (4.3.3.7), V can be

calculated to be

V=5 + -%’ - x‘: i—_” )‘i (4.3.3.8)
which gives
p= L (4.3.3.9)
2(Ng41 - i)
Therefore, the equations for u; become
u, =Q;pl+Rip+S; + M;- B Ho (4.3.3.10)

241 - M)’

Assuming the joint torque limits are independent, determining whether joint ¢
ever demands any unrealizable torques requires that we know the maximum and
minimum values of u; over the interval [\; ,\; ] (or equivalently over the interval
[min(pg,p,), max(pg,u,)], since X is a monotonic function of u over the interval under

consideration). The maxima/minima may occur at one of three p values, namely p,,
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py, and that value of p that maximizes or minimizes u; over the unrestricted range

of p. In the latter case, the value of p is

I‘m = —2—Q: o (4.3.3.11)

If the condition

min(pg,p) < pm < max(pg,p) (4.3.3.12)

holds, then the point s, needs to be tested. Otherwise the torques must be com-
puted and checked only at the endpoints of the interval. (If M;, Q;, R;, and S; were
assumed to be piecewise linear in A, then the formula analogous to (4.3.3.10) would
be a quartic rather than a quadratic, and in theory three “midpoints”, found by
solving a cubic, would have to be tested. But as a practical matter, testing the end-

points of the interval is probably adequate.)

Given the formulae for the velocity and the joint torques, the incremental cost

can be found using the formula

A

C = [ L(\pu;)d\ (4.3.3.13)
X

where p and u; are given as functions of A\ by formulae (4.3.3.8) and (4.3.3.10),
respectively. It may be possible to evaluate this integral directly; if not, then the
integral may be approximated by any of the standard techniques. Section ‘4.3.8 shows
that the DP algorithm converges when the integral is approximated using the Euler

method. Using more sophisticated algorithms should give faster convergence than the

Euler method.
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With these formulae at hand, it is now possible to state the dynamic program-
ming algorithm in detail. Initially, the algorithm will be stated for the case in which
there are no limits on the time derivatives of the torques. These constraints will be
considered later in Section 4.3.5. The algorithm, given the dynamic equations (4.1.6),
the equations of the curve (4.1.1), the joint torque constraints (4.3.3.1), and the

incremental cost (4.3.3.13), is:

df’

S1.  Determine the derivatives - of the parametric functions f ‘(\), and from

these quantities and the dynamic equations determine the coefficients of Eqs.
(4.1.8).

S2.  Divide the (\,s) phase plane into a rectangular grid with N, divisions on the
A-axis and N, divisions on the p-axis. Associate with each point (\,, ,s, ) on
the grid a cost Cp,, and a “next row” pointer P,, . Set all costs C,, to infin-
ity, except for the cost of the desired final state, which should be set to zero.
Set all the pointers P,, to null, i.e., make them point nowhere. Set the

" column counter a to N,
S3.  If the column counter a is zero, then stop.
S4.  Otherwise, set the current-row counter 4 to 0.
S5. If #= N, gotoS12.
S8.  Otherwise, set the next-row counter ~ to 0.
S7. Ify= N, gotoSll.

S8.  For rows 4 and +, generate the curve that connects the (a-1,4) entry to the
(@,7) entry, as in Figure 4.3.2. For this curve, test, as described in the previ-

ous paragraphs, to see if the required joint torques are in the range given by
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inequalities (4.3.3.1). If they are not, go to S10.

S9. Compute the cost of the curve by adding the cost C aq to the incremental cost
of joining point (a-1,4) to point (a,7). If this cost is less than the cost C,_, 4,
then set C,_ 4 to this cost, and set the pointer P, ;4 to point to that grid

entry (a,v) that p_roduced the minimum cost, i.e. set P, pt0".
S10. Increment the next-row counter 4 and go to S7.
S11. Increment the current-row counter 2 and go to S5.
S12. Decrement the column counter a and go to S3.

Finding the optimal trajectory from the grid is then a matter of tracing the
pointersk Pne from the initial to the final state. If the first pointer is null, then no
solution exists; otherwise, the successive grid entries in the pointer chain give the
optimal trajectory. Given the optimal trajectory, it is then possible to calculate joint

positions, velocities, and torques.

4.3.4. Case of Interacting Torque Bounds

It has been assumed in the preceding discussion that the joint torque limits do
not interact, i.e., that increasing the torque on one joint does not decrease the avail-
able torque at another joint. This assumption manifests itself in tke form of the
torque constraint inequalities (4.3.3.1). This assumption is probably correct in many
cases, but in others it certainly is not. Consider, for example, a robot that has a
common power supply for the servo amplifiers for all joints. The power source will
have some finite limit on the power it can supply, so that the sum of the power con-

sumed by all the joints must be less than that limit. A similar situation arises when
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a single pump drives several hydraulic servoes. The pump will have finite limits on
both the pressure and the volume flow it can produce. In fact, it may be desirable to
have torque limits interact, in the sense that using a single power source to drive the
robot may cost less than using several independent power sources. In most cases mul-
tiple power sources would not be used at their maximum capacities simultaneously,
so that there would be little to be gained by having independent power sources,
while the cost of a single large power source would quite possibly be considerably less

than that of several small ones.

Because of the possibility of torque limit interaction, it will be assumed here
that the inequalities (4.3.3.1) are replaced with the constraint (4.3.1.1), namely
(u,ug, - -0, )T €E (q,&). It is interesting to note that the limits described in the
previous paragraph all produce set functions E in Eq. (4.3.1.1) which are convez.
For example, if the sum of the power consumed (or produced) in all the joints is

bounded, one obtains the bounds

Ppin S vy :li < Prax- (4.3.4.1)

For any given velocity, this is just the region between a pair of parallel hyperplanes
in the joint space. Likewise, for independent torque bounds, the realizable torques
are contained in a hyper-rectangular prism, another convex region. Since the inter-
section of any number of convex sets is a convex set, any combination of these con-
straints will also yield a convex constraint set. In this light, it is reasonable to make
the assumption that the set E(q,ci) is convex. This assumption is important in the

analysis that follows.



To see how we may make use of this convexity condition, consider the test for
realizability of torques used in the method presented thus far. This test made explicit
use of the assumption that the torque bounds do not interact. In order to handle
interacting torque bounds using an approach like that of Section 4.3.3, it must be
possible to determine whether all torques are realizable over any given \-interval. If
the torques have the form used in Eq. (4.3.2.2), then this is in general not possible
with any finite number of tests; even in the two-dimensional case, the torques trace
out conics in the input space, and there is no general way to determine whether a

segment of a conic is entirely contained within a convex set.

Though the question of whether a set of torques is realizable cannot in general
be given a definite answer, the realizability question can be answered in some cases.
To see how this can be done, consider again the tests for realizability previously
described. The maximum and minimum torques for each joint are determined, and
these torques are checked. While Eq. (4.3.2.2) describes a curve in the joint torque
space, the individual torque limits describe a box-shaped volume. The curve describ-
ing;.vth‘e joint torques will be entirely contained inside this box. Thus if every point in
the box is admissible, then so is every point on the curve. This ‘“‘reduces” the prob-
lem of determining whether every point of a one-dimensional set is realizable to the
problem of determining whether every point of a higher-dimensional set is realizable.
However, this higher-dimensional set has a special shape; it is a convex polyhedron,
and will be contained in the (convex) set E if and only if all its vertices are in E.
Thus by testing a finite number of points, the question of whether a particular set of

torques is realizable may sometimes be given a definite ‘“‘yes’’ answer.
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If this test does not give a definite answer, then the set of inputs in question
must be discarded, even though that set may in fact be realizable. However, as the
grid size shrinks, the size of the bounding box for the torques also shrinks, so that in
the limit the test becomes a test of a single point. Therefore as the grid shrinks, the
percentage of valid torques thrown away approaches zero, and the optimal solution

- will be found.

This method of handling interacting torque bounds requires only one change in
the DP algorithm. Step S8, which checks to see if the torques are realizable, must be
replaced with a step that generates all corners of the bounding box and tests these
points for realizability. If any of the corners does not represent a realizable set of

torques, then the test fails. Thus we have

S8'.  For rows # and ~, generate the curve that connects the (a-1,4) entry to the
(a,7) entry, as in Figure 4.3.2. For this curve, generate the maximum and
minimum torques at each joint. Check each torque n-tuple formed from the
maximum and minimum joint torques. (These are the corners of the bounding

box.) If any of these n-tuples are not contained in the set E, then go to S10.

4.3.5. Accommodation of Jerk Constraints

The methods described thus far have ignored the jerk constraints (4.3.1.2)
which limit the derivatives of the joint torques. Taking these limits into account
effectively requires that a third state variable be added. That variable can be taken
to be the pseudo-acceleration [.l, say VEp Differentiating the equation for the

torque, one obtains



\.1,-==A;Igv+M,~;l+Q.,-p2+2Q,-pu+l.?,-n+R,-u+.é,-. (4.3.5.1)
ng the identity 48 = A8 AN _ 46
Using the identity 7 N dr ) B, this equation becomes
3, =M; [dM‘ +2 ] +R iy B B 4.3.5.2
u=Mv+ | =7 Qijw+Rvt —=p +—=p+—<p (4.3.5.2)

If there are no jerk conmstraints, then the parameter p in Eq. (4.1.8) can be
manipulated as needed. When there are jerk constraints, we must instead manipulate
v in Eq. (4.3.5.2). Eq. (4.3.5.2) and constraints (4.3.1.2) then give constraints on v,

just as Eq. (4.1.6) and constraints (4.3.1.1) yield constraints on p.

To solve the optimization problem with jerk constraints using dynamic pro-
gramming, a three-dimensional grid is required, with one dimension for each of X, u,
and v. Some form must be assumed for the “inputs” |.|,~, as was done for u; when
there were no jerk constraints, i.e., Eq. (4.3.2.2). Because the grid points that the
DP algorithm must join form a pair of planes, rather than a pair of lines or columans,
as in the two-dimensional case, the form of the input must contain two arbitrary
constants instead of one. If only one parameter is used, then it will not be possible to
connect arbitrarily chosen points in the DP grid. The problem is thus inherently
more complicated than the two-dimensional case, at least in terms of the algebra
required to produce a solution. The procedure is otherwise the same as that for the

two-dimensional case.

Because of the algebraic complexity and because of the computer time that
would be consumed by a three-dimensional dynamic programming algorithm, no

examples were worked for this case. However, section 4.4 presents a minimum time
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4.3.8. Algorithm Complexity

The usefulness of the dynamic programming technique depends on its being rea-
sonably efficient in terms of use of computing resources, i.e., it must run reasonably
fast and must not use too much memory. Since the trajectory planning is done off-
line, the algorithm’s time requirements are not particularly critical; nevertheless, the
time required must not be exorbitant if trajectory planning is to be worthwhile.
Likewise, computer memory is relatively inexpensive, but nevertheless puts some lim-
its on the accuracy with which the dynamic programming algorithm can be per-
formed. In this section we present an apphximate analysis of the time and memory
requirements of the algorithm. Of course, precise numbers will depend rather heavily
upon such variables as the computer on which the algorithm is to run, the language
in which it is implemented, the compiler used, and the skill of the programmer who
writes the code, so the expressions derived here contain a number of

implementation-dependent constants.

It is easy to compute the storage requirements for the algorithm. The memory
allotted to the program itself is essentially fixed. The size of the grid used for the
dynamic programming algorithm varies with the fineness of the grid and the amount
of storage required per point on the grid. The grid has N, rows and N, columns.
Each entry must contain a cost C and a pointer P. The size of an entry will then

be

GS =S, + 5, (4.3.6.1)
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where GS is the storage requirement for a single point of the grid and S, and S, are
the amounts of storage required to record the cost and the pointer to the next row,
respectively. In the implementation presented here, parameterized curves are
represented as arrays of points. If one assumes that there is one point per \-division,
then there is an additional S; + N,S;, where S; is the storage required for one
interpolation point on the curve and S; is a certain fixed storage per curve. Multi-
plying GS by the number of grid entries and adding the amount of storage PS
required for the program and the storage.required for the curve gives total storage

TS as

TS = PS + Ny N, (S, + 5,) + N\S; + 5,. (4.3.6.2)

For the numerical example presented in this paper, all arithmetic was done in
double precision, and integers and pointers are four bytes long. Then for a six-jointed

arm the storage required is, ignoring the program storage,

TS = 12N,N, + 80 + 448N, (4.3.6.3)

For example, a 20X 80 grid requires 28,240 bytes. This can, of course, be reduced
considerably by using single rather than double precision; however, even using double

precision, the storage required is generally available on small microprocessors.

Calculating the time required to perform the dynamic programming algorithm
is somewhat more difficult. There will be Ny - 1 steps, where each step requires test-
ing to see if each of the N, points in one column can be connected to each of the N M
points in the next column. Each test must be done, but some of the tests are simpler

than others. If the cost at the next grid point is infinite, then there is no point in
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doing any further calculations. If on the other hand the cost is finite, then input
torque bounds must be checked, and if the input torques are admissible, then costs
must be calculated and compared. Though actual computation times will vary with
the particular problem being solved, the way the time varies with grid size can be
roughly determined. To get a bound on this time, assume that all the tests and com-
putations must be performed. Then each step of the dynamic programming algo-
rithm requires KN ,2, seconds, where K is a quantity which depends upon the com-
puter being used and the number of joints the robot has. There are N, - 1 such
steps, so the time required is less than K (N, - 1)N f, . In other words, the execution
time is roughly proportional to the cube of the grid density. In practice, the value of
the constant K must be evaluated experimentally. This has been done for the
numerical example in Section 4.3.9, which does indeed show a time dependence pro-

portional to (N, - l)Ni .

The dependence of execution time on the number of joints n, i.e., the depen-
dence of the constant K on n, is more difficult to assess. K in the equation above
depgﬁds on both n and the representation used to describe the curve to be
traversed. The functions M; and R; depend on the matrices J;; and R, respec-
tively, and the Coriolis term @; depends on the three-dimensional array Cii. In
general, then, it might be expected that the evaluation of the function Q; might take
time proportional to the cube of the number of joints. (See, for example, [15].) In any
case, the time required for evaluation of the dynamic coefficients is heavily depen-
dent upon the configuration of the robot. Fortnuately, in practical cases the number
of joints would usually be no more than six, and almost certainly would be less than

eight. Since these functions only need to be evaluated once per A\-division of the DP
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grid, their evaluation will probably be only a minor part of the total time consumed.
This being the case, the dependence of execution time on n is not an important fac-

tor. (For the numerical example considered here, this is certainly true.)

If the algorithm for handling interacting joints is used, then the dependence of
the time on the number of joints increases exponentially with the number of joints,
since there are 2" corners on the bounding box for the input. While this would seem
to ‘make the algorithm useless, it should be noted that the size of the bounding box
decreases as the grid size shrinks. In practice it may be sufficient to test, for exam-

ple, the endpoints of the current segment, rather than all 2* corners.

4.3.7. Algorithm Speedup

Even though solution of the trajectory planning problem by dynamic program-
ming requires only a two-dimensional grid, the algorithm uses large amounts of com-
puter time when the grid gets fine enough to give accurate answers. Part of the rea-
son for this is the exhaustive testing of paths in the grid; when connecting points in
one. column to points in the next, all pairs of points are tested. Also, the dynamic
programming algorithm generates the optimal trajectories from the all points in the
grid to the desired goal state. If we can avoid generation of the unused trajectories,

considerable speedup should result.

The approach described here involves multiple iterations of the dynamic pro-
gramming algorithm using a sparse, irregularly spaced grid. Suppose that an approxi-
mate solution to the trajectory planning problem is available, say as a result of using
dynamic programming with a coarse grid. Then we may plot this approximation in

the phase plane, and draw a ‘‘swath” around it, indicating the uncertainty of the
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solution. Then, instead of superimposing a grid on the entire phase plane, we may
superimpose a grid on the uncertainty swath. This grid may have a small, fixed
number of y values for each X value, so that the cost of doing dynamic programming

on this grid is relatively low. (Figure 4.3.3)

If the original trajectory met all the constraints, and for each A\ value on the
grid one of the grid points is on the original trajectory, then a solution will certainly
be found when the dynamic programming algorithm is performed. Assuming that the
grid includes the points on the upper and lower limits of the swath, the resulting tra-
jectory then must either stay entirely within the swath, or touch the swath's edge.
Now a new swath should be drawn, centered on the new optimal trajectory. If the
new optimal trajectory touches the edge of the old swath, then the new swath should
have the same grid density. If it doesn’t touch the edge, then the size of the new
swath should be decreased. This process may be repeated until the swath is narrow

enough to guarantee that the solution is within desired accuracy limits.

Roughly speaking, the algorithm finds an approximate solution in a reduced
seax:cﬁ area. If the solution touches the boundary of the search area, then the search
area boundary is moved away from the solution. If the solution does not touch the
edge of the search area, then a new smaller search area is tried, resulting in a more
accurate approximation. By limiting the dynamic programming algorithm’s attention
to a small area of the phase plane, computation times are kept correspondingly

small.

This technique will not be used in any of the examples worked in this section,

but a related technique will be described in the Section 4.4.
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4.3.8. Convergence Properties

The previous section describes the complexity of the DP algorithm. It is obvious
from the discussion that the fineness of the DP grid will have a significant impact on
the running time of the algorithm. It will also affect the accuracy of the results.
This section describes the effect of the grid density on the accuracy of the DP solu-

tion in a quantitative manner.

Bellman proved in [2] that discrete approximations to a continuous optimal con-
trol problem will converge (in a sense to be defined) as the step size of the DP stage
variable decreases. However, the class of systems to which Bellman’s proof applies
does not cover those considered in this paper. In particular, Bellman assumes that
the dynamic equations of the system are not functions of the stage variable, which is
the same as X\ in this paper. Here we prove a theorem which is an extension of that
of Bellman in that it allows the dynamic equation and cost function to be (possibly
discontinuous) functions of the stage variable. The proof presented here also corrects

some minor errors in Bellman’s proof.

Like Bellman’s proof in [2], we will prove that a sequence of discrete dynamic
programming processes with decreasing step sizes will produce, under appropriate
conditions, a convergent sequence of return functions. It should be noted that the
optimal control policy may not converge even though the return functions do. But
since the return function is of primary interest, not the details of the control policy,

control policy convergence is not generally important.

From the discussion thus far it is clear the the manipulator dynamics and

required constraints take the form:
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dp
o = Gumyr) (4.3.8.1)

where the control variable v (this is the same as p in the previous discussions) must

meet some set of constraints:

Q,A\pv)<0, ¢g=12,--- M (4.3.8.2)

Also rewrite the objective function J = -C to be maximized as follows.

Xu-
J(v) = 6(s(Apy)) + [ F(\p,v)d ) (4.3.8.3)
0

subject to the initial condition p(0) = p,. Note that the boundary condition
#(Amax) = p; can be enforced by taking ©(p()p,,)) to be zero if p = p ; and -oo
otherwise. The dynamic programming method approximates this continuous prob-
lem by discretizing the dynamic equation and objective function using the Euler

method, giving:

B = + G\ p,5)A (4.3.8.4)

N-
J({v}) =O(py) + ZIF(M B v )A (4.3.8.5)
F=o

where A = Ay /N, Ay = kA, pp = p(N\), vp = v(\;), and the inputs v, are

constrained by

nq(xk BE 7vk) S 0, ¢=12,---,C. (4.3.8.6)

Now define f,(c) for n=0,1,...,N by
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N-
I'(C) = ?115) [e(l‘N) + l F(xk g Vg )A]’ BN-g = € (4.3.8.7)
Y k=N-n
Then we have
folc)=6(c) (4.3.8.8)
fu+l(c ) = Sl:p [F(XN-u-lyc ¥ )A + ,u(c + G(XN—u-lyc ¥ )A)] (4.3.8.9)

Note that Sup has been used instead of max. This is done to allow the use of non-
closed constraint sets and discontinuous functions. It does not materially change the
results of the dynamicr programming process in that we may make the return func-
tion f, as close to the optimal value as we please. To see this, consider a single
stage of an N-stage process. For each k and ¢>0, we may make f, to be within
¢/ 28 of its optimal value, thus making fy be within 2¢ of the optimum. Since ¢
may be as small as we please, a control strategy can be constructed which will make

the return function agree with the optimum value to within any desired tolerance.
The proof of the main theorem requires the establishment of several lemmas.

Lemma 4.3.1: If for the feasible input set D,
I(e1) = Sup [¢1(e1,0) + ¥i(eyv) ]
and
H(c,) = §‘€lg [¢2(‘32:”) + ¥ylcyv )]

then
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I(e,) - H(cy)

< §‘elg |¢1(¢1:") - ¢fcov)

+ Sup |,/,,(c,,.,)- vdeav) |-

Proof: For every ¢ > 0 there exist v, and v,, both elements of the set D, such

that

[(cy) < diler,vy) + tuleyvy) + ¢
H(cg) < ¢x{csv2) + $olcgva) + €
We then have the inequglities
$1(c1,v2) + ¥i(c1,05) S T(ey) < difey,v) + $yleyvy) +
¢Ac2,91) + Yol€01) < Hleg) < doeg,va) + Polcpvs) + ¢

Since

I(c1) - € 2 ¢i(cy,v2) + ti(ey,v,) - ¢

and

H(co) - € < ¢y ,,v2) + (o)

we have

(T(ey) - €) - (H(cg) - €)

=T'(c,) - H(c,)

> d1(c1,92) - ¢ co,v2) + ¥1(cy,v2) — Yol gvy) — €

Similarly, we have



I(ey) - H(ey) < @4(c1,94) - dole2,v1) + Py y,v,) - olcpv,) + €

But these two conditions imply that

[(ey) - H(eo)

< Max [ $1(c1,v5) ~ Bx{(€5,90) + ¥y(c1,v,) - Yolcgv,) — ¢

’

$i(c1,v1) = Bo(cov1) + ¥i(c1,vy) - Yolcgv,) + € l]

< M“[ $1(c1,v2) - dfegvs) | + Yi(c1,02) - Yolepvo) | + ¢,

$1(c1,91) = dolcovy) | + [h(ey,v)) - dfeqw,) | + f]

< sup [ [#i(e10) - eeno)

+ I'/’l(c 1Y) - ¥olea)

]

+ §2g |¢1(01," ) - ¥fcqv)

< Sup [¢i(e1,v) - dulenv) +e

Since € may be made as small as we please, the desired result follows. Il

Lemma 4.3.2 shows that the return functions f, satisfy a uniform Lipschitz

condition which is independent of the step size A.

Lemma 4.3.2: If for all ¢}, ¢ ,€[p#min, Bmax] and for all admissible \ and v, the

function F satisfies a Lipschitz condition

F(\epv)-F(Megyv) | < K ep-¢,]°



for some a > 0, © satisfies

<Klej-c,|®

©(c,) - 6(c,)

and G satisfies

|[Genr) - Genn)| S Ller-cal”

for some ~2>1, then [, satisfies the wuniform Lipschitz condition

fn(cl)' fu(c2)

< ®|c,-c;|* where  is independent of n, ¢,, c,, and A,

provided that it can be guaranteed that py;, < pp < ppforall0 < k < N.

Proof: First we prove by induction that

| falc) - falca)| SksAley-e,]°

For n =0 we have

fole)-foled| = |6(c))-O(c))| S K |e;-¢cp|°

We may therefore take k, = -g . Now assume that

falc)=falcr)| S kyAlci-cy|”

Then we have
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fasilcy) - f-+1(‘?2)

S [Fw-n-e09)A + fuer 4 GOnnpeno)d)]

- Sl.lp [F(XN—u-lycmv )A + fa(c2 + G(*N—n-lrcwv )A)]

Note that if ¢; = p;, then ¢; + G(Ay_p_1,61,9)A = p; ,y; this is where the admis-

sibility of the states p; for all k¥ comes into play. Applying Lemma 4.3.1, we have

fn-l-l(cl) - fu+l(c2) | S S‘:p IF(XN-n-l’c Y ) - F(XN-n-lac%v) A

+ Sup
v

falci+ G(AN_q-1,c1,v)A)

- fn(c2 + G(XN-u—l’cbv )A) .

Applying the Lipschitz conditions on F and f,,
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Sasiley) = Fasiler) SKAley-c,]°

+ k, A Sup fc; + G(AN_p_1,cp,v)A
v
Q
L G(XN—a-lrc%v )A
=KA|c -c,|°
+ knA Sllp (cl - C2) + (G(XN-n—lycl’v)
v

- G(*Nm-n‘?z»” ))Aa l

SKA|lc,-¢c3|?+ kA

ley-co

a

+ S‘:PI G(XN—n—hClav ) - G()w_,,_l,cg,v) | JAN

Applying the Lipschitz condition on G,

Tnsilcy) = Fasaler) SKA|e, -¢;]°

a
+k”A 'CI—CQI +L ICI_CZI7A

=KA|c,-c,|°

+haAlley-c |+ L |ey-cy|™a)|

SKAlc,-cy]|”®
+haa|ler-col(1+ L | poae = poia | 78) [
=KA|c,-¢c,|°
+haAlei-c2| 0+ L | Brax ~ #min | 7A)

Defining M = L | Pmax — Pmin l 7.1’
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Jasile) = Jasaled) [=KAJe -2 |+ kAlecy~c,y|°(1 + MA).

Using the binomial theorem to expand (1 + M A)?,

(1+MaP =1+aMa+ 20 yeae g 2letlad) pops

=1+ aMA + Ag(A).

Since the binomial series converges for | MA | < 1, the function 5(A) is bounded

’

and goes to zero as A goes to zero. Therefore, for A sufficiently small, we may take

(1+MAP<1+(M+¢)A=1+PA

where ¢ is some small positive constant. This yields the inequality

faviler) = fasalcd) | S KA ey -cy|*+ kA ]ey-cy| (1 + PA).

We may then take k, ., to be defined by the recurrence relation

k=K + k,(1+ PA).

The solution of this equation which satisfies the initial condition k, = K is

k, = ?’% [(1 + PAP - 1].

Then at every stage n we have

Tale)) - faler) SknAlcl’c2|a=!}§[(1+PA)"+1"1] ler-co|®.
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Since k, < ky for n < N, we may use the condition

Taley) - faler) SkyAley-c,|®

forallm < N. Now since A = A,/ N, we have

—
a

A
fale))-1a (Cz)l [(1+PA) -l]|c1—c2 N

As A—0, the quantity in brackets remains finite, and in fact approaches the limit

e == _ 1. Since this quantity is also finite for all A > 0, we may construct the ine-

quality

falen - faled| S @ler-col®
where the constant ¢ is given by

¢=1; max (1+PA) A—l]

Since ¢ is independent of n, ¢, ¢,, and A, we have the uniform Lipschitz condition

desired. B

Lemma 4.3.3 establishes a connection between the dynamic programming pro-

cess with step size A and that with step size 2A.

Lemma 4.3.3: Let the process g, with step size 2A satisfy the recurrence rela-

tions

golc) = 6(c)



104

gb1(c) = Sup [F(\w-2s5,¢ 9028 + g4 (e + GAn-znze 0)28)].

Define the auxiliary process h,; with step size 2A by the equations

ho(c) = ©(c)
hogiolc) = S‘:P [F(XN-zb-z’c WA + F(Ay_gi-1,¢ + G(AN_gk-2,6,v)A0)A
+ hop(c + G(AN_gt-2,c,v)A

+ G(AN-gk-1,¢ + G(AN_gk-2,¢,v)Av )A)] .

This process can be thought of as a process with step size A in which the input pol-
icy is restricted so that the input for the N-2k-2™ interval is the same as for the

N-2k-1* interval. Let F,G and © satisfy the Lipschitz conditions

| F(A\pey,v) = F(Ageq)| SK|¢1‘52|°+B|)‘1")‘2|"
| F(\eyv)-F(Aeov)| S K |ey-col®
|8(c)) -O(cy)| S K |ey-c,|”
| G(Apeye) - Ggeao)| SLley-cal+ C A -2’
| G\eyv) - G(\egv)| S Ljey-cq|”?
where K, B, L, and C are constants<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>