
PLAN GENERATION AND HARD REAL-TIME EXECUTION WITH
APPLICATION TO SAFE, AUTONOMOUS FLIGHT

by

Ella Marie Atkins

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1999

Doctoral Committee:

Associate Professor Edmund H. Durfee, Co-Chair
Professor Kang G. Shin, Co-Chair
Professor Daniel E. Koditschek
Professor N. Harris McClamroch
Associate Professor Michael P. Wellman

©
 Reserved RightsAll

Atkins Ella M.
1999

i

To Deano and Lucas.

ii

 ACKNOWLEDGEMENTS

I have had the distinct pleasure of working with several research groups while at

the University of Michigan, including the AI and real-time system labs within EECS and

the UAV lab in the Aerospace Engineering department. I have learned a great deal from

each group that I expect to be quite useful as I embark on my future career in academia.

Most students are lucky to find one good advisor. I have been fortunate to have

two, Professors Ed Durfee and Kang Shin, and I am very grateful for all their support,

ranging from financial to research ideas to dissertation help. It is not all students that find

themselves in a situation where they have to specifically request that they not be funded

so they are allowed to teach for a semester.

During my work on the CIRCA project, I have been privileged to collaborate with

two other graduate students, Tarek Abdelzaher and Chip McVey. Tarek is one of the

hardest-working students I have ever known, which combined with his zeal for academic

research and personable nature will make his future employer very lucky . We have

spent many hours discussing how to get planners and schedulers to really communicate,

and I owe many of my best ideas to these discussions. Chip was drawn to the CIRCA

research group as he strayed from the world of physics and was the perfect collaborator

for CIRCA research. I very much missed him after he departed Michigan for the money-

laden world of the computer industry; perhaps I should have tried harder to bribe him into

staying at Michigan for his Ph.D.

I inherited the original CIRCA architecture from David Musliner after he

graduated. Although he and I have not always had exactly the same ideas about the

“best” algorithms for CIRCA, he has always provided a different and thoughtful view on

i

To Deano and Lucas.

ii

 ACKNOWLEDGEMENTS

I have had the distinct pleasure of working with several research groups while at

the University of Michigan, including the AI and real-time system labs within EECS and

the UAV lab in the Aerospace Engineering department. I have learned a great deal from

each group that I expect to be quite useful as I embark on my future career in academia.

Most students are lucky to find one good advisor. I have been fortunate to have

two, Professors Ed Durfee and Kang Shin, and I am very grateful for all their support,

ranging from financial to research ideas to dissertation help. It is not all students that find

themselves in a situation where they have to specifically request that they not be funded

so they are allowed to teach for a semester.

During my work on the CIRCA project, I have been privileged to collaborate with

two other graduate students, Tarek Abdelzaher and Chip McVey. Tarek is one of the

hardest-working students I have ever known, which combined with his zeal for academic

research and personable nature will make his future employer very lucky . We have

spent many hours discussing how to get planners and schedulers to really communicate,

and I owe many of my best ideas to these discussions. Chip was drawn to the CIRCA

research group as he strayed from the world of physics and was the perfect collaborator

for CIRCA research. I very much missed him after he departed Michigan for the money-

laden world of the computer industry; perhaps I should have tried harder to bribe him into

staying at Michigan for his Ph.D.

I inherited the original CIRCA architecture from David Musliner after he

graduated. Although he and I have not always had exactly the same ideas about the

“best” algorithms for CIRCA, he has always provided a different and thoughtful view on

iii

my work that has clearly assisted my research efforts. I believe the CIRCA research

project will thrive well after I leave Michigan due to the continued support from Dave, as

well as future generations of CIRCA students, including Haksun Li, Jonathan Arnold,

and Jeremy Shapiro, each of which has already contributed to the CIRCA-II software.

After three years at Michigan, I could no longer resist returning to my Aerospace

roots and began “playing with hardware” in the form of an Uninhabited Aerial Vehicle

(UAV). I met two excellent graduate students, Robert Miller and Tobin VanPelt, who

had taken the project under their wing, and I was fortunate to become a part of the UAV

team. Our UAV would not exist were it not for the countless hours Tobin has spent

building the physical aircraft structure and the time Robert has spent on instrumentation,

managing all project details, and more recently, venturing into writing the software I

haven’t had time to complete due to this dissertation. Real progress on our UAV began

when we coerced Keith Shaw, R/C modeler extraordinaire, to help us. Keith has

volunteered countless hours and has been invaluable during the design, construction, and

flight phases. His veritable addiction to and excitement for R/C flight has been

contagious to the extent that I now find myself searching for new excuses to fly model

airplanes for research.

iv

TABLE OF CONTENTS

DEDICATION... ii

ACKNOWLEDGEMENTS ...iii

LIST OF TABLES ..vii

LIST OF FIGURES ...viii

LIST OF APPENDICES...xii

CHAPTERS

I. INTRODUCTION.. 1

Motivation.. 1
What's in a Plan? .. 4
Problem Statement.. 8
Approach.. 10
Contributions.. 14
Outline ... 18

II. RELATED WORK... 20

Probabilistic Planning: The Markov Decision Process 23
Real-time Planning ... 28
Real-time Plan Execution ... 30
CIRCA: Reasoning About Real-time Plan Execution................. 33

III. CIRCA-II ARCHITECTURE ... 36

Planning Subsystem Operation ... 38
Plan-Execution Subsystem Operation ... 42

IV. THE PROBABILISTIC TEMPORAL MODEL IN CIRCA-II 46

CIRCA's Non-Deterministic Temporal Model 48
State-space Examples ... 50
Probabilistic State Transitions... 54
State Probability Computation .. 60
Failure-Avoidance Guarantees.. 68
State Probability and Deadline Computation Example 72
Comparative Evaluation of the CIRCA-II Temporal Model 76

v

V. DETECTING AND REACTING TO ANOMALOUS EVENTS................ 82

World State Classification .. 83
Detecting Unhandled States .. 88
Real-time Reaction to "Unplanned-for" States 91

VI. PLANNER-SCHEDULER NEGOTIATION.. 98

Scheduler-to-Planner Feedback... 99
Bottleneck Task Selection with a Multi-Resource Scheduler..... 104
"Internal" Fault-Tolerance during Plan Execution 111
QoS Negotiation during Scheduling.. 118

VII. FULLY-AUTOMATED FLIGHT WITH CIRCA-II............................. 132

Autonomous Flight on the ACM Simulator............................... 134
Demonstration of CIRCA-II on the ACM/Honeywell UCAV ... 138
Flight with the University of Michigan UAV............................ 146

VIII. CONCLUSION.. 154

Contributions.. 157
Future Research Directions... 160

APPENDICES... 170

BIBLIOGRAPHY ... 223

vi

LIST OF TABLES

Table

4-1. Symbol Definitions for the CIRCA-II Probabilistic Planning Model 62

4-2. Transition Probabilities out of s0 .. 73

4-3. Transition Probabilities out of s2 .. 74

4-4. Crash (ttf0) Probability from s2 for Various Climb (ac0) max∆ Values 76

6-1. Required TAP set (+ if-time-server) for "Traffic Avoidance" Plan 102

6-2. Example Utilization Matrix U(i,q) ... 109

6-3. Values used for Computation of Tbottleneck ... 109

6-4. Flight Example Task Set.. 114

6-5. Flight Example Module Worst-Case Resource Usage 115

6-6. Utilization Matrix for the Nominal Plan... 117

6-7. Utilization Matrix for the Reduced Plan... 118

6-8. QoS Levels for the Automated Flight Control Plan 125

vii

LIST OF FIGURES

Figure

1-1. Three-tier (3-T) Architecture Concept.. 2

1-2. Traditional Plan Types... 5

1-3. Evolution of the Real-time Control Plan .. 5

1-4. Architecture for Generating and Executing Real-time Plans....................... 7

2-1. A "Generic" Planning/Plan-Execution Architecture 20

2-2. A "Generic" Real-time Resource Allocation/Scheduling System.............. 21

2-3. "Hard" versus "Soft" [Best-effort] Real-time System 22

2-4. Three-Stage State Transition Diagram ... 26

2-5. The Cooperative Intelligent Real-time Control Architecture 33

3-1. CIRCA-II Architecture .. 37

3-2. CIRCA-II Planning Subsystem .. 39

3-3. CIRCA Test-Action Pair (TAP) Plan Composition 41

3-4. CIRCA-II Plan Dispatcher ... 42

3-5. CIRCA-II Plan Executor.. 45

4-1. Temporal Transition Model for a Nondeterministic State-Space 50

4-2. Aircraft State-space with Tree Structure .. 52

4-3. Aircraft State-space with a Cycle (s0 - s2)... 52

4-4. Aircraft State-space with a Dependent Temporal Transition (tt1) 53

4-5. Aircraft State-space with Multiple Cycles and a dtt.................................. 53

4-6. CIRCA Planning Anomaly: Multiple Cycles and Dependent ttfs............. 53

viii

4-7. Matching Transition Sets for a CIRCA State.. 55

4-8. Example Temporal Transition Probability Rate Functions 57

4-9. Temporal Transition Probability Rate Function Trends............................ 58

4-10. Cyclic TAP Schedule in CIRCA-II .. 59

4-11. Matrix M used for CIRCA-II State Probability Computation 67

4-12. CIRCA-II Probabilistic Planning Algorithm .. 71

4-13. Expansion of Initial State s0 ... 72

4-14. s0 Transition Probabilities .. 72

4-15. Expansion of State s2 ... 74

4-16. s2 Transition Probabilities .. 74

4-17. M and P Matrices used for State Probability Computations 75

4-18. Success Probability vs. Inverse Plan-Execution Resource Capacity.......... 77

4-19. Knowledge Base Size vs. ND for MDP and CIRCA-II planners................ 78

4-20. Knowledge Base Size vs. # of Modelable States 81

5-1. World State Classification Diagram... 83

5-2. "Deadend State" Illustration... 85

5-3. "Removed State" Illustration.. 86

5-4. "Imminent-failure State" Illustration .. 87

5-5. Plan-space Transitions based on Time to Failure...................................... 92

5-6. Plan-space Transitions in CIRCA-II .. 94

5-7. Success Probability vs. Resource Capacity: With and Without Plan
Cache .. 97

6-1. CIRCA-II Schedule Manager Algorithm.. 102

6-2. CIRCA-II "Traffic-Avoidance" Excerpt from Automated Flight State-
Space... 103

ix

6-3. Planning-Scheduling Interface with Fault-Tolerant Plan Development... 113

6-4. Nominal Flight Plan... 114

6-5. Nominal Plan Resource Schedule (f0) .. 116

6-6. Reduced Flight Plan for Failed Processor (f1) .. 117

6-7. Reduced Plan Resource Schedule (f1) .. 118

6-8. Local QoS Optimization Heuristic ... 123

6-9. Distributed QoS Optimization Protocol.. 124

6-10. QoS Levels vs. CPU Speed for Flight Control Tasks 127

6-11. Altitude with and without Secondary Ctrl Actuation.............................. 128

6-12. Aircraft Altitude for Varied Ctrl QoS Levels ... 130

6-13. Aircraft Heading for Varied Ctrl QoS Levels... 130

6-14. Aircraft Pitch Angle for Varied Ctrl QoS Levels 130

6-15. Aircraft Roll Angle for Varied Ctrl QoS Levels..................................... 131

7-1. Aerial Combat (ACM) Flight Simulator: Cockpit Display..................... 133

7-2. Simulated Flight Pattern .. 135

7-3. Hostile Environment Encountered during UCAV Flight 139

7-4. UCAV tt Probability Rate Functions.. 141

7-5. UCAV State-Space with no Radar-threat Model. 142

7-6. UCAV State-Space with Radar-threat – Optimize Tradeoffs in
Nominal Plan... 143

7-7. UCAV State-Space with Radar-threat – Nominal + Contingency
Plans.. 144

7-8. Success Probability vs. Resource Capacity: UCAV Flight Test............. 145

7-9. University of Michigan UAV... 149

7-10. UAV Data Acquisition and Communication Systems 149

7-11. UAV Software Architecture... 150

x

7-12. Overview of the “Nominal” CIRCA-II UAV Flight Plan 152

7-13. Overview of the CIRCA-II “Engine-failure” Contingency Plan 152

7-14. Overview of the CIRCA-II “Airframe-icing” Contingency Plan............. 152

A-1. CIRCA-II Planning Subsystem Algorithm. .. 173

A-2. CIRCA-II Plan Dispatcher Algorithm.. 180

A-3. Round-Robin If-time Server... 183

A-4. Modified-Round-Robin If-time Server ... 184

A-5. If-time Queue If-time Server .. 185

D-1. Proposed Algorithm for Limiting Planner Deliberation Time................. 217

E-1. State-space Example with Multiple Cycles and Dependent ttfs............... 220

xi

 LIST OF APPENDICES

Appendix

A. CIRCA-II C++ IMPLEMENTATION .. 171

B. AUTOMATION OF THE ACM SIMULATOR WITH CIRCA-II 187

C. UCAV CIRCA-II KNOWLEDGE BASE AND OUTPUT PLAN
FILES... 208

D. REAL-TIME RESPONSE IN THE PLANNING SUBSYSTEM............. 216

E. TACKLING THE MULTIPLE CYCLE, MULTIPLE DTTF
CHALLENGE .. 220

1

CHAPTER I

INTRODUCTION

The goal of this dissertation is to introduce techniques for reasoning within an

integrated plan generation and execution system and to apply 0these methods to the

problem of safe, fully-autonomous operation within a complex real-time domain. Such a

system has limited computational resources and may be required to utilize imprecise

knowledge to build potentially incomplete plans that must execute in hard real-time. In

this thesis, we describe methods for handling these constraints during plan development

and execution. We focus on mechanisms to detect and respond in a timely fashion when

the environment deviates into an area not handled within an executing plan, and explicitly

make the tradeoffs required to ensure that each plan will not overutilize resources when

executed, thereby guaranteeing avoidance of all (modeled) catastrophic failure modes.

Motivation

Autonomous behavior in complex real-world systems requires accurate and

timely reactions to environmental events. These reactions must prevent all catastrophic

failures such as loss-of-life and should ultimately achieve mission goals such as arriving

at a destination on-time. Timely and accurate responses for a complex domain may

require a significant amount of computational resources, regardless of whether such

responses are pre-programmed or dynamically selected as the agent acts within its

environment. As processor speed and algorithm efficiency increase, it is tempting to

presume that resource limitations are not an issue because they can always be combated

with a bigger, faster system. However, the exponentially-complex search-based planning

2

and scheduling algorithms typically utilized to impart "intelligence" to a complex

autonomous system can quickly consume all such resources, as can the storage and

retrieval-time requirements for reactions in strictly plan-execution systems. Additionally,

hardware upgrades are not easily performed in unfriendly, resource-limiting

environments (e.g., space, underwater).

If neither dynamic planning nor plan-retrieval systems can alone be expected to

respond to the spectrum of situations that may be encountered, then one alternative is to

combine the two techniques, which has been done in several hierarchical architectures

that are often mapped to a generic 3-tier [17] conceptual framework illustrated in Figure

1-1. We adopt such a multi-layer concept in this work. Our top deliberation level

reasons about guaranteed real-time failure avoidance while building plans, then those

plans execute in hard real-time on the plan-execution layer, with specific directives

included to recognize and react as the system progressively deviates from the nominal

environment for which the plan was constructed. Our "reactive" layer is comprised of the

low-level algorithms required to interact with a [possibly continuous-time] complex

environment. Overall, this design results in a flexible, hard real-time execution system

that exhibits graceful performance degradation when computational resources are

overloaded.

Figure 1-1: Three-tier (3-T) Architecture Concept.

Maintaining close ties with an application domain ensures that our algorithms

have practical use and, in parallel, addresses key automation issues within that specific

application. In this thesis, we ground our discussions with examples and challenging

problems associated with achieving safe, fully-automated commercial aircraft flight, in

 Planning
(Deliberation)
 Layer

Plan Execution
 Layer

Reactive
 Layer

3

which the "simple" overall goal is to take off and safely fly to some destination airport.

In order to fully automate the tasks currently performed by the cockpit crew, the system

must be capable of analyzing and responding to a diverse set of sensory data input,

ranging from atmospheric conditions to other air traffic to detectable aircraft system

failures. Additionally, flight is inherently hard real-time: no "indefinitely safe" state set

exists once the aircraft leaves the ground because it cannot simply "stop in mid-air" while

planning its next course of action. To tackle such a problem, a system must be capable of

reasoning about a large array of complex environmental features to select reactions for

each potential in-flight situation and also compute and enforce associated real-time

deadlines so that the plane will not crash before the need to act was even detected.

Fortunately, techniques for automatic flight control are well developed and may

be utilized versus redesigned when taking the final steps to fully automate the cockpit.

Current flight management systems [44],[64] are capable of automatically flying an

aircraft from takeoff through landing, with the cockpit crew dialing in course/destination

changes and monitoring the progress of flight. Thus, if considering only nominal

situations, full automation is possible today. However, such a system cannot be

considered "safe" until it reacts to all dangerous situations for which the nominal plan is

insufficient.

As a simple example, consider a situation in which adverse weather conditions

arise at the destination airport. Once the problem has been identified, an appropriate

contingency response is to automatically re-route to an alternate airport, thereby averting

the problem. This specific behavior may easily be built into existing flight management

systems; however, devising a comprehensive set of such reactions is much more difficult.

For example, consider a more time-critical and low-probability event, such as the

situation that occurred near Sioux City, Iowa, when engine parts violently flew off the

aircraft and severed all hydraulic lines. The required response to such a situation is

specific to the current aircraft state (e.g., altitude, bank/pitch angle, terrain, fuel, and

4

aircraft controllability parameters). Furthermore, this situation would have been difficult

to consider possible in advance because redundant backup systems were present and no

such situation had previously been recorded. By handling imprecise knowledge and

incomplete plans, we will illustrate how our architecture can be used to detect and

respond to such unlikely and dangerous situations, and also how such safety-critical

reactions will occur in time to avert an aircraft crash.

 What's in a Plan?

For AI researchers, the term plan may refer to either an action sequence or else a

policy that applies to a group of world states. Due to our veritable obsession with hard

real-time plan execution, our plans must include more than constructs for matching

actions to states. This section is devoted to disambiguating the definition of "plan" that

we will presume throughout this dissertation.

Figure 1-2 illustrates two of the most popular interpretations of a plan. Figure 1-

2a shows a STRIPS [18] plan, a traditional format produced by numerous state-space and

plan-space planners. This specification is appropriate when actions must be strictly

executed in a predefined sequence. The STRIPS plan structure does not rely on active

sensing during plan execution, implying there can be no uncertainty about when or in

what order actions should execute. Figure 1-2b illustrates a policy representation such as

that generated by a traditional Markov Decision Process (MDP) [11]. In this model, there

is uncertainty regarding the exact progression of states that will be encountered, so the set

of current state features must be sensed and matched to the correct action to execute next.

As a result, reaction times to environmental events are a function of the total time

required to identify the current state, find the appropriate action, then execute that action.

5

Figure 1-2: Traditional Plan Types.

Figure 1-3: Evolution of the Real-time Control Plan.

Because we allow uncertainty about the progression of world states, we must

sense state features to select appropriate actions during plan execution. However, we

also require that the complete sense-act loop execute in hard real-time for failure-

avoidance purposes. To define our control plans, consider an MDP policy as the initial

Action-1

Action-2

...

Action-m

Action-1

Action-2

...

Action-n

State-i

State-j
State-k

 ...

State-l

State-m
State-n

 ...

...

State-x

State-y
State-z

 ...

a) STRIPS Plan. b) MDP Policy.

start

finish

a) “Minimized-Precondition” Policy.

Action-1

Action-2

...

Action-n

...

Testn-1(feature_subset)
Testn-2(feature_subset)
 …

Test1-1(feature_subset)
Test1-2(feature_subset)
 …

Test2-1(feature_subset)
Test2-2(feature_subset)
 …

Action-1
Test1-1,
Test1-2, …TAP1

Action-2
Test2-1,
Test2-2, …TAP2

Action-3
Test3-1,
Test3-2, …TAP3

Action-4
Test4-1,
Test4-2, …TAP4Action-5

Test5-1,
Test5-2, …TAP5

Action-6
Test6-1,
Test6-2, …TAP6

Action-7
Test7-1,
Test7-2, …TAP7

guaranteed

best-effort

Cyclic
Schedule:

b) Hard-real-time Control Plan.

TAP1 TAP2 TAP4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TAP2 TAP2 TAP2TAP1TAP3

6

representation. Now, in order to increase efficiency for matching the current world state

to an action, consider a new format in which the policy is post-processed so that a set of

general "preconditions", not fully-instantiated states, is used to uniquely match each

reachable state to a policy action. This "minimized-precondition" policy representation is

shown in Figure 1-3a.1

In a policy where the exact sequence of states cannot be predicted, the

"minimized-preconditions" for executing each action must be checked periodically, with

each action executing whenever its preconditions match. Otherwise, the action may never

execute in a state where it has been planned. This plan structure suggests a loop over the

precondition-action pairs to identify and execute the proper action for each state. A cycle

through the plan-loop will not execute instantaneously, so we must structure the plan so

that each action's preconditions will be tested with sufficient frequency to guarantee

avoiding any failures that might occur should action execution delay too long.

If all actions are required for failure-avoidance and all actions have the same real-

time execution deadlines for failure-avoidance, then the best we could do is to cycle

through the plan-loop as-is. However, typically, only certain actions are required for

failure-avoidance while others are used only for goal-achievement. We attach to each

action the worst-case timing requirements for guaranteed failure-avoidance, and classify

all actions with specified worst-case timings as "guaranteed" while all others are "best-

effort", as illustrated in Figure 1-3b. Now, if all guaranteed actions have the same worst-

case timing requirements, we can execute the "plan-loop" over all guaranteed actions,

inserting best-effort actions into slack time intervals when available. However, in

general, the guaranteed actions may have a very diverse set of real-time requirements.

1 In the worst-case, the minimized precondition will be equivalent to observing all state
features. Generally, however, nontrivial feature-sensing activities can be reduced with
the minimized-precondition format.

7

Thus, instead of looping over each action in the guaranteed set, we may maximize our

ability to guarantee that all execute in time by explicitly scheduling these actions in

accordance with their resource requirements and real-time deadlines.

Figure 1-3b includes a cyclic schedule that specifies the "plan-loop" for the set of

guaranteed actions for this plan. We define a task as the combination of the minimized-

precondition feature tests for the action as well as the action itself. For guaranteed

performance, this schedule must be built assuming worst-case task resource consumption,

and must verify that all real-time constraints for the associated action will be met during

execution.

For this dissertation, we define a plan as the Figure 1-3b combination of a

minimized-precondition task set and cyclic task schedule that guarantees real-time

failure-avoidance during plan execution. Figure 1-4 shows the generic components

required for generating and executing a real-time plan, including a planner, task

scheduler, and plan executor with predictable worst-case task execution properties.

During execution, highest priority will be given to timely execution of the guaranteed

cyclic task schedule, then any lower-priority best-effort tasks will be dynamically

inserted into any slack-time intervals, as is done in traditional real-time task execution

models [37].

Figure 1-4: Architecture for Generating and Executing Real-time Plans.

 Real-time
Plan Executor

 Planner

Real-time
Scheduler

Environment
PLAN

Deliberation Layer

Execution Layer

8

Problem Statement

This dissertation addresses the problem of successfully constructing and

executing these real-time control plans in a complex system with incomplete domain

knowledge, limited resources, and a dangerous environment in which missing a deadline

may be quite deadly. Such catastrophic system failure is typically avoided in other

planning, scheduling, and plan execution systems by making restrictive assumptions

about resource availability and knowledge base extent. We relax these assumptions to

better reflect a real-world environment, but are then forced to perform tradeoffs in

ensuring safety and goal completion.

Guarantees of safety and goal completion on a system with limited computational

resources are problematic. Additionally, traditional planners assume sufficient memory

and time will always be available, and thus do not even address resource limits. When a

planner proposes a set of tasks with real-time constraints (i.e., deadlines), a scheduler

may find it impossible to fit all tasks into the fixed set of plan-execution resources. One

approach to this problem is to modify this set of tasks to reduce plan resource

requirements, but traditional real-time schedulers are not able to reason about the

environmental implications of such modifications. Our architecture adopts this approach

by prioritizing safety over goal completion during planning, and by providing for clear

communication between scheduler and planner to allow negotiation between the two

when required. Our planner is thus able to intelligently direct tradeoffs necessary to

satisfy scheduling requirements as well as ensure overall safety.

An absolutely safe plan may, however, still be incompatible with limited

resources operating in a dangerous environment where hard real-time guarantees must be

met to avoid failure. In this case, we may be required to relax absolute safety guarantees

to probabilistic guarantees, especially in a domain with a variety of diverse failure modes

having calculable or empirically derived probabilities. Our planner will thus incorporate

9

flexible parameters, such as a probability threshold below which unlikely states are

ignored, that can be dynamically modified to reduce scheduling requirements. Solving

the problem of estimating the probabilities of various contingencies arising and

establishing an appropriate threshold will allow graceful performance degradation even

with severely constrained resources. The tradeoff associated with probabilistic

guarantees is that an executing plan may stumble into a state that has been considered

improbable, thus not planned for, and the system must be equipped to “find its way out”.

Incomplete domain knowledge generates a similar situation in which an executing

plan may reach an unexpected state, i.e., one it had no knowledge of, from which it

cannot continue. This incompleteness derives from two sources: First, plans are

constructed using a stochastic model of world events, which is common for probabilistic

planning algorithms but does not precisely specify the sequence of states that is expected

to occur. Second, we allow for an incomplete domain description since this is often the

case for real-world systems.2 Such incomplete knowledge leads to incomplete plans,

which in turn may result in reaching unexpected states during plan execution.

Encounters with these unexpected or unplanned-for states are addressed by

requiring our system to recognize and react when the world (i.e., environment) enters a

state not handled within the executing plan. Thus, for a resource-limited system, the

problem is to design a system that knows its limits and devotes sufficient resources to

watching for such situations; in a sense it must "expect the unexpected". Otherwise,

catastrophic failure may occur without the system ever noticing (e.g., an office robot

without knowledge of terrain may happily drive off a cliff). Reacting to such state ties

together all components within the generic Figure 1-4 architecture, a version of which we

adopt in this dissertation. In our system, we must build actions into each plan to initially

2 We do, however, require a model for all events that lead quickly to catastrophic failure.
Otherwise, we would not even be able to identify all dangerous situations.

10

recognize each anomalous state, then the planner and scheduler must advise the executor,

via a new plan, of an appropriate reaction. This must be done in real-time if a failure-

avoidance reaction is required.

Approach

We utilize a combination of planning, scheduling, and real-time plan execution

algorithms to achieve safe, autonomous operation of a complex system. We place

primary emphasis on failure-avoidance by computing and adhering to hard real-time

deadlines that allow failure-avoidance guarantees. However, since we also emphasize

practical issues associated with automating complex systems, we must allow for tradeoffs

when it impossible to simultaneously guarantee safety along with all other mission goals.

Thus, we place secondary emphasis on goal-achievement, requiring only best-effort (soft

real-time) execution of tasks that are not safety-critical.

Because of the difficulties in simultaneously achieving timeliness and accuracy

while performing search-based planning and scheduling operations, our system adopts

the philosophy that the planner and scheduler should reason about real-time, and be

carefully designed such that it need not be constrained to reason in real-time. Developed

plans are specified so that, when executed, they will be guaranteed to meet all safety-

critical hard real-time deadlines. This approach may be debated because in the worst

case, a universal plan set [63] is infeasible to create [23] and even more difficult to

execute under hard real-time constraints, thus any fixed set of reactive plans may be

constrained such that dynamic updates (replanning) may be required, even to avoid

catastrophic failure. Our system explicitly reasons offline about how to minimize the

likelihood of catastrophic failures, not by assuming "indefinite safety" during execution

of each plan, but instead by caching a group of contingency plans that are specifically

designed to redirect the system into a temporarily-safe set of states (e.g., a holding pattern

11

for an aircraft) that maximize the amount of time the planner has to replan (e.g., develop

a new route to an alternate airport).

A key aspect of our approach is the consideration of imprecise knowledge during

planning. We utilize a probabilistic model to represent world events, and additionally

incorporate algorithms that allow recovery of the system even if this external event model

is incomplete or incorrect. However, in order to allow any assurances of failure

avoidance, we must place some restrictions on knowledge accuracy. Otherwise, system

behavior may be random at best, destructive in the worst-case. In our system, we assume

that all features are fully-observable, although a non-trivial [bounded] set of resources

may be required to actively determine feature values. We also assume specified actions

will always execute safely, given that they are only executed when their preconditions

match the current state. In this manner, we allow imprecise knowledge about external

events, but require precise knowledge about the system itself and its ability to act on the

environment.

We did not develop a new architecture for this research, maximizing our ability to

incorporate existing architectural capabilities as well as avoiding introduction of yet

another member to the already-overpopulated "AI architectures" cauldron. Instead, we

built upon the Cooperative Intelligent Real-time Control Architecture (CIRCA) [51],[53]

which combines planning, scheduling, and plan execution to enable hard real-time system

response for plan execution, thus already addressing many of the integrated

planning/execution coordination issues demanded for a fully-autonomous system. We

have added new capabilities and relaxed several restrictive assumptions (e.g., accurate,

complete knowledge and "indefinite safety" during plan-execution), resulting in a

"second-generation" system we aptly entitle "CIRCA-II".

Both CIRCA and CIRCA-II approach automation problems by requiring

guaranteed failure-avoidance and giving secondary consideration to goal-achievement.

Instead of directly addressing issues of optimality across the overall hybrid

12

planning/execution system, CIRCA-II explicitly divides available computational

resources into two distinct groups: planning and plan execution. For this work, the set of

planner/scheduler computational resources is presumed to be sufficient, given that no

real-time constraints on deliberation have been imposed.3 Then, plan-execution resources

are explicitly scheduled to allow hard real-time response for guaranteed failure-

avoidance. In this manner, CIRCA and CIRCA-II are able to make failure-avoidance

guarantees by constructing and scheduling plans offline that require hard real-time

response, requiring online construction of new plans only if the original plan set does not

accomplish all secondary goals (e.g., compute a route to an alternate airport after an

immediate turn to avoid adverse weather that could jeopardize aircraft safety).

Although we do not explicitly limit planning resource usage, we have developed a

temporal model for planning that minimizes resource usage via a cyclic state-space

representation and an abbreviated state transition set. This temporal model uses time-

dependent event probabilities to compute state probabilities during planning.

Additionally, the planner determines plan-execution timing constraints from "dangerous"

event parameters along with action worst-case execution times. The popular Markov

Decision Process (MDP) planners [11] provide a framework for optimal policy

construction using a probabilistic transition model, and our approximate temporal model

used for CIRCA-II planning is often compared to this approach. Ideally, CIRCA-II

would incorporate an MDP planner, and then plans would be optimal whereas CIRCA-

II's current plans are only sufficient. However, the MDP becomes highly complex for

our problem because it must be augmented to consider action deadlines and state history

(path) information as is currently done within our planner. We describe the MDP model

3 A crucial element of future development for CIRCA-II is to explicitly consider resource
constraints within planning/scheduling themselves, particularly when real-time
constraints for online deliberation must be imposed. Although no such algorithms have
yet been fully developed, this topic is discussed in Appendix D of this dissertation.

13

in Chapter II, then revisit the comparison of our approach to the MDP model in Chapter

IV of this dissertation.

In addition to constructing plans and determining their real-time constraints, the

CIRCA-II planning system must also be able to make tradeoffs when a plan cannot be

successfully scheduled to meet these constraints. We always bias the system to favor

safety over goal achievement; thus we begin by enforcing real-time constraints

exclusively for failure-avoidance tasks. Even with this bias, all preemptive tasks sets

developed through exhaustive planner backtracking may still be unschedulable. In this

case, the original CIRCA would simply fail. However, we utilize our probabilistic

temporal model to relax real-time constraints such that absolute guarantees become

probabilistic, thereby allowing a non-zero chance of failure, but certainly a better chance

of success than if the planner simply "gave up" because absolute guarantees were

impossible to achieve.

Whenever a given set of actions cannot be scheduled, the set of actions must be

modified. Because the planner and scheduler perform different functions, it is not

straightforward for the scheduler to specify information that will guide the planner

toward a schedulable plan. We first approached this problem by testing the ability of the

planner to estimate its probabilistic guarantee requirements based on overall processor

utilization, and have further adopted a heuristic cost-function approach so that the planner

is directed to modify or replace specific "bottleneck" tasks during backtracking. We

continue work on this problem to improve our heuristic for selecting bottleneck tasks, and

have begun work to identify how the scheduler may alter task Quality-of-Service (QoS)

levels to make tradeoffs that complement planner backtracking to alter the planned task

set.

Once the set of carefully-scheduled plans have been developed, the plan-

execution system must execute them such that all specified real-time constraints are met.

We allow execution of incomplete plans, where "incomplete" means there may exist

14

reachable state(s) that are not handled within the executing plan. For some "unplanned-

for" states, the system may be able to continue blindly executing its plan without

compromising safety. In other states, the system may need to recognize it has deviated

from the planned-for state set and request help before safety is compromised. To do this

in CIRCA-II, we require that the planner identify and build tests to detect important

"unplanned-for" states, and that the execution system must be able to recall prebuilt plans

to react to these states in hard real-time when necessary.

Contributions

The contributions of this thesis are directed toward the development of algorithms

for the CIRCA-II architecture and demonstration of their use for enhancing safety in

fully-automated domains. However, many of these algorithms and systems have general

application to the AI, real-time, and aircraft automation communities. For the

probabilistic planning community, this thesis presents a novel discrete-time probabilistic

planning approach that requires substantially fewer resources than an MDP-based system

at the cost of plan optimality. From a multi-layer architectures perspective, this thesis

describes how a system can automatically build tests for and subsequently react to

"unhandled" states, in real time when required. CIRCA-II must incorporate an integrated

planning-scheduling system to enable real-time guarantees. This thesis also explores

efficient and expressive communication protocols between distinct AI planning and

traditional real-time scheduling algorithms to assist with the tradeoffs required when

scheduling a proposed plan does not succeed. Finally, this thesis studies the application

of all CIRCA-II techniques toward the ultimate goal of safe, fully-automated aircraft

flight, and describes the flexible simulation and actual hardware testbeds that have

already become an integral part of funded industrial research efforts. We describe

pertinent details of each contribution in terms of CIRCA-II below.

15

Probabilistic Planning

We have developed and incorporated into CIRCA-II a temporal model that

represents the state-space probabilistically and compactly, allowing for time-dependent

state transition probabilities and non-trivial feature observation delays. As in CIRCA, we

maintain the ability of the planner to compute preemptive task requirements for

guaranteed failure avoidance. Additionally, we incorporate the ability to identify and

ignore low-probability states when scheduling fails, enabling graceful performance

degradation by trading off absolute failure-avoidance guarantees in favor of probabilistic

safety guarantees when required.

Our temporal model uses a discrete time representation to describe transition and

state probabilities, along with a cyclic state-space representation to minimize planning

memory and time requirements. This model can show substantial representational and

computational efficiency gains over Markov-based models but to-date contains no

principled methodology for measuring solution optimality. Although not perfect, this

introduces an alternative to the MDP community, which we hope will as a minimum

rekindle discussions of when to use state-space planners rather than MDPs for complex,

probabilistic problem domains.

Multi-layer Architectures

Incomplete plans are inevitable with imprecise knowledge and low-probability

states that are either ignored or unmodeled. A plan-execution system cannot be expected

to automatically "know" when it has deviated from the "planned-for" state set, so we have

augmented the CIRCA-II planner such that it builds active perception tasks into each plan

to detect crucial "unplanned-for" states, including those that may ultimately lead to

catastrophic system failure. The planner also builds contingency plans to handle the

"dangerous" subset of these unplanned-for states in real-time should they actually be

16

encountered, and is capable of dynamic replanning when the plan-execution system feeds

back an unplanned-for state that has not been completely handled by an existing

contingency plan.

We have integrated a plan cache into the plan-execution layer of CIRCA-II. This

cache is part of a "plan dispatcher" that is responsible for managing plan storage and

controlling the execution of individual plans by monitoring the current world state and

matching this state to the cached plan set for both "goal-oriented" and "contingency"

plans required to maintain system safety. The dispatcher manages all communications

from the planner and state feedback generated within an executing plan, such that new

plans are added to the cache as they arrive and retrieved in hard real-time as they are

required.

Planner-Scheduler Negotiation

The CIRCA-II planner proposes a set of tasks with execution constraints to be

scheduled. In the original CIRCA, if the scheduler was unsuccessful, it fed back a non-

descript "fail" message to the planner, which then blindly backtracked in an attempt to

find a schedulable set of tasks. For this thesis, we directed our research efforts toward

increasing the expressivity of scheduler feedback to help guide the planner when

scheduling fails. Cooperative work in [47] illustrates how overall processor utilization

can be used to guide planning during backtracking when all plan-execution occurs on a

single processor. In follow-on work, we have developed a method by which utilizations

from a multi-resource scheduler may be heuristically combined with planning data to

select "bottleneck" tasks for guiding the planner during backtracking. Additionally, we

have proposed a method for developing a set of fault-tolerant plans, allowing the planner

to alter the content of plans when computational resources fail instead of just re-

17

scheduling them on available resources as is traditionally done in the fault-tolerant

scheduling field.

Safe, Fully-Automated Flight

No grand-scale claims of "safe, fully-automated flight" can realistically be made,

but we have begun to address crucial issues that have not been considered within flight

management systems. We utilize CIRCA-II to perform "pilot-oriented" decision-making

tasks automatically and in real-time. Such decisions include identifying and acting on

conditions that necessitate a go-around during landing, or modifying the flight plan

appropriately when significant airframe icing is detected. For this research, we primarily

utilize the "flight domain" for demonstrating the operation of our CIRCA-II algorithms.

However, to do this, we have become very much involved with the details of achieving

automated flight, both from the "simulated" and "real" aircraft perspective.

The primary testbed for CIRCA-II algorithms has been the Aerial Combat

Maneuver (ACM) F-16 simulator [58] that runs under Windows and on most UNIX

platforms. We have built a low-level controller that interfaces with CIRCA-II, and added

several "interesting" keyboard-driven events to the simulated environment. We wrote a

planner knowledge base that allows fully-automated flight along with response to a

number of simulated emergency situations.

We have also worked to implement CIRCA-II on an actual aircraft, the University

of Michigan Uninhabited Aerial Vehicle (UAV). Research has included the development

and implementation of a real-time software architecture for the aircraft running under the

QNX real-time operating system. Additionally, we have implemented CIRCA-II in

QNX and integrated it into the software for mission planning and fault recovery

operations. We are currently implementing state estimation, control, and fault detection

18

software for our UAV so that CIRCA-II can be used to fully-automate the aircraft during

test flights which we expect to begin within the next six months.

Outline

We begin this thesis (Chapter II) with an overview of related work. We first

study Markov-based planning algorithms, a popular set of techniques that are often

compared to our probabilistic model. Then, we survey current methods for real-time

planning and plan execution and present the CIRCA architecture as it existed prior to

work reported in this thesis.

In Chapter III, we present the CIRCA-II architecture and describe its components,

focusing on how they connect and their complementary roles in overall system

functionality. Chapter IV describes in detail the CIRCA-II temporal model, starting with

the nondeterministic STRIPS-like transition model used by CIRCA, then describing the

compact probabilistic transition-based model used by CIRCA-II, focusing on both the

details of the probabilistic model and its use for computing state probabilities and the

preemptive task deadlines sent to the scheduler. We present a qualitative comparison of

CIRCA-II to the original CIRCA as well as an MDP configured to emulate the

functionality of the CIRCA-II planner.

Chapter V contains the methodology by which we detect and react to "unplanned-

for" states as they arise. First, a state classification scheme is proposed to assist with the

identification of "important" unplanned-for states, which must be detected. We then

describe the algorithms used to build tests that can detect these states as they occur during

plan execution and propose a methodology for responding to these states that strongly

biases the system toward failure-avoidance over goal-achievement when such a tradeoff

is required. We discuss how CIRCA-II with unplanned-for states compares to the

19

original CIRCA and also how the addition of the plan cache improves performance,

measured in terms of a system's ability to remain safe in its environment.

Chapter VI describes our progress to develop algorithms that enable planner-

scheduler negotiation, starting with the single-processor scheduler we have implemented

and tested and venturing into algorithms that will also allow expressive feedback to the

planner when a multi-resource allocation and scheduling system is implemented in the

CIRCA-II architecture. We then describe recent work to introduce fault-tolerance to the

CIRCA-II plan-execution platform and discuss methods for adopting Quality-of-Service

(QoS) negotiation techniques for allowing both planner and scheduler to degrade system

performance, as opposed to requiring that the planner be responsible for all performance

degradation computations required to successfully build and schedule each plan.

Chapter VII describes the flight simulation tests we have performed to

demonstrate the utility of our algorithms and to explore the use of the CIRCA-II

architecture for fully-automating aircraft flight. First, we describe tests with an F-16

simulator that allow us to explore how CIRCA-II can be used to guide the F-16 during

fully-automated pattern flight even when specific anomalous situations occur. Next, we

describe the next-generation F-16 simulator recently used by Honeywell Technology

Center and the University of Michigan for a joint UCAV (Unmanned Combat Aerial

Vehicle) demo. We describe the University of Michigan Uninhabited Aerial Vehicle

(UAV) project, from hardware to software architecture, and look at the application of

CIRCA-II to that vehicle for mission planning and fault recovery tasks.

Chapter VIII summarizes the topics covered and contributions of this thesis and

also discusses the diverse set of future research problems that may be addressed in the

context of CIRCA-II and more generally the spectrum of hard real-time autonomous

systems.

20

CHAPTER II

RELATED WORK

In this chapter, we describe existing methods for planning and plan execution that

are applicable or similar to our work, focusing on their capabilities and limitations with

respect to the real-time failure-avoidance properties we require. Figures 2-1 and 2-2

show generic conceptual diagrams of distinct "AI planning" and "real-time" systems,

respectively. Traditionally, the AI community has designed architectures that include

modules for planning and/or plan execution. The planner takes as input domain

knowledge and outputs one or more plans or policies of the type illustrated previously in

Figure 1-2. The plan execution system takes plan(s) as input and interprets these plans,

ultimately selecting a specific sequence of actions to be executed over time.

Environment state feature information (e.g., from sensors) is typically used by the plan

execution module to select appropriate actions and/or plans to execute, and may also be

provided to the planner to better guide plan development.

Figure 2-1: A "Generic" Planning/Plan-Execution Architecture.4

4 The 3-T architecture [17] was developed to conceptually describe systems with distinct
planning, plan-execution, and reactive layers. In Figure 2-1, we hide any reactive layer in
"Environment" because we are not concerned with its operation in this discussion.

PlannerPlanner EnvironmentPlan ExecutorPlan Executor
Domain
Knowledge

Plans Actions State

21

Figure 2-2: A "Generic" Real-time Resource Allocation/Scheduling System.

The real-time community has designed a wide array of algorithms that take as

input a set of tasks along with their execution requirements and constraints, allocate

resources (e.g., processors, communication channels) for these tasks, then schedule the

tasks on each individual resource. As shown in Figure 2-2, the "environment" for a real-

time task allocation and scheduling system is the execution platform. Execution

resources are typically monitored to provide feedback regarding dynamic changes in the

available resource set.

In our work, we combine planning and scheduling algorithms based on techniques

developed by planning and real-time systems researchers. To do so, we require a planner

with a sufficiently expressive temporal model of the world to succeed in a dynamic real-

time environment. Additionally, we require a real-time task scheduler that is sufficiently

versatile to accept tasks (actions) produced automatically by a planner as well as provide

feedback that is understood by that planner. In this chapter, we describe algorithms and

techniques that have been used by others to combine action selection (planning) with the

temporal reasoning required for a real-time environment.

In order to use the term "response guarantee" in reference to a system operating in

a dynamic environment, we require a planner that is capable of performing a temporal

analysis to determine how each action will affect its environment as a function of when it

is executed in that environment. Actions responsible for maintaining system safety can

succeed only if executed prior to a fixed deadline, and thus must execute in hard real-

time. The concept of a hard real-time system is illustrated in Figure 2-3, with the

Task-to-Resource
 Allocator

Resource
Scheduler

 Execution
 Platform

Task Sets
Task
Schedule

State

Available
Resources

Negotiation

Task List

Status

22

compromise in safety after a hard deadline passes represented by a sharp drop in reward.

This behavior contrasts with best-effort or soft real-time tasks in which reward (or

performance) degrades more gracefully over time. As we will describe below, many of

the popular "real-time" planning and/or plan execution architectures exhibit only best-

effort execution capabilities. Thus, they can be at best coincidentally real-time when

applied to a hard real-time domain.5

Figure 2-3: "Hard" versus "Soft" [Best-effort] Real-time System.

This chapter begins with a discussion of related planning research. Because we

admit systems with limited resources and imprecisely-specified domain knowledge, we

utilize a probabilistic planning model for our research. The Markov Decision Process

(MDP) [11],[45] is perhaps the most flexible existing probabilistic planning model, thus

we devote a section of this chapter to a discussion of this popular technique. Next, we

describe research in real-time planning in which researchers explicitly place bounds on

deliberation time to allow response before a hard task deadline occurs.

Because state-space planning is generally NP-complete, such planning algorithms

are generally not viewed as sufficient for a stand-alone hard real-time system (e.g.,

without any supporting scheduling and/or plan execution processes). As a result, a

5 Some researchers argue that such systems can be used for hard real-time domains by
performing an extensive battery of tests that verify real-time performance. We agree with
this verification method in theory, but in practice one must be able to demonstrate that all
possible situations have been encountered during testing. In our opinion, this diminishes
the attractiveness of the system and provides a formidable challenge for each application
of the architecture to a new problem.

deadline

response
time

reward

soft

hard

23

multitude of architectures have been developed that incorporate distinct plan-execution

components to augment (or replace) a planner. This design has improved the AI

community's ability to build systems capable of automating complex and dynamic

domains, as demonstrated by their success in real-world applications. However, many of

these architectures exhibit the coincidental real-time response for which we are skeptical

in safety-critical systems. We conclude this chapter with a description of the Cooperative

Intelligent Real-time Control Architecture (CIRCA) [51],[53] which was explicitly

designed to guarantee failure-avoidance via integrated planning/scheduling/plan-

execution software. We have built upon the CIRCA architecture in this dissertation, thus

we also discuss its limitations and preview how we address these issues in CIRCA-II.

Probabilistic Planning: The Markov Decision Process

The Markov Decision Process (MDP) model is the basis for many state-of-the-art

probabilistic planning (policy construction) algorithms, and is very attractive due to its

ability to convert state transition probabilities into optimal plans, where optimality is

measured in terms of a value or utility function. Described in [11], the general MDP is

given by M = (S, A, P, R). In this representation, S is a finite set of NS states where NS

represents the combinatorial set of all state features and their possible values, A is a finite

set of NA actions, P is a state-transition matrix, and R is a reward function. The MDP

presumes the system evolves in stages, where the occurrence of some event (or action)

results in the transition from some state t to the next state t+1. Although the progression

of stages need not necessarily correspond to a progression in time, this is a valid mapping

appropriate for our "real-time plan" development purposes.

Several terms are used to classify systems within an MDP framework. The

Markov assumption [11] says that "knowledge of the present state renders information

about the past irrelevant to making predictions about the future". This is a required

24

property of an MDP system to allow a tractable representation of state transition

probabilities. Also, in any system that can presume the effects of each event depend only

on the current state, and not the stage (i.e., time) at which the event occurs, we say the

MDP is stationary and can be represented using only two stages. Otherwise, for a T-

stage nonstationary Markov chain, state transition probabilities are dependent on the

current stage number (e.g., amount of time that has passed). Due to this dependence, in

the worst case (fully-connected state-space), T transition matrices of size NAxNSxNS must

be provided. Using the notation in [11] and [45], the probability of transitioning from a

state si to state sj at stage t is then given by pt
ij, and the full state transition matrix P is of

size Tx NAxNSxNS.

One key property of the basic MDP is that all state features must be observable in

each stage so that the correct action for each state can reliably be chosen. A partially-

observable MDP (POMDP) [13] is defined as an MDP in which some state feature

measurements are either noisy or unavailable, in which case probabilistic distributions

regarding the likelihood of unobservable state features must be incorporated into the

model instead of directly observed. The requirement to use a POMDP for system

modeling dramatically increases planning computational complexity, and thus is

generally avoided when it is possible to measure all state feature values.

Our emphasis in this research is on the development and execution of "control

plans" (defined in Chapter 1) in which all reactions are sufficiently accurate and timely to

guarantee safety in dangerous dynamic environments. We presume that a system can

measure all state features, although in some cases with non-negligible cost, thus we do

not require a POMDP formulation for our problem. However, we do require a system

capable of reasoning about the time at which each event will occur so that the system can

explicitly compute all action deadlines required to preempt states that represent

catastrophic failure. Further, in MDP terminology, we require a state transition matrix

that accurately reflects the effects of selecting different action execution deadlines so that

25

we can construct an optimal (or at least sufficient) control plan in which all failure-

avoidance actions will be guaranteed to execute in hard real-time on the limited set of

plan execution resources.

To account for the probabilistic effects of varying action execution deadlines, an

MDP must be augmented such that one action is specified for each deadline available for

each action. So, for example, suppose an automated aircraft system has an action

"emergency-land". Then, the MDP transition matrix will require actions such as

"emergency-land-in-1-minute", "emergency-land-in-2-minutes", etc., since the

probabilities of other transitions (e.g., crash) will be conditional on the amount of time

that passes before the [failure-avoidance] activity completes.6 This addition to the MDP

effectively increases the set of actions from the previous NA to NA x ND, where ND

represents the number of unique deadlines that may be assigned to each action.

We seek a general technique for reasoning about the temporal characteristics of

exogenous events and actions during planning. Figure 2-4 shows a simple three-stage

state transition diagram excerpt illustrating an "engine-failure" exogenous event coupled

with actions (deadline excluded from figure labels) to start the aircraft engine, fly to new

locations, and "emergency-land" if the engine fails during flight. Now, presume the

system begins at stage t with two possible states, one in which the engine has been

running since some previous time and the other in which the engine is off. Now, as will

be discussed in Chapter 4, a state transition such as "engine-failure" can have very

different probabilistic properties depending on factors such as how long the engine has

been operating, particularly as the engine approaches or passes the end of its normal

6 For actions that execute with different deadlines, either the time between stages in an
MDP must vary in accordance with the action execution deadline or else the action must
continue executing across multiple stages. We presume the former because the latter
requires a violation of the Markov assumption unless special features are added to the
state to effectively "remember" which action is executing and when it began, further
increasing MDP complexity.

26

operating life.7 So, presuming that the time between stage t and t+1 is non-trivial, the

likelihood of an engine-failure from the "Engine=ON" state in stage t+1 may be

dependent on the path in which the system arrived at stage t+1. Thus, the Figure 2-4

model violates the Markov assumption.

As discussed in [11], any non-Markovian model whose dynamics (e.g., event

probabilities) depend on at most k previous stages can be converted to a larger Markov

model.8 This conversion to "state form" [46] requires that information be added to each

state to keep track of how much time has passed (e.g., since the engine has been started)

so that state transition probabilities can accurately reflect these effects. Note that as k

increases, the number of states in the "converted Markov model" also increases, in the

worst-case exponentially in k (i.e., to NS
k). This worst-case represents the fully-

connected situation in which all possible states are expanded in all stages and all state

information must be "remembered" from each of the previous k stages.

Figure 2-4: Three-Stage State Transition Diagram.

7 Note the effects are exaggerated here for effect, so the reader should not allow this
dissertation to instill a fear of flight, which is statistically much safer than travel by car.

8 As limiting cases, k=1 represents a "naturally" Markovian model and k=T (the
maximum number of stages expanded) indicates that all stages must be "remembered".

Location=1
Engine=ON

fly-to-2

engine-
failure

Location=2
Engine=ON

Location=2
Engine=OFF

Action
Event

Location=1
Engine=FAIL

start-
engine

Location=2
Engine=FAIL

engine-
failure

emergency-
 land

Location=3
Engine=ON

Location=2b
Engine=FAIL

fly-to-3

stage t stage t+1 stage t+2

27

For small k and large number of stages T (i.e., translatable for our purposes to

time horizon thorizon), the above "k-level" (i.e., k-stage memory) conversion process is

perhaps the most efficient method for utilizing a generic MDP planner. In the special

case where k is equal to the number of stages and the model is Markovian so long as each

state "remembers" the current stage number (corresponding to time in our model), a

system can utilize the standard non-stationary MDP described above. For the Figure 2-4

example, knowledge of stage number is not sufficient because engine operation time

varies between states within a particular stage. Thus, we adopt the "k-level" conversion

model that includes actions for each possible deadline as the MDP-equivalent for "control

plan" development as defined in Chapter 1. As discussed above, this MDP model has a

transition matrix P of worst-case size (NA xND)x NS
k x NS

k.

It is not difficult to observe that this MDP model grows large very quickly.

Methods such as Bayesian Networks [61] have been developed to efficiently represent

conditional state probabilities like those found in P. Then, algorithms such as Policy

Iteration and Value Iteration [11] are used to compute an optimal policy (i.e., mapping of

actions, along with deadlines for our model, to states). For large problems, recent

advances such as factoring the state-space [14] and using algebraic decision diagrams to

solve factored MDPs [30] have been developed. We have not yet verified whether these

methods will be capable of significantly reducing complexity for our problems of

interest.

We have devoted this section exclusively to a discussion of MDPs, but have opted

for a probabilistic state-space planner with a STRIPS-like [18] state transition

representation for our CIRCA-II architecture. This decision was based on a number of

factors. First, since computing flexible action deadlines to accommodate execution on

limited resources is a key part of each control plan, we find it overly restrictive to require

a knowledge base in which a unique action must be specified for each possible deadline.

Additionally, we have observed that the transitions and "intuitive" features associated

28

with hard real-time domains often require multi-level histories as was illustrated by

Figure 2-4, and that the development of the "k-level" model for large k will be a difficult

undertaking in itself. For these reasons, we present an approximate probabilistic state-

space planning model in this dissertation, sacrificing MDP optimality for knowledge and

state-space compactness while maintaining the ability to select actions and corresponding

deadlines that guarantee hard real-time failure-avoidance during plan execution.

Real-time Planning

In this section, we briefly discuss methods to restrict planning time so that real-

time response deadlines are met. Such systems typically employ approximate planning

techniques, and thus have the advantage of controllable and predictable real-time

execution. However, due to the unavoidable complexity of planning, real-time planners

often have difficulty in guaranteeing result accuracy simultaneously with timeliness, as

discussed in [51]. Nevertheless, powerful techniques have been developed for real-time

planning, and in the future we hope to incorporate an algorithm to bound planning time

that will most likely be based on work described in this section.

One of the most basic approaches to time-limited planning is to build a minimal

plan then iteratively improve this plan until planning time expires. This idea has been

labeled anytime planning [15], and has been implemented in many interesting algorithms.

In an anytime system, a planner must produce a very approximate plan almost

immediately; this plan may be a random guess in the worst case. As time passes, the plan

is refined to become more accurate, until the planner is interrupted by the anytime

monitoring process for the best result it has computed given planning time available so

far. Abstraction planning algorithms such as that in [10] and [31] illustrate the utility of

anytime planning. For a variety of problems, the combined anytime-abstraction approach

is sufficiently fast to produce high-quality approximate plans. Additionally, different

29

anytime algorithms can be merged to produce an optimal result given deliberation time

constraints [74],[75]. However, even the most efficient anytime algorithm must assume

that sufficient time is available for a “minimally-accurate plan” to be developed.9

Design-to-time planning [21] presumes the system can compute or approximate in

advance the amount of time that will be available for planning. Then, the planning

process is tailored via the choice of parameters (e.g., level of abstraction, planning

technique) so that a solution will be returned within the available time. This approach

presumes there is a function that allows planning time to be predicted based on the choice

of parameters, a difficult computation for a number of NP-complete planning problems in

which worst-case execution time (based on domain knowledge size) will often be much

larger than available computation time, although planning average-case execution time

may be available. A major advantage of design-to-time planning is that the system will

know in advance whether it can expect to succeed given the available planning time. So,

in systems that begin in a “safe” environment, if the planner predicts it cannot produce

minimally-accurate plans in real-time, it can remain safe by never venturing away from

safety (e.g., an aircraft will never leave the ground). Alternatively, if the planner predicts

it can produce minimally-accurate plans for the fastest responses required for that

domain, the system may even be able to make guarantees regarding system safety.

Design-to-criteria scheduling [70], based on the earlier design-to-time research, is

the soft real-time process of finding an execution path through a hierarchical task

network so that all execution constraints are met, including real-time deadlines, cost

limits, and plan quality requirements. This procedure incorporates a probabilistic model

to make approximations when required, as does the planner we describe in this work.

However, discontinuities in the utility functions used to guide the design-to-criteria

9 For the safety-critical systems considered in this dissertation, a minimally-accurate plan
must be capable of responding in a timely manner to all events that lead to system failure.

30

processes may compromise the result, as would be the case when a hard real-time

response deadline is exceeded.

In this dissertation, we do not directly address the problem of real-time planning

due to the tradeoff between planner response timeliness and plan accuracy. However, as

discussed in Chapter VIII, we will be revisiting the real-time planning issue in follow-on

research as we work to make dynamic replanning for anomalous world states temporally-

bounded10 when required.

Real-time Plan Execution

When deadlines are so tight that none of the available real-time planning

techniques provide sufficiently accurate results, they must either be integrated with or

replaced by real-time plan-execution algorithms. At the opposite end of the "planning -

plan execution" spectrum, consider the concept of a Universal Plan set [63]. The

existence of such a set is desirable because it completely avoids dynamic planning by

including responses for all modelable states, regardless of whether they are reachable

given the initial state and goals for a particular mission (e.g., flight).11 However, as

discussed in [23], for complex domains, bounded planning resources (e.g., memory, disk

storage capacity) may make creation of the complete Universal Plan set infeasible, and

hard real-time plan execution constraints may prohibit response guarantees due to the

time required for retrieving the appropriate plan(s) from such a large database.

Many researchers have addressed the challenges associated with utilizing a

predefined plan set. Because such plan databases can be large, if not "Universal", plan-

10 We use the term temporally-bounded to indicate that a process is timely but not
necessarily accurate, both of which are required for a designation of hard real-time.

11 The Universal Plan concept is distinct from the MDP policy in that the MDP only
builds into its policies reactions for states that are reachable with non-zero probability
from the known initial state(s).

31

execution architectures employ a wide array of efficient plan retrieval procedures that

allow successful execution in real-time environments. First, the RAPs architecture [19]

specifically addresses the issue of fast reactions in complex domains. Using a set of

production-like rules, the system takes sensor information about its environment and

selects appropriate reactions using a set of predefined rules (or RAPs). Similarly, the

Procedural Reasoning System (PRS) [33] addresses real-time plan execution by

employing a plan (or procedure) database, and reacting to situations as they occur by

retrieving one or more of these plans for execution.

Searching through a procedure or rule database has been shown to be sufficiently

fast for a variety of real-time domains, including numerous mobile robot experiments

such as those in [32]. However, absolute real-time guarantees are impossible to achieve

in RAPs and PRS unless they are augmented with a module to prove that the worst-case

database search-and-act time is less than or equal to the fastest response that might be

required for failure avoidance, as was discussed for C-PRS in [32]. Additionally, even

with an execution time proof, in many cases the absolute worst-case search-and-act time

would be greater than the minimum response time required so the proof would only show

that the system could fail in the worst case.

Architectures such as CYPRESS [71] and SOAR [40] have demonstrated the

ability to succeed in real-time environments, including SOAR's success during a variety

of military simulation exercises [34] and the world of RoboCup [69]. Both architectures

combine efficiency with flexibility by using a reactive plan-execution system whenever a

response is available and by performing dynamic planning (subgoaling) otherwise.

However, neither explicitly reasons about task deadlines or worst-case resource

utilization, so they fall under the classification of “coincidentally” real-time systems

defined previously.

A number of researchers have begun to carefully consider hard real-time

constraints when applying planning and plan-execution techniques to real-world

32

problems. For example, in [27], a set of conditional schedules have been demonstrated to

provide predictable plan-execution response times for an aircraft avionics problem. Such

systems address the same critical hard real-time issues we consider in this dissertation.

However, our work is distinguished by specifically separating the failure avoidance

problem from goal achievement, and by considering classes of both probable and

improbable situations that require hard real-time responses.

The New Millennium Remote Agent (NMRA) architecture used for the Deep

Space One (DS-1) spacecraft [55] employs a constraint-based planner and scheduler to

allow real-time responses to a variety of situations. Although NMRA may be generalized

to other domains, it relies on the fact that DS-1 has brief periods requiring hard real-time

response (e.g., a fuel burn sequence during orbit insertion) interspersed with longer time

periods in which significant “slack time” is available for planning/scheduling.12 A basic

premise in our work is that we cannot rely on the occurrence of such slack intervals, thus

we need to be able to recall pre-built contingency plans to guarantee safety in time-

critical situations, even if these reflex actions actually make the system diverge from its

task-level goals. With such an assumption, our system is not as appropriate as NMRA

for a spacecraft like DS-1, where achieving major task-level goals is as time-critical and

crucial as maintaining spacecraft safety. Instead, we focus on problems in which a clear

distinction can be made between failure-avoidance tasks and less-important goal-

achievement tasks, but allow our system to operate continuously in a “dangerous”

dynamic environment, as illustrated in Chapter VII for the autonomous flight domain.

12 This limitation is necessitated by the limited resource set (i.e., one processor) on the
DS-1 spacecraft that prohibits any appreciable planning or scheduling simultaneously
with other critical low-level activities.

33

Real-time
Subsystem

 Planner
Knowledge
 Base

Environment

AI Subsystem
AMP

Scheduler
schedules

TAP listsTAP plans

status

initial state(s),
goal, transitions

SSP

Figure 2-5: The Cooperative Intelligent Real-time Control Architecture.

CIRCA: Reasoning About Real-time Plan Execution

The Cooperative Intelligent Real-time Control Architecture (CIRCA) [51],[53]

combines aspects from planning and plan-execution systems, and was designed to

explicitly separate the time-consuming planning process from real-time plan execution.

Using this approach, the planner reasons about real-time, but does not have to make

approximations that permit planning in real-time. To build real-time plans, CIRCA’s

planner employs a time-dependent state transition model and a representation for system

“failure” such that plans contain two classes of test-action pairs (TAPs): “guaranteed”

with hard deadlines for failure avoidance, and “soft real-time” with best-effort execution

for goal achievement.

As shown in Figure 2-5, CIRCA is divided into an AI subsystem that includes a

high-level automated mission planner (AMP) and state-space planner (SSP), a real-time

task scheduler, and a real-time [plan execution] subsystem (RTS). The AI subsystem is

responsible for compiling a set of actions to achieve its overall mission goals while

guaranteeing failure avoidance. The guaranteed set of these TAPs is sent to a real-time

scheduler, and if scheduling is successful, downloaded to the RTS for execution. If

scheduling is not successful, a simple "fail" status is returned from the scheduler. The

state-space planner then backtracks to (hopefully) find a different set of actions that will

still be guaranteed to avoid failure while achieving the same goal. Otherwise, the AMP

34

must somehow modify the planning problem so that a schedulable plan may be

developed.13

Because of its careful consideration of real-time failure avoidance, we have

adopted CIRCA as the basis for the architecture presented in this dissertation, aptly titled

CIRCA-II. The original CIRCA has many desirable properties, including its real-time

execution guarantees and its separation of planning from plan execution such that

significant (and often unpredictable) planning approximations are not required for real-

time performance. However, CIRCA also makes significant assumptions which may

cause difficulties in complex real-time environments. First, CIRCA presumes that any

executing plan can maintain safety indefinitely. This assumption is valid for many

domains, such as a mobile robot that can either stop (in a benign environment) or perform

a fixed safety-maintenance loop (in a closed, predictable world) forever. However, other

domains cannot include “stop” or indefinite “safety-maintenance” actions. For example,

during fully-automated flight, the aircraft cannot remain safe indefinitely once it has left

the ground, since fuel must continuously burn and a variety of anomalous situations may

prohibit the aircraft from reaching its planned-for landing destination.

Another important CIRCA assumption is that there exists at least one schedulable

plan that can achieve the complete set of task-level goals while guaranteeing failure

avoidance. Because of CIRCA’s non-deterministic state-space model, it is impossible to

make any approximations (e.g., remove improbable states), thus the planner would

simply fail if no one schedulable plan could be produced after exhaustive backtracking.

In this dissertation, we describe algorithms that directly address these limitations and thus

13 In the original CIRCA implementation, the AMP relied solely on human intervention
to manually redefine the planning problem (e.g., by removing knowledge of some failure
modes from the model) when SSP backtracking alone could not provide a schedulable
plan. Theoretically, the AMP could have automatically redefined mission goals or
somehow removed state transitions from the SSP knowledge base; parallel research
efforts at Honeywell Technology Center are focusing on better defining such procedures.

35

distinguish CIRCA-II from CIRCA. Topics include inclusion of a probabilistic planning

model that allow planning approximations to enhance schedulability (Chapter 4),

description of a methodology by which CIRCA-II detects and handles "unplanned-for"

states, thereby accounting for [limited] domain knowledge imprecisions (Chapter 5), and

techniques utilized to provide more expressive scheduler-to-planner feedback to guide

backtracking operations prompted by a plan scheduling failure (Chapter 6).

36

CHAPTER III

CIRCA-II ARCHITECTURE

The original CIRCA architecture was designed to provide guarantees about

system performance with limited resources, given closed-world assumptions about

transition model accuracy, preemptive action schedulability, and the ability of the system

to maintain safety indefinitely during plan execution. CIRCA-II is based on CIRCA, but

is distinct in that its state-space planner is based on a probabilistic rather than non-

deterministic state-space model (see Chapter IV), admits incomplete knowledge and

graceful performance degradation via detection and handling of "unplanned-for" states

(see Chapter V), and extends the communication protocol between planner and scheduler

to help guide planner backtracking toward a schedulable plan (see Chapter VI). In this

chapter, we describe the CIRCA-II architecture and its components, all of which will be

referenced throughout this dissertation. We focus on module interconnections in

CIRCA-II, and provide a high-level description of component functionality. See

Appendix A for a more detailed description of the C++ CIRCA-II software

implementation, which focuses on custom architectural components in terms of their

current implementation as well as possibilities for future enhancements.

Figure 3-1 illustrates the CIRCA-II architecture. At the highest level, the

architecture is divided into a Planning Subsystem and a Plan-Execution Subsystem.

CIRCA and CIRCA-II both draw distinct boundaries between real-time and non-real-time

processes to facilitate reasoning about the hard real-time guarantees required for failure-

37

avoidance during plan execution. In CIRCA-II, we have designated that the Planning

Subsystem include all processes for which we cannot easily define reasonable worst-case

execution properties. At best, CIRCA-II will be able to complete Planning Subsystem

operations in coincidental real-time. Thus, we relegate the majority of planning and

scheduling operations to occur offline before the system ever enters its "dangerous"

environment. Conversely, safety-critical tasks in the "Plan-Execution Subsystem"

require hard real-time execution. This module includes a "Plan Executor" with analogous

functionality to the original CIRCA Real-Time Subsystem (RTS) [53], and a new "Plan

Dispatcher" that is responsible for managing a Plan Cache, communicating with the

Planning Subsystem, and starting/killing all individual Plan Executor processes.14

Figure 3-1: CIRCA-II Architecture.

14 In CIRCA-II, each new plan is executed as a separate process. This is markedly
different from the original CIRCA RTS, in which a set of plans (including multiple goal-
achievement plans but no contingency plans) was downloaded from the planner and
stored in a buffer until executed within the single RTS process. We made this change to
move CIRCA-II's plan executor toward a real-time-thread execution model and expect
further change as we move toward a multi-resource execution platform as well.

Environment

 Real-time
Plan Executor

Plan Dispatcher State-space
 Planner

 Resource
Scheduler

Scheduler
Database

Plan Cache
(Database)

Planning Subsystem

Plan-Execution
Subsystem

TAP plan feedback

 Planner
Knowledge
 Base

Initial state(s), subgoal(s),
 state transitions

 Resource usage,
real-time constraints

 state
feedback

 start/kill
 process

feedback

plans

38

Upon startup, CIRCA-II builds and schedules the set of "nominal" plans required

to achieve its pre-defined mission goals and a set of "contingency" plans specifically

developed to be retrieved in hard real-time for failure-avoidance purposes (see Chapter V

for more details on nominal and contingency plans). Both plan sets are developed offline

and stored in the plan cache on the hard real-time Plan-Execution Subsystem. Next, the

planner signals that plan execution should begin, and the first goal-achievement-oriented

nominal plan stored in the cache begins execution. If only likely, planned-for events

occur, the sequence of nominal plans will execute to completion. However, if a transition

leads out of the “planned-for” state set in any goal-achievement plan, the plan cache

module reacts with a pre-computed failure-avoidance contingency plan to maintain safety

(if necessary), then the planner develops a new set of actions to redirect the system

toward its goals. In the following sections, we briefly look at the functionality inside the

Planning and Plan-Execution Subsystem modules. Again, for further details regarding

specifics of the implementation, see Appendix A.

Planning Subsystem Operation

Figure 3-2a and 3-2b show the algorithm used by the Planning Subsystem to

create a plan that executes with hard real-time guarantees of failure-avoidance. Upon

startup, the planner processes initial states and transitions (Process_Knowledge_Base in

Figure 3-2a), then selects a subgoal from the knowledge base.15 Next, the planning

process is initiated, as will be described below. The state-space planner produces as

output a set of TAPs (test-action pairs) which is then passed into the real-time scheduler.

This resource scheduler, algorithms for which are discussed in Chapter VI, builds a cyclic

15 A pre-defined sequence of subgoals to achieve are currently specified in the knowledge
base. Ideally, subgoals would be automatically created from a single high-level goal.
Researchers at Honeywell and the University of Michigan [4] are in the process of
designing methods to automatically generate the goals to be achieved within each plan.

39

schedule for all guaranteed TAPs assuming worst-case execution properties, as in CIRCA

[51]. If scheduling is successful (i.e., all task deadlines can be met given the available

plan-execution resources), the plan is downloaded to the Plan Dispatcher in two pieces: a

plan file to be compiled into a plan execution process and a message containing a

decision-tree [57] database index specifying the set of states for which this plan should

execute. Otherwise, the plan must be modified so planning is again initiated, with

scheduler feedback (see Chapter VI) used to guide backtracking.

Figure 3-2: CIRCA-II Planning Subsystem.

A loop from the Download_Plan operation to Select_Subgoal is shown in Figure

3-2a because CIRCA-II continues building nominal plans for each subgoal in the

specified sequence, as well as contingency plans for failure-avoidance should unplanned-

for states be reached. Only when this set of plans is fully developed does the dispatcher

direct the system to enter its dangerous environment via execution of the first nominal

Process_Knowledge_Base

Select_Subgoal

Run_Planner

Download_Plan

Start

CIRCA-II Dispatcher

msg-to-
dispatcher

msg-from-
dispatcher

plan
file

Run_Scheduler

Generate-
feedback

failure

success

EXPAND_NEXT_STATE

UPDATE_PROBABILITIES

CHECK_INTERMEDIATE_PLAN

BUILD_TAPS

BUILD_SPECIAL_TAPS

Start

Finish

 a) CIRCA-II Planning Subsystem Procedure. b) “Run_Planner” Procedure.

SELECT_ACTION

40

plan. During plan-execution, the CIRCA-II Dispatcher may send a "replan" message to

the planner to accommodate "safe" unplanned-for states. The planner uses state feature

feedback information to select a new subgoal that can be achieved from this state (by

matching user-specified subgoal "preconditions" from the knowledge base), then builds

and downloads the new plan to the dispatcher.

As in CIRCA, CIRCA-II adopts a forward-chaining planner to expand the state-

space from initial to goal state(s). The probabilistic planner enables the use of a best-first

search state expansion strategy with states ordered from most probable to least probable.

Although this expansion ordering is not crucial in the current CIRCA-II implementation,

future research to implement real-time planning (see Appendix D) with an anytime

component in CIRCA-II may rely on best-first search ordering to maximize plan quality.

As shown in Figure 3-2b, for each "reachable" state, the planner expands the state (i.e.,

identifies matching transitions and the "child" states resulting from those transitions),

selects an action for that state (if any are judged as beneficial either for failure-avoidance

or goal-achievement), and then updates the probabilities to include effects of this newly-

expanded state. As will be described more completely in Chapter IV, during probability

computations, any execution constraints for actions requiring hard real-time execution

will also be updated/added so that the probability of system failure (i.e., traversing a

temporal transition to failure (ttf)) remains below a small threshold Pthresh from each state.

The state expansion cycle terminates with a comprehensive check of the

"intermediate plan" (i.e., action and associated deadline for each reachable state), which

verifies that the plan can achieve the specified subgoal.16 If no goal state is in the

reachable set, the planner backtracks to select different actions until at least one goal path

is identified. After a valid intermediate plan is constructed, the set of planned actions is

16 The plan need not be re-checked for failure-avoidance because Update_Probabilities
verifies preemption of all ttfs during plan construction.

41

compiled into Test-Action Pairs (TAPs), one TAP per unique planned action, along with

special TAPs constructed to report the detection of unhandled states (i.e., states that were

not explicitly handled during nominal plan development) as well as to flag when goal

states (i.e., state with features matching all specified subgoal features) are reached.

Figure 3-3: CIRCA Test-Action Pair (TAP) Plan Composition.

Figure 3-3 illustrates the structure of a plan that will be sent to the scheduler then

downloaded to the dispatcher. The set of planned (and special) TAPs is divided into two

classes: guaranteed (hard real-time) and if-time (best-effort). Guaranteed TAPs must be

inserted into a schedule that meet their associated ttf preemption deadlines, while best-

effort TAPs are executed during slack time as part of an if-time server TAP (see

Appendix A). Each TAP contains one action but may execute in multiple states (e.g., all

reachable states for which the TAP action has been selected). CIRCA-II (like CIRCA)

uses ID3 [57] to build a set of feature tests which will return a true/false value indicating

whether the current state requires execution of the TAP action. As depicted in Figure 3-

3, these feature tests and action together comprise a TAP, and are critical to consider

during scheduling (e.g., worst-case TAP execution time is the sum of all feature test and

action worst-case execution times) and subsequently during plan-execution (e.g., since

Plan

TAP 1

TAP 2

...

TAP m TAP (m+1)

...

TAP (m+n)

Feature test m 1 ... Feature test mx

guaranteed best-effort

Action m

42

the system must perform Action m only when feature tests m1-mx return values that match

those in the associated TAP test).

Figure 3-4: CIRCA-II Plan Dispatcher.

Plan-Execution Subsystem Operation

The CIRCA-II plan execution system is responsible for executing the TAP plans

developed and scheduled by the Planning Subsystem in hard real-time when required for

failure-avoidance. As shown in Figure 3-1, the Plan-Execution Subsystem contains the

Plan Dispatcher (including the plan cache) and the Plan Executor. Upon CIRCA-II

startup, we presume a system is in an indefinitely safe state (e.g., a commercial aircraft is

parked at an airport gate) since we may require extensive [unbounded] planning and

scheduling operations to populate the plan cache sufficiently for safe entry into the

"dangerous" environment (e.g., aircraft engine spool-up then takeoff from an active

runway). In this section, we first discuss operation of the new CIRCA-II Plan

Dispatcher. Next, we discuss features internal to the Plan Executor that allow real-time

Start

 Message
from Planner?

 Message
from Executor?

no

no

Add database index; store
plan in plan_type database

Delete database index
 and plan entry

 Execute first
downloaded plan

 Execute last
downloaded plan

 Plan
 Executing?

yes

 {ADD_PLAN, id,
 plan_type*, index}

{DELETE_PLAN, id}

EXECUTE

yes

yes

no

 Search
state_type
database

Kill old plan process;
execute new plan;
send {NEW_PLAN, id}

msg to planner

 Send
{REPLAN, features}
 msg to planner

 Plan
 match?

no

yes

{state_type*,
features}

* plan_type (state_type) = NOMINAL (GOAL STATE) or CONTINGENCY (UNHANDLED STATE)

43

execution guarantees both while executing a single plan and while switching to a new

plan from the CIRCA-II plan cache.

Figure 3-4 illustrates the functionality of the CIRCA-II Plan Dispatcher. This

program module is labeled "dispatcher" because its main program is simply comprised of

a loop that waits for and processes messages from the CIRCA-II Planning Subsystem and

Plan Executor, similar to the sequencing layer in the ATLANTIS architecture [17].

However, functions triggered by messages are responsible for all plan database

operations, plan-execution process management, and state feedback processing.

Ultimately, dispatcher operation is dictated by control commands downloaded by the

planner or inserted into plans to be triggered during execution (e.g., unhandled state

feedback). Upon dispatcher startup, the plan cache is empty and no plan is executing.

Thus, the dispatcher sits idle until the planner begins downloading the initial set of plans

to the cache. The planner notifies the dispatcher of each new plan with an

"ADD_PLAN" message that includes a plan ID (for common plan reference between

dispatcher and planner), plan type (nominal or contingency), and ID3-generated decision

tree index to be used by the dispatcher to match this cached plan to state feedback.

Alternatively, the planner may send a "DELETE_PLAN" message to prune an entry from

the plan cache when the planner determines it is no longer required.17

After the planner fully populates the plan cache with the set of nominal and

contingency plans it expects to require for this execution sequence, it downloads an

"EXECUTE" message to the dispatcher. The dispatcher then executes (i.e., starts the

plan-execution process associated with) the first [nominal] plan downloaded,

17 This function is implemented and tested in the dispatcher, but the decision-making
mechanisms required to select plans for deletion have not yet been incorporated into the
Planning Subsystem. We suspect such software will be incorporated concurrently with
algorithms to determine when the cache should "remember" frequently-used plans
between CIRCA-II runs.

44

corresponding to the first subgoal to be achieved. At this point, both planner and

dispatcher monitor the system for incoming messages until the Plan Executor feeds back

state information to the dispatcher, corresponding to either a "GOAL" or

"UNHANDLED" state, either of which is detected via one of the executing plan's special

TAPs. The dispatcher will then search the appropriate cache partition (i.e., nominal or

contingency) for a matching plan using the supplied state feature feedback. If a match is

found, the dispatcher kills the executing plan process, starts the new plan process, and

sends a "NEW_PLAN" message with the new plan ID to the planner.18 Otherwise, the

dispatcher sends the state feature information back to the planner as part of a "REPLAN"

message. Then, after the Planning Subsystem downloads the plan developed as a result

of the "REPLAN" message, it again transmits an "EXECUTE" message indicating that

the dispatcher should pull the most recent plan from the cache and execute it.

As described above, plan execution processes are spawned and killed by the

CIRCA-II Plan Dispatcher. However, they are responsible for ultimately carrying out all

planned actions and remain the only link between CIRCA-II and its environment, as

shown in Figure 3-1. Figure 3-5 outlines the functionality of each CIRCA-II Plan

Executor process. Upon startup, the TAPs and TAP schedule for that plan are initialized.

Then, the main program loops over the cyclic schedule of guaranteed TAPs.19 If a

guaranteed TAP takes less than its worst-case execution time, the quantity used for

scheduling, then slack time will be available before the next scheduled TAP must begin.

18 The worst-case execution time (wcet) for each plan switch must include the worst-case
plan cache search time plus delays due to killing the old plan process, then starting and
initializing the new plan process. To-date, our test domains have had TAPs with wcets
on the order of 0.1+ seconds, and plan switch overhead has been comparatively
insignificant thus easily included. We will be forced to more carefully consider plan
switch overhead for a domain with TAP wcets falling into the millisecond range or less.

19 The guaranteed TAP schedule may include the if-time server if plan-execution
resources were under-utilized even after all failure-avoidance TAPs are inserted.

45

During this interval (if it exists), the Plan Executor calls the if-time server to run best-

effort (if-time) TAPs. Appendix A discusses the current if-time server options

implemented within the CIRCA-II Plan Executor that build upon the "Round-Robin"

procedure utilized by the original CIRCA [51].

In the chapters that follow, we will examine in more detail the major research

advancements implemented within CIRCA-II. First, we will describe the probabilistic

model built into the CIRCA-II planner. Next, we will look from a more general

perspective at how CIRCA-II can detect and handle "unplanned-for" states, and describe

our rationale and procedures for building the nominal and contingency plans that

populate the CIRCA-II plan cache. We will then focus on a very specific part of CIRCA-

II: the interface between the planner and scheduler within the Planning Subsystem, and

finally describe how CIRCA-II has and is continuing to fit into a system for safe, fully-

automated aircraft flight.

Figure 3-5: CIRCA-II Plan Executor.

Initialize TAPs and TAP Schedule

Run next TAP in schedule

Start

Slack time?

Run if-time server

Set schedule pointer to
next TAP (reset to start
if at end of schedule)

no

yes

46

CHAPTER IV

THE PROBABILISTIC TEMPORAL MODEL IN CIRCA-II

Although many probabilistic planners have been developed, most do not consider

event probabilities as functions of time. Many real-world events may be accurately

represented only with such time-dependent probability functions, and a reliable system

must also react with sufficient speed and accuracy to preempt all dangerous events,

effectively forcing the probabilities of those events close to zero for all times. In CIRCA-

II, we employ an algorithm that prioritizes states of the world by the probability of

visiting each at least once, which we define as a state's probability. We perform this

computation so that the system can consider the most probable eventualities first and, in

the worst-case, ignore less-likely situations if required by resource constraints (see

Chapter V). What makes this problem challenging in the context of a complex, dynamic

environment is that the probabilities of encountering particular states of the world are

dependent not only on the choices of what actions the agent performs, but also by its

choices of how quickly it will perform them. The sooner an agent in a dynamic

environment detects and responds to a situation, the less opportunity there is for

environmental events to intervene.

In this chapter, we provide a foundation for computing state probabilities in a

dynamic environment, where the probability of moving from one state to a successor is a

function of how long the state persists. In fact, as we point out in what follows, some

events could occur in any of a sequence of states, and the time-dependent probability of

47

such an event occurring must take into account the time spent across multiple states,

including state-space cycles.

CIRCA-II's probabilistic planning algorithm directly addresses these challenges

and is designed to benefit from the compact representation like that found in

nondeterministic finite-state automata [42] while also maintaining a probabilistic state-

space model like that from a Markov Decision Process (MDP) model [11],[45]. Because

there is no "free lunch", the CIRCA-II model is less representationally-efficient than a

finite-state machine and may produce suboptimal (but sufficient) plans whereas the MDP

would produce plans that maximized overall utility.

This chapter is structured in accordance with the evolution of the CIRCA-II

temporal model, including details of how it is used to compute state probabilities and the

hard real-time deadlines used to guarantee system safety during plan execution. Because

CIRCA-II's planner is based upon the original CIRCA planner, we begin by describing

the original non-deterministic state-space model which assumes worst-case properties for

all state and action transitions. We also discuss how the recent addition of "reliable"

temporal transitions (developed at Honeywell Technology Center) augments this

nondeterministic model.

CIRCA-II uses a probabilistic world model to allow statistical knowledge

specification and to allow graceful performance degradation (as opposed to the planner

failing to return any plan in the original CIRCA) when the Planning Subsystem

determines it is impossible to schedule a plan that absolutely guarantees safety during a

worst-case execution scenario. Before launching into the details of our model, we

present examples to illustrate the types of state-space structures that might be revealed

during planning. These examples are intended to clarify terminology used in this chapter

and are referenced during subsequent model development. Next, we describe in detail

the CIRCA-II probabilistic planning world model, first describing how the user specifies

probabilistic state transitions, then working through the equations we have implemented

48

for estimating state probability values from temporal transition probability "rate"

functions. We discuss how state probability and timing information is used to guarantee

temporal transition to failure (ttf) preemption, present an example illustrating the use of

our equations, then conclude by with a qualitative comparison of our model to a Markov-

based model as well as the original CIRCA nondeterministic approach.

CIRCA's Non-Deterministic Temporal Model

In the original CIRCA [51], the state transition model includes temporal, event,

and action transitions. Actions are selected by the planner. If guaranteed, they have a

known worst-case execution time so they can preempt all temporal transitions to failure

for each state expanded by the planner. Otherwise, their execution time is not computed.

Figure 4-1a illustrates the transition timing models used in CIRCA, with time on the x-

axis and likelihood of occurring as a function of time since the transition was first active

(P(tti,tj)) on the y-axis. The value min∆ represents the time delay before the transition has

non-zero probability, while the gray regions represents the “unknown” area in which the

transition may or may not occur, but must be considered by the planner. Using this

model, event transitions have a min∆ time of 0, indicating they could occur any time.

Temporal transitions have a min∆ value greater than 0, meaning that, in principle, a hard

real-time action might be scheduled (with deadline ≤ min∆) to guarantee transition

preemption.

Using this notion of temporal and event transitions, CIRCA is able to build its

nondeterministic state model, including all transitions that could occur within the “gray”

area of Figure 4-1a. For each state with a matching temporal transition to failure (ttf), a

“guaranteed” action was chosen, and its deadline was set to the min∆ value for that

temporal transition, thereby preempting the transition and guaranteeing system safety

should this state be reached during plan execution. For other states without a ttf, any

49

action was considered strictly best-effort to minimize scheduling requirements, so all

matching temporal and event transitions were considered possible.

One drawback of the simple nondeterministic transition model from Figure 4-1a

is that there is no guarantee a temporal (or event) transition will ever occur. In some

cases, a ttf may actually be preempted by a tt matching the same state (e.g., a climbing

aircraft will transition to a new altitude so will not hit distant traffic at its current

altitude). The original CIRCA model had no mechanism for representing this possibility,

thus was restricted to always finding some action which will preempt the ttf, which in

some cases is more difficult than letting another tt avert the disaster automatically.

Parallel CIRCA research has maintained this basic nondeterministic transition

model but added a model for a “reliable” temporal transition as illustrated in Figure 4-1b.

This new transition model includes a new time value, max∆, representing the maximum

amount of time that may elapse before the transition must occur, as well as the previous

min∆ value. Although not all temporal transitions must be assigned a max∆ value, those

that are guaranteed to happen before max∆ has elapsed will be able to preempt a ttf, thus

can be relied upon in states where disaster will be averted without intervention.

Even with the min∆ / max∆ model, CIRCA’s non-preempted (reachable) state-

space is still completely nondeterministic, a structure that does not provide any

straightforward measure(s) to use for state prioritization. A major focus of this research

is to incorporate approximate knowledge and to facilitate scheduling by removing

unlikely states from consideration when required. To achieve much better than a random

selection criterion, we must assess the relative importance of states, a quantity difficult to

identify in the nondeterministic CIRCA model. In CIRCA-II, we adopt state probability

as the measure of state importance, so that only improbable states are removed from

consideration in “nominal” goal-achievement plans, effectively maximizing the chances

50

that the nominal plan will succeed alone.20 Additionally, CIRCA-II's planner develops

and caches contingency plans to explicitly react to these improbable states should they

occur. Below, we describe the CIRCA-II probabilistic temporal model.

max∆

1.0

0.0
min∆

P(tti,tj)

1.0

0.0
min∆

×

a) CIRCA Temporal Transition Model. b) “Reliable” Temporal Transition.

tj

Figure 4-1: Temporal Transition Model for a Nondeterministic State-Space.

State-space Examples

We begin our description of the CIRCA-II probabilistic model with examples to

illustrate the various types of state-space structures that may be encountered during

planning. The examples are organized from simplest to most complex, and will be

referenced again in subsequent sections of this chapter. Note that in all examples, state

identifiers (specified as sk above each state) denote the order in which the states are added

to the stack, which is not necessarily the [best-first] order in which they are expanded.

Additionally, in all figures, a double arrow denotes a temporal transition while a single

bold arrow represents an action transition.

Figure 4-2 shows the most basic state-space structure possible in CIRCA-II. The

state space forms a tree, and only two actions are selected: one best-effort for travelling

20 Probability is not the only possible measure of state importance for CIRCA-II. In
Chapter VIII, we discuss future work to incorporate additional parameters (e.g., time
horizon, guaranteed task resource usage) along with probabilities for an overall
assessment of state importance that will be used when pruning the planner search space.

51

to the goal location (set-fix2) and one guaranteed (set-land) to avoid the crash ttf

following an engine-failure event. This simple example could be accurately handled by

the original CIRCA and CIRCA-II. However, the CIRCA-based approach to explicitly

scheduling failure-avoidance actions may still be required for this example if plan-

execution resources are so limited that both set-fix2 and set-land cannot simultaneously

be scheduled into a control plan given action deadline and worst-case execution

properties.21

Figure 4-3 shows a simple example with a state-space cycle between states s0 and

s2. In this example, again a best-effort action (set-fix2) is included to direct the aircraft

toward a new location. However, additionally, the system must react (climb) if the

aircraft descends from a high to low altitude (e.g., during a wind shear event) before it

can impact the ground (crash).22 Intuitively, since the crash ttf must be preempted, an

aircraft in state s2 will always transition back to s0. Thus, due to the persistent state-space

cycle with no (non-preempted) exit paths, the system ultimately will transition from s0 to

s1 with 100% probability, regardless of the exact number of s0 - s2 transitions.

Figure 4-4 illustrates the concept of a dependent temporal transition (dtt). The

basic goal path shown in Figure 4-4 is for the aircraft to fly from s0 to s1 to s3. However,

at each state along this path, the same temporal transition (engine-failure) may occur.

For many world events, the probability of that transition occurring is a function of the

amount of time the transition has been continuously active (i.e., matched a state or state

sequence). As will be discussed later, the probability of engine-failure depends on how

21 If this is the case, set-fix2 will only execute when sufficient slack time exists in the
CIRCA-II TAP schedule, as described in Chapter I.

22 As a disclaimer, these examples are not intended to be overly realistic from the control
perspective. See Chapter VII for examples of more "realistic" autonomous flight.

52

long the aircraft engine has been running,23 thus the CIRCA-II planner must be able to

account for apparent "shifting" of the time-dependent tt probability functions when they

are part of a dtt sequence as is illustrated in Figure 4-4. Figure 4-5 depicts a typical state-

space that includes multiple cycles and a dtt sequence (chain). This example contains no

one distinctive feature but is included to illustrate the fact that CIRCA-II's planner must

be careful to simultaneously consider the effects of dtts and cycles.

Figure 4-2: Aircraft State-space with Tree Structure.

Figure 4-3: Aircraft State-space with a Cycle (s0 - s2).

23 We presume the engine will run continuously during all flights, otherwise we would
require a global feature that "remembered" how long the engine had been running.
Introducing a global notion of time in CIRCA-II's planner would be analogous to
converting an MDP into a non-stationary process, a costly endeavor in either system that
we have not yet tackled for CIRCA-II.

Nav = FIX1
Loc = FIX1

Status = Norm
Features and Values:
Navigation fix (Nav) =
 {FIX1, FIX2}
Location (Loc) = {FIX1, FIX2}
Status = {Normal (Norm),
 Emergency (Emer)}Nav = FIX1

Loc = FIX1
Status = Emer

engine-failure

Failure

Nav = LAND
Loc = FIX1

Status = Emer

crash

set-land

s0

s2

s4

temporal

action

Transition key:

Nav = FIX2
Loc = FIX1
Alt = High

set-fix2

s1

Nav = FIX2
Loc = FIX2
Alt = High

fly-to-fix2

s3

Nav = LAND
Loc = LAND
Status = Emer

s5

emergency-
 land

Nav = FIX1
Loc = FIX1
Alt = High

Nav = FIX2
Loc = FIX1
Alt = High

Nav = FIX1
Loc = FIX1
Alt = Low

Failure

set-fix2

lose-
altitude climb

crash

Features and Values:
Navigation fix (Nav) =
 {FIX1, FIX2}
Location (Loc) = {FIX1, FIX2}
Altitude (Alt) = {High, Low}

s0 s1

s2

temporal

action

Transition key:

Nav = FIX2
Loc = FIX2
Alt = High

fly-to-fix2

s3

53

Figure 4-4: Aircraft State-space with a Dependent Temporal Transition (dtt).

Figure 4-5: Aircraft State-space with Multiple Cycles and a dtt.

Figure 4-6: CIRCA Planning Anomaly: Multiple Cycles and Dependent ttfs.

Failure
Nav = LAND

Loc = ...
Status = Emer

crash

s10

crashcrash

emergency
 -land

set-land

temporal

action

Transition key:

Nav = FIX1
Loc = FIX1
Stat = Norm

Nav = FIX1
Loc = FIX1
Stat = Emer

Nav = FIX3
Loc=FIX3

Stat = Norm

Nav = FIX3
Loc = FIX3
Stat = Emer

fly-to
-fix3

engine-
failure

s0
s7

s2
s9

fly-to
-fix2

Nav = FIX3
Loc = FIX2
Stat = Norm

Nav = FIX3
Loc = FIX2
Stat = Emer

s5

s8

Nav = FIX2
Loc = FIX2
Stat = Norm

Nav = FIX2
Loc = FIX2
Stat = Emer

s3

s6

Nav = FIX2
Loc = FIX1
Stat = Norm

Nav = FIX2
Loc = FIX1
Stat = Emer

s1

s4

set-
fix2

set-
fix3

Nav = LAND
Loc = LAND
Status = Emer

engine-
failure

engine-
failure

engine-
failure

engine-
failure

s11
set-land

crash

set-land

Nav = FIX1
Loc = FIX1
Alt = High

Nav = FIX1
Loc = FIX1
Alt = Low

Nav = FIX3
Loc=FIX3
Alt = High

Failure

Nav = FIX3
Loc = FIX3
Alt = Low

fly-to
-fix3

climb climb

 lose-
altitude

s0
s7

s2
s9

fly-to
-fix2

Nav = FIX3
Loc = FIX2
Alt = High

Nav = FIX3
Loc = FIX2
Alt = Low

climb

s5

s8

 lose-
altitude

 lose-
altitude

crashcrash

crash
temporal

action

Transition key:

Nav = FIX2
Loc = FIX2
Alt = High

Nav = FIX2
Loc = FIX2
Alt = Low

climb

s3

s6

 lose-
altitude

Nav = FIX2
Loc = FIX1
Alt = High

Nav = FIX2
Loc = FIX1
Alt = Low

climb

s1

s4

 lose-
altitude

crash crash

set-
fix2

set-
fix3

INITIAL:
Alt = High
Traf = No

Alt = High
Traf = Yes

Failure
traffic avoid-

obstacle

hit-ground &
hit-obstacle

hit-ground

lose-altitude

lose-altitude

Alt = Low
Traf = No

Alt = Low
Traf = Yes

traffic

climb

avoid-
obstacle

hit-obstacle

s0 s1

s3s2

Features and Values:
Altitude (Alt) =
 {High, Low}
Traffic (Traf) =
 {Yes, No }

temporal

action

Transition key:

54

As a final example, we show a state-space that has to-date not been handled

within any implemented version of CIRCA or CIRCA-II.24 For CIRCA-II, the

probability and action-timing-constraint computation algorithms we have incorporated

effectively combine the timing and probabilistic information from different parents (e.g.,

s1 and s2) so that we can consider overall transition cumulative probability values for

each state sk when assessing ttf preemption. In the Figure 4-6 case, two dependent ttfs

(hit-ground and hit-obstacle) may be simultaneously present in state s3. Figure 4-6

depicts a valid plan, because all temporal transitions may have sufficient delays before

they can occur for preemption with guaranteed actions. However, this plan may not be

found by CIRCA-II for certain sets of transition timings due to the combination of

dependent transitions and the cycle leading from s3 back to s1. Further details regarding

this specific state-space structure and our ongoing efforts toward developing a solution

for the CIRCA-II stochastic planner are described in Appendix E.

Probabilistic State Transitions

CIRCA-II is built upon the basic algorithms used for CIRCA, so for planning, we

keep the same model of a “temporal” and “action” transition set.25 However, we now

account for the fact that individual temporal transitions may occur over time with

different and predictable probability distributions. In this section, we describe the

specification and utilization of CIRCA-II transition probabilities.

24 Note that the Figure 4-6 example can be handled with a non-stationary MDP
representation because it does not allow state cycles. Parallel CIRCA research efforts
[26] have begun to address this problem by incorporating a model-checking algorithm
into the state-space planner.

25 The term “event transition” was dropped because an event transition can be modeled as
a temporal transition with min∆ = 0.

55

The CIRCA world model is constructed from initial state(s) and a set of state

transitions. Action transitions are explicitly controlled by the plan executor thus only

occur when selected during planning. All events that cannot be directly controlled are

modeled as temporal transitions. When expanding a state, CIRCA finds all temporal

transitions with matching preconditions, and selects an action (if any) based primarily on

failure avoidance when a ttf is present and secondarily on proximity to the goal. The

three possible outgoing state transition cases are illustrated in Figure 4-7. Figure 4-7a

illustrates the situation where the transition set (action and/or other tts) must preempt a

ttf. We define any transition tt out of a state Pinit as preempted when, for each visit, the

probability of departing from state Pinit via tt is less than Pthresh. Figures 4-7b and 4-7c

contain no ttfs, so the Figure 4-7b goal-achievement action is strictly best-effort, while

the planner has determined that no action enhances goal achievement possibility for Pinit

in Figure 4-7c.

Figure 4-7: Matching Transition Sets for a CIRCA-II State.

As discussed above, the original CIRCA state-space was nondeterministic,

designed specifically to allow the planner to guarantee in the worst-case that all ttfs

would be preempted. In a subsequent CIRCA model [8], cumulative probability

functions were attached to each temporal transition, and an algorithm was presented for

 a) ttf must be
 Preempted.

Pinit

P1

ac
P2tt

ttf

....

Pn <
Pthresh

tt

c) No Action
 Planned.

Pinit

P1

tt
P2tt

tt
....

Pn

tt

b) Best-effort
 Action Planned.

Pinit

P1

ac
P2tt

tt

....

Pn

tt

init

n

i
i PP ≤

=1
init

n

i
i PP ≤

=1
init

n

i
ithreshinit PP)PP(≤≤−

−

=

1

1

si si si

56

computing approximate state probabilities. These state probabilities allowed the removal

of improbable states when necessary for scheduling purposes, thus enabling the graceful

degradation we require for plan scheduling when resources would otherwise be over-

utilized. However, this model had several limitations. First, “groups” of temporal

transitions all had to match the same set of states; otherwise, the conditional effects of

one temporal transition on the cumulative probability of another could not be accurately

modeled. This created an unnecessarily large knowledge base. Also, the model from [8]

used a strictly local approximation of state probability which did not account for the

effects of state-space cycles, new sources to a state already expanded, or dependent

temporal transitions (dtts).

We have captured the "spirit" of the basic CIRCA action/temporal transition

model, but the CIRCA-II probabilistic planning process is significantly different from

both the original nondeterministic and probabilistic algorithms. The user (i.e., person

specifying the planner knowledge base) now describes discrete-time temporal transition

probabilities as probability rate functions (Prate(ttj,ti)) over a specific time step interval

(e.g., seconds). The function Prate(ttj,ti) may be described as the likelihood of transition ttj

(i.e., statistical rate at which ttj occurs) during time step ti given that ttj has not already

occurred in that state during any earlier time step tk (0 ≤ k < i). This definition is local in

the sense that time t0 corresponds to the time at which the ttj preconditions were first

activated at the current location in the CIRCA-II planner's state-space.

Although the Prate functions presented in this thesis are quite simple, Prate

specification is purposely made flexible so that the user can incorporate statistical data

and time intervals of any shape or size into a CIRCA-II knowledge base. For example,

Prate(ttj,ti) may be constructed from an experimentally-derived histogram that describes

the likelihood of ttj in "bins" corresponding to observed time steps [or intervals] ti at

which ttj occurred. Or, the user may use a Poisson distribution [16] for temporal

transitions that will occur at some expected time (the mean) but with some uncertainty

57

(the variance). In this dissertation, we have not had sufficient resources to gather

accurate statistical data for our knowledge bases. However, we hope to incorporate

statistical data in future CIRCA-II knowledge bases for modeling events (e.g.,

meteorological phenomena) to aid with the "go/no-go" decisions made during flight.

As a simple and intuitive example for Prate(ttj,ti), consider a fair coin flipped once

per second. The "probability rate" function for a transition from heads to tails has a

constant value of 0.5 over each second, because 50% of all coins flipped will land in a

"tails" position after exactly one flip, regardless of exactly when that flip occurred with

respect to t0, the time at which this transition was activated. Figure 4-8a shows the

probability rate function for this coin flip example.

Figure 4-8: Example Temporal Transition Probability Rate Functions.

As another example, consider the temporal transition “engine failure” for an

aircraft. When an engine is first put into service, the “failure rate” decreases during a

break-in period, then becomes very small during the normal operation period. When the

engine nears the end of its life (e.g., 2000 hours for a small propeller-driven engine), the

failure rate increases until the engine is considered “unsafe” and must be retired. An

example of the probability rate function for engine failure is shown in Figure 4-8b. We

capture such a multi-valued function using a probability rate table attached to each

CIRCA temporal transition, with probability rate information provided for all time

intervals with non-zero probability rate values.

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Prate(tails,ti)

ti

Prate(engine-failure,ti)

titbreakin toverhaul….

a) Coin-flip. b) Engine-failure.

58

For failure avoidance, the CIRCA-II planner must show that all ttfs have a

"sufficiently small" probability of occurring before another transition is guaranteed to

take the system away from each dangerous state. We define Pthresh as the probability

threshold value below which a state sk is effectively considered preempted for each sk

encounter. Figure 4-9a shows a generic trend for a tt probability rate function that can

possibly be preempted. Consider as an example a transition hit-obstacle which matches

a state when a collision-course object appears on aircraft radar. Such a preemptible tt has

an initial period where its probability of occurrence is quite low or even zero (e.g., when

the obstacle is still far away), then after some delay the tt can occur, with a maximum for

this particular example during the time interval in which the obstacle will be closest to

the aircraft. In the figure, this delay is labeled min∆ in reference to the original CIRCA

nomenclature. However, as will be described below, the conditional effects of other

temporal and action transitions matching each state must be incorporated before

computing preemptive transition timing requirements (e.g., the action execution deadline

for maneuvering to a "safe" area).

Figure 4-9: Temporal Transition Probability Rate Function Trends.

Figure 4-9b shows a sample probability rate function corresponding to a reliable

temporal transition, such as the fly-to-fix transitions in the state-space examples presented

previously. For such a transition, the probability rate function must eventually increase

to 1.0 for some time step, effectively guaranteeing that, if that transition has not occurred

earlier, it will occur at this time. Note that both Figures 4-9a and 4-9b are only examples

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10

Prate(hit-obstacle, ti)

timin∆
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Prate(fly-to-fix2, ti)

timax∆
 a) “Preemptible” tt. b) “Reliable” tt.

59

of probability rate functions that could be modeled for preemptible and reliable temporal

transitions; other functional forms that satisfy the basic min∆/max∆ requirements are also

possible. For example, if one knows precisely the time step at which a reliable tt will

occur, the probability rate function can be modeled as 1.0 at that time step and 0.0

everywhere else. As mentioned above, we have used simplistic probability rate functions

for the examples presented in this thesis. However, there are no restrictions for their

specification so long as consistent time step sizes are used within each knowledge base.26

We also require probability rate functions for action transitions so CIRCA-II can

assess the relative likelihood of temporal transitions with respect to actions. For

guaranteed actions, we know the corresponding state-space transition must occur before

or at the action deadline. However, we cannot predict this value more precisely because

we do not know where in the cyclic TAP schedule the state requiring the action is first

reached. Figure 4-10 illustrates this uncertainty. In the ideal case (labeled best-case in

the Figure), any state requiring the guaranteed action from TAP4 will be reached just

before executing TAP4, in which case the action will complete well before its deadline.

In the worst-case, a state requiring the TAP4 action will be reached immediately after the

TAP4 test determines the TAP4 action need not execute (labeled worst-case in the

Figure), in which case the entire schedule must cycle before TAP4 will again execute.

Figure 4-10: Cyclic TAP Schedule in CIRCA-II.

26 Several test cases have been run on functions ranging from a simple Poisson
distribution to periodic, although a periodic probability rate would be rare unless some
state features (e.g., plane position around a holding pattern) are not modeled.

0 1 2 3 4 5 6 7 8 9 10 11 12

TAP1 TAP2 TAP4

13 14 15 16

TAP2 TAP2 TAP2TAP1TAP3

best-case
for TAP4

worst-case
for TAP4

60

?
?

∆?

∆<
−∆=

) (0

)(
1

)ac(maxt

)ac(maxt
)t)ac((max)t,acPr(

i

i
ii

Equation 4-1 shows the action probability rate function we adopt to reflect the

uncertainty illustrated in Figure 4-10, where max∆(ac) is the time at which ac must have

occurred to preempt all ttfs. As shown, the probability of the action occurring during

each time step (given that it has not yet occurred) increases until it reaches 1 just before

max∆. Graphically, this function is identical to the example "reliable" temporal transition

probability rate shown in Figure 4-9b.

(4-1)

For “if-time” (best-effort) actions, we currently use a constant probability rate

function with [relatively small] magnitude assigned by the user in the knowledge base.

This is not necessarily an accurate representation. However, the actual best-effort action

rate function depends on the TAP schedule (i.e., where the if-time-server is inserted, if at

all) as well as slack time available during plan execution. In future work, we plan to

assign more accurate best-effort action probability rates by iterating between scheduler

and planner. We hope to incorporate a probability rate function similar to that for

guaranteed actions when the if-time-server can be placed into the TAP schedule.

Otherwise, we will build the best-effort TAP probability rate function based on average

slack time that will be available during plan execution, computed from differences

between average and worst-case execution times for the guaranteed TAPs.

State Probability Computation

As described above, all transitions will be assigned probability rate functions that

have consistent interval sizes in the CIRCA-II knowledge base. We begin by using these

values to compute the relative probability of each temporal and action transition ever

occurring from a state, and we presume that all transitions are mutually exclusive because

61

CIRCA-II contains no model of simultaneously transitioning to multiple states. Then, we

use transition probabilities to compute state probabilities. CIRCA-II does not presume

any particular structure to the state-space, so we must handle dependent temporal

transitions as well as cycles in the state-space. In this section, we describe the equations

that form the basis for the probabilistic CIRCA-II temporal model.27

Perhaps the most challenging problem with specifying the CIRCA-II stochastic

model is accounting for all timing information so that we can have a state-space

representation in which individual states are independent of time but have incoming and

outgoing transitions with probabilities that are dependent on time. Table 4-1 defines the

set of symbols we will be using to describe state probabilities in CIRCA-II. The planner

begins with a set of initial states (each initialized to probability Pinitial(sk)) and knowledge

of all unconditional temporal transition probability rate functions Prate(ttj,th), from which

it builds the conditional transition probabilities Pcond(transj,th,sk) based on other

transitions that match state sk. Then, the CIRCA-II planner uses the resultant cumulative

probabilities Pcum(transj,sk) to compute child state probabilities P(sc) from each parent.

The remainder of this section describes the procedure by which transition and

child state probabilities are computed/updated during the state expansion process. On

startup, the planner is given a set of initial states and assigns them equal probability as

defined in Equation 4-2, in which we also set Pinitial(sk) to zero for all non-initial states.

(4-2)

27 After we discuss the rather involved set of equations used in our state probability and
action deadline computations, we present a simple example that works through this entire
sequence of computations in an illustrative fashion. We encourage the reader to flip
between the equation descriptions and this example frequently to minimize any confusion
that may result from this extensive equation set.

()



=

states_initials

states_initials
n

sP

k

k
states_initial

kinitial

 0

1

62

Table 4-1: Symbol Definitions for the CIRCA-II Probabilistic Planning Model.

Symbol Description
tti temporal transition i
aci action transition i

transi transition i, including both temporal and any selected action
transitions matching the current state

sk state k
th discrete time step h

ninitial_states number of initial states for this plan
Premoved Threshold below which states are ignored (removed) due to

scheduling constraints.
Pthresh User-defined probability preemption and convergence

threshold (default = 0.)
Pinitial(sk) Initial state probability contribution to state sk currently

computed assuming a non-informative prior distribution.
Prate(ttj,th) User-defined probability rate function; specifies the

probability of transition ttj occurring during time interval
[th,th+1) given that transition ttj has been continuously active
for h time steps.

Prate(ttj,th,sk) Unconditional probability of temporal transition ttj

occurring in state sk during time interval [th,th+1).
Prate(ac,th,sk) Unconditional probability of the selected action ac

occurring in state sk during time interval [th,th+1). This
value is 0 if no action has been selected for state sk.

Prate(transj,th,sk) Unconditional probability of transition transj occurring in
state sk during time interval [th,th+1).

Prate(none,th,sk) Probability of no transition occurring from state sk during
time interval [th,th+1).

Pdtt(tti,th,sp,transj) "Shifted" probability rate function to reflect effects of
dependent temporal transitions (dtt); specifies the
probability of temporal transition tti occurring during time
interval [th,th+1) given the current state was reached via
transition transj from parent state sp.

Pcond(transj,th,sk) Conditional probability of transition transj occurring in
state sk during time interval [th,th+1).

Pcum(transj,sk) Cumulative probability of transj occurring in state sk.
P(sk,th) Probability of being in state sk at time th given P(sk,t0)=1
P(sk) Probability of reaching state sk at least once along any state-

space path.
min∆(tti,sk) Time step at which the cumulative probability of tti out of sk

crosses Pthresh

max∆ (acguar,sk) Maximum time step at which acguar can preempt the fastest
ttf out of sk

deadline(acguar,sk) Deadline (in time steps) for completing acguar execution
after state sk first becomes active

63

CIRCA-II incorporates unconditional probability rate information for each

transition from the knowledge base.28 Ideally, this rate function could be directly used to

approximate conditional probabilities. However, in cases where one or more parent

states (sp) match a temporal transition (tti) that is also active in the current state being

expanded (sk), some delay has passed that effectively shifts tti 's probability rate function

by the amount of time tti was active before ever reaching the current state (sk). When this

situation is encountered, we say that tti is a dependent temporal transition (dtt), and we

must account for this situation when computing conditional probabilities. Equation 4-3

describes the time-dependent probability rate function for transition tti in state sk. This

formulation is based on a weighted average of dependent temporal transition shifting

effects for tti over all parents sp, including any contribution when sk is an initial state.

(4-3)

Equation 4-4 describes how a single parent state (sp) affects the probability rate

function in state sk. If parent sp does not match tti, then the original probability rate

function is passed as Pdtt to Equation 4-3. Otherwise, if parent sp does match tti, then we

shift the probability rate function by the amount of time it has taken parent sp to transition

via transition transj to sk. Since we only have a probabilistic representation of the amount

of time required to transition from sp to sk (Pcond term used in Equation 4-4), we again use

a weighted average formulation to express the shift of the probability rate function,

normalizing by the cumulative probability of the sp sk transition. Equation 4-4 takes

28 Although we refer to all Prate functions as unconditional, a more precise way to define
these functions is conditional on nothing else happening to the state, and we seek to
incorporate the effects of other transitions into our conditional probability Pcond estimate.

()
() () () () ()

()

() () ()
() √

↵
 ??? ♦?∋∀

√
↵

 ??? ♦?∋∀

+

+

=

k
jtrans

p

k
jtrans

p

ssj,p

kjcumpkinitial

ssj,p

jphidttkjcumphiratekinitial

khirate s,transPsPsP

trans,s,t,ttPs,transPsPt,ttPsP

s,t,ttP

64

into account the case where a sequence of states all match the same dtt since the Prate

function for sp has already incorporated this information. When a dtt is present in all

states around a cycle that includes states sp and sk, the relative effect of this "shift" should

be included in the overall rate function for sk. CIRCA-II performs a depth-first search

from transitions out of sk and its descendants to identify and account for their overall dtt

contribution effectively as separate "parents" sp' of sk.
29

 (4-4)

We have just defined a state-dependent tt probability rate function that accounts

for all dtts in a state sk. In our model, we assume that we will never require dependent

action transitions, since we control their execution properties. Thus, for actions, the

probability rate function is either the "reliable probability rate" expression described in

Equation 4-1 for guaranteed actions or else the user-defined constant for best-effort

actions.

A basic premise of our probability model is that we wish to minimize knowledge

base size by allowing the user to specify conditionally-independent state transitions.30 In

our model, multiple transitions may match a state and we assume that these events will be

29 Currently, this search terminates after the first cycle is expanded (i.e., each cycle is
only traversed once for dtt computations). In the future, this algorithm will be modified
to terminate only when the probability addition due to repeated cycle traversals
converges.

30 In cases where the postcondition features and/or the tt probability rate tables change
markedly due to other world event(s), the knowledge base creator must be careful to
manually insert conditional dependencies that will not be computed by our model. We
have not encountered such a situation to-date but acknowledge that it could exist.

()
() (){ }

() ()
() (){ }

+



= ×

=

.stranstt
s,transP

s,tt,ttPs,t,transP

,stransttt,ttP

trans,s,t,ttP

pi
g pjcum

phgiratepgjcond

pihirate

jphidtt

 when

 en wh

0

65

mutually exclusive.31 The CIRCA-II planner approximates conditional probability rate

functions (Pcond) from independent probabilities (Prate) using a model similar to the

"noisy-OR" formulation defined for Bayesian Networks [61]. First, we compute the

probability that no transition occurs during time step th in state sk, as shown in Equation

4-5. Next, we approximate the conditional probability of transition transj occurring

during time step th from state sk. As shown in Equation 4-6, Pcond is based on Prate (from

Equation 4-3) and is weighted by the probability that some transition occurs during time

step th normalized by the sum of the Prate functions for all transitions matching sk.

(4-5)

(4-6)

After CIRCA-II computes Pcond for all transitions out of sk, the planner is finally

ready to compute state probability information. As a first step, Equation 4-7 shows the

probability of remaining in state sk given that the system has entered sk just prior to time

step t0. This recursive computation is based exclusively on the probability that no

transition takes the system out of state sk at time step th, scaled by the probability that the

system has not already left state sk prior to th.

(4-7)

31 If a combination of transitions could happen simultaneously, CIRCA-II accounts for
this by allowing one transition to occur then calculating that the next transition occurs
immediately (min∆=0).

() ()()⊆
∀

−=
)s(transtrans

khrratekhrate

kr

s,t,transPs,t,noneP 1

() () ()()
()

∀

−
=

)s(transtrans
khrrate

khratekhjrate
khjcond

kr

s,t,transP

s,t,nonePs,t,transP
s,t,transP

1

() () () >
=

=
−− .hs,t,nonePt,sP

,h
t,sP

khratehk
hk 0 when

 0 when 1

11

66

Next, Equation 4-8 describes the computation of overall cumulative probability

for each transition transj from sk. Since a planner cannot actually sum to infinite time, we

define a convergence criterion in Equation 4-9 which will be met whenever either Pcond

for transj decreases to near-zero (as defined by Pthresh) or else the likelihood of still being

in state sk has diminished to near-zero.

To maximize computational efficiency, the CIRCA-II planner computes the set of

quantities described by Equations 4-3 through 4-8 for each time step th before moving to

the next time step th+1. Equation 4-4 (for Pdtt) also included a summation to infinity, but

the entire computation sequence will automatically terminate when the planner

determines that Pcum has converged.

 (4-8)

(4-9)

Our ultimate goal is to compute time-independent state probability values (P(sk)).

Because of CIRCA-II's cyclic state-space, we have incorporated a matrix algorithm based

on theoretical constructs from [36] to compute CIRCA-II state probabilities.32 In this

paragraph, we summarize the algorithm used to convert Pcum values from Equation 4-8 to

state probabilities P(sk) for all states sk identified thus far in the planner's state-space

search. Let the matrix M represent the current planner state-space, where each element

mkl is the cumulative probability Pcum(transj,sk) of transitioning from state sk via transj to

child state sl. M is partitioned as shown in Figure 4-11 such that the first r rows and

columns contain only absorbing nodes (i.e., states that either have not yet been expanded

32 The matrix algorithm for handling cycles during probability computations was
motivated by the MDP literature and implemented by Haksun Li. An evaluation of this
matrix algorithm and overall CIRCA-II probabilistic planner accuracy is provided in [43].

() () ()hk
h

khjcondkjcum t,sPs,t,transPs,transP
0

×

=

=

() ()() ()()}{at converged threshhkthreshkhjcondchccum Pt,sPPs,t,transPtttP <∫<>∀∋

67

or that are expanded but contain no outgoing transitions), while the last (n-r) rows and

columns are transient nodes (i.e., expanded states with outgoing transitions). As

described in [36], the probabilities of transitioning from any node in the transient set to

any node in the absorbing set is given by the matrix P in Equation 4-10, while Equation

4-11 then shows the computation of P(sl) for each absorbing node.33

Figure 4-11: Matrix M used for CIRCA-II State Probability Computation.

 (4-10)

 (4-11)

The Figure 4-11 construction of M gives P(sk) for all absorbing nodes (states). To

compute transient state probabilities, we rebuild M for each transient state strans with all

outgoing edges truncated. Then, we recompute P from Equation 4-10 and sum all initial

state probabilities into strans to give P(strans), as shown for M in Equation 4-11. As

discussed further in [43], truncation of outgoing edges for transient state probability

computation is acceptable because, for all states sk, we define P(sk) is the probability of

visiting sk at least once (see Table 4-1), thus multiple visits (i.e., by traversing around a

cycle from sk back to sk) need not contribute.

33 For notational simplicity, we use pkl to represent the element of matrix P corresponding
with the probability of transitioning (via one or more transitions) from sk to sl. However,
P must be ordered to partition the transient and absorbing nodes, thus state sl (where l
corresponds to the order in which CIRCA-II created the state) need not be matrix row l.

I
(Identity)

0
(Zero)

R
(Transient to Absorbing)

Q
(Transient to Transient)

1 r

n

...
1

r

n...

...

...

So
ur

ce
 s

ta
te sk

Child state sl

RQ)(IP 1−−=


=∀

atesinitial_sts
klll

k

p)s(Pstates_absorbings

68

Failure-Avoidance Guarantees

To assure guaranteed real-time failure avoidance, the CIRCA-II planner must be

capable of reasoning about ttf preemption with either a guaranteed action or a reliable tt

(or a sequence of actions and/or reliable tts). In the original CIRCA, we presumed that

the user had defined precise values for min∆ that would allow the planner to set the action

deadline (separation constraint for the single-processor scheduler) to the smallest ttf min∆

that action must preempt, or else verified that a reliable tt (with pre-specified max∆)

automatically preempted all ttfs. Unlike with the original CIRCA, we cannot a priori

define a specific time min∆ at which a ttf may occur because we now utilize a probability

model that necessitates dynamic computation of state probabilities over time. We also

need an analogous representation of max∆ for guaranteed action and reliable temporal

transitions to ensure preemption.

In keeping with the original CIRCA terminology as much as possible, we define

the time step min∆ for a tti (or ttfi) out of state sk as that time step at which the cumulative

probability for tti crosses (or reaches) the preemption threshold Pthresh. Equation 4-12

shows our min∆ (time step tm) definition, given by the conditions that the cumulative

probability up to tm-1 must be less than Pthresh but at tm must be greater than or equal to

Pthresh. In the current CIRCA-II implementation, we only use Equation 4-12 for ttf

preemption computations, but give a more general definition here because other tt's can

theoretically be preempted as well.

(4-12)

Our ultimate goal is to effectively push min∆ for the set of ttfs to infinity. In other

words, we never want the cumulative probability of any ttf out of any reachable state sk to

cross Pthresh. All reachable states sk with one or more matching ttfs must also have a

"reliable set" of action and/or temporal transitions (excluding the ttfs) that are guaranteed

() () () () ()
?
?√

↵
 ?√

↵
 <∋=∆

=

−

=
threshhk

m

h
khicondthreshhk

m

h
khicondmki Pt,sPs,t,ttPPt,sPs,t,ttPts,ttmin

0

1

0

69

to occur prior to any ttf.34 CIRCA-II dynamically computes transition, state, and ttf min∆

values at each time step (starting with t0). After time step tf during which the probability

of remaining in state sk (P(sk, th) computed previously in Equation 4-7) drops below

Pthresh, we consider our computations converged. If no min∆ has been defined for any ttf

upon reaching tf, we know all ttfs have successfully been preempted since we have

already departed state sk via some other transition. For cases in which the set of tts alone

are sufficient to preempt all ttfs in sk, we say the ttfs have been preempted by a "reliable

set of tts". Otherwise, CIRCA-II must select and compute timing information for a

guaranteed action to allow preemption of all ttfs in sk. Once the action is selected (details

of which are discussed in Appendix A), hard real-time constraints for this action must be

computed to guarantee ttf preemption. Equation 4-13 describes max∆(acguar,sk), defined

as the maximum number of time steps that may elapse between first entering state sk and

safely exiting sk. This value is set to the minimum max∆ for all ttfs in state sk and is used

by the planning "post-processor" for computing action real-time deadlines.

(4-13)

Once planning is complete, we have to compile all information for the guaranteed

actions to pass along to the CIRCA-II scheduler. Equation 4-14 defines the action

deadline (equal to separation constraint for the single-processor scheduler) that will be

passed along to the scheduler. These deadlines are computed separately for all acguar ∈

{planned, guaranteed action set}. We require that each acguar be assigned the worst-case

(minimum) max∆ to guarantee preemption of all ttfs from all sk ∈ {reachable state set S}

34 The nondeterministic CIRCA planner requires one reliable tt or a guaranteed action to
preempt a ttf. We now are able to measure the conglomerate effects of multiple
transitions acting on sk. Thus, we are able to use multiple tts (along with an action if
required), each of which alone would not be able to assure preempting the sk ttfs, but
which together preempt all ttfs out of reachable state sk.

() () () () (){ } ji,sttfttf,ttfs,ttfmins,ttfmins,ttfmins,acmax kjikjkikikguar ?∀∆≤∆∋∆=∆

70

for which acguar is planned. Then, we must subtract the action worst-case execution

(wcet) so that acguar actually completes execution prior to its deadline.35

 (4-14)

Figure 4-12 summarizes the probabilistic planning algorithm used for CIRCA-II.

Much like in the original CIRCA, state expansion is performed with actions selected for

each state as required. The overall loop of the algorithm (Steps 2-8) occurs for each

reachable state sk expanded by the planner. The inner loop (Steps 4-6 in Figure 4-12)

performs a binary search on the guaranteed action max∆ for state sk to determine the

maximum allowable value that can still preempt the sk ttfs. As will be discussed in

subsequent chapters, we utilize our state probability model not only to select actions and

assign their hard-real time deadlines, but also to assign relative priority values to states

and the actions planned for them and incorporate algorithms to remove unlikely states

from consideration when scheduling the preemptive actions required to guarantee

absolute failure avoidance is impossible.

Several situations can occur that necessitate backtracking during planning. First,

we may discover a state from which all ttfs cannot be preempted (e.g., no action is "fast

enough"). In this case, we perform dynamic backtracking [24] through the sources to that

state in an attempt to either preempt transitions to this state or else choose different

actions which do not lead to this state.36 The basic implementation of dynamic

backtracking in CIRCA-II is discussed in [4].

35 If the Equation 4-14 computation results in a negative deadline, the planner must
backtrack and select an alternative action with smaller wcet.

36 The original CIRCA performed chronological backtracking and added such a state to a
"blacklist" avoided during future state expansion. Our incorporation of path-based state
probability updating has resulted in this migration toward dynamic backtracking.

()())ac(wcets,acmaxmin)ac(deadline guarkguarguar s −∆=

71

1. Put initial state set on state stack to be expanded.
2. Pop next highest-probability state sk off stack for expansion.
3. Select action for state sk (if any). [See Appendix A for details.]

If there is no ttf from sk, classify action as "best-effort".
Otherwise, classify the action as "guaranteed" and assign it a
preliminary max∆ value of infinity.

4. Compute all outgoing transition cumulative probabilities (Pcum) up to
convergence time tc.

5. If at least one ttf min∆ has been defined prior to tc, store the
current action max∆ as max∆old then reset max∆ per Equation 4-13.
Go to Step 4.

6. If (max∆old - max∆) > nconverged time steps (a user-specified value),
increase max∆ to (max∆old - max∆)/2. Go to Step 4.

7. Create new offspring states when they do not already exist; add new
or modified states back on the state stack for further expansion.

8. Compute state probabilities using the matrix algorithm for both
absorbing and transient states.

9. While more states require expansion, go to Step 2.

Figure 4-12: CIRCA-II Probabilistic Planning Algorithm.

Another situation that must be addressed via backtracking is that in which a

dependent temporal transition chain exists with a ttf. Our algorithms will work without

backtracking if a sequence of "reliable" temporal transitions (or a sequence of "reliable"

temporal transitions terminating with one guaranteed action) preempt a dependent ttf in

all states in the sequence. However, because our algorithms are set up to automatically

maximize action max∆ and consider only local preemption requirements (i.e.,

guaranteeing that no immediate descendants of expanded state sk are failure states), any

immediate descendant state sd of sk that results from a guaranteed action and matches the

same ttf will see an unrealistically small min∆ value for this ttf unless some other tt for sd

fortuitously occurs with near-100% probability within the first few time steps. When

such a situation currently occurs, we backtrack to the previous state and decrease the

max∆ value used until it is sufficiently small.37 We are in the process of designing a

37 We currently do not optimize this value, so max∆ may be set to a smaller value than is
necessarily required. This condition is safe but makes the guaranteed action more
difficult to schedule than might otherwise be necessary.

72

global methodology for computing max∆ with dependent ttfs, along with more efficient

backtracking processes both for guaranteed ttf avoidance and goal achievement.

State Probability and Deadline Computation Example

In this section, we provide an example that illustrates the use of the above

probability model for computing state probabilities and action deadlines during planning.

Figure 4-13 shows the first planning step. Initial state s0 has two outgoing tts (lose-

altitude and fly-to-fix3) but is safe because neither is a ttf. Our first goal is to estimate the

conditional probabilities of these transitions from their rate functions. As given by

Equation 4-3, since neither temporal transition is a dtt, the rate functions for the tts out of

state s0 are unmodified (Prate(tti,th, s0) = Prate(tti,th)) and are illustrated in Figure 4-14

(note the different axis scaling in the Figure). We use Equations 4-5 and 4-6 to compute

conditional probabilities Pcond(tti,th, s0) for both tts, with the result plotted in Figure 4-14.

Figure 4-13: Expansion of Initial State s0.

Figure 4-14: s0 Transition Probabilities.

Nav = FIX3
Loc = FIX3
Alt = High

 tt0:
fly-to-fix3

s1

Nav = FIX3
Loc = FIX2
Alt = High

Nav = FIX3
Loc = FIX2
Alt = Low

s0

s2

 tt1:
 lose-
altitude

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Prate

Pcond

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

P(tt0,th,s0)

0

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10

Prate

Pcond

t 0 t1 t2 t3 t4 t5 t6 t7 t8 t9

P(tt1,th,s0)

73

Next, we compute the cumulative probabilities for the transitions from Equations

4-7 through 4-9. Table 4-2 shows the computation of conditional and cumulative

probabilities for the Figure 4-13 example. The final (converged) values for cumulative

probability are highlighted in the Table.

Table 4-2: Transition Probabilities out of s0.

The state probabilities may now be computed for s1 and s2. For this system, there

are one transient state (initial state s0 with probability P(s0) = 1.0) and two absorbing

states, s1 and s2. For this simple example, one may immediately observe that the

absorbing state probabilities correspond to the cumulative probabilities (P(s1) = 0.67 and

P(s2) = 0.33). In CIRCA-II, these same values are computed using the matrix algorithm,

which we will utilize in more detail below.

After computing s1 and s2 state probabilities, the CIRCA-II planner expands the

next most-probable state, s1. For this example, assume no outgoing transitions match s1,

so s1 remains an absorbing state even after expansion. The planner then expands state s2,

which matches one ttf (crash) as shown in Figure 4-15. The planner selects an action

(climb) that must be guaranteed to preempt the ttf, and iterates to compute a max∆ time of

5 to preempt the ttf with 100% certainty. The probability rate functions for the transitions

out of s2 are shown in Figure 4-16. Note that the conditional probabilities are identical to

the unconditional rate functions because the two transitions never simultaneously have

non-zero probabilities during any time step. As with s0, we now compute s2 transition

cumulative probabilities, shown with all supporting calculations in Table 4-3.

Time step (h) Prate(tt0,th) Prate(tt1,th) Pnone(s0,th) Pcond(tt0,th,s0) Pcond(tt1,th,s0) P(s0,th) Pcum(tt0,s0) to th Pcum(tt1,s0) to th

0 0.000 0.050 0.950 0.000 0.050 1.000 0.000 0.050
1 0.000 0.050 0.950 0.000 0.050 0.950 0.000 0.098
2 0.000 0.050 0.950 0.000 0.050 0.903 0.000 0.143
3 0.000 0.050 0.950 0.000 0.050 0.857 0.000 0.185
4 0.000 0.050 0.950 0.000 0.050 0.815 0.000 0.226
5 0.200 0.050 0.760 0.192 0.048 0.774 0.149 0.263
6 0.250 0.050 0.713 0.240 0.048 0.588 0.289 0.292
7 0.333 0.050 0.633 0.319 0.048 0.419 0.423 0.312
8 0.500 0.050 0.475 0.477 0.048 0.265 0.550 0.324
9 1.000 0.050 0.000 0.952 0.048 0.126 0.670 0.330

74

Figure 4-15: Expansion of State s2.

Figure 4-16: s2 Transition Probabilities.

Table 4-3: Transition Probabilities out of s2.

CIRCA-II now computes state probabilities using the matrix algorithm. The

matrix M containing all edges shown in Figure 4-15 is shown in Figure 4-17, partitioned

such that the absorbing states appear in rows/columns before transient states. Also shown

in Figure 4-17 is the P matrix computed via Equation 4-10. The probabilities of

absorbing states s1 and failure (f) are then computed from the initial state (s0) row of P,

giving final values P(s1)=1.0 and P(f)=0.0. When truncating the outgoing edges from s2

Nav = FIX3
Loc = FIX3
Alt = High

Failurett2=ttf0:
 crash

Nav = FIX3
Loc = FIX2
Alt = High

Nav = FIX3
Loc = FIX2
Alt = Low

 ac0:
climb

s2

s1s0

 tt0:
fly-to-fix3

 tt1:
 lose-
altitude

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10

Prate(tt2,th)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Prate(ac0,th)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Time step (h) Prate(tt2,th) Prate(ac0,th) Pnone(s0,th) Pcond(tt2,th,s0) Pcond(ac0,th,s0) P(s0,th) Pcum(tt2,s0) to t h Pcum(ac0,s0) to t h

0 0.00 0.20 0.80 0.00 0.20 1.00 0.00 0.20
1 0.00 0.25 0.75 0.00 0.25 0.80 0.00 0.40
2 0.00 0.33 0.67 0.00 0.33 0.60 0.00 0.60
3 0.00 0.50 0.50 0.00 0.50 0.40 0.00 0.80
4 0.00 1.00 0.00 0.00 1.00 0.20 0.00 1.00
5 0.05 0.00 0.95 0.05 0.00 0.00 0.00 1.00
6 0.10 0.00 0.90 0.10 0.00 0.00 0.00 1.00
7 0.15 0.00 0.85 0.15 0.00 0.00 0.00 1.00
8 0.20 0.00 0.80 0.20 0.00 0.00 0.00 1.00
9 0.20 0.00 0.80 0.20 0.00 0.00 0.00 1.00

75

and recomputing P with s2 as an absorbing state, we observe that the probability of state

s2 remains P(s2)=0.33, an intuitive result since we have truncated all edges that were not

present during the first state expansion step from Figure 4-13.

Figure 4-17: M and P Matrices used for State Probability Computations.

The state expansion process illustrated by this example continues until all states

have been expanded and all state probabilities have been computed. If the resulting

action set is successfully scheduled, plan development is complete. Otherwise, tradeoffs

are required for development of a schedulable plan. In this dissertation, we primarily

consider a procedure by which we dynamically modify a state probability threshold

Premoved below which states are ignored, thereby facilitating scheduling by reducing the

set of states for which ttf preemption must be guaranteed.38

For this example, we assumed a value Pthresh =0.0, where Pthresh is the probability

threshold below which individual ttfs are considered preempted. Increasing the value of

Pthresh will, in many cases, also allow an extension of guaranteed action max∆ (thus

deadline) value. Table 4-4 shows the cumulative probabilities for ttf0 out of state s2 for

different max∆ values between 5 and 10. If, for example, Pthresh were set to 0.05,

corresponding to a 5% chance of system failure each time state s2 is reached, the ac0

38 We do not explicitly place limits on Premoved in this work, so we are always able to
eventually generate a schedulable plan with a large Premoved value. In the future, CIRCA-
II should automatically decide whether to work toward its goals versus refuse to even
enter its environment when a substantial set of states (with high Premoved) are ignored.

s2

s0

f

s1

s2s0fs1

1 0 0 0

0 1 0 0

0.67 0 0 0.33

0 0 1 0

M

s2

s0

fs1

1 0

1 0

P
Initial to
absorbing
state row

So
ur

ce
 s

ta
te

Child state

76

max∆ could be relaxed from 5 to 7, or with Pthresh set to 0.2, the original max∆ could be

doubled to 10, effectively cutting in half the scheduling resources required for this action.

In future work, we will augment the CIRCA-II planner to reason about the tradeoffs

associated with the simultaneous relaxation of both Premoved and Pthresh.

Table 4-4: Crash (ttf0) Probability from s2 for Various Climb (ac0) max∆ Values.

Comparative Evaluation of the CIRCA-II Temporal Model

We have not yet quantitatively evaluated the probabilistic temporal model for

CIRCA-II presented in this chapter, except for an analysis of the sources and relative

magnitudes of inaccuracies resulting from our "weighted average" approach (see [43]).

In this section, we discuss overall properties of our model qualitatively by comparing

aspects of the CIRCA-II model to the original CIRCA and MDP models. Figure 4-18

shows a qualitative plot of system success probability39 (Psuccess) vs. the inverse of

resource capacity (c). In this plot, we presume there is at least one set of actions that can

preempt all ttfs given sufficiently large plan-execution resource capacity. As might be

expected, in the original CIRCA (depicted by the bold line in Figure 4-18), there is a

100% probability of success so long as a valid plan can be scheduled on c, but when

scheduling fails for any action set that preempts all ttfs, no tradeoffs are available and the

probability of success immediately drops to 0%.

39 Due to our bias toward "safety first", we measure "success" in terms of failure-
avoidance instead of goal-achievement.

ac 0 max ∆ P cum (tt 2 =ttf 0 ,s 2)
5 0
6 0.01
7 0.032
8 0.069
9 0.123

10 0.187

77

With CIRCA-II, the probability of success depends on the setting of Pthresh and

also the setting of a "removed-state" probability threshold (Premoved) which will be

discussed in the next chapter. In Figure 4-18, we show the qualitative expected

performance of both CIRCA and CIRCA-II as resource capacity decreases (i.e., 1/c

increases). The bold curve represents CIRCA's performance. With Pthresh= Premoved =0.0,

CIRCA-II performance emulates that of the original CIRCA, since only absolute

preemption is sufficient. The solid curve set in Figure 4-18 represents CIRCA-II

performance for varying Pthresh with Premoved =0.0. As shown, with even a small but non-

zero Pthresh, the system may show marked adaptation to reduced resource capacity. This

is in part because the CIRCA-II planner can utilize multiple temporal and action

transitions to cooperatively preempt ttfs, such that there is at least a (1- Pthresh) probability

of having exited each state sk via some transition other than a ttf. As Pthresh increases, the

probability of success decreases but the system is able to accommodate a smaller

resource capacity for the same domain complexity.

Figure 4-18: Success Probability vs. Inverse Plan-Execution Resource Capacity.

The user currently specifies the constant Pthresh before CIRCA-II begins.

However, CIRCA-II does automatically adjust a threshold Premoved below which states are

not considered in the current plan being developed to improve schedulability. The dashed

curve in Figure 4-18 shows how Premoved adaptation affects the success likelihood within a

Pth
re

sh
= 0.

0

Psuccess

1/c

Pth
re

sh
= 0.

15
Pth

re
sh

= 0.
3

Pth
re

sh
= 0.

5

CIR
CA

100%

Premoved

Pth
re

sh
= 0.

05

78

single plan. Although this curve does not fit a specific set of generated data points, we do

expect a sigmoid shape to this curve, since at the limits, the success probability will be

100% when sufficient resources are available (again emulating CIRCA) and 0% when too

few resources are available for executing any actions. As shown in the Figure, points

along the curve for varying Premoved need not precisely align with identical Pthresh values

since they are utilized differently by the planner (see details for Premoved in Chapter V).

In the Figure 4-18 plot, we only compare CIRCA and CIRCA-II "success" rates

because an MDP planner would need to be cast in a CIRCA-like framework to actually

produce the "guaranteed" task schedule for us to actually assess Psuccess. In future work,

regardless of MDP complexity, we would like to better study the fit of an MDP planner

into CIRCA-II to analyze its ability to generate plans that gracefully degrade as plan-

execution resources are increasingly over-utilized.

Figure 4-19: Knowledge Base Size vs. ND for MDP and CIRCA-II planners.

Recall that in Chapter II we described the Markov Decision Process (MDP) and

argued that to develop general real-time control plans for guaranteed failure-avoidance,

we require a "k-level" MDP model in which the state transition matrix has worst-case

size (NA xND)x NS
k x NS

k, where NA is the number of unique actions, ND is the number of

different deadlines assigned to each action, NS is the number of modelable states and is

kbase_size

ND

CIRCA-II

M
DP

79

exponential (vf) in the number of unique state features (f) and values (v), and k is the

number of previous stages that must be effectively "remembered" in the current state.

CIRCA-II produces a sufficient but not optimal control plan, and contains only an

approximate conditional probability model. However, CIRCA-II completely avoids the

MDP complexity due to ND by explicitly computing deadlines for its set of NA actions

and incorporating their effects directly into the online conditional probability

computations described in this chapter.40

Figure 4-19 illustrates the knowledge base savings in CIRCA-II over the

unsimplified MDP (i.e., MDP with no state aggregation, etc. used for efficiency gains) as

ND grows large, where the initial offset in kbase_size is due to CIRCA-II's use of abstract

state transitions instead of a full set of conditional probabilities for all states. Large ND

will also complicate MDP plan generation because it must search through the full set of

(ND*NA) actions for each state for each iteration when building an optimal policy. In

cases with limited backtracking, CIRCA-II planning will have a distinct efficiency edge

over MDP planning. However, in the worst-case, both planners will be slow, MDP

because of the large set of action deadlines, and CIRCA-II because of its necessity to

exhaustively backtrack through all possible combinations of actions and states to find a

schedulable plan.

CIRCA-II directly addresses the difficulty of "remembering a k-stage history" in

the MDP formulation via the use of time-dependent transition Prate functions and the

propagation of dependent temporal transitions effects throughout the expanded state-

40 In fact, since CIRCA-II can assign any numerical value as an action deadline, the MDP
would theoretically require infinite ND to fully-emulate the flexibility of CIRCA-II when
assigning deadlines. Our experiments typically have required fewer than ten ND values
for each action over the duration of a mission, but we would not have been able to easily
predict the exact set of ND values required until after the mission plans were developed.

80

space.41 Additionally, since we use STRIPS-like abstract preconditions and

postconditions when specifying a domain model, a CIRCA-II knowledge base will

generally contain far fewer entries than even the total number of modelable states NS.

The expected divergence in CIRCA-II and MDP knowledge base size as the modelable

state-space NS increases is illustrated in Figure 4-20 for different k. Again, we again

cannot readily generate execution time or memory usage trends for MDP vs. CIRCA-II

planner for varying NS or k. However, for large k and ND, the CIRCA-II planner certainly

has a "good" chance of out-performing the MDP planner unless a worst-case

backtracking scenario is encountered.

The evaluation presented in this section is strictly qualitative and based on

complexity and/or expected results. The intent of this section is to motivate our use of

the specific CIRCA-II techniques for complex problem domains that require tradeoffs

due to insufficient plan-execution resource capacity. We have biased our MDP

formulation to produce the control plans required for CIRCA-II and compared it to a

planner designed specifically to produce control plans as we have defined them. Thus,

we emphasize that this section is not attempting to diminish the importance of MDP-

based planners, but rather to argue that there is cause to develop an alternate

methodology such as that presented in this chapter.

Even with our tailored planning formulation, we are only able to generate

sufficient plans that will maintain system safety, whereas an MDP planner will be able to

produce optimal plans. We will continue to analyze the tradeoff between MDP and state-

space planners for CIRCA-II, particularly as we transition to the realm of time-

41 Dependent temporal transition computations cover the specific history information we
require for CIRCA-II state probability computations given our Prate functions. As an
analogy to the k-level MDP, each dtt in our state-space will be continously active through
a sequence of at most k states.

81

constrained dynamic planning and are able to compare a future anytime [15] CIRCA-II

planner (see Appendix D) with a bounded-optimal MDP [62].

Figure 4-20: Knowledge Base Size vs. # of Modelable States.

kbase_size

NS

CIRCA-II

k=
2

k=1

k=
3

82

CHAPTER V

DETECTING AND REACTING TO ANOMALOUS EVENTS

We require a system that is capable of safely operating with imprecise knowledge

and incomplete plans, resulting in the possibility of reaching states during plan execution

that were not expanded during planning. If ignored, the consequences of such

"unhandled" states may be disastrous, particularly if these states are dangerous and no

reaction fortuitously guides the system back to a safe path.

As defined in Chapter I, our control plans are a set of actions with minimized

preconditions (i.e., potentially costly feature tests) that match multiple world states.

Each plan is specified as a cyclic task schedule to guarantee hard real-time response in

dangerous world states. A more traditional plan specifies a list (database) of states and

corresponding actions to execute in each state. For a probabilistic or nondeterministic

state-space, the traditional plan (policy) requires complete state feature sensing at each

plan step and a search for the appropriate state-action combination, a procedure which

cannot guarantee timely action retrieval and execution thus cannot guarantee safety in our

hard real-time environment.

A system using our definition of a control plan cannot simply “know” when it has

deviated from the set of states for which an executing plan is valid. Instead, a plan must

contain explicit directives for determining when such a deviation has occurred. We

define a handled state as a situation which has been expanded by the planner and both

lies along a goal path and is safe (i.e., no unpreempted ttfs exit from the state). All other

83

states are classified as unhandled. A control plan reacts to all handled states

appropriately, thus no further intervention is required when such situations are

encountered. In this section, we identify classes of unhandled world states we argue are

the most important to detect, describe the algorithms used by the CIRCA-II planner to

build detection TAPs for these states, and then present an algorithm for maintaining

safety and responding appropriately when an unhandled state is actually observed.

World State Classification

We approach the problem of detecting important unhandled states by first

developing a classification of all world states. Then, we can gain efficiency by

exclusively enumerating and building reaction mechanisms for unhandled (or unplanned-

for) states that we classify as "important". Figure 5-1 shows the relationship between

subclasses of possible world states. Modeled states have distinguishing features and

values represented in the planner’s knowledge base. Because the planner cannot consider

unmodeled states without a feature discovery algorithm, unmodeled states are beyond the

scope of this paper. “Planned-for" states are those the planner has expanded. This set is

divided into two parts: "handled" states from which failure is assured to be avoided and

from which the goal can be reached, and "deadend" states from which failure is avoided

but from which the goal cannot be reached using the current plan.

All World States
Modeled

Planned-for

"Handled" --
can reach goalDeadend

Removed
Imminent
 Failure

World States Actually Reached

Figure 5-1: World State Classification Diagram.

84

A variety of other states are modelable by the planner. Such states include those

identified as reachable, but “removed” because attending to them along with the

“planned-for” states exceeds system capabilities. Other modeled states include those that

indicate “imminent failure;” if the system enters these states, it is likely to fail shortly

thereafter. Note that some states might be both “removed” and “imminent-failure”, as

illustrated in Figure 5-1. Finally, some modeled states might not fall into any of these

categories, such as the states the planner considered unreachable but that are not

necessarily dangerous. As illustrated by the boldly outlined region in Figure 5-1, states

actually reached may include any subclass. To assure safety, the set should only have

elements in the “planned-for” region. When the set has elements outside this region,

safety and performance depend on classifying an unplanned-for state if and when it is

entered and responding appropriately. For this reason, we provide more detailed

definitions of the most important classes.

A "deadend" state (DS) results when a transition path leads from an initial state to

a state that cannot reach the goal, as shown in Figure 5-2. The deadend state is safe

because there is no transition to failure. However, the planner has not selected an action

that leads from this state via any path to the goal. Deadend states produced because no

action can lead to a goal are called "by-necessity", as when an arriving aircraft cannot

reach its designated airport gate because it is occupied by another plane. Conversely,

those deadend states produced because the planner simply did not choose an action

leading to the goal are called "by-choice”, often created in order to decrease plan

complexity or to avoid the potential for future system failures. For example, an aircraft

with a goal destination airport might build a plan that invokes actions to land at the

nearest airport upon approach to any inclement weather, effectively producing deadend

states whenever a “bad weather ahead” transition occurs. These states may be deadend

“by-choice” because a more complex plan might have been able to invoke actions that

85

allow the aircraft to safely go around the bad weather, but the planner chose simplicity

over completeness since system safety was not at stake.

Initial
State

Deadend
 State (DS)

... Goal
State

tt

tt or action
tt or action

DS

...
DS

Figure 5-2: "Deadend State" Illustration.

A “removed” state results from the planner’s inability to guarantee that the system

will avoid failure. A planner that generates real-time control plans needs to backtrack

whenever scheduling fails. When backtracking, the planner may select different actions

so long as failure is still avoided. However, even after exhaustive backtracking, a planner

may fail to find actions that meet all objectives while still being schedulable. One option

is ignoring some reachable states, thus not planning actions for them. A control plan so

constructed cannot claim to be foolproof. However, for real-time control applications, it

may be more important to make timing guarantees under assumptions that exceptional

cases will not occur than to make no guarantees about a more inclusive set of cases. Our

heuristic for pruning states is to overlook the most unlikely states. A "removed" state set

is created when the planner has purposely removed the set of lowest probability states, as

illustrated in Figure 5-3. In the first planner iteration, all states with nonzero probability

are considered, as depicted by the "Before Pruning" illustration. Here the planner must

consider a low probability transition leading to a state which transitions to failure, and

must guarantee a preemptive action to avoid failure.

86

Before Pruning After Pruning

Removed
 State

low probability
 temporal
 (< prob << 1)

Failure
 State

...

temporal

preemptive
 action

Initial
State

... Goal
State

temporal or
action
(< prob < 1)

Initial
State

... Goal
State

temporal or
action
(< prob < 1)

ε

ε

ε

Removed
 State

εprob <

Figure 5-3: "Removed State" Illustration.

Suppose the scheduler fails. The planner will backtrack and build a new plan

without low-probability states. The resulting state diagram -- "After Pruning" -- is shown

in Figure 5-3. All states downstream of the low probability transition in the new plan are

no longer expanded. The preemptive action is no longer required, giving the scheduler a

better chance of success. A flight simulation example with removed states is shown in

Chapter VII, illustrating why removal of these states was necessary and how the system

successfully detected and reacted to these improbable situations.

During plan development, all temporal transitions to failure (ttfs) from reachable

states are preempted by guaranteed actions. If preemption is not possible, the planner

fails. However, the planner does not worry about ttfs from any states it considers

unreachable from the initial state set. The set of all modelable states considered

unreachable that also lead via a modeled state transition to failure are labeled "imminent-

failure".42 Actually reaching one of the recognizable imminent-failure states indicates

42It is also possible that states that are unmodelable could lead directly to failure with a
known transition, or that modelable states could lead directly to failure with transitions
not known to the planner, or that states that are not modelable could lead directly to
failure with an unknown transition. We exclude these cases from the “imminent-failure”
set because the planner is incapable of classifying them in this way.

87

either that the planner’s knowledge base is incomplete or incorrect (i.e., it failed to model

a possible sequence of states), or that the planner chose to ignore this state to allow other

guarantees.

Figure 5-4 shows a diagram of a reachable state set along with an isolated state

(labeled “Imminent-failure”) leading via one temporal transition to failure. This state has

no incoming transitions from a reachable state, so the planner will not consider it during

state expansion. However, if this state is reached, the system may soon fail. The

imminent-failure unhandled states are important to detect because avoiding system failure

is usually a primary system goal. Consider an aircraft that “trusts” air traffic control to

maintain traffic separation. During flight through controlled airspace, such an aircraft

would have no model of a transition to a state in which another aircraft is on a collision-

course. However, a mid-air collision, if it does occur, usually leads to catastrophic

failure. During controlled-airspace flight, we model the “collision-course traffic”

scenario as an imminent-failure state for the aircraft that implicitly trusts air traffic

control, provided the knowledge base includes a ttf that describes the failure when two

aircraft collide.

 Initial
 State

Goal
State

tt or
action
(< prob < 1)

Failure
 State

Imminent
 Failure
 State

ttf

...

...
ε

Figure 5-4: "Imminent-failure State" Illustration.

88

Detecting Unhandled States

As discussed above, a planner cannot be expected to somehow just “know” when

it has deviated from plans---it must explicitly plan actions and allocate resources to detect

such deviations.43 We have identified classes of "unplanned-for" states that we consider

important to detect, and in this section we describe the methods we use to actually detect

these states should they occur during plan execution.

In our CIRCA-II implementation, after the planner builds its normal plan, it builds

special TAPs to detect deadend, removed, and imminent-failure states. Other unhandled

states, such as those “modeled” but outside “planned-for”, “removed”, and “imminent-

failure” regions in Figure 5-1, are not detected by CIRCA-II. If it reaches an unhandled

state that is not detected by CIRCA-II, the system may transition back to a planned-for

state (where the original plan executes properly), transition to an imminent-failure state

(where CIRCA-II will detect the state and react), or simply remain safe forever without

reaching the task-level mission goals.

We have developed algorithms to build detection tests for deadend, removed, and

imminent-failure states. CIRCA-II TAPs could include tests for every set of features in

that unhandled state list (e.g., each deadend state), but these tests would be repeated

frequently during plan execution and may be time-consuming, as in PRS [32], where

context checking could involve a large, non-minimal number of tests, including updates

from sensors. In CIRCA-II, once an unhandled state list is completed, the planner calls

ID3 [57] using the information-gain splitting heuristic with all of that class of unhandled

states as positive examples and all “planned-for” states not also in the unhandled state

class as negative examples. ID3 returns what it considers a minimal test set which is then

43 This premise is consistent with both CIRCA and CIRCA-II control plan designs in
which each state must be classified to see if a particular TAP's action applies. CIRCA-II
is distinct from CIRCA in that CIRCA-II takes the "extra step" to classify and react to
states outside the planned-for set.

89

used to detect that unhandled state class. During plan execution, when any of the

unhandled state detection TAP tests are satisfied, the plan executor notifies the plan cache

(and subsequently the Planning Subsystem) of this deviation. Below, we discuss how

CIRCA-II builds lists of the different unhandled state classes.

Although they do not result in system failure, deadend states have no temporal

transitions or planned actions that ever lead to a goal state, thus are important to identify.

To build a list of these states, CIRCA-II searches the transition links from each state to

the goal state(s). If no goal is found, that state is labeled "deadend" while the reachable

states along a goal path are labeled "non-deadend". Deadend states are the positive ID3

examples and non-deadend states are the negative examples.

Whenever the CIRCA-II Planning Subsystem backtracks due to scheduling

difficulties, low-probability states are removed from consideration in the current plan

based on a minimum probability threshold (Premoved) below which states are considered

unreachable by the planner. This threshold is gradually incremented until a schedulable

“nominal” plan based on the most likely set of states is produced.44 The set of

“reachable” (planned-for) states is defined as those expanded during development of this

nominal plan. The remaining states on the state stack that have not been expanded (i.e.,

because their probability is less than Premoved) are then set as "initial states", and the

planner executes its state expansion routine on these states presuming this plan’s planned

actions are executed. All states expanded, including the initial states, are included in the

list of “removed” states because they are possible to reach from the nominal plan, even

though the likelihood of reaching such states may be minimal. To build the removed

44 For some domains, it may be desirable to assign a maximum value for Premoved. If no
schedulable plan can be found without exceeding this limit, then the CIRCA-II planner
will fail.

90

state detection tests, ID3 is called with this “removed” state list as positive examples and

all states expanded during nominal plan creation as negative examples.45

While the planner should look for deadend and removed states because they are

more likely to occur than other unhandled states (i.e., the planner knows they could

arise), likelihood is not the only criterion for allocating resources to detection. No matter

how unlikely, detecting imminent-failure states is important because of the potentially

catastrophic consequences of being in such states. When building imminent-failure state

sets, we assume the modeled set of temporal transitions to failure (ttfs) is complete and

correct, even though reaching such a state implies at least one other transition is not

accurately modeled. The planner begins with a list of all precondition feature sets from

ttfs. This list is expanded to fully enumerate all possible states that would match these

preconditions. Any reachable states are removed from this list. Imminent-failure

detection TAP tests are then built with this list as ID3 positive examples and the

reachable states as negative examples. Note that a complete list of fully-instantiated

states to detect can be quite large. We continue to search for alternatives or

approximations to ID3 that will provide sufficient accuracy with improved computational

efficiency, although planning efficiency will not be of paramount importance to CIRCA-

II until we impose real-time bounds on our planning processes.

45 A simpler version currently implemented for removed state generation is to consider all
states remaining on the state list with probability below Premoved as the set of removed
states. This is the first-level group of removed states. However, they may not be
sufficient for detection of all deviations into "removed state regions" since such states
may be transient and thus not still be present when the corresponding detection TAP
executes.

91

Real-time Reaction to "Unplanned-for" States

For real-time operation, an automated system must guarantee both a timely and

accurate response. CIRCA-II utilizes explicitly-scheduled control plans to guarantee that

the system will be safe so long as the environment remains within the set of planned-for

states (see Figure 5-1). In this section, we describe a method to improve CIRCA-II's

ability to also remain safe in the important unplanned-for state classes we have defined

above.

Because accurate planning is generally an NP-complete problem, online planning

must be invoked only when time is available, with offline deliberations utilized to

develop reactions for the most time-critical situations and online planning to react to

other, “safer” states. This combination of offline and online planning is desirable

because it is generally infeasible to create a universal plan set [63] in complex problem

domains (using strictly offline deliberation), as discussed in [23], but, conversely, it is

also impossible to guarantee timely online planning responses when the response must

occur very quickly. To directly address the tradeoff between [slow] dynamic planning

and a large pre-defined plan database, we require a planner that explicitly computes

available deliberation time based on the notion of failure avoidance. Next, the planner

uses these time-to-failure computations to identify situations in which pre-computed

plans are mandated for failure avoidance, versus situations in which dynamic planning

can occur with sufficient speed to avoid any far-term failures that might occur.

Figure 5-5 illustrates the idealistic “plan-space” concept we adopt as our failure

avoidance model. In Figure 5-5, plan execution begins in “Planned-for States 1”, and in

best-case situations, execution will remain within that block using reactions from the

executing plan. However, we account for cases in which some state (temporal) transition

(tt) leads away from that block, either via a model inaccuracy or plan incompleteness.

When such a deviation occurs, we must identify it and react in sufficient time to avoid

92

catastrophic failure, modeled in the figure by a state transition to failure (ttf). In this

paper, we describe a method for detecting such “unhandled” states, with primary

attention paid to those requiring time-critical responses.

“Fast” ttf

tt

tt

“Slow” ttftt

Action:
Retrieve Cached Plan

Action: Invoke
“moderate-time” replanning

Planned-for
 States 1 Failure

Planned-for
 States 2

No ttf or
“Very Slow” ttf

Action: Invoke
full replanning

Must Detect transition to
Unplanned-for State set

State set that may be reached
prior to taking corrective action

Figure 5-5. Plan-space Transitions based on Time to Failure.

If a “fast ttf” matches an unhandled state, a pre-computed plan must be quickly

executed before failure can occur, since insufficient time exists for online deliberation.

Otherwise, an appropriate planning algorithm may be selected based on how much time

remains before failure can occur.46 For example, as shown in Figure 5-5, the “moderate

time” planning algorithm might be a case-based technique [28] for which worst-case

execution time is a function of case database size, or an anytime planner [15],[74],[75]

which includes a careful definition of worst-case execution time for development of a

“minimum quality” plan to avoid failure. The “full replanning” algorithm may be a state-

46 In the most general case, more than two planning algorithms might be available.
Adopting a design-to-time approach [21], additional classifications of ttf “speed” would
then be identified such that each planner would be invoked based on ttf “speed” from the
identified unhandled state.

93

based planner with difficult-to-predict execution properties, often required for complete

and precise plan development. We assume planning accuracy is a function of

deliberation time, so that the “full replanning” algorithm will produce the most detailed

(best) response set.

We consider the Figure 5-5 "plan-space" concept with any number of intermediate

planning levels to be idealistic because, for each level, one must carefully define the

utility of selecting that level for responding to the next state versus the next "higher" or

"lower" planning level. With many planning algorithms, it is challenging to clearly

specify result accuracy and response timeliness without actually performing the planning

operation. In this thesis, we present a two-level "plan-space" design and describe how it

specifically fits into CIRCA-II.

Figure 5-6, illustrates the plan-space diagram utilized in CIRCA-II. We

incorporate two distinct methods for handling unplanned-for states: plan retrieval from

the cache and replanning. As discussed previously, CIRCA-II contains an “unbounded”

state-space planner and a plan cache that must have “bounded” retrieval times. CIRCA-II

dynamic replanning should only be required from unhandled states that cannot lead to

failure (e.g., deadend states), while the plan cache should contain a failure-avoidance plan

for all unhandled states (e.g., “dangerous” removed and imminent-failure) with ttfs that

occur quickly. As depicted in Figure 5-6, the contingency plans may not re-direct the

system to the “planned-for” state set, because they focus exclusively on failure-

avoidance. Instead, they redirect the system to states with a longer time before failure

can occur, effectively “buying time” for the CIRCA-II planner to construct a new goal-

achievement plan.

94

ttf

tt

tt
Execute failure-avoidance
 Cached Plan

Failure

“Safe”
States

Feedback unhandled
state to planner; replan

TAPs detect transition to
Unplanned-for State set

(no ttf)

Planned-for
 States

Feedback unhandled
state & contingency
response to planner; replan

Planned-for
 States-2

Imminent-Failure and/or
“Dangerous” Removed states

Deadend and/or
“Safe” Removed States

Figure 5-6: Plan-space Transitions in CIRCA-II.

As in the original CIRCA, CIRCA-II control plans are explicitly scheduled such

that failure-avoidance is guaranteed while in any set of planned-for “probable” states.

The remaining challenge is to meet all hard real-time deadlines required for successfully

responding to each unhandled state with a contingency plan. To maximize plan retrieval

efficiency, the plan cache is empty upon system startup47, then offline planning populates

the two cache partitions, nominal and contingency, and assigns each contingency plan a

“matching” nominal plan. Therefore, when an unhandled state is encountered, only the

set of contingency plans associated with the currently-executing nominal plan must be

searched for a match with the unhandled state.

Ideally, the CIRCA-II planner will have built a set of contingency plans that can

be retrieved quickly enough to make hard real-time guarantees of failure-avoidance in all

time-critical unhandled states. However, in practice, some unhandled states may have

sufficiently fast ttfs that it is impossible to assuredly retrieve a contingency plan in time,

47 In future work we plan to study tradeoffs associated with "remembering" or "learning"
contingency plans that are frequently used to minimize the overhead during startup
currently required to populate the cache from scratch.

95

particularly when a large set of unhandled states require a large group of contingency

plans. For each nominal plan, we can assess CIRCA-II’s ability to make real-time

failure-avoidance guarantees for unhandled states. First, the worst-case contingency plan

retrieval time (tr) may be computed from Equation 5-1, where n is the number of

contingency plans associated with the executing nominal plan, and tmax is the maximum

time required to test for an unhandled state match in any of these contingency plans.

t n tr = * max (5-1)

For failure-avoidance to be guaranteed in an unhandled state, Equation 5-2 must

be satisfied, where min∆(su) is the minimum delay before any ttf from unhandled state su

can occur (min∆ definition for a tt was described earlier in Equation 4-11), td is the worst-

case time between the occurrence and detection of state su (equal to the execution period

of the nominal plan’s "unhandled state" detection TAP for that state class), and tover is the

near-constant overhead time required to actually start up the new plan once retrieved.

)ttt()s(min overdru ++?∆ (5-2)

Using Equations 5-1 and 5-2, we are able to identify the set of time-critical

unhandled states that achieve guaranteed failure avoidance. In many cases, CIRCA-II

may make absolute failure-avoidance guarantees for all states, even for “improbable”

states handled via contingency plans. However, time-critical situations may exist in

which Equation 5-2 does not hold for all the unhandled states. In these worst-case

scenarios, CIRCA-II will perform analogously to an overloaded real-time system -- it will

guarantee a subset of all failure-avoidance reactions but will only be able to achieve best-

effort response for the others.

96

We have assigned a preference in the CIRCA-II planner for building contingency

plans for “dangerous removed” states before those for “imminent-failure” states, since

both are critical for failure-avoidance but removed states have a small but non-zero

probability, whereas imminent-failure states will occur only if the model is inaccurate.

With contingency plans retrieved in first-in-first-out (FIFO) order, the most “likely” set

of improbable states will have the minimal retrieval times (i.e., their matching

contingency plans will be searched first), thus the plan cache will be able to meet plan

retrieval deadlines more often when the model is accurate.

Figure 5-7 shows a qualitative plot of expected CIRCA and CIRCA-II

performance as a function of [inverse] plan-execution resource capacity c. Previously

(Figure 4-12), we illustrated how CIRCA-II achieves flexibility in trading off the

probability of mission success (i.e., safety) for schedulability when resources would

otherwise be over-utilized. In Figure 5-7, we add a new curve (labeled "CIRCA-II w/

cache") that illustrates how the detection of unhandled states and incorporation of the

CIRCA-II plan cache improves overall chances for success, even when the model is not

precise (so imminent-failure states may be reached) and resources are limited (so states

may require removal). As shown in the Figure, safety is guaranteed with 100%

likelihood (Psuccess=100%) as with CIRCA until resource capacity requires incrementing

Premoved about 0. Then, performance will drop off until no actions can be scheduled to

execute in a timely fashion, giving a near-zero chance of success regardless of how many

plans are cached. The distinction between CIRCA-II with and without the real-time

cache is simply that, in the region where the resource set is marginally over-utilized, the

plan cache enables CIRCA-II to more effectively utilize its resources for failure-

avoidance by moving through a hierarchy of real-time schedules that guide the system

safely through its environment.

97

Figure 5-7: Success Probability vs. Resource Capacity: With and Without Plan Cache.

Psuccess

1/c
CIR

CA

100%

CIRCA-II
w/ cache

CIRCA-II:
one plan with
removed states

98

CHAPTER VI

PLANNER-SCHEDULER NEGOTIATION

Planning for real-time applications involves decisions not only about what actions

to take in what states, but also about how to realize those actions within hard real-time

deadlines given the inherent resource limitations of an execution platform. Determining

how to arrange planned actions in a sequence such that timely execution is guaranteed

within constraints is a manifestation of the scheduling problem. We adopt a modular

approach that couples separate planning and scheduling components into the CIRCA-II

architecture, so that the planner and scheduler can separately apply their expertise to

ultimately build an appropriate plan that will execute with hard real-time guarantees on

the plan execution platform.

The planner is an expert at determining which tasks must be performed subject to

which constraints to solve the global problem at hand, while the scheduler is an expert at

manipulating the tasks into a specific order such that constraints are not violated. Ideally,

one would like the scheduler to know only how to manipulate tasks into a cyclical

sequence which does not violate constraints, while a planner knows about the global

problem at hand and the tasks required to solve the problem, but not the details of how to

organize the tasks into a schedule. For communication between planner and scheduler,

however, the two must share some knowledge. How much knowledge should be shared

and how to represent this knowledge is not clear. This problem generally requires

99

iteration between developing alternative plans and evaluating the schedulability of those

plans until an executable plan that maximally accomplishes goals is found.

In this chapter, we describe our efforts to identify and utilize a minimal but

expressive shared knowledge representation for coupled planner and scheduler agents,

and describe how this information supports the iterative formation of real-time

guaranteed control plans. We have approached this work in several stages. First, we

look at the specific case of a single-processor plan execution platform and describe how

the CIRCA-II scheduler computes and feeds back resource usage information to help

guide replanning efforts when plan scheduling fails. Next, we admit a general multi-

resource plan execution platform and describe how generic allocation and scheduling

algorithms may provide "bottleneck task" feedback for guiding planner backtracking

efforts when scheduling fails. A major advantage of a multi-resource execution platform

is the ability to introduce fault-tolerance. We discuss a limited fault-tolerance

methodology for CIRCA-II, based on the multi-resource allocation and scheduling

algorithms and the CIRCA-II plan dispatcher. Finally, we venture into a discussion of

how Quality-of-Service (QoS) negotiation may be incorporated into CIRCA-II such that

both the planner and scheduler can make tradeoffs when scheduling the "ideal" plan is

impossible given the limited execution resources.

Scheduler-to-Planner Feedback48

The single-processor CIRCA-II scheduler is based on a non-preemptive

separation-constrained method of scheduling described in [52]. The scheduler simulates

the execution of a dynamic scheduler by maintaining a time counter and iteratively

48 This work was done cooperatively with C. B. McVey. Further details of the CIRCA-II
Schedule Manager, including the computation of under-utilization parameters and a more
detailed specification of the feedback message structure, are provided in [47].

100

incrementing it as TAPs are chosen for execution. At each iteration, the TAP with the

shortest slack time is chosen to be executed. TAP slack time (tslack(TAPi)) is defined in

Equation 6-1, where tsep(TAPi) is the TAP's separation constraint specified by the planner,

tcur is the current time, and tlast(TAPi) is the time TAPi was last chosen to execute.

tslack(TAPi) = tsep(TAPi) - (tcur - tlast(TAPi)) (6-1)

If any other TAP (TAPj) has sufficiently small worst-case execution time

(wcet(TAPj)) to fit within the slack time of the originally-chosen TAP (wcet(TAPj) <

tslack(TAPi)), it will be selected for placement in the schedule instead. If the slack time of

any TAP is less than zero at any point, the TAP's deadline is violated and scheduling

fails. After all TAPs are present in the schedule, the scheduler continues its simulation

until a valid periodic subsequence containing all TAPs is extracted as the final schedule.

In this section, we first describe the Schedule Manager which was added to the

original CIRCA scheduler to construct and direct message-passing between planner and

scheduler. Then we provide an example that illustrates the use of this feedback.

Schedule Manager

A scheduler capable of providing meaningful feedback to a planner must have

authority to manipulate and retry scheduling the requests it receives from the planner.

Given this capability, the scheduler can use the difference between a satisfiable request

and over-constrained request to provide more accurate feedback to the planner. We have

augmented the original CIRCA scheduler with a rule-based system (the "Schedule

Manager") which directs the processing of all scheduling requests from the planner.

Depending upon the request, this Manager may perform a variety of actions: schedule a

request, modify some constraints in a request, modify parameters which govern behavior

101

of the core separation-constrained scheduling algorithm, calculate appropriate feedback

for the planner, and transmit a valid schedule or feedback.

A high-level summary of Schedule Manager algorithm is shown in Figure 6-1.

Upon receiving a schedule request from the planner, the manager first checks that overall

processor utilization U is less than one and tests for task-pair conflicts (i.e., whether

every combination of two guaranteed tasks will fail to fit together on the single processor

given their separation constraints and wcets). If both of these tests "pass", the Manager

calls the scheduler. Otherwise, it concludes the scheduler will have no chance at

complete success with the current plan and constructs feedback for the planner.

The primary feedback from Schedule Manager to planner is a suggested

probability threshold (Premoved) below which "unlikely" states are to be ignored. This

Premoved recommendation is made based on a heuristic-guided binary search between the

minimum, maximum, and current threshold that have been used during development of

this plan. When the planner adopts an increased probability threshold, the state-space

search is pruned, effectively generating the "removed" states described previously in

Chapter V. This pruning ultimately results in increased TAP separation constraints

and/or the removal (or replacement) of some TAPs from the scheduling request.

Scheduler Feedback Example

We have incorporated the Schedule Manager into CIRCA-II, and here present a

simple flight domain example to illustrate the utility of scheduler-to-planner feedback.

Figure 6-2 shows the state-space from an automated flight simulation test run to test the

CIRCA-II Schedule Manager algorithms. Note that, for state diagram conciseness, the

"tornado" temporal transition, which is very unlikely but matches every state while the

aircraft is in flight, leads to a "generalized" state with (Tornado = T), which must be

countered with the "avoid-tornado" action that leads back to the "pre-tornado" state.

102

Figure 6-1: CIRCA-II Schedule Manager Algorithm.

Table 6-1: Required TAP set (+ if-time-server) for "Traffic Avoidance" Plan.

TAP # Name wcet tsep Probability Priority

0 if-time-server 3550 N/A N/A N/A

1 climb 2150 45000 1.0 41

2 avoid-tornado 4150 9000 0.057 15

3 avoid-traffic 2150 20000 0.943 47

4 course-correct 5325 90000 0.9 41

5 resume-heading 2150 45000 0.89 38

Is U>1?

Check for guaranteed TAP
pair conflicts. Conflict if:

TAP pair conflict?

Call Scheduler

Scheduler
successful?

Plan Received

Compute processor utilization (U):

∀

=
}TAPsguaranteed{TAP isep

i

i
)TAP(t

)TAP(wcet
U

Call scheduler without low-

priority conflicting TAP(s);

report success/failure to planner

Increase and feed back

 Premoved to planner.

Increase and feed back
 Premoved to planner.

Send new schedule to dispatcher;
report success to planner.

Done with
this plan.

Wait for new plan

yes

no

no

no

yes

))TAP(t),TAP(tmin(

))TAP(wcet)TAP(wcet(

jsepisep

ji

>+

yes

103

Figure 6-2: CIRCA-II "Traffic-Avoidance" Excerpt from Automated Flight State-Space.

The set of "guaranteed" actions required to avoid ttfs are listed in Table 6-1. We

present for this example the output from one possible planner-scheduler iteration cycle

from this state-space. Following the Figure 6-1 algorithm, the schedule manager first

determines that U<1, so it looks for TAP pair conflicts. Unfortunately, TAP #2 conflicts

with Tap #4 since the sum of their wcets is greater than TAP #2's separation constraint

(tsep). At this point, the scheduler computes and returns Premoved to the planner. To

compute Premoved, the scheduler performs a binary search to find the maximal set of

guaranteed TAPs that can be scheduled, then sets Premoved to the highest-probability value

for the TAPs that did not fit into this set (see [47] for further details). For our example,

Premoved is set to 0.057 since a successful schedule could be constructed with all other

Traffic = F
Swerve = F
On_Course = T
Avoid_Traf = F
Tornado = F

Failure

temporal

action

Transition key:

Traffic = T
Swerve = F
On_Course = T
Avoid_Traf = F
Tornado = F

Traffic = T
Swerve = T
On_Course = F
Avoid_Traf = T
Tornado = F

Traffic = F
Swerve = T
On_Course = F
Avoid_Traf = T
Tornado = F

Traffic = F
Swerve = F
On_Course = F
Avoid_Traf = F
Tornado = F

Traffic = F
Swerve = F
On_Course = F
Avoid_Traf = T
Tornado = F

traffic collision traffic-passes

intercept-course

airspace-violation

airspace-
violation

avoid-traffic

course-correctResume-
heading

 Traffic = F
Swerve = F
On_Course = Land
Avoid_Traf = F
 Tornado = F

climb

Failure

runway-
incursion

crash

……...
Tornado = T

avoid-tornado ……...
Tornado = F

tornado
tornadotornado

 Initial_state

104

TAPs. Upon replanning, TAP #2 disappears because all "Tornado=T" states fall below

this probability threshold. Thus the scheduler is successful on the next pass, constructing

and downloading the TAP schedule {3, 1, 0, 4, 0, 3, 5, 0}, where schedule numbers

correspond to TAP numbers and the "if-time server" (TAP #0) has been inserted as

frequently as possible.

Bottleneck Task Selection with a Multi-Resource Scheduler

We have extended CIRCA-II to consider multiple resources during plan

scheduling. This work again focuses on augmenting the expressivity of scheduler-to-

planner feedback to guide replanning when scheduling fails. However, we generalize on

the "Schedule Manager" algorithms in two respects. First, we allow both multiple

instances of a specific resource (e.g., multiple processors) as well as multiple classes of

resources (e.g., processors, communication channels). Second, the above communication

protocol between planner and scheduler were explicitly tied to the planning and

scheduling algorithms used in CIRCA-II. We maintain a sufficiently expressive

message-passing structure, but make the messages generic so that any planner and

scheduler capable of generating and utilizing these messages can effectively be "plugged

into" our planner-scheduler interface module.

We begin this section by introducing the real-time resource allocation and

scheduling problem in terms of CIRCA-II. We then describe our heuristic planning-

resource allocation interface, including how it may be "plugged into" CIRCA-II, and

provide a simple example illustrating how this interface is used to select bottleneck tasks

when scheduling fails.

105

Resource Allocation and Scheduling

For a real-time computing system, a "plan" is a set of tasks T = {T1, …, Tn} with

resource requirements and timing constraints. The problem of resource allocation is to

map the set of planned tasks onto a set of available resources such that all constraints are

met. In CIRCA-II, all guaranteed tasks are considered periodic, and each task Ti ∈ Ttotal

has worst-case computation time Ci (wcet(Ti) previously) and period Pi. The worst-case

computation time includes scheduler context-switching overhead. The jth invocation of

task Ti becomes ready for execution at time (j-1)Pi, called task arrival time, ai[j]. The

deadline, di[j], of a task invocation is usually such that di[j] ≤ ai[j] + Pi since each

invocation must complete its execution before the next one arrives. It is sufficient for the

resource allocation algorithms to find a task schedule within a finite interval, L, equal to

the least common multiple of all task periods, called the "planning cycle" in the real-time

community. The resulting task schedule repeats itself in subsequent planning cycles.

Each task may be composed of one or more separately schedulable modules (i.e., threads)

with arbitrary precedence constraints. The resource requirements of each module are

known a priori since we know the resource profile for the application code.

The selection of a proper resource allocation algorithm depends on the execution

platform considered. An optimal resource allocation algorithm is described in [72] for

uniprocessors, in [73] for multiprocessors, and in [56] for distributed systems. Once the

task assignment is fixed, an optimal offline scheduling algorithm such as [3] can be used

to preschedule the tasks. In this section, we presume the use of [56] for task assignment

due to its ability to handle distributed systems, and use [3] as the "generic" periodic task

scheduler. These algorithms are used to schedule all CIRCA-II guaranteed tasks (those

with gi=1). Best-effort tasks (those with gi=0) are then fit, when possible, into gaps of

this schedule. The resulting overall schedule for each processor is stored in a table.

106

Planning -- Resource Allocation Interface

A primary objective of the planning-resource allocation interface is to utilize

existing resource allocation algorithms with minimal modification. In particular, the

planner should be told whether or not the current plan is schedulable, and if it isn't, which

task is judged to be the most costly "bottleneck". If the plan is found schedulable by the

resource allocation analyzer then its entire value is redeemed. However, if the plan is

unschedulable, the interface module points out a "costly" task to reconsider during

replanning.

In our design, we require a specific plan format for transmission to the planner-

scheduler interface module. As described previously, the CIRCA-II planner produces a

set of TAPs, a subset of which are guaranteed to preempt ttfs along with the rest which

operate under strictly best-effort operation. Henceforth in this section we shall refer to

each TAP as a task Ti. For each planned task Ti ∈ Ttotal, where Ttotal contains all tasks in

the plan, the planner must output the triplet (gi, Pi, Vi) to the planner-scheduler interface

module. gi is the "guarantee flag" that indicates whether task Ti is guaranteed (gi = 1) or

best-effort/"if-time" (gi = 0). Pi is the maximum period49 of Ti required to preempt ttfs

when gi =1, and Vi is the "priority" value of task Ti, currently set to ni*max(probi), where

ni is the number of reachable states in which task Ti executes and max(probi) is the

maximum probability of any state in which Ti executes. This heuristic reflects a

preference to keep tasks chosen for the highest-probability states, as well as the fact that

large ni will likely require many backtracking steps should Ti be altered. We define the

set Tmandatory as all tasks Ti ∈ Ttotal with gi =1.

49 For the CIRCA-II planner, Pi must be set to twice the TAP separation constraint (tsep)
because periodic schedulers may place a task either at the "beginning" or "end" of each
task period within a schedule, as described in [52]. This will often result in inefficient
scheduling of CIRCA-II plans, but is more generic due to the multitude of periodic task
allocation and scheduling algorithms.

107

The resource allocation analyzer receives input (Ti ∈ Tmandatory, Pi) then returns a

success/failure status and utilization matrix U in which each element U(i,q) is the

utilization consumed by task Ti of resource class q. The scheduler database defines the

worst-case resource requirements of all task modules (or threads) Mj ∈ Ti. Elements

U(i,q) are computed by the resource allocation analyzer as follows. Within each planning

cycle L the total capacity of a resource q is pQL, where p is the number of instances of

the resource and Q is the capacity of each. If module Mk of period Pk and execution time

Ck requires an amount rk,q of the resource throughout its execution, then its total demand

on that resource within the planning cycle is rk,qCkL/Pk. The ratio of that demand to the

total available resource capacity is the utilization u(k,q) consumed by module (or thread)

Mk of resource q, and is shown below in Equation 6-2. The utilization U(i,q) consumed

by task Ti of resource q is the sum of the utilizations u(k,q) of all modules Mk ∈ Ti and is

shown below in Equation 6-3.

(6-2)

 (6-3)

To compute the most "costly" task in cases of over-utilization (failure), the

interface combines priorities Vi from the planner with the utilization matrix U from the

resource allocation analyzer. The interface module tentatively deletes one action, Tj,

from the plan and recomputes the resulting aggregate utilization γj(q) by adding U(i,q) for

all i≠j. The bottleneck resource qb(j) for task Tj is the one for which γj(q) is maximum, as

shown in Equation 6-4.

(6-4)

∀

=
ik TM,k

)q,k(u)q,i(U

k

kq,k

pqP

Cr
)q,k(u =

))q,i(U(max))q((max)j(q
ji,i

qjqb
?

== γ

108

The total value Sumj remaining after eliminating Tj is the sum of Vi, as shown in

Equation 6-5. The total value per unit of bottleneck-resource-usage is thus Sumj/ γj(qb(j)).

The interface recommends removal of the action Tbottleneck that results in the maximum

value per cost ratio, as shown in Equation 6-6. Note that the Sumj defined here is not

exact, since removal of one action could affect the Vi values of other actions. Exact

computation of Sumj would require detailed knowledge of the planning state-space after

this action was removed, which is time-consuming.

 (6-5)

(6-6)

This heuristic is used to suggest which part of the planner's search space to

expand next, via dynamic backtracking to each state in which Tbottleneck was guaranteed to

preempt a ttf. However, it does not actually prune parts of the search space. Since the

planner's search is exhaustive in the worst-case, it will find a feasible plan if one exists.

Much like with the "Schedule Manager" utilization feedback, this "bottleneck task

selection" heuristic merely increases the odds of finding such a plan earlier in the search

process.

Example: Selecting a Bottleneck Task in an Unschedulable Plan

We illustrate the computation of tbottleneck with a simple example in this section.

Assume the plan as downloaded from the planner consists of four tasks, Ttotal = {T1, T2,

T3, T4}, and that all of these tasks are guaranteed (gi=1) since best-effort tasks are not

considered by the interface module. Further, assume all tasks have priority value Vi=1.0

for simplicity, thus the bottleneck task will be determined strictly from utilization

?

=
ji,i

ij VSum

√√
↵


=

))j(q(

Sum
maxT

bj

j
jbottleneck γ

109

considerations. Let Table 6-2 describe the utilization matrix U(i,q) returned from the

resource allocation/scheduling module, where the columns represent utilization values for

the four guaranteed tasks and the rows represent utilization values for the three available

resource classes. As can be observed from this matrix, at least resource q3 is overutilized

since the sum of individual task utilizations is greater than 1. Thus, scheduling has failed

and a bottleneck task must be identified.

Table 6-2. Example Utilization Matrix U(i,q).

T1 T2 T3 T4

q1 0.1 0.35 0.4 0.05

q2 0.25 0.3 0.1 0.15

q3 0.15 0.4 0.25 0.3

Table 6-3. Values used for Computation of Tbottleneck.

T1 removed T2 removed T3 removed T4 removed

γj(q1) 0.8 0.55 0.5 0.85

γj(q2) 0.55 0.5 0.7 0.65

γj(q3) 0.95 0.7 0.85 0.8

qb(j) q3 q3 q3 q1

value/cost 3.16 4.29 3.53 3.75

Table 6-3 shows the aggregate utilization values γj(q) and bottleneck resource

qb(j) after the removal of each task Tj as computed from Equation 6-4. In this example,

the value Sumj remaining after eliminating any one task is always the same (equal to 3,

the number of tasks remaining, since Vi=1 for all tasks). Table 6-3 also shows the value-

to-cost ratios after removal of each task. The maximum value-to-cost ratio remains after

110

removing task T2, thus Tbottleneck = T2, which is then fed back to the planner for dynamic

backtracking.

The reader may question why we include the previous "Schedule Manager"

section in this thesis, given that this new planner-scheduler interface module functionally

subsumes the single-processor Schedule Manager. One compelling reason is that the

Schedule Manager is fully-implemented while only the Planning Subsystem CIRCA-II

component for this model is sufficiently implemented to test the feasibility of our

planner-scheduler interface heuristic and message-passing algorithms. To experimentally

verify the multi-resource scheduler-to-planner feedback proposed here, CIRCA-II's Plan

Execution Subsystem would require substantial redesign to accommodate multiple

resources and handle resource failures (see below). The simple part of multi-resource

plan execution is running a single plan on multiple resources as prescribed by the multi-

resource scheduler.50 However, it will be non-trivial to implement the plan dispatcher

such that it can process feedback from any execution resource then efficiently switch

plans uniformly across all resources.51 Then, to continue experimental verification of the

fault-tolerance procedure outlined below, we will also have to implement resource

monitoring procedures as "feature sensing" actions, as well as the capability to execute

tasks on any subset of operational resource instances. We are currently working to

address these implementation challenges within CIRCA-II's Plan Execution Subsystem

and hope to have a preliminary multi-resource, fault-tolerant system design and prototype

that operates on the QNX real-time operating system within the next few months.

50 We presume homogeneous resource instances, so each task can access feature values
and execute actions from any particular instance of a resource.

51 In fact, the plan dispatcher should itself be distributed across multiple processors for
maximally-efficient resource utilization. Otherwise, if a processor containing the
dispatcher fails, no further plan switches will be possible thus the system will not even be
capable of retrieving the plan to handle the "processor failure" fault, as described next.

111

"Internal" Fault-Tolerance during Plan Execution

Both the original CIRCA and CIRCA-II are designed to accommodate any

"external faults" in the world that can be modeled with as sensed features and handled via

some action on the environment. However, neither system can consider the possibility of

"internal" computational resource faults so long as processes require a fixed set of

resources as was the case with a single-processor scheduler and plan-execution system.

With the introduction of the multi-resource allocation and scheduling procedures

described above, we can also begin to introduce the notion of tolerance to computational

resource failures in CIRCA-II, specifically to the critical plan-execution platform which

must execute plans reliably and in hard real-time to avoid any possible catastrophic

system failures. In this section, we first describe how we build upon the planner-

scheduler interface to develop plans that exhibit tolerance to a limited user-specified set

of faults, and then give an automated aircraft example that illustrates the utility of

specifically designing plans to accommodate computational resource failures.

Developing Fault-Tolerant Plan Sets

We establish tolerance to "internal" computational resource faults (e.g., single

processor failures) by using the planner-resource allocation interface module to

effectively manage a preset list of faults for which the system must be tolerant. This list,

Ftotal, is specified by the user as part of the scheduler knowledge base. It includes the

nominal "no-fault" case f0 in which all computational resources work properly, and

progressively describes more severe faults, terminating with the worst fault fn the system

must tolerate.

The CIRCA-II multi-resource allocation and scheduling system access a

description of the available resource types and quantities for each fault fi ∈ Ftotal from the

scheduler database. In this manner, the allocation and scheduling processes will schedule

112

each plan in accordance with the actual set of fully-functional resources that would be

available given a specific fault condition instead of presuming that the complete, fixed set

of computational resources are always available for plan execution.

Figure 6-3 shows the planner-scheduler interface algorithm used to control all

data flow between the CIRCA-II planner and scheduler, including both "nominal" plan

development as described in the previous section and all additional steps required to

develop the set of fault-tolerant plans required to handle each fault fi ∈ Ftotal. To

summarize, the interface module incorporates plan and utilization data for each fault to

classify plans as "good" or "unschedulable". A good plan is added to Fgood, then

downloaded to the plan dispatcher along with indices to all faults for which that plan was

"good". These faults are removed from the working fault list (i.e., placed in Fdone), since

they only require one plan. For the first (i.e., least severe) fault that over-utilized

resources, a "bottleneck" task is recommended for removal using the heuristic described

in the previous section, then fed back to the planner which backtracks to find a safe

alternative plan. This procedure continues until all faults have been handled successfully

by some schedulable plan, even if safety guarantees for the final most-severe faults in

Ftotal are only probabilistic (with perhaps even a decent chance of failure).

This algorithm enables creation and storage of (i) a set of plans that can meet all

required hard real-time constraints when any internal fault from Ftotal occurs, and (ii) a

pre-computed execution schedule for each plan. After the plan dispatcher fills the cache

with "good" plans for all faults, the plan indexed for the nominal no-fault condition f0

(for the first planned subgoal) is selected and begins execution according to the computed

schedule. When the system detects an internal fault,52 plan execution switches to the pre-

52 As was noted earlier, we are still in the process of implementing the CIRCA-II multi-
resource plan-execution platform, thus we also still have to build fault-detection monitors
into our software.

113

scheduled plan designated to handle that fault. Thus, response to internal faults is

prompt, and the system does not fail due to internal faults except when a computational

fault occurs that is outside the limited set Ftotal.

1. Plan Ttotal is received; each Ti ∈ Ttotal is specified by the triplet (gi, Pi, Vi).

2. ∀(fi ∈ Ftotal; fi ∉ Fdone)

-- Send (Pj for all Tj ∈ Tmandatory, fi) to scheduler, which returns matrix U(j,q).

-- If scheduling succeeds, add fi to list Fgood for plan Ttotal; add fi to Fdone.

3. If (Fgood ≠∅), download Ttotal with indices Fgood to dispatcher; reset Fgood =∅.

4. If (Fdone ≠ Ftotal),

-- Find first element fi ∈ Ftotal such that fi ∉ Fdone.

-- Send to planner "bottleneck" task Tbottleneck identified from Equation 6-6.

-- Go to Step 1.

Figure 6-3: Planning-Scheduling Interface with Fault-Tolerant Plan Development.

Autonomous Aircraft Example

We consider an example from automated flight to illustrate the utility of plan

development with the fault list. Our plan execution system in this example includes two

resource types: Proc (processor) and Comm (communication channel). The system

contains two processors of type Proc and a single communication channel of type Comm,

and we define a fault set which includes the nominal no-fault case (f0) and a "single

processor failure" fault (f1), in which the number of Proc instances is reduced from 2 to 1.

For our automated flight mission, the CIRCA-II planner is given the goals of

maintaining safety while following a specific flight trajectory. The aircraft must follow

standard air traffic procedures and maintain communication with Air Traffic Control

(ATC) via the Comm channel resource, which we assume to have guaranteed worst-case

114

execution properties. For this example, we present a very simplified aircraft world model

which illustrates how safety is maintained during flight, even in the presence of a single

processor failure from the set of Proc resources.

 In its initial phase, the planner builds the state set shown in Figure 6-4. In this

plan, two failures must be avoided: an impact with an obstacle (e.g., the terrain or

another aircraft) and any airspace-violation (e.g., flying in a restricted military area). To

prevent these ttfs, CIRCA-II selects two actions: avoid-collision and maintain-trajectory.

Figure 6-4: Nominal Flight Plan.

Table 6-4: Flight Example Task Set.

Ti Pi Vi Modules

avoid-collision (T1) 6 (nominal plan) 1 M1, M2, M3

maintain-trajectory (T2) 12 (nominal plan) 1 M4, M5

declare-emergency (T3) 6 (reduced plan) 1 M6

follow-radar-vectors (T4) 12 (reduced plan) 1 M7, M5

On-Course = True
Obstacle = False
Status = Normal

On-Course = True
Obstacle = True
Status = Normal

Failure

On-Course = False
Obstacle = True
Status = Normal

On-Course = False
Obstacle = False
Status = Normal

maintain-trajectory

course-deviation

obstacle
avoid-collision

impact

airspace-violation

impact

avoid-collision

obstacle

initial_state

temporal

action

Transition key:

115

The decomposition of all tasks available in our flight example is shown in Tables

6-4 and 6-5. To detect a state with Obstacle=True, task T1 runs modules M1, scan-TCAS

(Terminal Collision and Avoidance System), to sense nearby obstacles and M2, monitor-

traffic, to detect other air traffic based on ATC data. If an object is detected, the avoid-

obstacle action is executed. The maintain-trajectory task (T2) executes to detect course

deviations with M4, monitor-course, and correct them by sending reference trajectory

(r(t)) commands to the low-level controller via M5, update-controller-reference.53

Table 6-5: Flight Example Module Worst-Case Resource Usage.

Module Function Ci on Proc Ci on Comm

M1 scan-TCAS 2 -

M2 monitor-traffic 3 2

M3 avoid-obstacle 4 -

M4 monitor-course 4 -

M5 update-reference 4 -

M6 declare-emergency 1 1

M7 receive-vectors 2 5

Table 6-4 also includes the period (Pi) and priority (Vi) used by the scheduling

and planner-scheduler interface algorithms. For this example, we again set all task

priorities equal (Vi=1). Note that all actions are guaranteed (gi=1) since all states with

planned actions have ttfs. The computing system is composed of two processors, each a

53 As will be discussed in Chapter 8, CIRCA-II relies on a traditional low-level control
system to read sensors and compute actuator commands. This controller is presumed to
have its own set of fault-tolerant resources since it is always required for autonomous
operation.

116

resource of type Proc, interconnected with each other and ATC by a communication bus,

a resource of type Comm. Once CIRCA-II has developed the initial plan, the

allocation/scheduling system attempts to schedule it for each specified fault fi ∈ {f0,f1}.

For the no-fault case (f0), a valid task assignment [56] and schedule [3] is computed such

that all constraints are met. The resource allocation for f0 is shown in Figure 6-5. This

schedulable plan (Plan1) for the nominal no-fault case f0 is now added to the "good" list,

Fgood, and f0 is added to the set of handled failure modes Fdone.

Figure 6-5: Nominal Plan Resource Schedule (f0).

As shown in Table 6-6, the processor (Proc) utilization exceeds a value of one for

f1, thus the initial plan must be altered for f1. The planner-scheduler interface uses

utilization matrix feedback to recommend that the planner remove T1 (avoid-collision)

due to its high Proc utilization. Backtracking during replanning yields the state diagram

shown in Figure 6-6, with the new task declare-emergency (T3) selected.54 Once the

emergency is declared, ATC effectively takes much of the computational responsibility

from the aircraft, clearing airspace so that obstacles will no longer be a factor.

54 All states from the nominal plan (Plan1) are possible. The temporal transitions
obstacle and course-deviation are not preempted since they may happen too quickly.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

M1 M4 M1 M5

M2 M3 M2 M3

M2’s msg M2’s msg

Proc1

Proc2

Comm

117

Additionally, after an emergency has been declared, the efficient action follow-radar-

vectors can be selected, in which ATC specifies the course and corrections required for

the aircraft to safely reach its destination.

Table 6-6: Utilization Matrix for the Nominal Plan.

Ti U(i, Proc, f0) U(i, Proc, f1) U(i, Comm)

T1 14/24 14/12 4/12

T2 8/24 8/12 0/12

Figure 6-6: Reduced Flight Plan for Failed Processor (f1).

This reduced plan (Plan2) is now sent to the resource allocation/scheduling

module, which finds the plan can easily be scheduled even with the processor failure (f1),

as computed with task utilizations shown in Table 6-7 and a valid task assignment

illustrated in Figure 6-7. With this plan, CIRCA-II can handle both f0 and f1, so Plan2 is

stored and planning (for this subgoal) terminates.

On-Course = True
Obstacle = False
Status = Normal

On-Course = False
Obstacle = False
Status = Normal

Failure

On-Course = False
Obstacle = True
Status = Normal

On-Course = True
Obstacle = True
Status = Normal

course-deviation

impact

airspace-violation

On-Course = True
Obstacle = False
Status = Emergency

On-Course = False
Obstacle = False
Status = Emergency

course-deviation

obstacle

obstacle

impact

temporal

action

Transition key:

declare-emergency

declare-emergency

declare-emergency

declare-emergency

follow-radar-vectors

course-deviation

initial_state

118

Table 6-7: Utilization Matrix for the Reduced Plan.

Ti U(i, Proc, f1) U(i, Comm)

T3 2/12 2/12

T4 6/12 5/12

Figure 6-7: Reduced Plan Resource Schedule (f1).

In this example, we have identified unschedulable plans and made them

schedulable via replanning. This is in contrast to traditional resource allocation

algorithms which simply fail if a plan is unschedulable. It also contrasts with planning

algorithms which do not consider failures of computing resources, and do not guarantee

schedulability of plans in a hard real-time sense.

QoS Negotiation during Scheduling55

In CIRCA-II, we have presumed that each task module has fixed execution

properties, thus each has inflexible worst-case resource requirements that must always be

used by the scheduler. The real-time community has recognized that many functions may

55 This work was done cooperatively with T. F. Abdelzaher. Further details of the QoS
Negotiation protocol, including its incorporation into middleware services called
RTPOOL, are provided in [1] and [2].

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

M6 M7 M6 M5

M6’s msg M6’s msg

Proc1

Comm

M7’s msg

119

be written with the flexibility to trade off result accuracy with resource requirements.

Furthermore, often the relative accuracy may be captured numerically so that software

can subsequently trade off the efficacy of degrading one software module versus another.

The Quality-of-Service (QoS) negotiation research field has been introduced to develop

principled ways of degrading software to reduce its resource requirements for real-time

systems. We have begun work to study how QoS-level adaptation to can be used to relax

scheduling constraints on hard real-time tasks with a focus on tailoring QoS negotiation

algorithms to fit within future implementations of CIRCA-II.

As discussed previously, whenever a proposed plan is found to be unschedulable,

CIRCA-II has to-date placed the burden of creating a schedulable plan solely on the

planner. We hope to incorporate QoS adaptation techniques into CIRCA-II specifically

so that the scheduler can use a table of QoS levels for each thread/module to trade off

task execution requirements (e.g., worst-case execution times) with execution

performance (e.g., result accuracy). Then, if scheduling fails when assuming all highest

(best-performing) QoS levels as is currently done in CIRCA-II, the scheduler can degrade

these QoS levels and propose alternate schedules that execute sufficiently but not

optimally. This process will have two benefits. First, feedback from scheduler to planner

can be made even more expressive by letting the planner know exactly how much

performance must degrade to make the plan schedulable, based on the relative cost

associated with decreasing each QoS level. This is in contrast to totally removing a

"conflicting" hard real-time task (with the Schedule Manager) or selecting an ordering for

bottleneck tasks (with the planner-scheduler interface module) to be used during planner

backtracking. Additionally, should the planner be completely unable to build a

schedulable plan when all tasks assume their absolute worst-case execution times,

reducing task module QoS levels may enable plan scheduling with only a minimal

degradation in performance, whereas previously the system would either fail or assume

an unrealistically large probability threshold below which all states were ignored.

120

In this section, we first describe QoS negotiation and the heuristic we use to

decide how QoS levels will be degraded during scheduling, then present an example

illustrating how graceful performance degradation may be achieved when using this

algorithm for autonomous flight control.

QoS Negotiation Protocol

For this discussion, we will generalize beyond CIRCA-II to consider a group of

clients making requests on a platform which must schedule these requests on its available

resources. We map CIRCA-II into this framework by considering a "client" to be a task

(Ti) that requires a group of threads to be executed with a specified maximum period (Pi).

Thus, a complete CIRCA-II plan specifies a set of "clients" that simultaneously send

resource requests to a scheduler.

Our QoS negotiation model is centered around three simple abstractions: QoS

levels, rewards, and rejection penalty. A client requesting service specifies in its request

a set of negotiation options and the penalty of rejecting the request derived from the

expected utility of the requested service (i.e., task execution). Each negotiation option

consists of an acceptable QoS level for the client to receive from the provider and a

reward value commensurate with this QoS level. The QoS levels are expressed in terms

of parameters whose semantics need to be known only to the client and service provider.

For example, in processor capacity reservation, they may express the required processor

bandwidth, while in a multicast protocol they may represent the semantics of the

requested multicast service, such as reliable, ordered, causal, or atomic delivery. The

reward represents the "degree of satisfaction" to be achieved from the QoS level (i.e.,

application-perceived utility of supplying the client with that level of service).56 Thus,

56 When applying these QoS Negotiation techniques to CIRCA-II, reward value for each
thread QoS level will probably be based on a fraction of overall performance degradation

121

the client's negotiation options represent a set of alternatives for "acceptable" QoS and

their "utility". The rejection penalty of a client's request is the penalty incurred to the

application if the request is rejected.57

To control system load in a way that ensures predictable service, a scheduler must

determine whether the request can be guaranteed or must be rejected. We propose a

slightly different notion of guaranteeing a request, as compared to the conventional

notion of a guarantee. In our proposed model, guaranteeing a client's request is the

certification of the request to receive service at one of the QoS levels listed in its

negotiation options. The selection of the QoS level it will actually receive, however, is

up to the scheduler. Furthermore, during plan execution, the service provider will be free

to switch this QoS level to another level in the client's negotiation options if it increases

perceived utility (e.g., if tasks take much less than their worst-case requirements, the

dynamic scheduler can insert one or modules with a higher QoS level to take advantage

of the extra slack resources).

The real-time group at the University of Michigan has designed a middleware

service, RTPOOL [1], that has been used to illustrate the utility of our QoS Negotiation

protocol.58 Each incoming client request for scheduling a task includes its rejection

penalty along with the different QoS levels and their rewards. A client task's QoS level is

specified by the parameters of its execution model. For an independent periodic task, the

parameters consist of task period, deadline, and execution time. We model period and

relative to the highest QoS level for that module scaled by the "priority" for the task
containing this module. However, we have not yet formalized this computation.

57 Rejection penalty may be set to (1/Vi) for CIRCA-II best-effort tasks.

58 RTPOOL is more general than the CIRCA-II scheduler in that it is capable of
dynamically receiving requests from a variety of different clients while other requests are
already executing, but since RTPOOL effectively subsumes the functionality of the
CIRCA-II scheduler, its algorithms and their functionality will be transferable to CIRCA-
II in future implementations.

122

deadline as negotiable parameters for all soft real-time tasks. Task execution time, on the

other hand, depends on the underlying machine speed and thus should not be hardcoded

into the client's request. Instead, each QoS level in the negotiation options specifies

which modules of the client task are to be executed at that level. This allows the

programmer to define different versions of the task to be executed at different QoS levels,

or to compose tasks with mandatory and optional modules. The reward associated with

each QoS level tells RTPOOL the utility of executing the specified modules of the task

with the given period and deadline.

When one or more new requests arrives at a machine, RTPOOL executes a local

QoS optimization heuristic, which computes the set of QoS levels for all local clients to

maximize the sum of their rewards. Tasks are inserted into the schedule upon arrival

order (or randomly if multiple arrive simultaneously). A task may be rejected if both (i)

the new sum of rewards (including that of the newly-arrived task) is less than the existing

sum prior to its arrival, and (ii) the difference between the current and previous sums is

larger than the new task's rejection penalty. Otherwise, the requested task is guaranteed.

As a result, task execution requests will be guaranteed unless the penalty from resulting

QoS degradation of other local clients is larger than that from rejecting the request.

When a task execution request if rejected by the local machine, one may attempt to

transfer and guarantee it on a different machine using a load-sharing algorithm. Note that

conventional admission control schemes would always incur the request rejection penalty

whenever an arrived task makes the set of current tasks unschedulable. By offering QoS

degradation as an alternative to rejection and by using admission control rules, we can

show that the reward sum (or perceived utility) achieved with our scheme is lower

bounded by that achieved using conventional admission control schemes given the same

schedulability analysis and load sharing algorithms. Thus, in general, our proposed

scheme achieves higher perceived utility.

123

Figure 6-8 gives an example of a local QoS optimization heuristic. The heuristic

implements a gradient descent algorithm, terminating when it finds a set of QoS levels

that keeps all tasks schedulable, if any. Note that unless all tasks are executed at their

highest QoS level, the machine suffers from unfulfilled potential reward. The unfulfilled

potential reward, UPRj, on machine Nj, is the difference between the total reward

achieved by the current QoS levels selected and the maximum possible reward that would

be achieved if all local tasks were executed at their highest QoS level. This difference

can be thought of as a fractional loss to the mission and is often unavoidable due to

resource limitations. However, such loss may also be caused by poor load distribution, in

which case it can be improved by proper load sharing.

Let each client task Ti have QoS levels Mi[0],…,Mi[besti] with rewards
Ri[0],…,Ri[besti], respectively.
1. Start by selecting the best QoS level, Mi[besti], for each client Ti.
2. While the set of selected QoS levels is not schedulable, do Steps 3

and 4.
3. For each client Ti receiving service at level Mi[j] > Mi[0], determine

the decrease of local reward, Ri[j]-Ri[j-1], resulting from degrading
this client to the next lower level.

4. Find client Tk whose Rk[j]-Rk[j-1] is minimum and degrade it to the
next lower level.

5. Go to Step 2.

Figure 6-8: Local QoS Optimization Heuristic.

RTPOOL employs a load-sharing algorithm that implements a distributed QoS-

optimization protocol. Described in Figure 6-9, the protocol uses a hill-climbing

approach to maximize the global sum of rewards across all clients in the distributed pool.

It is activated between two machines Ni and Nj when the difference UPRi - UPRj exceeds

a threshold Vthresh. Close examination of the local QoS optimization heuristic and the

distributed QoS optimization protocol reveals that neither makes assumptions about the

nature of the client and the semantics of its QoS levels. The distributed QoS-negotiation

protocol, however, assumes service to a given client can be migrated to another node. In

124

the near future, we hope to incorporate QoS negotiation algorithms from RTPOOL into

the CIRCA-II multi-resource scheduling system described previously. Below, we

illustrate how a scheduler may automatically degrade task QoS levels for a flight control

system. In this example, we do not alter the actual tasks, but rather their execution

properties, thus the CIRCA-II planner need not re-plan to find a solution.

1. On source machine Ni find client Tk whose removal will result in max.
increase, W, in total reward.

2. Ni requests reassigning Tk with reward W.
3. Each machine Nj, where UPRi - UPRj > Vthresh, receives the request and

recomputes QoS levels for its local clients plus Tk. If its total
reward is higher with Tk, Nj bids for Tk with the reward increment Wj
resulting from accepting it.

4. Ni transfers Tk to the highest bidder.

Figure 6-9: Distributed QoS Optimization Protocol.

Example of QoS Negotiation for Autonomous Flight

We have performed a preliminary test of our QoS negotiation protocol with an

aircraft simulation, which will be described in more detail in Chapter VII. Our QoS-

negotiation scheme enables the application domain expert (or the CIRCA-II planner via

its knowledge base) to express application-level semantics using QoS levels, rewards,

and rejection penalty. Table 6-8 shows the minimal set of tasks we used to control the

aircraft during a short flight in which we were to destroy any observed enemy targets

using the simulated F-16's onboard radar and missiles. Four separate tasks were required

to control the aircraft: Guidance (Guid), Control (Ctrl), "Slow" Navigation (Snav), and

"Fast" Navigation (Fnav). These tasks function much like their similarly-named Flight

Management System counterparts. Guid is responsible for computing the reference

trajectory state for the aircraft. In our tests, Guid specified only heading and altitude to

lead the aircraft along its trajectory. The Ctrl task is responsible for executing the low-

level control loops to compute actuator commands from the high-level guidance

125

trajectory. We have two navigation tasks (Snav, Fnav) to estimate aircraft state,

distinguished by required update frequency. More details on our specific control laws

may be found in Chapter VII.

Table 6-8: QoS Levels for the Automated Flight Control Plan.

Task L R ET(ms) P(sec) Ver

Guid 0 10 100 10 def*

1 15 100 5 def

2 20 100 1 def

Ctrl 0 1 80 5 sec**

1 100 60 1 prim

2 104 80 1 sec

3 120 60 0.2 prim

4 124 80 0.2 sec

Snav 0 10 100 10 def

1 20 100 5 def

2 25 100 1 def

Fnav 0 1 60 5 def

1 100 60 1 def

2 120 60 0.2 def

MC 0 1 500 10 def

1 30/200 500 1 def

*def is the default version to execute for each task.
**For the Ctrl task, two versions are available, one that uses only primary actuators

(prim) and another (sec) that allows higher-performance control through the use of
secondary actuators (e.g., afterburners).

Table 6-8 also shows the QoS levels (L) present for all tasks, including associated

rewards (R), execution time (ET), period (P), and version (Ver). In our simple tests, we

set each task deadline equal to its period, as would be required by the CIRCA-II planner,

although there would be no such requirements for our generic QoS negotiation protocol.

Also, because all tasks are considered critical to execute (at least at a degraded QoS

126

level), we set all task rejection penalties sufficiently high that all tasks are always

accepted by the QoS negotiator.

In addition to the basic flight control tasks, we simulate a function necessary

during military operations: Missile Control (MC). MC is composed of two precedence-

constrained threads: read-radar and fire-missile. Read-radar monitors aircraft radar to

detect approaching enemy targets, then fire-missile launches a missile at any enemy

targets appearing on radar. As shown in Table 2, MC is computationally expensive and

has two QoS levels. In Level 1, radar will be scanned with sufficient frequency to allow

detection and destruction of most enemy targets. Otherwise (Level 0), fast-moving

targets may not be destroyed. During experiments, we varied the reward for MC QoS

Level 1 depending on the relative importance of destroying enemy targets.

QoS Negotiation Example Evaluation

In this section, we show results that illustrate how QoS negotiation can help

aircraft flight control degrade gracefully. First, we assess the QoS negotiation heuristic

for our flight asks by observing how the QoS of each task degrades with lower machine

speeds. Next, we look at aircraft performance during flight as a function of the Ctrl task's

QoS level, and conclude with tests using the missile-control task to observe the effects of

load sharing between two machines, with processor failure used to demonstrate graceful

performance degradation.

Our gradient-descent-based local QoS optimization heuristic was designed to help

a service provider select a high-reward set of QoS levels for its clients. Using the QoS

levels and rewards listed in Table 6-8, we illustrate the behavior of the presented

heuristic. In this experiment we kept the task set fixed, and decreased the underlying

CPU speed (increasing task execution times), then observed the corresponding decrease

in task QoS levels. Figure 6-10 plots QoS levels (modes) selected vs. CPU speed,

127

normalized by the minimum CPU speed for which the task set is schedulable. Since the

heuristic uses only reward information to guide its search for a feasible QoS level set

(thus being applicable as-is in any service that uses our QoS negotiation scheme),

optimality is compromised yet "graceful QoS degradation" is still illustrated.

Figure 6-10: QoS Levels vs. CPU Speed for Flight Control Tasks.

For our next set of experiments, we evaluated system performance by studying its

ability to control the simulated F-16 during flight. All flight control tasks were executed

on one processor. As shown in Table 6-8, Ctrl QoS levels are a function of both task

period and version. We present tests that show flight performance differences due to

each of these variables, specifically during the critical takeoff/climb phase of flight.

Figure 6-11 illustrates differences between the two versions of Ctrl in their "best

performance" case (Pi = 200 msec). Level 4 (with secondary actuation) requires larger

execution time than level 3 (primary actuation only), thus is harder to schedule. Climb

performance for level 4 is only slightly better for level 3, consistent with their small

reward difference. This example illustrates how QoS negotiation can achieve graceful

degradation. Overall processor utilization is decreased by reducing Ctrl to level 3, but

safety (controller stability) is not compromised.

0

0.5

1

1 .5

2

2 .5

3

3 .5

4

Q
o

S

L
ev

el

Task #1 (Guidance)

Task #2 (Controller)

Task #3 (Slow Navigation)

Task #4 (Fast Navigation)

128

Next, we performed tests with varying Ctrl task period. We isolated version from

period effects by exclusively selecting QoS levels with secondary actuation, although

similar trends result with the other Ctrl version (levels 1 and 3). To illustrate

performance changes as a function of task period, we consider three QoS levels: level 4

(Pi = 0.2 sec), level 2 (Pi = 1 sec), and level 0 (Pi = 5 sec). We include level 0 among

Ctrl QoS negotiation options as a comparative example illustrating controller instability.

Of course, no unstable QoS levels should be defined among a client's negotiation options,

since the client should not "ask" for instability.

Figure 6-11: Altitude with and without Secondary Ctrl Actuation.

Figures 6-12 through 6-15 show aircraft state as a function of time during takeoff,

climb, and a 90° turn. Figure 6-12 shows aircraft altitude for the different Ctrl task

periods. As period increases, climb performance gracefully degrades between QoS levels

4 and 2, but then becomes unstable in level 0 (Pi = 5 sec), illustrating the necessity of

real-time response for the Ctrl task. Figures 6-14 and 6-15 show aircraft pitch and roll

angle, respectively, for the "stable" controller QoS levels. Note that we do not include

level 0 because the unstable response obscures the other plots. Pitch angle and altitude

are coupled, so pitch has largest magnitude during the climb, and as illustrated, the period

increase to 1 second causes a large pitch angle to be required longer, a stable (for this

0

1000

2000

3000

4000

5000

6000

0

6
.8

1
3

.6

2
0

.4

2
7

.2 3
4

4
0

.8

4
7

.6

5
4

.4

6
1

.2 6
8

7
4

.8

8
1

.6

time (sec)

a
lt

it
u

d
e

(f

t)

Level 4

Level 3

129

gentle-maneuver flight) but undesirable trait. Roll angle shows delay and longer

deviation from zero as well as significant overshoot when task period increases.

Load sharing capabilities were studied in a final test set which included both the

flight control tasks and the missile-control task. We started the system with two

processors available for task execution, thus the scheduler populates them accordingly.

In this configuration, the load sharing protocol places all flight control tasks on one

machine and the missile-control task on the other processor.

When the two machines function normally, both flight and missile control (MC)

asks run at their maximum QoS levels. In this case, enemy targets are quickly detected

and fired upon, while flight control is identical to the best performance profiles in Figures

6-12 through 6-15. However, when a processor failure occurs (analogous to the

occurrence of fault f1 in the earlier "multi-processor planner-scheduler interface"

example), the load sharing and QoS negotiation protocols (as implemented in RTPOOL)

dynamically adjust task QoS levels such that all tasks can fit on one machine. If MC is

assigned relatively low reward (the value 30 from Table 6-8), the system degrades MC,

Guid, and Snav tasks but keeps Ctrl and Fnav tasks at high levels. In this manner, flight

control is a bit sluggish but stable, but the aircraft is unable to launch missiles at most

targets. Alternatively, this system may be aboard an expendable drone whose most

important function is to destroy a target or attack enemy aircraft. In this case, the reward

set may be structured such that MC takes precedence over accurately maintaining flight

control. For a drone, we assign relatively high reward to MC (the value 200 from Table

6-8), and when a processor fails, the QoS negotiator reduces all flight control tasks to

QoS level 0 while maintaining the level of the "important" MC task. Thus, the aircraft

eventually becomes unstable and crashes, but will quickly detect and respond to enemy

targets on its kamikaze mission.

130

Figure 6-12: Aircraft Altitude for Varied Ctrl QoS Levels.

Figure 6-13: Aircraft Heading for Varied Ctrl QoS Levels.

Figure 6-14: Aircraft Pitch Angle for Varied Ctrl QoS Levels.

0

1000

2000

3000

4000

5000

6000

0

6
.6

1
3

.2

1
9

.8

2
6

.4 3
3

3
9

.6

4
6

.2

5
2

.8

5
9

.4 6
6

7
2

.6

7
9

.2

8
5

.8

time (sec)

a
lt

it
u

d
e

(f

t)

Period = 0.2

Period = 1.0

Period = 5.0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

9
.4

1
8

.8

2
8

.2

3
7

.6 4
7

5
6

.4

6
5

.8

7
5

.2

8
4

.6 9
4

1
0

3
.4

1
1

2
.8

1
2

2
.2

time (sec)

h
e

a
d

in
g

(r

a
d

)

Period = 0.2

Period = 1.0

Period = 5.0

-0 .2

-0 .1

0

0.1

0.2

0.3

0.4

0.5

time (sec)

p
it

c
h

a

n
g

le

(r
a

d
)

Period = 0.2

Period = 1.0

131

Figure 6-15: Aircraft Roll Angle for Varied Ctrl QoS Levels.

Through these examples, we have shown that our QoS negotiation scheme allows

graceful performance degradation as resources become overloaded. It is important to

note that, had we used traditional schedulability analysis algorithms that do not allow

negotiated QoS degradation for this example, the system would have failed to

guarantee/accept the entire task set on the same processor, leading to complete mission

failure. We still have a substantial amount of CIRCA-II work to complete before a viable

combination of dynamic scheduling and the existing "offline" scheduling algorithms can

include QoS negotiation algorithms with or without the remainder of RTPOOL.

However, given that in many circumstances the CIRCA-II planner may not otherwise

produce a viable plan, the flexibility in task execution provided by QoS negotiation may

be critical to mission success. We foresee such algorithms from RTPOOL and beyond as

important future CIRCA-II additions to further enhance its ability to succeed in limited-

resource systems that can experience computational resource faults/failures.

- 0 . 9

-0 .8

-0 .7

-0 .6

-0 .5

-0 .4

-0 .3

-0 .2

-0 .1

0

time (sec)

ro
ll

a

n
g

le

(r
a

d
)

Period = 0.2

Period = 1.0

132

CHAPTER VII

FULLY-AUTOMATED FLIGHT WITH CIRCA-II

Automated aircraft flight is an attractive domain for this research because it

requires a complex knowledge base and because continuous real-time control is essential

since an aircraft cannot "stop and remain safe indefinitely" once it has left the ground. In

today’s commercial aircraft, flight management systems (FMS) [44],[64] are capable of

automated flight from takeoff through landing, but only when the aircraft is operating

within its nominal performance envelope (i.e., few, if any, anomalous situations have

arisen). Mapped to CIRCA-II, the nominal goal achievement plans developed and

cached offline are those that would correspond to FMS plans.

In this chapter, we focus on how CIRCA-II real-time failure avoidance methods

can be used to enhance safety of automated flight during anomalous or emergency

situations. As described previously, the first key is to identify each such situation, then

quickly execute any required safety-preserving reaction. Additionally, since this reaction

may make the aircraft deviate from its goal path, the CIRCA-II planner may be invoked

during flight to produce plan(s) that will redirect the aircraft toward its goal, or toward a

new goal (e.g., a safe landing as a minimum) when the original is unreachable.

We have developed a knowledge base to automate [simulated] aircraft flight and

have tested it using a shareware aircraft simulator. Details of the simulator, CIRCA-II

control of the aircraft, and results from simulated flights that include anomalous

situations are described below. Following our initial tests with CIRCA-II, this simulator

133

was adopted by researchers at Honeywell Technology Center (HTC) to demonstrate their

research efforts and plans to DARPA (Defense Advanced Research Projects Agency).

Recently, we demonstrated updated CIRCA-II capabilities as part of a joint research

project with HTC. We highlight the safety-preserving activities of this Unmanned

Combat Aerial Vehicle (UCAV) under CIRCA-II control as presented in this

demonstration. Finally, we describe the University of Michigan’s Uninhabited Aerial

Vehicle (UAV) research project, originally conceived as a test platform for control

researchers in the Aerospace Engineering department, then expanded to be a general

testbed for autonomous flight experiments. Although the UAV is still in its initial test

phase, we expect CIRCA-II will play a critical role in future UAV automation, and

describe our ongoing efforts to apply CIRCA-II to flight planning, real-time process

control, and fault recovery tasks.

Figure 7-1: Aerial Combat (ACM) Flight Simulator: Cockpit Display.

134

Autonomous Flight on the ACM Simulator

The CIRCA-II algorithms have been applied to fully-automate the Aerial Combat

(ACM) F-16 flight simulator [58], which we selected for our experiments due to its

readily-available shareware source code and its realistic 6-degree-of-freedom model of

flight dynamics. Figure 7-1 shows a cockpit view of the ACM simulation, originally

built for human pilot training (or gaming) and adapted by us to allow fully-autonomous

control using CIRCA-II. Because CIRCA-II is exclusively intended to perform high-

level symbolic-based actions, we added a simple proportional-derivative aircraft

controller set [60] linearized about two set points (i.e., elements of a gain-schedule table),

one for the climb/cruise flight phases and one for final approach through landing.59

CIRCA-II specifies altitude values as the reference input to the longitudinal controller

and heading values as the lateral controller reference. For the remaining parameters

required by the controllers (e.g., pitch angle or airspeed for the longitudinal controller),

the controller contains internal default values used to compute actuator outputs.

Our CIRCA-II model is purposely designed to minimize the number of states

required to complete the autonomous flight tests. Our model includes features for

altitude, heading, location (relative to fixes in Figure 7-2), gear and traffic status, severe

weather phenomena (severe turbulence, low-level wind-shear, tornado, etc.), and

navigation sensor data, allowing a total of 50,176 modelable states. Appendix B includes

a version of the ACM knowledge base we have used for CIRCA-II tests. A sequence of

five subgoals have been constructed to achieve the "flight-around-the-pattern" trajectory

illustrated by Figure 7-2. These subgoals include the takeoff climb and upwind flight to

Fix1, the crosswind pattern leg to Fix2, downwind leg to Fix3, base leg to Fix4, then final

59 The operating envelope for our controller is extremely limited but was sufficient for
simulations of the gentle maneuvers performed by a commercial aircraft. The simulated
F-16 is capable of performing far more aggressive maneuvers with a better controller.

135

approach to Fix0. Appendix B also shows the set of nominal plans generated by the

CIRCA-II Planning Subsystem that successfully automate the flight-around-the-pattern

task from takeoff through landing.60 To generate this control plan set, CIRCA-II only

required the generation of approximately 200 of the 50,000 states.

18 36

Fix1

Fix2Fix3

Fix4
Navaid

final
approach

Fix0

Figure 7-2: Simulated Flight Pattern.

Once the nominal flight was successfully automated, we introduced two

emergencies: “gear fails on final approach”, and “collision-course traffic”. If either

situation occurs, failure to notice and react to the problem results in an aircraft crash

(modeled for CIRCA-II as ttfs). Our knowledge base contains a "gear" feature with

values "up" and "down", and a "traffic" feature with values "true" and "false". We also

include several features (see Appendix B) for swerving to avoid traffic then resuming the

designated flight path to the next pattern Fix. We assign simplistic probability rate

functions for the various temporal transitions, predominantly a constant rate value with

zero probability below min∆ for ttfs and a probability 1 at max∆ (then zero above) for

reliable tts.61

60 In simulation, the presence of anomalous events was explicitly controlled by the user.
This greatly facilitated initial debugging of the basic "flight-around-the-pattern" activity.

61 The probability functions assigned to all examples shown in this chapter are not based
on actual statistics, but instead are intended to demonstrate CIRCA-II functionality.
Gathering accurate statistics for in-flight events was well beyond the scope of this
dissertation.

136

During normal flight, the gear is down and no collision-course traffic is present.

A tt to gear indicating “up” has a very small constant probability rate, while a tt to

detecting collision-course traffic is also unlikely but has a higher probability rate than the

"gear up" tt. Also, a temporal transition to failure (ttf) is included to capture the scenario

of landing with gear up, which inevitably results in a crash. If it should occur, the proper

"pilot" reaction to a gear failure on final approach is to execute a go-around (i.e., continue

around the pattern a second time), performing available actions such as cycling the gear

retract/extend mechanism. We do not model the gear cycling activity in our knowledge

base, but the CIRCA-II planner naturally designs the "go-around" into any plan that must

handle gear failure since the planner reasons that any landing while the gear is up will

result in a ttf.

We purposely increased action worst-case execution times to test CIRCA-II's

ability to make tradeoffs when resources were over-utilized. During plan development,

the scheduler is then unable to guarantee all failure-avoidance activities for the "final

approach" plan but determines it can schedule all activities except reaction to the [low-

probability] gear failure. The scheduler recommends a probability threshold Premoved to the

planner which results in the removal of all states with "gear up". The nominal plan

developed next is schedulable but contains no actions for handling failed gear, except for

a "removed state" detection TAP activated when gear fails (see "final approach" plan in

Appendix B). The planner then develops a contingency plan that effectively performs a

go-around, leading the aircraft back on a course to "Fix1" (see Figure 7-2). This

contingency plan is also shown in Appendix B.

To illustrate CIRCA-II's ability to succeed with incomplete knowledge, we

removed the gear failure tt from the knowledge base and re-ran CIRCA-II. For this final

approach plan, CIRCA-II never expands any "gear up" states as part of a nominal plan

because no tt leads to this situation. However, an imminent-failure detection TAP is built

into the plan since the ttf to a crash when landing gear-up is modeled. And, because

137

CIRCA-II also builds contingency plans for imminent-failure states, a "gear up" reactive

plan is again built and stored in the plan cache, resulting in an identical response during

plan-execution to that developed when the "gear up" states were removed. The only

difference in this case is that CIRCA-II had no knowledge of that transition in this second

test run.

During execution, if the gear fails at any point during the climb and cruise flight

phases (i.e., plan0-plan3 in Appendix B), the executing CIRCA-II plans will not notice,

because no failure is imminent and the goals of getting to the next pattern “FIX” can still

be achieved.62 However, if the gear has either failed before initiating the approach or

during the approach (so long as it doesn’t fail at touchdown), the failure is detected, the

cached "go-around" plan is initiated to “buy time”, and the CIRCA-II planner is notified

of the switch to a contingency plan. The CIRCA-II planner replans for the next

achievable subgoal, effectively re-directing the plane around the pattern a second time.

This allows re-use of all subsequent cached plans (plan1-plan4) for continued flight

around the pattern.63 If the gear fortuitously extend during the second flight around the

pattern, the aircraft will land safely. However, if the gear has failed permanently,

CIRCA-II continues executing go-arounds indefinitely, unaware that a crash is inevitable

when the unmodeled “run-out-of-fuel” transition occurs.

The ACM simulation continues to be utilized for testing basic algorithms as they

are implemented in CIRCA-II. However, we have more recently become involved with

62 This behavior illustrates how CIRCA-II can save plan space and execution time by not
considering “unnecessary” events; however, this behavior also illustrates how a system
cannot simply detect when it is in danger without explicitly adding this to the set of
planned actions.

63 As future work, we would like the planner to explicitly reason about the available
cached plans to direct the system back toward one of these plans when possible. For this
flight example, we are simply lucky that the exact goal states match both times around
the pattern.

138

two other aircraft-related projects. Below, we describe tests with Honeywell's UCAV

simulation. Then, we venture into the "real-world" of actual aircraft flight in which we

hope to better-validate CIRCA-II algorithms in ongoing work.

Demonstration of CIRCA-II on the ACM/Honeywell UCAV

The ACM simulator described above has been adopted by Honeywell Technology

Center and augmented to perform as an Unmanned Combat Aerial Vehicle (UCAV)

simulation platform. Although the basic dynamics, control laws, and CIRCA-II interface

remain the same, the role of CIRCA-II has changed from responding to aircraft anomalies

to maneuvering away from attacking missiles while attacking targets. Figure 7-3

illustrates an overall view of the world as seen by the UCAV.

In previous simulations, CIRCA-II plans were responsible for directing the

aircraft away from dangerous situations as well as dictating the waypoint trajectory

followed during flight. In the UCAV simulation, we rely on a separate trajectory

generator to specify aircraft waypoints, then use CIRCA-II as it was intended: to avoid

catastrophic failure situations. For the UCAV, a failure translates to the aircraft being hit

by an enemy missile. Thus, our CIRCA-II knowledge focuses on modeling missile attack

scenarios and reacting appropriately to them.

In our simple model developed for a recent coordinated demonstration with

Honeywell, we modeled two classes of weapons that may attack the UCAV: radar

missiles that typically attack from high altitude and infrared (IR) missiles that can only

detect and attack the aircraft when it is near the ground. Appendix C shows the

knowledge base we used during this demonstration. This knowledge base contains the

temporal transition probability rate functions illustrated in Figure 7-4.

139

Figure 7-3: Hostile Environment Encountered during UCAV Flight.

To keep our model and state-space relatively simple for illustrative purposes, we

model only two ttfs, radar_kill and IR_kill. Each of these ttfs has a non-trivial delay

before it can occur, as labeled by min∆ in Figure 7-4. Then, for each time step, IR_kill

has a higher probability than radar_kill. For the CIRCA-II demonstration, we carefully

engineered the knowledge base so that we cannot schedule all actions required to avoid

both ttfs in one plan. Then, we ran a series of simulations to illustrate how CIRCA-II still

is able to minimize the likelihood of all ttfs.

For the first test run, we presume no probabilistic guarantee tradeoff mechanism

during CIRCA-II plan development. In this case, no plan could be scheduled to evade

both radar and IR missiles. However, we acknowledge that a higher-level decision maker

can easily pick the missile encounter with the lowest probability to ignore. In this case,

since radar_threat has the lower Prate magnitude, it is removed from the knowledge base

and a plan is built without further difficulty. This plan is shown in Figure 7-5. During

IR Threat

Radar Threat

Targets

140

the simulated flight, the aircraft successfully avoids any IR missiles encountered, but

does not even attempt to evade radar missiles, thus they kill the aircraft when launched.

Because the majority of UCAV missions are flown at relatively high altitude, the

probability of being in a low-altitude state is low as modeled by the low-probability

swoop tt. For our next test, we reinstated the complete radar and IR missile transition

model and allowed CIRCA-II to build a plan that exhibited probabilistic guarantees.

However, we disabled the unhandled state detection and reaction software, thereby

forcing CIRCA-II to utilize only one plan during the entire flight. For this scenario,

CIRCA-II uses the state-probability computation model described in Chapter IV to

compute that encountering a radar missile is actually much more likely than encountering

an IR missile (even though the IR_threat has higher Prate) because the probability of the

aircraft being in a "high altitude" state is much greater than being in a "low altitude" state

where the IR_threat may occur. Figure 7-6 shows the state-space diagram for this

scenario. During flight, this plan allows the aircraft to respond to all radar missiles but

the aircraft fails to evade all IR missiles. Given the primarily-high-altitude mission, this

scenario improves the likelihood of survival over the previous test, but the aircraft still

can be killed when encountering an IR missile.

For the final demonstration, we reinstated unhandled state detection algorithms

and directed CIRCA-II to construct and cache both nominal and contingency plans.

Figure 7-7 shows the state-space expanded for both the nominal and contingency plans

used by the CIRCA-II Plan Executor during flight. The nominal plan is identical to that

constructed in the previous experiment. However, now when an IR_threat is

encountered, a "removed state" is flagged and the dispatcher switches to the cached

contingency plan to handle the threat. After the threat has passed, the dispatcher switches

back to the nominal plan which executes until either another IR threat is encountered or

else the mission terminates as illustrated by the single absorbing state with state feature

Path=Done.

141

0

0.002

0.004

0.006

0.008

1 2 3 4 5 6 7 8 9 10

swoop

end-mission

0

0.01

0.02

0.03

0.04

1 2 3 4 5 6 7 8 9 10

th

th

th

th

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Prate(ttj,th)

th
max∆ =20min∆ =15

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17

Prate(ttj,th)

max∆ =15min∆ =5

0

0.01

0.02

0.03

0.04

1 2 3 4 5 6 7 8 9 10

Prate(ttj,th)

th

Prate(ttj,th)

Prate(ttj,th)

th

Prate(ttj,th)

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10

P rate(ttj,th)

th
min∆ =60 min∆=55

Prate(ttj,th)

a) evade_radar_missile

max∆ =20

b) evade_IR_missile

c) Radar_threat

e) swoop and end-mission

g) radar_kill

d) IR_threat

f) climb

h) IR_kill

Figure 7-4: UCAV tt Probability Rate Functions.

142

F
ai

lu
re

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

Fa
ls

e
A

lti
tu

de
 =

 L
ow

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 T
ru

e
D

ec
oy

_d
ep

lo
ye

d
=

Fa
ls

e
A

lti
tu

de
 =

 L
ow

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 T
ru

e
D

ec
oy

_d
ep

lo
ye

d
=

 T
ru

e
A

lti
tu

de
 =

 L
ow

P
at

h
=

 E
va

si
ve

R
ad

ar
_t

hr
ea

t =
 F

al
se

IR
_t

hr
ea

t =
 T

ru
e

D
ec

oy
_d

ep
lo

ye
d

=
 T

ru
e

A
lti

tu
de

 =
 L

ow

ra
da

r_
ki

ll

IR
_k

ill

E
va

de
IR

be
gi

n_
IR

_
ev

as
iv

e
de

pl
oy

_
fl

ar
e

Pa
th

 =
 E

va
si

ve
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

 F
al

se
A

lti
tu

de
 =

 L
ow

cl
im

b
sw

oo
p

IR
_k

ill

IR
_k

ill

cl
im

b
sw

oo
p

re
su

m
e_

no
rm

al
_p

at
h

IR th
re

at

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 T
ru

e
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

Fa
ls

e
A

lti
tu

de
 =

 H
ig

h

Pa
th

 =
 E

va
si

ve
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

 F
al

se
A

lti
tu

de
 =

 H
ig

h

R
ad

ar
th

re
at

in
iti

al
 s

ta
te

re
su

m
e_

no
rm

al
_p

at
h

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

Fa
ls

e
A

lti
tu

de
 =

 H
ig

h

M
is

si
on

 m
ay

 f
ai

l w
ith

 th
is

 p
la

n
w

he
n

ig
no

re
d

R
ad

ar
_t

hr
ea

t o
cc

ur
s.

Pa
th

 =
 D

on
e

R
ad

ar
_t

hr
ea

t =
 F

al
se

IR
_t

hr
ea

t =
 F

al
se

D
ec

oy
_d

ep
lo

ye
d

=
Fa

ls
e

A
lti

tu
de

 =
 ..

.

 e
nd

-

m
is

si
on

 e
nd

-

m
is

si
on

go
al

 s
ta

te

Fi
gu

re
 7

-5
:

U
C

A
V

 S
ta

te
-S

pa
ce

 w
ith

 n
o R

ad
ar

-t
hr

ea
t M

od
el

.

143

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

Fa
ls

e
A

lti
tu

de
 =

 H
ig

h

F
ai

lu
re

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 T
ru

e
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

Fa
ls

e
A

lti
tu

de
 =

 H
ig

h

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 T
ru

e
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

 T
ru

e
A

lti
tu

de
 =

 H
ig

h

P
at

h
=

 E
va

si
ve

R
ad

ar
_t

hr
ea

t =
 T

ru
e

IR
_t

hr
ea

t =
 F

al
se

D
ec

oy
_d

ep
lo

ye
d

=
T

ru
e

A
lti

tu
de

 =
 H

ig
h

Pa
th

 =
 E

va
si

ve
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

 F
al

se
A

lti
tu

de
 =

 H
ig

h

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

Fa
ls

e
A

lti
tu

de
 =

 L
ow

Pa
th

 =
 N

or
m

al
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 T
ru

e
D

ec
oy

_d
ep

lo
ye

d
=

Fa
ls

e
A

lti
tu

de
 =

 L
ow

R
ad

ar
th

re
at

ra
da

r_
ki

ll

IR
_k

ill

IR th
re

at

E
va

de
ra

da
r

in
iti

al
 s

ta
te

re
su

m
e_

no
rm

al
_p

at
h

bl
ow

_
ch

af
f

be
gi

n_
ra

da
r_

ev
as

iv
e

Pa
th

 =
 E

va
si

ve
R

ad
ar

_t
hr

ea
t =

 F
al

se
IR

_t
hr

ea
t =

 F
al

se
D

ec
oy

_d
ep

lo
ye

d
=

 F
al

se
A

lti
tu

de
 =

 L
ow

cl
im

b
sw

oo
p

ra
da

r_
ki

ll
ra

da
r_

ki
ll

cl
im

b
sw

oo
p

re
su

m
e_

no
rm

al
_p

at
h

St
ill

 h
av

e
ch

an
ce

 o
f

fa
ilu

re
 w

ith
 th

is
 p

la
n,

 b
ut

 th
is

 s
ta

te
 is

le
ss

 li
ke

ly
 th

an
 th

e
in

iti
al

 “
R

ad
ar

_t
hr

ea
t =

T
ru

e”
 s

ta
te

th

us
 f

ai
lu

re
 c

ha
nc

es
 a

re
 r

ed
uc

ed

Pa
th

 =
 D

on
e

R
ad

ar
_t

hr
ea

t =
 F

al
se

IR
_t

hr
ea

t =
 F

al
se

D
ec

oy
_d

ep
lo

ye
d

=
Fa

ls
e

A
lti

tu
de

 =
 ..

.

 e
nd

-

m
is

si
on

 e
nd

-

m
is

si
on

go
al

 s
ta

te

Fi
gu

re
 7

-6
:

U
C

A
V

 S
ta

te
-s

pa
ce

 w
ith

 R
ad

ar
-t

hr
ea

t -
-

O
pt

im
iz

e
T

ra
de

of
fs

 in
 N

om
in

al
 P

la
n.

144

F
a
il

u
re

P
a
th

 =
 N

o
rm

a
l

R
a
d
a
r_

th
re

a
t

=
 T

ru
e

IR
_
th

re
a
t

=
 F

a
ls

e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 F
a
ls

e

A
lt

it
u
d
e
 =

 H
ig

h

P
a
th

 =
 N

o
rm

a
l

R
a
d
a
r_

th
re

a
t

=
 T

ru
e

IR
_
th

re
a
t

=
 F

a
ls

e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 T
ru

e

A
lt

it
u
d
e
 =

 H
ig

h

P
a
th

 =
 E

v
a
si

v
e

R
a
d
a
r_

th
re

a
t

=
 T

ru
e

IR
_
th

re
a
t

=
 F

a
ls

e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 T
ru

e

A
lt

it
u
d
e
 =

 H
ig

h

P
a
th

 =
 E

v
a
si

v
e

R
a
d
a
r_

th
re

a
t

=
 F

a
ls

e

IR
_
th

re
a
t

=
 F

a
ls

e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 F
a
ls

e

A
lt

it
u
d
e
 =

 H
ig

h

P
a
th

 =
 N

o
rm

a
l

R
a
d
a
r_

th
re

a
t

=
 F

a
ls

e

IR
_
th

re
a
t

=
 F

a
ls

e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 F
a
ls

e

A
lt

it
u

d
e
 =

 L
o
w

P
a
th

 =
 N

o
rm

a
l

R
a
d
a
r_

th
re

a
t

=
 F

a
ls

e

IR
_
th

re
a
t

=
 T

ru
e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 F
a
ls

e

A
lt

it
u
d
e
 =

 L
o
w

P
a
th

 =
 N

o
rm

a
l

R
a
d
a
r_

th
re

a
t

=
 F

a
ls

e

IR
_
th

re
a
t

=
 T

ru
e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 T
ru

e

A
lt

it
u
d
e
 =

 L
o
w

P
a
th

 =
 E

v
a
si

v
e

R
a
d
a
r_

th
re

a
t

=
 F

a
ls

e

IR
_
th

re
a
t

=
 T

ru
e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 T
ru

e

A
lt

it
u
d
e
 =

 L
o
w

R
a
d
a
r

th
re

a
t

ra
d
a
r_

k
il

l

IR
_
k
il

l

E
v
a
d
e

R
a
d
a
r

E
v
a
d
e

IR

In
it

ia
l

st
a
te

re
su

m
e
_
n

o
rm

a
l_

p
a
th

b
lo

w
_

c
h

a
ff

b
e
g
in

_

ra
d
a
r_

e
v
a
si

v
e

b
e
g
in

_

IR
_

e
v
a
si

v
e

d
e
p
lo

y
_

fl
a
re

P
a
th

 =
 E

v
a
si

v
e

R
a
d
a
r_

th
re

a
t

=
 F

a
ls

e

IR
_
th

re
a
t

=
 F

a
ls

e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 F
a
ls

e

A
lt

it
u
d
e
 =

 L
o
w

c
li

m
b

sw
o
o
p

ra
d
a
r_

k
il

l
ra

d
a
r_

k
il

l

IR
_
k
il

l

IR
_
k
il

l

c
li

m
b

sw
o
o
p

re
su

m
e
_
n

o
rm

a
l_

p
a
th

IR th
re

a
t

P
a
th

 =
 N

o
rm

a
l

R
a
d
a
r_

th
re

a
t

=
 F

a
ls

e

IR
_
th

re
a
t

=
 F

a
ls

e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 F
a
ls

e

A
lt

it
u
d
e
 =

 H
ig

h

C
o

n
ti

n
g

e
n

c
y
 p

la
n

 e

n
d

-

m
is

si
o
n

 e
n
d
-

m
is

si
o
n

g
o
a
l

st
a
te

P
a
th

 =
 D

o
n
e

R
a
d
a
r_

th
re

a
t

=
 F

a
ls

e

IR
_
th

re
a
t

=
 F

a
ls

e

D
e
c
o
y
_
d
e
p
lo

y
e
d
 =

 F
a
ls

e

A
lt

it
u
d
e
 =

 .
..

F
ig

u
re

 7
-7

:
U

C
A

V
 S

ta
te

-s
p
a
c
e
 w

it
h
 R

a
d
a
r-

th
re

a
t

--
 N

o
m

in
a
l+

C
o
n
ti

n
g
e
n
c
y
 P

la
n
s.

P
(s 0

)=
1
.0

P
(s

1
)=

0
.7

9
8

P
(s

4
)=

0
.7

9
8

P
(s 5

)=
0
.7

9
8

P
(s

6
)=

0
.8

0
9

P
(s

2
)=

1
.0

P
(s 3

)=
0
.2

6
8

P
(s

8
)=

0
.2

4
1

P
(s 9

)=
0
.2

4
1

P
(s

1
0
)=

0
.2

4
1

P
(s 7

)=
0
.2

7
5

145

Figure 7-8: Success Probability vs. Resource Capacity: UCAV Flight Test.

Figure 7-8 revisits the success vs. resource capacity curve illustrated in previous

chapters, this time focusing on the specific UCAV test series described above. Using the

state probabilities computed by CIRCA-II (shown in Figure 7-7), we observe that if the

radar_threat transition is ignored, the probability of success is only 20% (presuming an

ignored radar threat always leads to failure) since the probability of visiting the first state

along the radar_threat path is 80%. When an IR-threat is ignored, success probability

jumps to 76% because of the relatively low probability (24%) of actually visiting the path

along which an IR_threat has occurred. Finally, the probability of success jumps back to

100% when all threats are handled within the real-time plan set.

This series of UCAV tests has been used to demonstrate that CIRCA-II increases

system robustness by using probabilistic guarantees to make intelligent tradeoffs about

what to ignore then detecting and responding to all ignored states. In the first test, we use

an ad hoc method for choosing a state transition to remove from the knowledge base.

This leads to a plan which had a relatively low probability of success since radar missiles

are ignored but are also most likely to be encountered. The intermediate experiment

increases the chances of success by handling the more-likely radar missiles, but still

Psuccess

1/(resource_capacity)

100%

CIRCA-II:
single-plan

CIRCA with manual
transition removal

CIRCA-II
with plan cache

resources

100%

76%

20%

146

ignores IR threats. The final test illustrates how CIRCA-II can be used to handle more

situations than can be scheduled into a single plan, thereby allowing the aircraft to

respond to both radar and IR threats when they occur. Although these tests are relatively

simple, we expect similar results with an even more constrained model until the plan

retrieval process simply cannot occur quickly enough to avoid failure modes.

Flight with the University of Michigan UAV

The University of Michigan has recently embarked on an extensive Uninhabited

Aerial Vehicle (UAV) project, cooperatively supported by Michigan’s Aerospace and

EECS departments. The purpose of this section is to illustrate how CIRCA-II will be

applied to the task of fully-automating a "real" aircraft, as opposed to the carefully-

constructed simulation tests in which we had complete control over anomalous events.

We begin this section with a description of the UAV, its onboard instrumentation, and the

software architecture which is designed to achieve the real-time behavior required for

reliable automatic control. We also describe the integral role CIRCA-II plays in enabling

this architecture to support the fully-automated flight configuration.

We originally planned to include UAV test flight data in this dissertation to

further illustrate the utility of CIRCA-II for maintaining safety in a real-world system.

However, unforeseen difficulties with UAV hardware, including electrical noise and

power system failures, have delayed test flights to the extent that we have been unable to

include actual UAV data for CIRCA-controlled flights in this dissertation. Currently, we

are in the process of completing sensor calibration flights and within the next month hope

to begin incorporating aircraft dynamic parameters into our state estimation software.

Then, we must implement and test a minimally-capable longitudinal controller for

straight-line flight with gentle climbs/descents, after which we will couple this controller

to a lateral controller to allow gentle-bank turns to any commanded heading. Because the

147

high-level actions executed by CIRCA-II can only be utilized after incorporation of

minimally-operational state estimation, control, and guidance software, CIRCA-II tests

on the UAV must be delayed past the verification of this low-level control software.

However, even with such delays, we have forged ahead with development of a

preliminary abstract plan set we hope CIRCA-II will generate and test on the UAV within

the next year. We conclude this section with a high-level description of these plans.

Figure 7-9 shows a picture of the University of Michigan UAV, a radio-controlled

(R/C) pusher-prop airplane with eleven foot wing span and a gross weight of just under

55 pounds.64 The aircraft accommodates all sensors required for full automation,

including air-data system (to measure airspeed, angle-of-attack, and sideslip-angle),

differential GPS, inertial measurement unit (to measure aircraft body-axis angular

velocities and accelerations), tachometer, and complete set of potentiometers to measure

control surface deflection. Additionally, the current UAV is explicitly over-designed to

be very stable during normal flight, facilitating both controller design and manual flight

by inexperienced R/C pilots (including the author of this dissertation).

The UAV is flown using both onboard and ground-based computers, connected as

shown in Figure 7-10. Sensors are filtered and read by onboard processor P1, and

actuator commands are transmitted from this same processor. Onboard processor P2

reads positions from the d-GPS unit, and communicates via a real-time serial link to the

ground station computer (G1). A human pilot maintains override capability via a

standard Pulse Position Modulation (PPM) R/C transmitter/receiver pair, as the

“ultimate” real-time failure avoidance mechanism for our research flights.

64 Our original UAV was an off-the-shelf Citabria model, shown in [6]. After adding the
minimal instrumentation required for automation, the flight-worthiness of the Citabria
was roughly equivalent to that of a radio-controlled brontosaurus. As a result, we
designed the current aircraft specifically to carry and easily access this instrumentation.

148

All UAV processors (P1, P2, and G1) run the QNX real-time operating system,

so that hard real-time tasks can have reliable execution guarantees. Figure 7-11 shows

the high-level process set run on the UAV processors. Processor P1 runs exclusively

hard real-time tasks at frequencies ranging from 10 Hz (Controller) to 100 Hz (Sensor

sampling). Task structure and worst-case execution properties can be characterized in

advance for the P1 processes regardless of the aircraft’s specific mission plan. So, hard

real-time execution on P1 is guaranteed from a fixed schedule.65

P2 contains tasks executing with longer deadlines (on the order of seconds), but

most of these tasks have larger execution variance than those on P1. Model identification

(ID), guidance, and serial communications may have near-constant execution times

during “nominal” flight cases (e.g., model requires minimal modification, a "regular" set

of status messages is sent to G1). However, during anomalous situations (e.g., requiring

a new dynamic parameter estimate), adaptive algorithms such as that used for model ID

[35] may require more resources to converge upon an accurate solution. Additionally,

higher-level mission-related tasks, like selecting the next waypoint in the trajectory, will

require more resources, particularly during anomalous situations for which the flight plan

must be altered. The ground station computer (G1), running solely in a soft real-time

execution mode, includes a real-time serial server for low-bandwidth communications

with the aircraft and a GUI for researcher observation of flight status.

As shown in Figure 7-11, CIRCA-II is an integral part of the UAV software

architecture. Before flight, the Planning Subsystem develops and uplinks to the aircraft

the set of nominal flight mission plans as well as a set of contingency plans to handle

improbable emergency situations. All these plans are sent via the serial link to the Plan-

Execution Subsystem on aircraft processor P2, which then begins executing the first

65 Additionally, the P1 processes have a low-variance in execution times, so we expect
the worst-case to be near the average-case, thus P1 will typically have little slack time.

149

nominal mission plan. CIRCA-II plans for the UAV include actions to specify the high-

level waypoint trajectory (analogous to the pattern fix model used in simulation tests) and

transmit results to the guidance process. Guidance is responsible for continuous

reference signal generation of altitude, airspeed, and heading used by the controller.

Figure 7-9: University of Michigan UAV.

P1: Onboard
Processor-1

P2: Onboard
Processor-2

I/O Ports

Actuator
Interface
Board

d-GPS
R/C Receiver

Counter

 40-ch
16-bit A/D

potentiometers

pressure

accelerometers

rate gyros

magnetometer

tachometer

throttle

rudders/
nose gear

elevator

ailerons

flaps

G1: Ground
Station Laptop

Pilot -- R/C
Transmitter

Ground Station

Dual-Port
RAM

Serial

Serial
PPM

PPM

PPM

Figure 7-10: UAV Data Acquisition and Communication Systems.

150

Read/filter Sensors

Estimate State

Controller
P1

Read GPS

Model ID

Serial Client
Guidance

CIRCA-II Plan
Execution Subsystem

P2

GUI Serial Server
CIRCA-II Planning
Subsystem

G1

Figure 7-11: UAV Software Architecture.

CIRCA-II will be responsible for controlling execution of all P2 processes except

reading GPS, effectively treating guidance, ID, and the serial client processes as TAP

actions which must have predictable worst-case execution properties, or else be

interruptible should the allotted worst-case execution time expire. CIRCA-II feature

values for TAP tests will be derived from the state estimate, available to all P2 processes

via the dual-port memory connection to P1. In this manner, feature “tests” will

effectively be instantaneous, and the worst-case execution times for all CIRCA-II TAPs

will be solely due to actions.

Although we have no concrete UAV dynamic model or control software to utilize

for CIRCA-II flight tests, we have begun to develop a CIRCA-II knowledge base and

plan set we believe is feasible given the predicted UAV model properties. In conjunction

with control researchers in the Aerospace Engineering Department, we plan to study our

UAV's ability to perform fault detection, identification, and recovery to two specific

emergency situations: engine failure (presuming a single-engine aircraft like our UAV)

and airframe icing.66 We selected these particular emergencies because they are the most

66 During UAV flight tests, engine-failure is easy to simulate by setting the throttle to
idle. We plan to simulate airframe icing with software between controller and actuator
command output that reduces the magnitude of control surface commands in accordance
with the expected reduction for the [simulated] amount of ice present.

151

common occurrences that are also not adequately detected or handled by existing flight

management systems, and that are interesting both from the control and high-level

mission reconfiguration (i.e., contingency response) perspective. From the full UAV

software architecture perspective, "detection and isolation" of an engine failure or icing

event will be performed by the model identification software. Initial research efforts

toward the detection and isolation of airframe icing based on actual test data from a twin-

otter research aircraft are described in [48] and [49]. CIRCA-II then interfaces to the ID

module with feature flags that indicate whether an icing or engine-failure event has

occurred ((Icing=True) or (Engine_failure=True)), and must plan explicit reactions to

respond appropriately to these events.

Figure 7-12 describes a “nominal” flight plan for UAV flight around the R/C

airfield, similar to the pattern shown in Figure 7-2. We include TAPs that allow updating

and following the flight trajectory around the flight pattern, as well as TAPs to detect the

improbable engine-failure and airframe-icing events. Because a significant fraction of

P2 resources may be required to respond to either of these improbable events, we expect

that engine-failure and airframe-icing will each be handled with a contingency plan.

Figures 7-13 and 7-14 outline the contingency plans required to avoid failure after an

engine-failure or airframe-icing event, respectively. As illustrated by these plans, goal-

achievement actions (e.g., go around the complete rectangular pattern as in Figure 7-2)

are not included. Instead, the safety of the UAV is considered in terms of the specific

emergency encountered. To summarize, the engine-failure contingency plan directs the

system to land anywhere on the R/C field when possible or in a straight-ahead location

when required by low altitude (instead of attempting the classic "impossible turn" back to

the field that would result in a stall-and-crash situation). The “airframe icing”

contingency response focuses on exiting the [simulated] clouds, and updating weather as

permissible during slack intervals between stability-preserving actions.

152

Tap 1: If (altitude or course error)
Update dynamic UAV model (guaranteed)

Tap 2: If (engine-failure or airframe-icing)
Notify plan dispatcher of unhandled state (guaranteed)

Tap 3: If (approaching pattern corner)
Turn left to next heading (best-effort)

Tap 4: If (on final approach to landing)
Notify plan dispatcher of goal state (best-effort)

Figure 7-12: Overview of the “Nominal” CIRCA-II UAV Flight Plan.

Tap 1: If (approaching stall)
Establish best-glide via model update. (guaranteed)

Tap 2: If (altitude < minimum)
Setup for landing ahead. (guaranteed)

Tap 3: If (minimum ≤ altitude)
Set turn time/direction so UAV follows best glide-path
to R/C field. (guaranteed)

Tap 4: If (True)
Attempt engine restart. (best-effort)

Tap 5: If (Engine restarted)
Notify plan dispatcher of unhandled state (best-effort)

Tap 6: If (No code sent yet)
Transmit emergency code. (best-effort)

Figure 7-13: Overview of the CIRCA-II “Engine-failure” Contingency Plan.

Tap 1: If (approaching stall)
Update dynamic model to fit icing parameters. (guaranteed)

Tap 2: If (just entered clouds or precipitation and no previous icing)
Turn 180° to get out of clouds. (guaranteed)

Tap 3: If (aircraft can climb and near cloud tops)
Climb out of ice. (guaranteed)

Tap 4: If (not near terrain and icing prohibits climb
 and surrounded by clouds)

Descend to melt ice. (guaranteed)
Tap 5: If (airframe icing dissipated)

Notify plan dispatcher of unhandled state (best-effort)
Tap 6: If (communications operational)

Report icing and get updated weather report. (best-effort)

Figure 7-14: Overview of the CIRCA-II “Airframe-icing” Contingency Plan.

153

We have not yet determined how to build the CIRCA-II knowledge base so that it

will generate the proposed best-effort actions for these contingency plans, but include

them as part of our abstract plans in this section because our ultimate goal is to allow

CIRCA-II to at least emulate human pilot activities in emergency situations. We suspect

that as automatic subgoaling is better developed in the CIRCA-II architecture, we can

utilize this capability to identify and handle reduced goals (e.g., notify air traffic control

of the impending emergency landing when the engine fails) in contingency plans instead

of planning for no particular goals as is currently the default for contingency plan

construction.

In this chapter, we have described the progression of CIRCA-II tests from

successfully automating simulated flight-around-the-pattern to automating a simulated

UCAV mission with multiple threats. Although no concrete results from actual UAV

flights are yet available, we expect to continue the pursuit of integrating CIRCA-II into

the UAV control system to maximize UAV safety via operation only in the controllable

partition of its state-space even when significant emergency situations are encountered.

154

CHAPTER VIII

CONCLUSION

This dissertation introduced techniques that permit structured tradeoffs in an

integrated plan generation and execution system when computational resources are

limited, domain knowledge is uncertain and may also be imprecise, and dynamic world

events occur rapidly. In accordance with an intuitive "safety first" policy, we required

guaranteed hard real-time response to all dangerous world states but allowed best-effort

reactions in states where the action strictly enhances mission goal-achievement. This

prioritization was originally introduced in the Cooperative Intelligent Real-time Control

Architecture (CIRCA) [51], which was designed to build control plans that are explicitly

scheduled to provide hard real-time failure-avoidance guarantees when executed. We

adopted CIRCA as the basis for this research and described its evolution to CIRCA-II.

The purpose of the planning system in CIRCA-II is to create control plans that

guarantee safety while attempting to reach mission goals when executed. It is unrealistic

to assume that an absolutely safe plan will always fit on a limited-resource execution

platform, so we have incorporated the necessary capabilities that allow the CIRCA-II

planner to degrade safety guarantees from absolute to probabilistic when required. To

this end, we have implemented a stochastic state-space planner that handles uncertain

domain knowledge and prioritizes the reachable state-space based on the relative

likelihood of visiting each state. Our planner expands states using a knowledge base

specified by a transition set with unconditional time-dependent probabilities, and

155

employs a variety of weighted-average functions to approximate the likelihood of ever

visiting each reachable state, even when the state-space is cyclic and dependent temporal

transition chains (see Chapter IV) are present. The plans developed with our model are

sufficient for failure-avoidance purposes, but may not be optimal, particularly with

respect to goal achievement. We considered a Markov Decision Process (MDP) planner

[11] as a particularly attractive alternative approach because of its ability to generate

optimal policies. However, due to the additional complexity required for an MDP

planner to represent and reason about action deadlines and state "history", we opted to

use our simpler but approximate model. If we utilize state probabilities for more than

relative state prioritization in future work, we will revisit the possibility of incorporating

an MDP planning model into our architecture.

After prioritizing the state-space in terms of probabilities, we were able to relax

safety guarantees from absolute to probabilistic by constructing plans that only classify a

state as reachable if the probability of visiting that state is above a flexible threshold

Premoved. In the current CIRCA-II implementation, a value for this threshold was

recommended by the scheduler from an analysis of proposed task priorities, probabilities,

and identified bottlenecks (e.g., two tasks conflict) that prohibited meeting all guaranteed

task deadlines. For a future CIRCA-II implementation, we also proposed a method by

which a more general multi-resource scheduler can heuristically identify a bottleneck task

to help guide the planner through a dynamic-backtracking [24] search for a schedulable

plan. We expect this approach to increase the efficiency of plan development and

minimize the value for Premoved, thereby minimizing the number of "removed" states.

Ignoring improbable states greatly facilitated schedulable plan development but

jeopardized system safety when an unlikely state was actually encountered. In this

dissertation, we developed a state-space classification that extended beyond the reachable

state set to all states that were modelable from the symbolic set of state features and

values. During planning, important "unhandled" states were enumerated and tests were

156

built into each plan to ensure that they were identified as they occur during execution.

We specifically detected three classes of unhandled states: removed states that were

unlikely thus ignored during planning, imminent-failure states that led to failure but were

not considered reachable unless a transition was modeled incorrectly or was missing from

the knowledge base, and deadend states that were safe but did not lead to any goal. The

CIRCA-II architecture included a plan cache to allow real-time plan retrieval and

switching when required. The planner constructed a set of safety-critical contingency

plans offline (i.e., prior to the system entering its dangerous environment) then retrieved

and executed each as needed to react to unhandled states. We ultimately could not

circumvent the limited-resource problem when the plan cache grew so large that

contingency plans could not be retrieved in time to avoid failure. However, we were able

to guarantee real-time failure avoidance even with a non-real-time planner for many

situations in which a single control plan would fail.

We applied CIRCA-II to the challenging problem of achieving safe, fully-

automated aircraft flight. We first described simulation results in which we attached

CIRCA-II through a low-level control system to the ACM F-16 flight simulator [58] and

fully-automated a complete flight. Although the domain knowledge only contained a

token set of emergency situations, we illustrated the ability of CIRCA-II to react in real-

time to critical but improbable in-flight situations such as a "gear-up-failure" by detecting

the failure and retrieving a contingency plan that reacted to the situation appropriately

and in real-time. We also presented results from a recent UCAV (Unmanned Combat

Aerial Vehicle) demonstration that further illustrated CIRCA-II's ability to minimize the

probability of failure, which in this case was represented by the aircraft being struck with

an enemy missile. We described ongoing work to implement and test CIRCA-II on the

University of Michigan's Uninhabited Aerial Vehicle, both to further validate CIRCA-II

algorithms and to improve our representation of the critical features and values required

to issue appropriate high-level commands for a fully-automated aircraft.

157

Contributions

In Chapter I, we described a specific set of research contributions made by this

dissertation. In the following paragraphs, we revisit these contributions and refer to

specific techniques presented in this dissertation that substantiate our claims.

Probabilistic Planning

The stochastic planning community has traditionally focused on the development

of optimal policies as defined in Chapter I. We introduce a new perspective to this

classical problem in that we are not that concerned with plan optimality or even state

probability accuracy. Instead, we require the computation of accurate action timing

constraints (deadlines) for our hard real-time execution environment and utilize state

probabilities only to prioritize the reachable state-space. We have devised and built into

CIRCA-II a probabilistic planning algorithm (Chapter IV) that requires a substantially

smaller knowledge base than does an equivalent MDP planner and provides an

approximate state probability distribution. We believe our method will be attractive to

researchers studying complex real-time problem domains in which approximate state

probabilities are sufficient, especially if these researchers have been frustrated with the

complexity required even to specify the MDP for large state-spaces that include state

history information.

Multi-layer Architectures

Our combination of distinct planning and plan execution layers provides a good

fit for CIRCA-II within the multi-layer architectures community. We introduce a "real-

time" bias to our system, as did the original CIRCA, defining our layers in terms of their

ability to guarantee hard real-time response (plan-execution) versus best-effort

(planning). The contribution of this dissertation to the architectures community lies in

158

the ability of our algorithms to explicitly detect unhandled states during plan execution

and dynamically react to this information (Chapter V). This dynamic reaction occurs

internally to the plan-execution system when real-time response is required and

externally (by requesting a new plan) when a best-effort response is acceptable. AI

architectures are increasingly being applied to remote systems requiring hard real-time

response to a variety of situations. In the majority of deployed systems, real-time

response is verified only through exhaustive software testing, as opposed to the CIRCA-

based approach of planning then scheduling to analytically verify meeting real-time

constraints. We have made the CIRCA approach more attractive by introducing the

capability to automatically respond in real-time to "unexpected" situations, a desirable

capability for automated systems that cannot easily be reprogrammed.

Planner-Scheduler Negotiation

Instead of designing a "planner that schedules" or a "scheduler that plans",

CIRCA and CIRCA-II use a state-space planner to select a set of actions for a plan and a

traditional real-time scheduler to fit these actions onto available resources. We contribute

to the field of "integrated planning-scheduling systems" by presenting methods to

efficiently communicate quantities between scheduler and planner (Chapter VI). We use

feedback from the scheduler as a new approach to guide planner backtracking when

tradeoffs are required to schedule a plan. Specific examples of this feedback include

suggesting a probability threshold for "ignoring" states and identifying a bottleneck task

to be modified or removed. We also introduce an algorithm for Quality-of-Service (QoS)

negotiation during task scheduling that continues to gain momentum as a viable method

for making scheduling tradeoffs within the real-time community.

159

Aircraft Automation

Current flight management systems employ sophisticated control algorithms but

have little higher-level software to reason about emergency situations. By considering

the automation problem from the "human-pilot " perspective, an approach that lends itself

to symbolic feature-value representations and high-level actions, we have imparted

emergency response capability to simulated autonomous flight. For our research,

CIRCA-II functions as the high-level "expert pilot" for which we have written the

necessary low-level control laws to allow automated flight from takeoff through landing.

This simulator is proving to be useful as a research testbed and has already been adopted

by other research groups within the real-time systems laboratory at the University of

Michigan and at Honeywell Technology Center. The flight control community will

largely ignore this work in its present form. As we employ our techniques in future UAV

experiments, we hope to gradually gain recognition by demonstrating automated fault

(unhandled state) recovery techniques that complement ongoing system identification

research in fault detection and isolation. This work may be particularly important when

applied to dangerous situations such as airframe icing in which existing flight

management systems may exacerbate the problem (e.g., by delaying pilot detection).

As with most research, delving deeply into specific topics serves to uncover more

issues than are solved. This dissertation contributes techniques to researchers studying

complex, real-time control problems from the high-level mission planning and real-time

plan-execution perspective. We plan to continue this work into the next millennium and

can only hope that future research will be as fun and intellectually-stimulating as has been

this adventure into the interdisciplinary world of AI, real-time systems, and aircraft

automation.

160

Future Research Directions

Several research areas we have addressed in this dissertation remain open for

future study. We have presented algorithms for making tradeoffs during the development

of real-time control plans, and we have given examples illustrating how the algorithms

improve upon existing methods. Below, we describe ongoing efforts to quantitatively

evaluate the accuracy and performance of the algorithms presented in this dissertation.

We also describe future additions planned for the CIRCA-II architecture that will further

enhance system plan generation and real-time execution capabilities. Then, we consider

future UAV work and more general aspects of research that must be addressed before

commercial aircraft flight can be both safe and autonomous.

CIRCA-II Evaluation

Definitively evaluating and quantitatively comparing the capabilities of numerous

AI architectures is a challenging topic that spurs much discussion within the AI research

community. We have argued that CIRCA and CIRCA-II are both more capable of

operating in hard real-time environments than are many other architectures because the

CIRCA approach proves that real-time plan execution deadlines will be met via explicit

task scheduling. Additionally, we have demonstrated that CIRCA-II has the ability to

fully-automate a flight simulator during normal flight and a specific set of emergency

situations. However, we also acknowledge the need for a more formal evaluation.

Because CIRCA-II is composed of several distinct modules, the simplest way to

attack the evaluation problem is to consider each component as a stand-alone system.

We are currently in the process of evaluating the CIRCA-II planner probability model

and outline our approach below. Next, we describe the challenges associated with

evaluating the performance of our unhandled state detection and response mechanisms

161

followed by a discussion of future plans to better assess CIRCA-II performance gains due

to our planner-scheduler negotiation algorithms.

The CIRCA-II stochastic model is designed to compute approximate state

probabilities by averaging history effects over all parent paths into each state. This

model is a relatively recent addition to the CIRCA-II software, replacing an earlier

version that is of limited use when dependent temporal transitions and cycles are present

in the state-space. We have verified that our algorithms provide the expected results for

simple examples. Although analysis is not yet complete, we are beginning to more

formally assess the stochastic model via individual algorithm proofs of correctness (e.g.,

least-squares error minimization) as well as a comparison of CIRCA-II-generated state

probabilities with stochastic simulation results. To perform the experimental evaluation,

we generate a number of unique state-space structures from a set of generic non-domain-

specific CIRCA-II knowledge bases. The state probabilities computed by CIRCA-II are

then stored and compared to the results of a battery of stochastic simulations based on the

same state transitions and probability rate functions. With this combined approach, we

hope to develop a better understanding of the different state-space structures in which the

CIRCA-II stochastic model is accurate as well as specific structures (such as that

identified in Chapter IV) which are not well-characterized by the CIRCA-II weighted-

average probabilities.

We also are working to better evaluate our approach to detecting and reacting to

unplanned-for world states. Our initial evaluation strategy will include a parametric

characterization of situations in which CIRCA-II will and will not perform well due to

this approach. Although we have not yet determined the exact variables we will include

during our tests, we expect to include knowledge base properties such as number of

failure states and ttfs normalized over all states and state transitions, state-space

characteristics such as the presence of cycles and/or dependent tts, and final plan

162

properties such as the percentage of hard versus best-effort TAPs and resource utilization

required for this plan.

Following our introspective analysis of CIRCA-II performance, we then hope to

compare CIRCA-II with other architectures to better assess its relative capabilities. The

challenge with this approach is in describing domain knowledge "equally" in the different

architectures, then to execute the systems in a "fair" set of environments. Simply stated,

an unplanned-for state in CIRCA-II may be planned-for in architecture X (or vice versa),

depending on exactly how the knowledge was specified. Additionally, since few

architectures guarantee hard real-time response, one might easily bias the tests such that

the tradeoffs made by CIRCA-II are absolutely essential for success. Alternatively, one

might bias the tests such that even a soft real-time response system will be adequate, in

which case CIRCA-II will always "lose" in the comparisons. Although we feel such

comparisons are challenging, we hope to borrow or manually craft a set of hard real-time

problems then collaboratively run and compile results to more convincingly situate

CIRCA-II as a viable approach for real-time automation problems.

We have provided tools for supplying the CIRCA-II planner with useful feedback

from the scheduler to guide the backtracking process when a proposed plan cannot be

scheduled. We have provided examples that illustrate the utility of this approach, but

have not yet identified the parameters that can be used to specify circumstances under

which our heuristic algorithms will be beneficial versus detrimental for our heuristic

feedback approach. We envision planner-scheduler negotiation tests that exercise

CIRCA-II in two directions: plan generation and plan execution efficiency.

We will assess plan generation efficiency as a function of whether the scheduler

was able to provide useful feedback (e.g., whether the suggested Premoved threshold

sufficiently reduces task scheduling requirements or whether the identified bottleneck

task can actually be safely modified during dynamic backtracking). As with the

unhandled state tests, we suspect the best route to such tests is to develop a set of

163

contrived examples in which states have a substantial range of probabilities (for Premoved

consideration) and planned actions vary along several dimensions (e.g., number of states

in which each action is selected, TAP worst-case execution times, etc.).

During plan execution, we can simultaneously analyze the effectiveness of the

scheduler's choice for Premoved along with the accuracy of the stochastic planning model.

A non-zero value for Premoved indicates that CIRCA-II will be making only probabilistic

safety guarantees. However, since our state probabilities are approximate and only

represent the likelihood of ever visiting each particular state, it is not straightforward to

translate state probabilities into an overall estimate of success.67 We hope to use the

same contrived domain with its "environment" linked to the stochastic simulation

referenced above. Then, we can gather actual statistics regarding the frequency with

which the system finds itself in a "removed" state, thereby assessing whether our notion

of Premoved given our approximate probability model is realistic.

Due to the breadth of the work undertaken for this dissertation, we have not yet

completed the extensive set of tests proposed in this section. Although the time spent on

developing appropriate example problems and constructing the support software for

CIRCA-II tests may be substantial, we are convinced such analysis is crucial to

demonstrate the utility of our algorithms to the research community. We also expect our

evaluation will guide us toward improvements in many of the CIRCA-II algorithms.

67 In Chapter VI, we gave a simple example where only one unlikely path was removed.
In this case, we could estimate the probability of success based on the probability of
reaching the first state along the removed path. However, more generally, multiple paths
will have low-probability states removed, in which case we currently have no mechanism
for computing overall success probability.

164

CIRCA-II Enhancement

Numerous opportunities remain for further improving the ability of CIRCA-II to

develop and execute real-time control plans. We have identified research areas that can

benefit from future enhancements in the context of existing CIRCA-II algorithms

throughout this dissertation. Below, we revisit these plus additional topics that will better

allow CIRCA-II to interact with its real-time environment efficiently and safely.

• Real-time Plan Development. We have incorporated a plan cache in CIRCA-II to

minimize the need for dynamic planning. However, real-time planning constraints

may be required when the cache becomes full (i.e., adding more plans would

compromise real-time retrieval guarantees) before responses to all dangerous states

are cached. CIRCA-II planning involves several algorithms, including planning,

scheduling, and iteration between the two when a proposed plan cannot be scheduled.

For real-time response, all of these processes must be bounded. Appendix D

describes a possible approach for bounding planning time in CIRCA-II. This

approach relies on the existing CIRCA-II stochastic state-space temporal model and

combines ideas from the anytime and design-to-time literature.

• Comprehensive Plan Development. To be truly exhaustive, CIRCA-II backtracking

processes must search through all possible state-action combinations, all possible sets

of guarantee flags and deadlines for each action, and all value assigned to threshold

Premoved. Except when directed by scheduler feedback, CIRCA-II backtracking is

largely an ad hoc procedure that guarantees each action is tried once from each state,

but not in all combinations. In addition to backtracking improvements, there are

specific cyclic state-space structures that CIRCA-II cannot describe with sufficient

accuracy to develop a valid plan. In Chapter IV, we identified a simple state-space

with multiple dependent ttfs and multiple cycles that neither CIRCA nor CIRCA-II

165

handles adequately. Appendix E describes this example and outlines a preliminary

solution approach that may solve this entire class of problems without adding a

completely separate model-checking algorithm to the planner.

• State-space Pruning. For our research, we have relied on state probability as the sole

measure of importance when the planner is forced to ignore states due to

schedulability constraints. Other parameters may also play an important role in

assessing areas of the state-space to prune when required. Perhaps the most intuitive

parameter is to consider is action cost in terms of plan-execution resource

requirements, a quantity that we have begun to consider during "bottleneck task"

identification in Chapter VI. Also, since we cannot assume CIRCA-II will develop

plans that are valid indefinitely, we may ultimately require at least an abstract notion

of the minimum (global) time before the system may first visit each state. Such a

time horizon is discussed in terms of imposing real-time bounds on planning in

Appendix D, but is also an important parameter to consider when selecting states to

ignore since exclusively far-term states may be handled in future plans. We expect

CIRCA-II may develop higher-quality plans more efficiently using a combination of

state probability, time horizon, and action computational cost when reasoning about

regions of the state-space to prune.

• Automatic Subgoal Development. CIRCA-II requires that the user specify a list of

subgoals given in its knowledge base. A method for dynamic backtracking to

potential subgoal-splitting points is described in [4], but this procedure can only

succeed when finding intermediate states with no exiting temporal transitions.

Honeywell researchers are approaching this problem by implementing a distinct

subgoal-generation module to the original CIRCA Automated Mission Planner

module (see Chapter II). We hope their efforts will yield a solution that is also

feasible for the CIRCA-II stochastic state-space planning model.

166

• Planner-Scheduler Negotiation. In this dissertation, we have addressed planner-

scheduler negotiation from the perspective of "planner proposes plan; scheduler

succeeds or feeds back Premoved and/or a bottleneck task; planner backtracks and

proposes a new plan when scheduling fails". In the final section of Chapter VI, we

introduced a method for QoS negotiation within a general real-time systems

framework. We plan to investigate methods for incorporating QoS negotiation

protocols into the CIRCA-II scheduler so that we can distribute plan adaptation

between planner and scheduler when tradeoffs to permit plan scheduling must be

performed.

• Machine Learning in CIRCA-II. We foresee two near-term uses for learning-based

algorithms in CIRCA-II: improvements for TAP test generation and the ability to

"remember" contingency plans between missions. We have exclusively employed

ID3 for minimizing TAP preconditions. As discussed in Chapter V, this introduces a

substantial cost for building imminent-failure state detection TAPs, as do other

existing decision tree algorithms because they require states with fully-instantiated

feature values. We have not yet identified a better classification algorithm for TAP

test construction but are continuing the search. We have introduced a plan cache into

CIRCA-II that is always created from scratch for each mission. We adopt this

approach because we require real-time contingency plan retrieval, a process slowed

when searching through extraneous cached plans. CIRCA-II may see substantial

savings in initial plan development overhead if the cache remembers plans it expects

to require for multiple missions, although we have not yet identified the statistics that

should be gathered by the dispatcher when making the decision to keep or discard

plans after each run.

• Multi-resource, Fault-tolerant Plan Execution. In Chapter VI, we describe a method

by which the CIRCA-II planner develops plans that execute on multiple resources and

are able to handle specific computational system faults (e.g., single CPU failure).

167

However, the CIRCA-II Plan Execution Subsystem has always resided on a single

processor. Recently, we have ported the uniprocessor plan execution software to the

QNX operating system and migrated to a thread-based execution approach. In

Appendix A, we discuss ongoing efforts to extend the CIRCA-II QNX-based

software toward multi-resource plan execution. After this work is complete, we will

next implement software to detect computational resource faults and respond in hard

real-time by retrieving a new control plan (if necessary) then dynamically allocating

the resources on which that plan will execute.

Safe, Fully-Automated Aircraft Flight

 We have demonstrated that CIRCA-II can successfully automate simulated

flights, including response to a specific set of carefully-engineered emergency situations.

We have also constructed the hardware and designed the software architecture required to

automate the University of Michigan UAV. We are still developing UAV low-level

control and state estimation software that is necessary before CIRCA-II can even be

employed. When this software is complete, we will then incorporate CIRCA-II to

address challenging problems associated with the construction of real-time flight mission

plans that guarantee safety in the context of the aircraft's dynamic capabilities, which

necessarily evolve as system failures or environmental events (e.g., engine-failure or

airframe-icing) occur. Although the results of this research are difficult to predict at this

early stage, we hope the continued collaboration between control and symbolic planning

researchers for the UAV will more generally lead to principled methods for reasoning

about the controllability properties of complex nonlinear dynamical systems from the

high-level "expert systems" perspective.

Numerous stochastic planning procedures, including MDP and CIRCA-II

algorithms, have been demonstrated primarily on toy problems. In fact, for many

168

complex problem domains, it is difficult to actually characterize the probability

distributions of various events occurring because these events have not yet been

considered in an approximate reasoning framework. For automated flight,

meteorological phenomena are some of the most important environmental factors that

require careful consideration both during initial flight planning and also when changes

occur during flight. Stochastic models are already used to predict the occurrence and

location of critical weather events (e.g., wind shear, thunderstorms, icing conditions) as is

evident by the probabilistic predictions given by weather forecasters.

We hope to incorporate stochastic weather models into future CIRCA-II

knowledge bases used for flight plan development. This research approach will yield two

important results. First, it will allow us to better assess whether real-world data can be

accurately incorporated into our state transition probability rate function format. Next,

due to the dynamic nature of weather patterns, we will also be able to carefully study the

effects of imprecise knowledge (i.e., outdated meteorological statistics) during

subsequent plan execution, giving us a practical avenue for testing the CIRCA-II

capabilities to detect and recover from the unhandled states resulting from weather

pattern changes.

As we add complexity to our CIRCA-II knowledge base for fully-automating

flight, we have observed that the likelihood of many important world events ranging from

adverse weather to nearby air traffic may significantly vary even after the aircraft enters

its environment. In CIRCA-II, we have assumed we could build plans to detect and react

to each of these events given a static and general knowledge base. However, as our

domain model complexity increases, we may eventually benefit from dynamic

knowledge modification which would then require online construction of new plans. We

have not yet begun to consider the practical implications of such a strategy except to note

that CIRCA-II must then exhibit hard real-time planning response time and also should

reason about minimally-modifying existing plans to maximize efficiency.

169

One important lesson we learned during this research is that safe, automated flight

requires the solution of a multitude of research problems. We plan to continue our efforts

to automate traditionally pilot-oriented tasks and forge collaborative ties with

complementary research areas to ultimately achieve safe, fully-automated flight, even

though the author of this dissertation may be very old when such automation is finally

accepted.

170

APPENDICES

171

APPENDIX A

CIRCA-II C++ IMPLEMENTATION

This appendix is intended to serve as a reference for the CIRCA-II software and

includes suggestions for upgrades in future work. Chapter III of this dissertation

described the overall CIRCA-II components and their functions. However, we did not

focus on any details of the software that weren't specifically designed to support the

research presented in this thesis. Here, we present implementation details that will be

critical as CIRCA-II undergoes further development, focusing on items that we already

foresee a need to re-design or modify.

We organize this appendix into sections corresponding to modules within the

CIRCA-II software. We first describe the CIRCA-II Planning Subsystem which will

execute offline to develop the startup-set of nominal and contingency plans then online

when required for reacting to unhandled states. We look at modules within the planner

which would benefit from upgrades, including the algorithms used for action selection,

backtracking, and building unhandled state detection tests. Next, we describe the

implementation details of the CIRCA-II Plan-Execution Subsystem. As discussed briefly

in Chapter VI, we will be migrating this software to a multi-resource environment and

integrating the monitoring software necessary for detecting computational resource

failures. The multi-resource CIRCA-II Plan-Execution Subsystem is slated to be

implemented on the QNX real-time operating system, and we hope this conversion will

172

more closely link CIRCA-II with recent research in dynamic resource allocation and

scheduling from the real-time community.

Planning Subsystem

The CIRCA-II Planning Subsystem performs all the “unbounded” planning and

scheduling tasks required to develop mission plans that will later execute in hard real-

time on the CIRCA-II Plan-Execution Subsystem. Figure A-1 shows the algorithm used

by the Planning Subsystem, including the basic plan development and plan-execution

interface procedures. Note that the algorithm presented in this appendix is simply a more

detailed version of the high-level Planning Subsystem described in Chapter III.

Upon startup, CIRCA-II builds the nominal and contingency plans it expects to

require during plan execution. The initial (startup) state and list of task-level goals

(subgoals) must be included in the domain knowledge base, along with the action and

temporal state transitions. As shown in Figure A-1, nominal plans are developed from

initial state(s) and a selected subgoal (Step 1) using a basic forward-chaining planning

algorithm (Step 2), which employs best-first search based on the state probabilities

computed from the algorithm described previously in Chapter IV. For each state, the

planner selects actions (and their deadlines) required to preempt any temporal transitions

to failure (ttfs) or a “best-effort” action (if required) to achieve task-level goals. When

state expansion is completed, for each action, ID3 [24] is used (Step 3) to build a

minimized “test” to determine whether that action should execute, with the set of states in

which that action was selected as positive examples and all other “reachable” states as

negative examples. Each minimized test and associated action is compiled into a TAP

(test-action pair), with associated deadline (if any) set to the “worst-case” value for all

states requiring that action.

173

1. Set open list to initial state(s); select first subgoal from a pre-

specified “mission goals” list.
2. While (states above probability threshold Premoved on open list)

° Select next “best” (highest probability) state
° Choose action (if any) based on failure avoidance and goal

achievement
° Update all state probabilities (with Chapter IV algorithm)
° Move expanded state from open to closed list

 3. Compile TAPs and hard real-time action deadlines
 in all expanded states
4. Build set of “unhandled” state detection TAPs
5. Schedule list of all “guaranteed” TAPs and maximize “if-time” TAP

execution frequency
6. If (No schedule possible for guaranteed TAPs)

° Resource scheduler suggests TAPs (based on utilization and
priority) for removal

° Go to Step 2 for Backtracking, removing/relaxing period for
time-consuming TAP(s) when possible, incrementing probability
threshold Premoved for “removing” (ignoring) states otherwise

7. Download plan to Plan Cache with ID3-minimized “initial state test”
as index

8. If (time-critical “unhandled” states exist for this plan)
° Go to Step 2 with initial states (and open list) set to

remaining time-critical “unhandled” state set; set goal to NIL
(failure avoidance only)

9. If (more subgoals)
° Select next subgoal from “mission goals” list
° Set initial state(s) to goal state(s) from last subgoal plan;

set open list to initial state(s)
 ° Go to Step 2
10. If (plan execution not started yet)

° Send “start” message to Plan-execution Subsystem
11. Wait for message from Plan-execution Subsystem
12. If (unhandled state message received)

° Set initial state(s) to unhandled state and its “descendants”.
The set of descendants is produced using state expansion with
the unhandled state as the initial state and the currently-
executing plan for all actions.

° If (one or more descendants is failure)
- Set subgoal to NIL (failure avoidance only); Go to Step 2

° else
- Select subgoal for replanning; Go to Step 2

13. If (plan switch message received)
° Log new executing plan
° If (new plan is failure avoidance only)

- Set initial state set to all states reachable from
executing plan

- Select subgoal for replanning and Go to Step 2
14. Go to Step 11

174

Figure A-1: CIRCA-II Planning Subsystem Algorithm.

The set of unhandled state detection TAPs is created (Step 4) using the algorithm

from Chapter V, with deadlines set such that “removed” and “imminent failure” states

will be detected before failure can occur. Finally (Step 5), the scheduler attempts to build

a cyclic schedule for all guaranteed TAPs, with “if-time” (best-effort) TAPs filling any

slack time. If scheduling fails (Step 6), the scheduler suggests removal of “bottleneck”

TAP(s) and provides an estimate of the degree of failure (over-utilization), as described

in Chapter VI. The planner backtracks (to Step 2) and continues (Steps 2-6) until a

schedulable plan is produced.

When the plan is complete, it must be downloaded (Step 7) to the Plan-execution

Subsystem to be stored in the cache. The most accurate index to this plan is the complete

list of initial states. However, since this list could be very large and expensive to search

through, and we require real-time cache access, we employ ID3 for building a minimal

index to each plan, using the plan’s initial states as positive examples and all other states

identified so far as negative examples.

Next, the planner builds contingency plans required for timely response to any

“unhandled” state for which a time-critical response is required. This planning process

begins (Step 8) with the set of initial states containing all of the imminent-failure states

and the “dangerous” removed states which have been produced during development of

this nominal plan (Step 4). Contingency planning assumes a “NIL” goal, indicating the

plan need only include failure avoidance actions. In the best-case (i.e., few “dangerous”

states), one schedulable contingency plan can handle all these states. Generally, though,

on the first pass (Steps 2-8) only some of the time-critical unhandled states will be

handled by the generated contingency plan. Contingency plan development continues

iteratively (Steps 2-9) until schedulable plans exist for all time-critical unhandled states

associated with the current nominal plan, or until real-time plan retrieval time limits on

the plan cache prohibit further contingency plan storage.

175

Once the first nominal and associated contingency plans have been downloaded,

further offline planning iterations are initiated with the remaining subgoals (Step 9) until

nominal and contingency plans to achieve all subgoals and avoid failure in time-critical

states have been produced. Next, the CIRCA-II Planning Subsystem notifies the Plan

Dispatcher that it may begin executing the first plan (Step 10), at which time any

remaining planning is dynamic (online) and prompted by messages received from the

Dispatcher (Step 11), which include notification of an unhandled state (Step 12) and

execution of a new plan (Step 13). An unhandled state message is received (Step 12) only

if the Plan Cache has no nominal or contingency plan to react to this state, so the planner

must produce a new plan that can respond appropriately. Because the world state

(environment) can change while the planner is deliberating, the initial state(s) for this

new plan must include both the unhandled state and its descendants. The possible

descendant set is built using the planner’s state expansion algorithm, with the fed-back

unhandled state as the sole initial state, TAPs from the currently-executing plan as action

transitions, and all temporal transitions from the knowledge base. If one of these

descendants is failure, replanning occurs with the goal of failure-avoidance only to

minimize planning time; otherwise, the unhandled state is a “deadend”, so a new task-

level goal is selected and full replanning occurs. Note that, when a dangerous state (e.g.,

a state matching a ttf) requires dynamic replanning, CIRCA-II can provide no real-time

failure-avoidance guarantees. However, such a situation may occur in the worst case, so

CIRCA-II attempts to respond and if “lucky” (i.e., planning and scheduling time are

brief; ttf delay is longer than minimum) may “coincidentally” succeed. We address

possibilities for implementing algorithms to bound planning time in Chapter IX of this

dissertation.

Below, we discuss details of specific planning algorithms that we expect to

require modification in future research. First, we describe the procedure by which the

CIRCA-II planner selects the "best" action for each state and highlight methods that may

176

be used to improve this procedure. Next, we describe algorithms available for

backtracking during planning and recommend future improvements to both move the

planner toward exhaustive backtracking as well as to better define the parameters over

which the planner backtracks.

Action Selection

When a state is expanded, all actions with preconditions matching this state are

added to a "candidate" list. Then, the planner calls an action scoring function which

returns a numerical value associated with the input {sk, aci} pair. The original CIRCA

architecture [53] uses a multi-level lookahead search to score each action, increasing the

score for each downstream goal state and decreasing the score for each ttf. Several

problems arise from this method. First, downstream states may not yet have actions

planned for them, so there is no way to factor the likelihood of each goal state or ttf into

this equation. In fact, either goal or failure states may be ultimately preempted by

actions, resulting in an inaccurate initial score estimate. Additionally, if the n-level

lookahead terminates even one step away from a goal state or ttf (i.e., at level n+1), the

action scoring is unaffected.

Due to these difficulties, when we first adopted CIRCA-II for this research, we

radically jumped to the conclusion that the n-level lookahead was not really giving

significantly better results than would a 1-level lookahead, especially since the

computational requirements for the n-level lookahead were nontrivial for large n and

branching factor (i.e., number of tts matching each state). Therefore, in CIRCA-II we

implemented a strictly one-level lookahead and measured action value based on

immediate-descendant ttfs and goal states. Although we intended to revisit the action-

scoring issue as part of this dissertation research, as of the writing of this dissertation all

ideas remain in the highly conceptual phase, some of which we outline below.

177

In the above paragraphs, we paint the original CIRCA action scoring procedure in

a negative light. However, a search-based procedure is really the only available option

for a planner with a knowledge base containing only state transitions specified by

symbolic-valued preconditions and postconditions. As an example, consider a feature

"altitude" with values "zero", "low", "medium", and "high". Now, consider a knowledge

base with an action "setup-climb" and temporal transitions to model the actual altitude

changes. In order for a search-based scoring function to notice that the "setup-climb"

action will lead to a goal state with "high" altitude from the current state with "zero"

altitude, it must perform at least a 4-step lookahead. At the first step (level 0 to 1), a

feature "climbing" is set to true, then at each subsequent level, the value of altitude

progresses from "zero (level 1)->low (level2)->medium (level 3)->high (level 4)". Thus,

if n for the n-level lookahead is set to 3 or less, the planner will not give the "setup-

climb" any credit for moving the system "in the right direction".

For accurate action scoring, we really would like to have a measure of proximity

for feature values relative to each other. For continuous numeric values such as altitude,

this would simply allow the action scoring mechanism to note that a value of "low" or

"medium" is closer to "high" than a value of "zero", thus it could add value for

transitioning from "zero" to one of these values without explicitly performing the

lookahead search. This functionality could be added to CIRCA-II by modeling the subset

of features that represent continuous values with the median numeric value previously

represented by a symbol. As a first step, these values could then be used to numerically

judge feature distance from a goal or failure state, where distance could either be

estimated as a feature value difference (the natural default) or else could be returned from

a function that converted two feature values into a distance estimate. Then, either the 1-

or n-level lookahead procedures might augment the distance-based estimate for

inherently-symbolic feature values (e.g., "true" or "false").

178

We have not yet even developed concrete examples that argue for the combined

distance/lookahead algorithm proposed here, thus we cannot yet assess whether this

particular approach will find utility in CIRCA-II. However, we believe this avenue

should at least be investigated in future work, because our past experiences with the

existing action scoring algorithms in both CIRCA and CIRCA-II have indicated a definite

need for future improvement.

Backtracking

The original CIRCA planner [53] expands states in depth-first order and performs

chronological backtracking to the last action choice point whenever a ttf cannot be

preempted, no goal state is reachable after state-space expansion terminates, or a plan

cannot be scheduled. As backtracking progresses, each action with matching

preconditions will eventually be selected for each state. However, this procedure is not

exhaustive because the software does not try all possible combinations of actions for all

expanded states.

If we were to implement the above procedure into the probabilistic CIRCA-II

planner that performs its search in best-first order, chronological backtracking would not

be so straightforward to implement because the planner jumps throughout the state-space

rather than progressing down individual paths until they terminate or loop back to an

expanded state.

Thus, we looked for alternate algorithms that might better enhance basic CIRCA-

II capabilities. As described in [4], CIRCA-II currently utilizes a dynamic backtracking

[24] algorithm based on traversing path-vectors that lead throughout the expanded state-

space (and potentially to unexpanded child states of expanded parents). In this

dissertation, the primary references to CIRCA-II backtracking occur when a plan cannot

be scheduled. In Chapter VI, we describe an algorithm that identifies a "bottleneck" task.

179

Dynamic backtracking allows the planner to go directly to states for which this task's

action was planned. This results (for the average case) in a much more efficient task

modification/removal than would backtracking chronologically until that task is modified

or removed in all states for which it must preempt a ttf.

The dynamic backtracking procedure is also not exhaustive, thus CIRCA-II may

also fail to find a valid plan that could have been discovered with exhaustive

backtracking. Additionally, individual action deadlines can significantly affect state

probabilities, so different sets of states may be considered reachable (given preemption

threshold Pthresh and removed-state threshold Premoved) using the same set of planned

actions if the deadline for one or more of these actions is modified. We recommend that

future CIRCA-II researchers implement the backtracking modifications required to

account for these and other issues unique to development of real-time control plans.

Plan Execution Subsystem

As described in Chapter III, the Plan Execution Subsystem in CIRCA-II is

responsible for reliably meeting all deadlines required for failure avoidance as dictated by

the planner. Figure A-2 shows the basic top-level algorithm employed on the Plan

Dispatcher module of the Plan Execution Subsystem (see Figure 3-1). Upon startup, no

plan is executing, and CIRCA-II assumes the system will be indefinitely “safe” so long as

no plan is begun (e.g., an aircraft sitting at a terminal gate prior to flight). The plan cache

waits until the planner downloads all nominal and contingency plans (Step 1). As

received, each plan is stored and indexed by plan type (nominal or contingency), as well

the ID3-minimized test to determine whether a state matches the initial state set for that

plan. Each contingency plan is also matched with a nominal plan to increase real-time

plan retrieval efficiency.

180

Once all plans developed “offline” have been received, the planner will send a

start message, at which time the first nominal plan received will begin execution (Step 2).

After plan execution begins, any operation of the plan cache is explicitly controlled by

received planner messages (Step 5) or executing TAPs that detect goal or unhandled

states (Steps 3 and 4). When a TAP detects an unhandled state (Step 3), the plan cache

searches its “contingency” plans for a match. If a match is found, this plan begins

execution to “buy time” for the goal-oriented replanning required for the “unhandled

state” deviation, and the cache sends a message notifying the planner of the plan switch.

Otherwise, the state is not considered as time-critical as others for which contingency

plans have been developed, so the old plan keeps executing while replanning occurs.

1. While (no EXECUTE message received from Planner)
° As downloaded, add plans to cache, indexed by decision tree

and plan type (nominal/contingency) for state-to-plan matching
2. Begin execution of first plan received as a Plan Executor process
3. If (plan cache gets “unhandled state” message from Plan Executor)

° Search “contingency” subset of cache for matching plan
° If (plan found)

- Begin execution of this plan on Plan Executor
- Notify planner of contingency plan, since goal-

achievement replanning may be required
° Else

- Feedback unhandled state information to planner for
replanning

4. If (“goal achieved” message received from Plan Executor)
° Search cache for nominal plan to achieve next subgoal (indexed

by current goal=next initial state)
° Place contingency plans matched with this nominal plan at top

of queue for fast retrieval
° Begin execution of nominal plan on Plan Executor
° Notify planner of executing plan

5. If ("add plan" message received from Planner)
° Add new plan to cache, indexed by decision tree and plan type

for state-to-plan matching
6. If (EXECUTE message received from Planner)
7. - Begin execution of this plan on Real-time Plan Executor
° Add new plan to cache, indexed by decision tree and plan type

for matching Plan Executor feedback messages
7. Go to Step 3

Figure A-2: CIRCA-II Plan Dispatcher Algorithm.

181

When a TAP detects a goal state (Step 4), the plan cache searches its “nominal”

plans for a match with the goal state, since the appropriate next plan has an initial state

equal to the old plan’s goal state. Provided execution has proceeded as expected (i.e., the

executing plan was also a nominal plan), a new plan will be found in the cache and will

subsequently execute. Otherwise (i.e., a contingency plan is already executing), no goal

state detection TAP will be included, so no goal state message will be produced. “New

plan” messages received from the Planning Subsystem (Step 5) most often occur because

an unhandled state has prompted replanning. In this case, the plan cache has been

waiting for the new plan and it begins execution immediately. Alternatively, it is

possible that the planner must develop a sequence of new plans during replanning (e.g.,

when one plan alone cannot redirect the system to the set of nominal goal-achievement

plans), in which case the plan cache will store the plan as it did the original downloaded

set (in Step 1).

The critical components for real-time operation of the Plan-execution Subsystem

can be identified in terms of the Figure A-2 algorithm. Because Steps 1 and 2 occur

during the startup period of “indefinite safety”, they need not occur in hard real-time thus

are of no concern from a timeliness perspective. Step 4 also need not occur in hard real-

time because achieving task-level goals in CIRCA-II is strictly a best-effort endeavor,

and retrieving a nominal plan is part of the goal-achievement process. Step 3, the search

for a contingency plan and start of its execution, is the crucial part of the plan dispatcher

that must execute in guaranteed real-time, as the entire purpose of the contingency plan

set is to guarantee failure avoidance in improbable situations. Step 5 ordinarily does not

require hard real-time guarantees, since it is most often associated with the receipt of

plans that redirect the system to its task-level goals. However, CIRCA-II uses

contingency plans to “buy time” for replanning (see Chapter V), and the amount of time

it can “buy” may not be infinite. In such cases, one might consider Step 5 to benefit from

182

hard real-time execution guarantees, although such guarantees will mean little since Step

5 relies on the “unbounded” planner for reactive plan development.

Below we look at two aspects of the CIRCA-II Plan Execution Subsystem that

will most likely be studied in future work. First, we consider the implementation of the

If-time Server used to execute best-effort (i.e., if-time) TAPs, then we consider future

work to convert CIRCA-II Plan Execution to a multi-resource platform running the QNX

real-time operating system.

If-time Server Implementation

CIRCA-II executes best-effort (goal-achievement) TAPs only when extra time is

available during execution of a guaranteed TAP schedule. As described in Chapter III,

all best-effort TAPS execute under a "special" TAP named the if-time server. During the

plan scheduling process, the scheduler attempts to maximize best-effort TAP execution

by inserting the if-time server as frequently as possible into the guaranteed TAP schedule,

setting the if-time server worst-case execution time (wcet) to the largest wcet of all best-

effort TAPs. Regardless of whether the if-time server fits into this guaranteed schedule,

the plan executor still executes the if-time server TAP whenever it finds a slack time

interval (i.e., period of time between scheduled TAP completion and the wcet slot it was

allotted in the schedule).

When invoked, the if-time server's job is to select a best-effort TAP to execute.

This TAP must fit into the available slack time interval (equal to the if-time server wcet

when the if-time server is called as part of the guaranteed TAP schedule). The if-time

server would ideally also be "fair" regarding which TAP to execute next. In this section,

we present three algorithms currently available for the if-time server in CIRCA-II.68

68 The user must define a constant in the plan executor source code to select between the
three available if-time server algorithms.

183

The original CIRCA used a simple round-robin strategy for selecting the next

best-effort TAP to execute, as shown in Figure A-3. We have also implemented this

algorithm in CIRCA-II. In the round-robin algorithm, the if-time server maintains a

pointer to an element of the best-effort TAP list. When invoked, the if-time-server

checks whether the current best-effort TAP (i.e., the TAP referenced by the pointer) will

fit into the available slack time. If so, this TAP executes, the pointer moves on to the

next TAP, and that next TAP is tested to check whether it fits into the available slack

time. Whenever the remaining slack time is less than the wcet of the next TAP to be

executed, control returns to the calling program.

Figure A-3: Round-Robin If-time Server.

Figure A-4 illustrates a slight modification of the round-robin protocol we have

labeled the modified-round-robin if-time server algorithm. This algorithm is also

available in CIRCA-II (as well as in certain versions of the original CIRCA). In this

algorithm, a pointer is also maintained to the next item on an if-time server list. When

invoked, the if-time-server again tests whether the current TAP will fit into the available

server time slot. If so, it is executed and the pointer is incremented as with the round-

robin algorithm. However, if not, instead of "giving up", the modified-round-robin

protocol increments the pointer and checks whether the next TAP on the list will fit into

the available time slot. As shown in the figure, this procedure continues until either the

 Execute current TAP;
set pointer to next TAP

Start

 Current TAP wcet
< remaining slack time?

Finish

yes

no

184

remaining available time falls below a minimum value or else the pointer cycles back to

where it began during this if-time server function call. This algorithm is viewed as an

improvement in that more best-effort TAPs will execute. However, the modified-round-

robin server never resets its TAP pointer, so the TAP originally referenced by the pointer

may not have executed during this invocation and will not be immediately referenced

during the subsequent if-time server call. As a result, best-effort TAPs with relatively

large wcets may not execute as frequently as would they would within the traditional

round-robin if-time server.

Figure A-4: Modified-Round-Robin If-time Server.

Figure A-5 depicts an if-time queue algorithm, the newest of the if-time server

algorithms and available only in CIRCA-II (both the UNIX and QNX versions). In this

algorithm, the if-time server maintains a queue. Upon invocation, the server checks

whether the TAP at the top of the queue will fit into the slack interval. If so, this TAP

executes and migrates to the end of the queue. Regardless of whether the TAP at the top

of the queue executes, the pointer is set to the next TAP in the queue which then executes

if time is available. As with the modified-round-robin algorithm, this process continues

until either the slack time expires or the pointer moves sufficiently deep into the queue to

reach a TAP that has already been executed.

 Execute current TAP

Start

 Current TAP wcet
< remaining slack time?

Finish

yes

no

 More slack time and
[untested] if-time TAPs?

no

Set pointer to next TAP
yes

185

We do not yet have analytical results to compare these three algorithms, but

intuitively find the if-time queue algorithm the best approach because it treats the best-

effort TAPs fairly, at least in terms of attempting to execute all best-effort TAPs at as

close to the same frequency as is feasible given the slack interval size and TAP wcets.

Work by others has begun to analyze whether the if-time server can use quantities

such as TAP priority or probability from the planner and TAP last-finished-execution-

time (lfet) to better order server selection of TAPs to execute. However, no definitive

algorithms or analytical comparisons of such methods exist to-date. As CIRCA-II

continues its migration to the QNX real-time operating system, the if-time server may

disappear in favor of real-time dynamic [priority] scheduling algorithms. If/when this

change occurs, these quantities can be incorporated into a cost function that can be used

as a priority input for the dynamic scheduler.

Figure A-5: If-time Queue If-time Server.

O/S- and Domain-Dependent Software

To-date, the majority of CIRCA and CIRCA-II testing has been done on a UNIX-

based platform (except for the QoS Negotiation work from Chapter VI). Unfortunately,

Set pointer to top of queue

 Execute current TAP;
place TAP at end of queue

Start

 Current TAP wcet
< remaining slack time?

Finish

yes

no

 More slack time and
[untested] if-time TAPs?

no

Set pointer to next
 TAP in queue

yes

186

realistic worst-case execution times are nearly impossible to predict in typical UNIX

environments, so we have had little success in actually plotting performance results

during plan execution. We have outfitted CIRCA-II so that it will execute under the

QNX real-time operating system for the University of Michigan UAV project. As

discussed in Chapter VII, the UAV requires that the complete CIRCA-II Plan-Execution

Subsystem execute on one processor, thus the current QNX implementation, like its

UNIX predecessor, still presumes a single-processor execution platform.

The UAV software is designed as a group of distinct processes spawned after

startup. After CIRCA-II develops and caches its initial set of plans, the dispatcher

spawns a Plan-Executor process for the first plan. As described with more detail in [65],

a plan executor process begins by spawning separate processes for each TAP in its plan.69

The main executor process then attaches a proxy to each TAP that is "kicked" each time

that TAP should execute. Each TAP process sits idly waiting to be kicked and then

executes. This design is similar to a multi-thread execution model often adopted by the

real-time community. In future work, we hope to extend CIRCA-II to a multi-resource

execution platform, as discussed briefly in Chapter VI. We believe the thread-based

model currently implemented under QNX will facilitate the augmentation of the CIRCA-

II Plan-Execution Subsystem to a multi-resource platform, although a substantial number

of issues still need to be addressed, including the design and implementation of an

algorithm to distribute dispatcher execution among the available resources and an

algorithm to monitor the system for faults and reallocate TAPs to use the remaining

resources.

69 We presume feature values can be communicated easily to all processes. For our
UAV, we have shared memory available to all executing processes. This memory
contains all feature value data (determined during state estimation) so that determining
feature values consumes a trivial amount of time during TAP test execution. This
situation may not be true in other domains in which feature tests may require the system
to interact directly with its environment.

187

APPENDIX B

AUTOMATION OF THE ACM SIMULATOR WITH CIRCA-II

The algorithms presented in this dissertation were first tested for fully-automated

"flight-around-the-pattern" (see Chapter VII) during which we introduced anomalous

events and costly actions to challenge the ability of CIRCA-II to develop a schedulable

plan. In this appendix, we first include one version of a knowledge base capable of

guiding the aircraft around the pattern, with each pattern "leg" specified as a separate

subgoal for which a plan is developed. The initial ACM tests performed using this

particular knowledge base relied on an earlier version of a CIRCA-II probabilistic model

that is described [8]. We did not re-run these experiments because their main purpose

was to illustrate procedures to detect and react to unplanned-for states, and state

probabilities were used simply to identify unlikely states to "remove".

Following the knowledge base, we include the nominal plans produced that when

executed in sequential order guide the aircraft around the pattern to a safe landing. In the

specific scenario presented in this appendix, the reaction to "gear-up-on-final-approach"

could not be scheduled into the final approach plan, thus the nominal final approach plan

contains a TAP to detect a "gear up" event as a removed state. CIRCA-II develops and

caches a contingency plan to handle the "gear up" emergency should it arise, then the

dispatcher retrieves and executes this plan if it is required during flight.

188

Knowledge Base

###
#
CIRCA_C Knowledge base file
#
Written: Ella M. Atkins, April 1997
Last Modified: April 1997
#
Use this format to create CIRCA (C++ version) knowledge
base files. The program "make_kbase" will use this data to
create a more efficient program for CIRCA to use during planning.
#
Note: "make_kbase" is made easier by order-dependent data
specification.
1. Initial State(s),
2. Subgoal(s),
3. Feature wcet's.
4. Action transition(s),
5. Temporal transition(s).
6. Temporal transition probability function definitions.
#
**** All names (features, values, transitions) must be <=20 chars
each,
with no "special" embedded characters (e.g.,space,.,',",+,-
,*,/).
Feature names and values must begin with a capital letter;
feature names and action transition names must correspond to
function names for plan execution (in domain.cpp).
#
##
#

##
#
#
Section 1: Initial States
#
In the following lines, specify all features for each initial state,
marking beginning with "begin initial_state:" and ending with "end"
for each different possible initial state.
#
#
begin initial_state:
 Failure = False; Traffic = False; Tornado = False; Hurricane = False;
 Swerve = False; Avoiding_Traffic = False; On_Course = True; Gear =
Down;
 Altitude = Zero; Heading = S; Location = Fix0; Obs = Fix0; Nav_Freq =
Land;
end

(Additional initial states may be specified here using
this same "begin-end" format)

189

##
#
#
Section 2: Subgoal(s)
#
Specify all subgoal features (need not be a complete list) and
preconditions for achieving each subgoal, using the "begin-end"
format
shown below. Note: For now, the order of subgoals specified here
will
be the default order CIRCA uses during planning iterations.
#
begin subgoal:
 features: Obs = Fix1; Location = Fix1; Heading = S;
 preconditions: Location = Fix0;
end

begin subgoal:
 features: Obs = Fix2; Location = Fix2; Heading = E;
 preconditions: Location = Fix1;
end

begin subgoal:
 features: Obs = Fix3; Location = Fix3; Heading = N;
 preconditions: Location = Fix2;
end

begin subgoal:
 features: Obs = Fix4; Location = Fix4; Heading = W;
 preconditions: Location = Fix3;
end

begin subgoal:
 features: Nav_Freq = Land; Obs = Fix0; Location = Fix0; Heading
= S;
 preconditions: Location = Fix4;
end

##
#
#
Section 3: Feature WCET's
#
In the following lines, specify all feature test
worst-case execution times (wcets).
#
#
begin feature_wcets:
 Failure = 0.0;
 Traffic = 1000.0;
 Tornado = 1000.0;
 Hurricane = 1000.0;

190

 Swerve = 1000.0;
 Avoiding_Traffic = 1000.0;
 On_Course = 1000.0;
 Gear = 1000.0;
 Altitude = 1000.0;
 Heading = 1000.0;
 Location = 1000.0;
 Obs = 1000.0;
 Nav_Freq = 1000.0;
end

##
#
#
Section 4: Action Transitions
#
Specify action transitions here, using similar "begin-end" format
as shown by example below. Each must have a name, preconds,
postconds,
and wcet.
#
-- For preconds, specify a C-formatted test sequence enclosed by ()
like
that used as a test for "if ()". This test sequence should
return
True if transition preconditions are matched. Feature value
comparisons are given by: (f[feature_name] == (or !=)
feature_value).
-- For postconds, specify C-formatted statements that change values
in an array f[] to their "new" postcondition values.
#
begin action:
 name: climb_to_altitude
 preconds: ((f[Altitude] == Zero) && (f[Nav_Freq] == Fly))
 postconds: f[Altitude] = Pos;
 wcet: 5000
end

begin action:
 name: turn_left_to_E
 preconds: ((f[Heading] == S) && (f[Altitude] == Pos)
 && (f[Traffic] == False) && (f[Swerve] == False)

 && (f[Obs] == Fix2))
 postconds: f[Heading] = E;
 wcet: 5000
end

begin action:
 name: turn_left_to_N
 preconds: ((f[Heading] == E) && (f[Altitude] == Pos)
 && (f[Traffic] == False) && (f[Swerve] == False)

 && (f[Obs] == Fix3))
 postconds: f[Heading] = N;

191

 wcet: 5000
end

begin action:
 name: turn_left_to_W
 preconds: ((f[Heading] == N) && (f[Altitude] == Pos)
 && (f[Traffic] == False) && (f[Swerve] == False)

 && (f[Obs] == Fix4))
 postconds: f[Heading] = W;
 wcet: 5000
end

begin action:
 name: turn_left_to_S
 preconds: ((f[Heading] == W) && (f[Altitude] == Pos)
 && (f[Traffic] == False) && (f[Swerve] == False)

 && (f[Location] == Fix4))
 postconds: f[Heading] = S;
 wcet: 5000
end

begin action:
 name: turn_left_to_Sb
 preconds: ((f[Heading] == W) && (f[Altitude] == Pos)
 && (f[Traffic] == False) && (f[Swerve] == False)
 && (f[Obs] == Fix4) && (f[Location] == Fix6))
 postconds: f[Heading] = S;
 wcet: 5000
end

begin action:
 name: obs_set_fix1
 preconds: ((f[Obs] == Fix0) && (f[Nav_Freq] == Fly) &&
 (f[Location] == Fix0) && (f[On_Course] == True))
 postconds: f[Obs] = Fix1;
 wcet: 5000
end

begin action:
 name: obs_set_fix2
 preconds: ((f[Obs] == Fix1) && (f[Nav_Freq] == Fly) &&
 (f[Location] == Fix1) && (f[On_Course] == True))
 postconds: f[Obs] = Fix2;
 wcet: 5000
end

begin action:
 name: obs_set_fix3
 preconds: ((f[Obs] == Fix2) && (f[Nav_Freq] == Fly) &&
 (f[Location] == Fix2) && (f[On_Course] == True))
 postconds: f[Obs] = Fix3;
 wcet: 5000
end

192

begin action:
 name: obs_set_fix4
 preconds: ((f[Obs] == Fix3) && (f[Nav_Freq] == Fly) &&
 (f[Location] == Fix3) && (f[On_Course] == True))
 postconds: f[Obs] = Fix4;
 wcet: 5000
end

begin action:
 name: obs_set_fix4b
 preconds: ((f[Obs] == Fix6) && (f[Nav_Freq] == Fly) &&
 (f[Location] == Fix6) && (f[On_Course] == True))
 postconds: f[Obs] = Fix4;
 wcet: 5000
end

begin action:
 name: obs_set_fix5
 preconds: ((f[Obs] == Fix3) && (f[Nav_Freq] == Fly) &&
 (f[Location] == Fix3) && (f[On_Course] == True))
 postconds: f[Obs] = Fix5;
 wcet: 5000
end

begin action:
 name: obs_set_fix6
 preconds: ((f[Obs] == Fix5) && (f[Nav_Freq] == Fly) &&
 (f[Location] == Fix5) && (f[On_Course] == True))
 postconds: f[Obs] = Fix6;
 wcet: 5000
end

begin action:
 name: obs_set_fix0
 preconds: ((f[Obs] == Fix4) && (f[Heading] == S) &&
 (f[Location] == Fix4) && (f[On_Course] == True))
 postconds: f[Obs] = Fix0;
 wcet: 5000
end

begin action:
 name: Nav_Freq_fly
 preconds: ((f[Nav_Freq] == Land) && (f[Altitude] == Zero))
 postconds: f[Nav_Freq] = Fly;
 wcet: 5000
end

begin action:
 name: Nav_Freq_land
 preconds: ((f[Nav_Freq] == Fly) && (f[Location] == Fix4) &&
 (f[Heading] == S) && (f[Obs] == Fix0) && (f[Altitude] ==
Pos))
 postconds: f[Nav_Freq] = Land;
 wcet: 5000

193

end

begin action:
 name: avoid_traffic
 preconds: ((f[Traffic] == True) && (f[Avoiding_Traffic] == False) &&
 (f[On_Course] == True) && (f[Swerve] == False))
 postconds: f[Avoiding_Traffic]=True; f[Swerve]=True;
f[On_Course]=False;
 wcet: 5000
end

begin action:
 name: course_correct
 preconds: ((f[Swerve] == True) && (f[On_Course] == False) &&

 (f[Traffic] == False) && (f[Avoiding_Traffic] == True))
 postconds: f[Swerve]=False; f[On_Course]=True;
f[Avoiding_Traffic]=False;
 wcet: 5000
end

##
#
#
Section 5: Temporal Transitions
#
Specify temporal transitions. Use very similar format to that
described
for action transitions above, and illustrated by example below.
Each temporal transition must have a name, preconds, postconds, and
a prob_func (where each prob_func referenced must be defined in the
next section below).
#

begin temporal:
 name: zero_altitude
 preconds: ((f[Altitude] == Pos) && (f[Nav_Freq] == Fly))
 postconds: f[Altitude] = Zero;
 prob_func: z_altitude
end

begin temporal:
 name: fly_fix0_to_fix1
 preconds: ((f[Location] == Fix0) && (f[Heading] == S) && (f[Obs] ==
Fix1)
 && (f[Nav_Freq] == Fly) && (f[Altitude] == Pos) &&
 (f[On_Course] == True))
 postconds: f[Location] = Fix1;
 prob_func: fly_fixes
end

begin temporal:
 name: fly_fix1_to_fix2

194

 preconds: ((f[Location] == Fix1) && (f[Heading] == E) && (f[Obs] ==
Fix2)
 && (f[Nav_Freq] == Fly) && (f[Altitude] == Pos) &&
 (f[On_Course] == True))
 postconds: f[Location] = Fix2;
 prob_func: fly_fixes
end

begin temporal:
 name: fly_fix2_to_fix3
 preconds: ((f[Location] == Fix2) && (f[Heading] == N) && (f[Obs] ==
Fix3)
 && (f[Nav_Freq] == Fly) && (f[Altitude] == Pos) &&
 (f[On_Course] == True))
 postconds: f[Location] = Fix3;
 prob_func: fly_fixes
end

begin temporal:
 name: fly_fix3_to_fix4
 preconds: ((f[Location] == Fix3) && (f[Heading] == W) && (f[Obs] ==
Fix4)
 && (f[Nav_Freq] == Fly) && (f[Altitude] == Pos) &&
 (f[On_Course] == True))
 postconds: f[Location] = Fix4;
 prob_func: fly_fixes
end

begin temporal:
 name: fly_fix4_to_fix0
 preconds: ((f[Location] == Fix4) && (f[Heading] == S) && (f[Obs] ==
Fix0)
 && (f[Nav_Freq] == Land) && (f[Gear] == Down) &&
 (f[On_Course] == True))
 postconds: f[Location] = Fix0; f[Altitude] = Zero;
 prob_func: fly_fixes
end

begin temporal:
 name: any_traffic_tt
 preconds: ((f[Traffic] == False) && (f[Nav_Freq] == Fly)
 && (f[Swerve] == False) && (f[On_Course] == True)
 && (f[Avoiding_Traffic] == False))
 postconds: f[Traffic] = True;
 prob_func: any_traffic
end

begin temporal:
 name: traffic_passes_tt
 preconds: ((f[Traffic] == True) && (f[Swerve] == True) &&
 (f[Avoiding_Traffic] == True) && (f[On_Course] == False))
 postconds: f[Traffic] = False;
 prob_func: traffic_passes
end

195

begin temporal:
 name: intercept_course_tt
 preconds: ((f[Swerve] == False) && (f[On_Course] == False) &&

 (f[Traffic] == False) && (f[Avoiding_Traffic] == True))
 postconds: f[Avoiding_Traffic] = False;
 prob_func: intercept_course
end

begin temporal
 name: gear_up_failure
 preconds: ((f[Location] == Fix4) && (f[Nav_Freq] == Land) &&

 (f[Gear] == Down))
 postconds: f[Gear] = Up;
 prob_func: gear_up_failure
end

Temporal Transitions to Failure (TTFs)

begin temporal:
 name: drive_into_ground_0
 preconds: ((f[Altitude] == Zero) && (f[Location] == Fix0)
 && (f[Obs] == Fix1))
 postconds: f[Failure] = True;
 prob_func: drive_into_ground
end

begin temporal:
 name: drive_into_ground_1
 preconds: ((f[Altitude] == Zero) && (f[Location] == Fix1))
 postconds: f[Failure] = True;
 prob_func: drive_into_ground
end

begin temporal:
 name: drive_into_ground_2
 preconds: ((f[Altitude] == Zero) && (f[Location] == Fix2))
 postconds: f[Failure] = True;
 prob_func: drive_into_ground
end

begin temporal:
 name: drive_into_ground_3
 preconds: ((f[Altitude] == Zero) && (f[Location] == Fix3))
 postconds: f[Failure] = True;
 prob_func: drive_into_ground
end

begin temporal:
 name: drive_into_ground_4
 preconds: ((f[Altitude] == Zero) && (f[Location] == Fix4)
 && (f[Nav_Freq] == Fly))
 postconds: f[Failure] = True;

196

 prob_func: drive_into_ground
end

begin temporal:
 name: drive_into_ground_5
 preconds: ((f[Altitude] == Zero) && (f[Location] == Fix5))
 postconds: f[Failure] = True;
 prob_func: drive_into_ground
end

begin temporal:
 name: drive_into_ground_6
 preconds: ((f[Altitude] == Zero) && (f[Location] == Fix6))
 postconds: f[Failure] = True;
 prob_func: drive_into_ground
end

begin temporal:
 name: land_gear_up
 preconds: ((f[Altitude] == Zero) && (f[Gear] == Up))
 postconds: f[Failure] = True;
 prob_func: drive_into_ground
end

begin temporal:
 name: mid_air_collision_tt
 preconds: ((f[Traffic] == True) && (f[Avoiding_Traffic] == False))
 postconds: f[Failure] = True;
 prob_func: mid_air_collision
end

begin temporal:
 name: fly_way_off_course_1
 preconds: ((f[Avoiding_Traffic] == True) && (f[Swerve] == True) &&
 (f[Traffic] == False))
 postconds: f[Failure] = True;
 prob_func: hopelessly_off_course
end

begin temporal:
 name: fly_way_off_course_2
 preconds: ((f[Traffic] == False) && (f[Swerve] == False)
 && (f[On_Course] == False) && (f[Avoiding_Traffic] ==
False))
 postconds: f[Failure] = True;
 prob_func: hopelessly_off_course
end

##
#
#
Section 6: Probability function definition
(for temporal transitions)
#

197

Each of these functions should be written as a valid C++ function or
macro.
See example for format --> Assumes arguments (float time, float
prob); if
prob set to <= 0.0, use time to compute prob; otherwise, use prob to
compute time. Returns a float (either time or prob).
#
For returning impossible (beyond asymptote) probabilities, use
value FLT_MAX from <float.h>.
#

begin prob_func:

// z_altitude prob_func
float z_altitude(float time, float prob)
{
 if (prob <= 0.0) {

if (time < 10000.0) return(((float) time)/100000.0);
else return(0.1);

 } else {
 if (prob <= 0.1) return(prob * 100000.0);

else return(FLT_MAX);
 }
}

// fly_fixes prob_func
float fly_fixes(float time, float prob)
{
 if (prob <= 0.0) {

if (time < 20000.0) return(0.0);
else if (time < 200000.0) return(((float) (time - 20000)) /

200000.0);
else return(0.9);

 } else {
 if (prob == 0.0) return(0.0);

else if (prob <= 0.1) return(20000.0 + (prob * 200000.0));
else return(FLT_MAX);

 }
}

// any_traffic prob_func
float any_traffic(float time, float prob)
{
 if (prob <= 0.0) {

if (time < 10000.0) return(((float) time)/100000.0);
else return(0.1);

 } else {
 if (prob <= 0.1) return(prob * 100000.0);

else return(FLT_MAX);
 }
}

// traffic_passes prob_func
float traffic_passes(float time, float prob)

198

{
 if (prob <= 0.0) {
 if (time < 5000.0) return(0.0);

else if (time <= 50000.0) return(((float) (time - 5000))/50000.0);
else return(0.9);

 } else {
 if (prob == 0.0) return(0.0);

else if (prob <= 0.9) return(5000.0 + (prob * 50000.0));
else return(FLT_MAX);

 }
}

// intercept_course prob_func
float intercept_course(float time, float prob)
{
 if (prob <= 0.0) {
 if (time < 5000.0) return(0.0);

else if (time <= 50000.0) return(((float) (time - 5000))/50000.0);
else return(0.9);

 } else {
 if (prob == 0.0) return(0.0);

else if (prob <= 0.9) return(5000.0 + (prob * 50000.0));
else return(FLT_MAX);

 }
}

// drive_into_ground prob_func
float drive_into_ground(float time, float prob)
{
 if (prob <= 0.0) {

if (time < 100000.0) return(0.0);
else return(1.0);

 } else {
 return(100000.0);
 }
}

// mid_air_collision prob_func
float mid_air_collision(float time, float prob)
{
 if (prob <= 0.0) {

if (time < 100000.0) return(0.0);
else return(1.0);

 } else {
 return(100000.0);
 }
}

// hopelessly_off_course prob_func
float hopelessly_off_course(float time, float prob)
{
 if (prob <= 0.0) {

if (time < 200000.0) return(0.0);
else return(1.0);

199

 } else {
 return(200000.0);
 }
}

end

Plan Sequence Generated for Flight-Around-the-Pattern

Plan0: Takeoff and Fly Upwind Pattern Leg to FIX1

#################################
plan0.txt
#
Automatically generated by CIRCA planner.
#
#################################

Part 1: Define number of TAPs (if-time TAPs).

begin tap_count:
 NTAPS = 4;
 NIF_TIME_TAPS=3;
end

Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap_wcets:
 tap0 = 9000.000000;
 if_time_tap0 = 3000.000000;
 if_time_tap1 = 9000.000000;
 if_time_tap2 = 6000.000000;
 tap1 = 12000.000000;
 tap2 = 12000.000000;
 tap3 = 12000.000000;
end

Part 3: Define schedule (by guaranteed TAP name).

begin tap_schedule:
 { tap2, tap0, tap3, tap0, tap1, tap0 };
end

Part 4: Define TAPs.
begin tap:
 name: tap0
 preconds: (1)
 action: iftime_server();
end

200

begin tap:
 name: tap1
 preconds: ((((Nav_Freq() == Fly) && (Swerve() == False) &&
(Traffic() == False) && (Obs() == Fix0) && (Altitude() == Zero)) ||
 ((Obs() == Fix1) && (Altitude() == Zero))))
 action: climb_to_altitude();
end

begin tap:
 name: tap2
 preconds: ((((Obs() == Fix0) && (Altitude() == Zero) && (Swerve() ==
False) && (Traffic() == True)) ||
 ((Altitude() == Pos) && (Swerve() == False) && (Traffic() == True))))
 action: avoid_traffic();
end

begin tap:
 name: tap3
 preconds: ((((Obs() == Fix0) && (Altitude() == Zero) && (Traffic()
== False) && (Swerve() == True)) ||
 ((Altitude() == Pos) && (Traffic() == False) && (Swerve() == True))))
 action: course_correct();
end

begin tap:
 name: if_time_tap0
 preconds: ((Heading() == S) && (Location() == Fix1) && (Obs() ==
Fix1))
 action: run_new_plan();
end

begin tap:
 name: if_time_tap1
 preconds: ((((Swerve() == False) && (Traffic() == False) &&
(Altitude() == Pos) && (Obs() == Fix0))))
 action: obs_set_fix1();
end

begin tap:
 name: if_time_tap2
 preconds: ((((Nav_Freq() == Land))))
 action: Nav_Freq_fly();
end

Plan1: Turn and Fly Crosswind Pattern Leg to FIX2

#################################
plan1.txt
#
Automatically generated by CIRCA planner.

201

#
#################################

Part 1: Define number of TAPs (if-time TAPs).

begin tap_count:
 NTAPS = 4;
 NIF_TIME_TAPS=3;
end

Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap_wcets:
 tap0 = 10000.000000;
 if_time_tap0 = 6000.000000;
 if_time_tap1 = 10000.000000;
 if_time_tap2 = 9000.000000;
 tap1 = 10000.000000;
 tap2 = 8000.000000;
 tap3 = 8000.000000;
end

Part 3: Define schedule (by guaranteed TAP name).

begin tap_schedule:
 { tap2, tap0, tap3, tap0, tap1, tap0 };
end

Part 4: Define TAPs.
begin tap:
 name: tap0
 preconds: (1)
 action: iftime_server();
end

begin tap:
 name: tap1
 preconds: ((((Swerve() == False) && (Altitude() == Zero)) ||
 ((Obs() == Fix1) && (Swerve() == True) && (Altitude() == Zero))))
 action: climb_to_altitude();
end

begin tap:
 name: tap2
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == True))))
 action: avoid_traffic();
end

begin tap:
 name: tap3
 preconds: ((((Altitude() == Pos) && (Swerve() == True) && (Traffic()
== False))))
 action: course_correct();

202

end

begin tap:
 name: if_time_tap0
 preconds: ((Heading() == E) && (Location() == Fix2) && (Obs() ==
Fix2))
 action: run_new_plan();
end

begin tap:
 name: if_time_tap1
 preconds: ((((Obs() == Fix2) && (Heading() == S) && (Altitude() ==
Pos) && (Swerve() == False) && (Traffic() == False))))
 action: turn_left_to_E();
end

begin tap:
 name: if_time_tap2
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == False) && (Obs() == Fix1))))
 action: obs_set_fix2();
end

Plan2: Turn and Fly Downwind Pattern Leg to FIX3

#################################
plan2.txt
#
Automatically generated by CIRCA planner.
#
#################################

Part 1: Define number of TAPs (if-time TAPs).

begin tap_count:
 NTAPS = 4;
 NIF_TIME_TAPS=3;
end

Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap_wcets:
 tap0 = 10000.000000;
 if_time_tap0 = 9000.000000;
 if_time_tap1 = 10000.000000;
 if_time_tap2 = 9000.000000;
 tap1 = 10000.000000;
 tap2 = 8000.000000;
 tap3 = 8000.000000;
end

Part 3: Define schedule (by guaranteed TAP name).

203

begin tap_schedule:
 { tap2, tap0, tap3, tap0, tap1, tap0 };
end

Part 4: Define TAPs.
begin tap:
 name: tap0
 preconds: (1)
 action: iftime_server();
end

begin tap:
 name: tap1
 preconds: (!(((Location() == Fix2) && (Heading() == N) && (Swerve()
== True) && (Altitude() == Zero)) ||
 ((Altitude() == Pos))))
 action: climb_to_altitude();
end

begin tap:
 name: tap2
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == True))))
 action: avoid_traffic();
end

begin tap:
 name: tap3
 preconds: ((((Altitude() == Pos) && (Swerve() == True) && (Traffic()
== False))))
 action: course_correct();
end

begin tap:
 name: if_time_tap0
 preconds: ((Heading() == N) && (Location() == Fix3) && (Obs() ==
Fix3))
 action: run_new_plan();
end

begin tap:
 name: if_time_tap1
 preconds: ((((Obs() == Fix3) && (Heading() == E) && (Altitude() ==
Pos) && (Swerve() == False) && (Traffic() == False))))
 action: turn_left_to_N();
end

begin tap:
 name: if_time_tap2
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == False) && (Obs() == Fix2))))
 action: obs_set_fix3();
end

204

Plan3: Turn and Fly Base Pattern Leg to FIX4

#################################
plan3.txt
#
Automatically generated by CIRCA planner.
#
#################################

Part 1: Define number of TAPs (if-time TAPs).

begin tap_count:
 NTAPS = 4;
 NIF_TIME_TAPS=3;
end

Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap_wcets:
 tap0 = 12000.000000;
 if_time_tap0 = 12000.000000;
 if_time_tap1 = 10000.000000;
 if_time_tap2 = 9000.000000;
 tap1 = 10000.000000;
 tap2 = 8000.000000;
 tap3 = 8000.000000;
end

Part 3: Define schedule (by guaranteed TAP name).

begin tap_schedule:
 { tap2, tap0, tap3, tap0, tap1, tap0 };
end

Part 4: Define TAPs.
begin tap:
 name: tap0
 preconds: (1)
 action: iftime_server();
end

begin tap:
 name: tap1
 preconds: ((((Swerve() == False) && (Altitude() == Zero)) ||
 ((Obs() == Fix3) && (Swerve() == True) && (Altitude() == Zero))))
 action: climb_to_altitude();
end

begin tap:
 name: tap2
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == True))))
 action: avoid_traffic();

205

end

begin tap:
 name: tap3
 preconds: ((((Altitude() == Pos) && (Swerve() == True) && (Traffic()
== False))))
 action: course_correct();
end

begin tap:
 name: if_time_tap0
 preconds: ((Heading() == W) && (Location() == Fix4) && (Obs() ==
Fix4))
 action: run_new_plan();
end

begin tap:
 name: if_time_tap1
 preconds: ((((Obs() == Fix4) && (Heading() == N) && (Altitude() ==
Pos) && (Swerve() == False) && (Traffic() == False))))
 action: turn_left_to_W();
end

begin tap:
 name: if_time_tap2
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == False) && (Obs() == Fix3))))
 action: obs_set_fix4();
end

Plan4: Turn to Final Approach and Initiate Autoland

#################################
plan4.txt
#
Automatically generated by CIRCA planner.
#
#################################

Part 1: Define number of TAPs (if-time TAPs).

begin tap_count:
 NTAPS = 5;
 NIF_TIME_TAPS=3;
end

Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap_wcets:
 tap0 = 15000.000000;
 if_time_tap0 = 15000.000000;
 if_time_tap1 = 15000.000000;

206

 if_time_tap2 = 9000.000000;
 if_time_tap3 = 10000.000000;
 tap1 = 11000.000000;
 tap2 = 9000.000000;
 tap3 = 8000.000000;
 tap4 = 14000.000000;
end

Part 3: Define schedule (by guaranteed TAP name).

begin tap_schedule:
 { tap1, tap0, tap4, tap0, tap2, tap3, tap0 };
end

Part 4: Define TAPs.
begin tap:
 name: tap0
 preconds: (1)
 action: iftime_server();
end

begin tap:
 name: tap1
 preconds: ((((Location() == Fix4) && (Swerve() == False) && (Obs()
== Fix0) && (Altitude() == Zero)) ||
 ((Obs() == Fix4) && (Altitude() == Zero))))
 action: climb_to_altitude();
end

begin tap:
 name: tap2
 preconds: ((((Nav_Freq() == Fly) && (Traffic() == False) &&
(Altitude() == Pos) && (Obs() == Fix0))))
 action: Nav_Freq_land();
end

begin tap:
 name: tap3
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == True))))
 action: avoid_traffic();
end

begin tap:
 name: tap4
 preconds: ((((Nav_Freq() == Land) && (Obs() == Fix0) && (Altitude()
== Pos) && (Traffic() == False) && (Swerve() == True)) ||
 ((Obs() == Fix4) && (Altitude() == Pos) && (Traffic() == False) &&
(Swerve() == True))))
 action: course_correct();
end

begin tap:
 name: if_time_tap0

207

 preconds: ((((Gear() == Up))))
 action: notify_planner_removed();
end

begin tap:
 name: if_time_tap1
 preconds: ((Heading() == S) && (Location() == Fix0) && (Obs() ==
Fix0) && (Nav_Freq() == Land))
 action: run_new_plan();
end

begin tap:
 name: if_time_tap2
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == False) && (Heading() == W))))
 action: turn_left_to_S();
end

begin tap:
 name: if_time_tap3
 preconds: ((((Heading() == S) && (Obs() == Fix4) && (Traffic() ==
False) && (Altitude() == Pos) && (Swerve() == False))))
 action: obs_set_fix0();
end

Plan5: "Gear_up_failure" Contingency Plan

#################################
plan5.txt
#
Automatically generated by CIRCA planner.
#
#################################

Part 1: Define number of TAPs (if-time TAPs).

begin tap_count:
 NTAPS = 5;
 NIF_TIME_TAPS=2;
end

Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap_wcets:
 tap0 = 15000.000000;
 if_time_tap0 = 15000.000000;
 if_time_tap1 = 10000.000000;
 tap1 = 11000.000000;
 tap2 = 9000.000000;
 tap3 = 8000.000000;
 tap4 = 14000.000000;
end

208

Part 3: Define schedule (by guaranteed TAP name).

begin tap_schedule:
 { tap1, tap0, tap4, tap0, tap2, tap3, tap0 };
end

Part 4: Define TAPs.
begin tap:
 name: tap0
 preconds: (1)
 action: iftime_server();
end

begin tap:
 name: tap1
 preconds: ((((Swerve() == False) && (Altitude() == Zero))))
 action: climb_to_altitude();

begin tap:
 name: tap2
 preconds: ((((Location() == Fix4) && (Gear() == Up) && (Obs() ==
Fix0) && (Nav_Freq() == Land) && (Traffic() == False))))
 action: Nav_Freq_fly();
end

begin tap:
 name: tap3
 preconds: ((((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == True))))
 action: avoid_traffic();
end

begin tap:
 name: tap4
 preconds: ((((Nav_Freq() == Land) && (Obs() == Fix0) && (Altitude()
== Pos) && (Traffic() == False) && (Swerve() == True)) ||
 ((Obs() == Fix4) && (Altitude() == Pos) && (Traffic() == False) &&
(Swerve() == True))))
 action: course_correct();
end

begin tap:
 name: if_time_tap0
 preconds: ((((Gear() == Down))))
 action: notify_planner_deadend();
end

begin tap:
 name: if_time_tap1
 preconds: ((((Heading() == S) && (Obs() == Fix0) && (Traffic() ==
False) && (Altitude() == Pos) && (Swerve() == False))))
 action: obs_set_fix1();
end

209

APPENDIX C

UCAV CIRCA-II KNOWLEDGE BASE AND OUTPUT PLAN FILES

Researchers at the University of Michigan recently participated in a joint UCAV

demo with Honeywell Technology Center to illustrate the utility of a probabilistic planner

with real-time contingency plan retrieval. In this Appendix, we first include the user-

defined text knowledge base for the UCAV, followed by the nominal and contingency

[text] plan files produced by the CIRCA-II Planning Subsystem. These plans are both

downloaded and stored in the cache, with the nominal plan executing first. Then, when

infrared (IR) missile threats are encountered and detected as removed states in plan0, the

contingency plan to handle that situation is executed. Ultimately, these plans allow the

aircraft to successfully fly its pre-defined route safely even though it is being attacked by

a variety of radar and IR missiles.

Knowledge Base

###
#
ucav_with_radar.kbase
#
CIRCA_C Knowledge base file
#
Written: Ella Atkins
Last Modified: May 16, 1999
#
###

###
#

210

Section 1: Initial States
#
Note: TT is a "special" feature that is always True.
#

begin initial_state:
 Path = Normal;
 Radar_threat = False;
 IR_threat = False;
 Decoy_deployed = False;
 Altitude = High; # UCAV plan only acts after automatic UCAV takeoff
 Failure = False;
 TT = True;
end

###
#
Section 2: Subgoal(s)
#

begin subgoal:
 features: Path = Normal;
 preconditions: TT = True;
end

###
#
Section 3: Feature WCET's --
Set to zero for this test so that TAP wcet = action wcet
#
begin feature_wcets:
 Path = 0.0;
 Radar_threat = 0.0;
 IR_Threat = 0.0;
 Decoy_deployed = 0.0;
 Altitude = 0.0;
 Failure = 0.0;
 TT = 0.0;
end

###
#
Section 4: Action Transitions
#

begin action:
 name: blow_chaff
 preconds: ((f[Radar_threat] == True) && (f[Decoy_deployed] ==
False))
 postconds: f[Decoy_deployed] = True;
 wcet: 5
end

211

begin action:
 name: deploy_flare_sequence
 preconds: ((f[IR_threat] == True) && (f[Decoy_deployed] == False))
 postconds: f[Decoy_deployed] = True;
 wcet: 5
end

begin action:
 name: begin_radar_evasive
 preconds: ((f[Path] == Normal) && (f[Decoy_deployed] == True) &&

 (f[Radar_threat] == True))
 postconds: f[Path] = Evasive;
 wcet: 5
end

begin action:
 name: begin_IR_evasive
 preconds: ((f[Path] == Normal) && (f[Decoy_deployed] == True) &&

 (f[IR_threat] == True))
 postconds: f[Path] = Evasive;
 wcet: 5
end

begin action:
 name: resume_normal_path
 preconds: ((f[Path] == Evasive) &&

 !((f[Radar_threat] == True) || (f[IR_threat] == True)))
 postconds: f[Path] = Normal;
 wcet: 5
end

##
#
#
Section 5: Temporal Transitions
#

begin temporal:
 name: radar_threat_tt
 preconds: ((f[Radar_threat] == False) && (f[Altitude] == High) &&
(f[Path] == Normal))
 postconds: f[Radar_threat] = True;
 prob_func: radar_threat_rate
end

begin temporal:
 name: IR_threat_tt
 preconds: ((f[IR_threat] == False) && (f[Altitude] == Low) &&
(f[Path] == Normal))
 postconds: f[IR_threat] = True;
 prob_func: IR_threat_rate
end

212

begin temporal:
 name: evade_radar_missile_tt
 preconds: ((f[Path] == Evasive) && (f[Decoy_deployed] == True) &&

 (f[Radar_threat] == True))
 postconds: f[Radar_threat] = False; f[Decoy_deployed] = False;
 prob_func: evade_radar_missile_rate
end

begin temporal:
 name: evade_IR_missile_tt
 preconds: ((f[Path] == Evasive) && (f[Decoy_deployed] == True) &&

 (f[IR_threat] == True))
 postconds: f[IR_threat] = False; f[Decoy_deployed] = False;
 prob_func: evade_IR_missile_rate
end

begin temporal:
 name: swoop_tt
 preconds: ((f[Radar_threat] == False) &&

 (f[IR_threat] == False) && (f[Altitude] == High))
 postconds: f[Altitude] = Low;
 prob_func: swoop_rate
end

begin temporal:
 name: climb_tt
 preconds: ((f[Radar_threat] == False) &&

 (f[IR_threat] == False) && (f[Altitude] == Low))
 postconds: f[Altitude] = High;
 prob_func: climb_rate
end

Temporal Transitions to Failure (TTFs)
#

begin temporal:
 name: radar_kills_you_tt
 preconds: ((f[Radar_threat] == True))
 postconds: f[Failure] = True;
 prob_func: radar_kills_you_rate
end

begin temporal:
 name: IR_kills_you_tt
 preconds: ((f[IR_threat] == True))
 postconds: f[Failure] = True;
 prob_func: IR_kills_you_rate
end

###
#
Section 6: Probability rate function definition
#

213

#
begin prob_func:

// evade_radar_missile prob_func -- "reliable" tt with staircase prob
float evade_radar_missile_rate(float time, float dummy)
{
 float min_time = 0.0, max_time=2.0;
 if (time < (min_time-0.001))
 return(0.0);
 else if (time < (max_time - 1.001))
 return(1.0 / (max_time - time));
 else if (time < (max_time - 0.001))
 return(1.0);
 else
 return(0.0);
}

// evade_IR_missile prob_func -- "reliable" tt with staircase prob
float evade_IR_missile_rate(float time, float dummy)
{
 float min_time = 0.0, max_time=2.0;
 if (time < (min_time-0.001))
 return(0.0);
 else if (time < (max_time - 1.001))
 return(1.0 / (max_time - time));
 else if (time < (max_time - 0.001))
 return(1.0);
 else
 return(0.0);
}

// radar_threat prob_func -- "event" transition (can occur at any time)
float radar_threat_rate(float time, float dummy)
{
 return(0.01);
}

// IR_threat prob_func -- "event" transition (can occur at any time)
float IR_threat_rate(float time, float dummy)
{
 return(0.01);
}

// swoop prob_func -- "event" transition (can occur at any time)
float swoop_rate(float time, float dummy)
{
 return(0.0001);
}

// climb prob_func -- staircase "reliable" temporal transition
float climb_rate(float time, float dummy)
{
 float max_time=20.0; // max-delta time
 if (time < (max_time - 1.001))

214

 return(1.0 / (max_time - time));
 else if (time < (max_time - 0.001))
 return(1.0);
 else
 return(0.0);
}

// radar_kills_you prob_func -- ttf
float radar_kills_you_rate(float time, float dummy)
{
 if (time < 45.0) // before min-delay

return(0.0);
 else

return(0.1); // after min-delay
}

// IR_kills_you prob_func -- ttf
float IR_kills_you_rate(float time, float dummy)
{
 if (time < 35.0) // before min-delay

return(0.0);
 else

return(0.3); // after min-delay
}

end
End of kbase

Nominal Plan

#################################
plan0.txt
#
Automatically generated by CIRCA-II planner.
#
#################################

Part 1: Define number of TAPs (if-time TAPs).

begin tap_count:
 NTAPS = 3;
 NIF_TIME_TAPS=2
end

Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap_wcets:
 tap0 = 30.000000;
 if_time_tap0 = 30.000000;
 if_time_tap1 = 5.000000;
 tap1 = 5.000000;
 tap2 = 5.000000;

215

end

Part 3: Define schedule (by guaranteed TAP name).

begin tap_schedule:
 { tap0, tap1, tap0, tap2 };
end

Part 4: Define TAPs.
begin tap:
 name: tap0
 preconds: (1)
 action: iftime_server();
end

begin tap:
 name: tap1
 preconds: ((((Decoy_deployed() == False) && (Radar_threat() ==
True))))
 action: blow_chaff();
end

begin tap:
 name: tap2
 preconds: ((((Path() == Normal) && (Decoy_deployed() == True))))
 action: begin_radar_evasive();
end

begin tap:
 name: if_time_tap0
 preconds: ((((IR_threat() == True))))
 action: notify_planner_removed();
end

begin tap:
 name: if_time_tap1
 preconds: ((((Radar_threat() == False) && (Path() == Evasive))))
 action: resume_normal_path();
end

Contingency Plan for IR Missile Threats

#################################
plan1.txt
#
Automatically generated by CIRCA-II planner.
#
#################################

Part 1: Define number of TAPs (if-time TAPs).

216

begin tap_count:
 NTAPS = 3;
 NIF_TIME_TAPS=1
end

Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap_wcets:
 tap0 = 30.000000;
 if_time_tap0 = 30.000000;
 tap1 = 5.000000;
 tap2 = 5.000000;
end

Part 3: Define schedule (by guaranteed TAP name).

begin tap_schedule:
 { tap0, tap1, tap0, tap2 };
end

Part 4: Define TAPs.
begin tap:
 name: tap0
 preconds: (1)
 action: iftime_server();
end

begin tap:
 name: tap1
 preconds: ((((Decoy_deployed() == False) && (Path() == Normal))))
 action: deploy_flare_sequence();
end

begin tap:
 name: tap2
 preconds: ((((Decoy_deployed() == True) && (Path() == Normal))))
 action: begin_IR_evasive();
end

begin tap:
 name: if_time_tap0
 preconds: ((((IR_threat() == False))))
 action: notify_planner_deadend();
end

217

APPENDIX D

REAL-TIME RESPONSE IN THE PLANNING SUBSYSTEM

The plan cache was incorporated into CIRCA-II to react to dangerous situations

as they are encountered. In this dissertation, we present a simple "binary" algorithm in

which all dangerous unhandled states are built into contingency plans, and dynamic

replanning occurs only for the safe unhandled states. Realistically, we cannot presume

hard real-time plan retrieval in all situations if we require cached responses for the

exhaustive set of dangerous unhandled states. Thus, in future work, we plan to delve into

algorithms for placing bounds on plan development time. Of course, regardless of the

algorithm we define, we must still face the time-quality tradeoffs described in [51]. Our

goal, however, is to design an algorithm that makes the most "intelligent" tradeoff

possible given the state of the world at the time dynamic planning is invoked.

In this appendix, we discuss a possible algorithm for a time-bounded planner in

CIRCA-II. Incorporating a time-bounded planner is only the first step to bounding real-

time control plan development time. We must also eventually bound execution of the

other algorithms within the CIRCA-II Planning Subsystem. The real-time community

has a collection of dynamic real-time scheduling algorithms we may incorporate [37], but

worst-case time for the planner-scheduler iterations required to develop a schedulable

plan is more difficult to predict, especially since such operations may require extensive

218

planner backtracking and multiple modifications of the threshold Premoved below which

states are ignored.70

We discussed related work on real-time planning in Chapter II of this dissertation.

The two most general approaches the problem are anytime [15] and design-to-time [21]

philosophies, each of which may be applied to a variety of algorithms. We propose an

approach to limiting planner deliberation time that combines elements from these two

methods. As shown in Figure D-1, upon receipt of a state for which plans must be

developed online, the planner first computes available deliberation time. This quantity is

used in a design-to-time fashion to set up CIRCA-II planning parameters. Finally, the

planner executes using a best-first search until deliberation time (tdelib) expires. Each of

these procedures is described in more detail below.

Compute available
deliberation time
 (t

delib
)

Design-to-time:
Set planner parameters
 (p (t

delib
))

Anytime:
Plan using best-first
search until t = t

delib

initial state planned

actions +
deadlines

t
delib

t
delib

,

 P
thresh

Figure D-1. Proposed Algorithm for Limiting Planner Deliberation Time.

To compute the planner deliberation time tdelib, we plan to use the planner’s initial

"unhandled" state (fed back from the Plan Execution Subsystem) to quickly compute an

initial estimate of a planning time limit, then potentially modify this estimate based on

environment changes during planning. Since CIRCA’s main goal is always maintaining

system safety, the limiting factor for deliberation time is how long the system will be

guaranteed to remain safe executing the currently executing plan. To estimate the time to

70 One possible method for bounding planning subsystem execution is to redesign the
overall algorithm such that the scheduler is called each time a new guaranteed action is
selected. In this manner, any schedulability violation will be immediately identified and
acted on before the planner completes its state expansion process. We have not explored
this avenue sufficiently to provide more details in this dissertation.

219

failure from this initial state, CIRCA may perform a lookahead state-space projection

from this state, using all tts in the knowledge base as well as the currently executing plan

to specify action choices and timings. The nearest TTF identified with probability above

Pthresh corresponds with the deliberation time limit.71

Next, we wish to adjust planner parameters so that it expected time of completion

will be just under tdelib. We have no obvious parameters to control prior to planning

except for the probability threshold values Pthresh and Premoved (see definitions in Chapter

IV). We are already modifying Premoved dynamically to adjust probabilistic failure-

avoidance guarantees as required for plan scheduling. Additionally, Premoved does not

affect plan development at each step, but instead affects the number of states the planner

must expand during its best-first search. Thus, we propose adjusting Pthresh in accordance

with design-to-time limitations, although we have not yet computed even an approximate

algebraic relationship between Pthresh and tdelib.
72

In CIRCA-II, state expansion occurs in decreasing-probability order until all

states remaining to expand have probability less than Premoved. In the original version of

CIRCA, search proceeded depth-first, so there was no guarantee that the resulting goal

path was any more desirable than other possible goal paths. Research described in this

dissertation discusses the basic conversion to best-first search based solely on state

probability estimates. However, in this work, “best” is based completely on state

probability, with state expansion occurring in decreasing order of state probability.

71 To compute the time to the nearest ttf, we must store the cumulative minimum delay
(i.e., sum of all transition min∆ values given the currently-executing plan and its action
deadlines) leading down the path to this ttf.

72 The mapping between Pthresh and planning time is not obvious and needs further study.
This choice is proposed because augmenting Pthresh makes failure states more likely, thus
if time permits Pthresh should be minimized. However, since each "failure" state is
absorbing, an increased chance in reaching failure means new non-failure states with
probability above Premoved.

220

The planner may combine its knowledge about probabilities, temporal delays, and

proximity to failure to achieve a better measure than probabilities alone to control the

best-first search. State expansion may be ordered by decreasing utility u(sk), as shown in

Equation (D-1), where P(sk) is the probability of visiting state sk (see Chapter IV), tmin(sk)

is the minimum time before the system can reach state sk, Pfailure(sk,n) is the probability of

any failure state occurring in n (or fewer) time steps from state sk. The constants a, b, c,

and n (if constant) are as yet undetermined. By expanding states in this order, we will

plan for the most “important” states, not just the most likely states, achieving a balance

between state probability, system safety (i.e., prioritizing expansion to handle states that

can reach failure), and the time horizon considered by the planner (i.e., near-term states

are handled; far-term states will be handled by subsequent plans).

u (sk) = a * P(sk) + (b / tmin(sk)) + c * Pfailure(sk, n) (D-1)

221

APPENDIX E

TACKLING THE MULTIPLE CYCLE, MULTIPLE DTTF CHALLENGE

Figure E-1 depicts a state-space example that is not properly handled by the

probabilistic planner within CIRCA-II. This figure represents a valid plan because all

temporal transitions have sufficient delays to be preempted with guaranteed actions.

However, this plan will not be found because of the cycle leading from s3 back to s1. In

this appendix, we first describe this problem and then outline a possible solution

approach for this class of problems within both the CIRCA and CIRCA-II planners.

Figure E-1: State-space Example with Multiple Cycles and Dependent ttfs.

For the example shown in Figure E-1, CIRCA-II begins by selecting no action for

state s0. Then, when first expanding s1, CIRCA-II selects climb to avoid hit-ground and

can guarantee it will preempt hit-ground since it is not yet a dependent temporal

transition. However, upon expanding s3, CIRCA-II must select a preemptive action that

forms a cycle back to s1. CIRCA-II then re-expands s1 and determines hit-ground is

dependent and may occur more quickly than previously thought (since the initial delay

between transitioning to the low altitude and crashing may have evaporated during the s1-

INITIAL:
Alt = High
Traf = No

Alt = High
Traf = Yes

Failure
traffic avoid-

obstacle

hit-ground &
hit-obstacle

hit-ground

lose-altitude

lose-altitude

Alt = Low
Traf = No

Alt = Low
Traf = Yes

traffic

climb

avoid-
obstacle

hit-obstacle

s0 s1

s3s2

Features and Values:
Altitude (Alt) =
 {High, Low}
Traffic (Traf) =
 {Yes, No }

temporal

action

Transition key:

222

s3- s1 cycle traversal). For this example, after one cycle traversal, the system still has

time to execute climb and return to safe state s0. However, if traffic occurs before climb

completes, the system will again be thrown into s3 and the remaining safety margin

before hit-ground can occur disappears before the s3->s1 transition again completes, thus

the planner fails. We have previously said there is a non-zero delay between the time a

transition is first active and when it could occur. From the s0-s1 path, this delay may have

evaporated since traffic is also active in s0. However, along the cyclic path returning

from s3, this delay is again available since traffic is not active in s3, thus the guaranteed

action climb will then preempt both hit-ground and traffic and return safely to state s0.

This problem surfaces because both CIRCA and CIRCA-II are combining the

effects of all parent paths in order to minimize the state-space size. CIRCA-II

incorporates all parent path effects using the weighted-average algorithms described in

Chapter IV for both state probability and ttf preemption timing computations while

CIRCA presumes worst-case properties (e.g., smallest ttf minimum delays; maximum

preemptive action delays) every state transition, including dtts.

To solve state-spaces similar to that in Figure E-1, CIRCA and CIRCA-II must

distinguish between the effects of entering state s1 from parent s0 versus s3 because these

two paths result in different temporal constraints that ultimately give the appearance that

preempting hit-ground from s1 is impossible. When CIRCA-II identifies such a situation

in which individual parent states impose more restrictive constraints together than would

be imposed due to each individual parent, we propose that the planner mark this state as a

candidate for splitting into two states with a special feature used to identify the parent(s)

for that state. Then, if timing constraints appear to be impossible to satisfy,73 the state

73 Constraints will be impossible to satisfy immediately for this example, but could
require relaxation subsequently if scheduling difficulties arise.

223

would actually be split, with each of the split states requiring only preemption of its

parent, not the conglomerate set of parents into that original state.

For this example, splitting s1 will allow the planner to accurately determine that it

can guarantee ttf preemption using the one action that leads from s1 back to s0. However,

in general, the two states resulting from a split may require different actions. This is not

a problem for state-expansion because the parent reference feature value specified for a

split state acts as any other feature. However, during TAP development and plan

execution, the only way to detect the value for the parent feature (and thereby execute the

appropriate response) is to have sensed and stored the previous state, a function that is not

straightforward to implement given the current TAP plan structure. We have not yet

given careful thought to the tradeoffs involved or the mechanisms required for storing

any previous state history within the CIRCA-II Plan Execution Subsystem.

224

BIBLIOGRAPHY

225

BIBLIOGRAPHY

[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, QoS Negotiation in Real-Time
Systems and Its Application to Automated Flight Control, in: Proceedings of the
Third IEEE Real-time Technology and Applications Symposium, Montreal, Canada
(1997) 228-238.

[2] T. F. Abdelzaher, A. Shaikh, F. Jahanian, and K. G. Shin, RTCAST: Lightweight
Multicast for Real-time Process Groups, in: Proceedings of the Second IEEE Real-
time Technology and Applications Symposium, Boston, Massachusetts (1996).

[3] T. F. Abdelzaher and K. G. Shin, Optimal Combined Task and Message Scheduling
in Distributed Real-time Systems, in: Proceedings of the Sixteenth IEEE Real-time
Systems Symposium, Pisa, Italy, (1995) 162-171.

[4] J. Arnold, Dynamic Backtracking and Goal Decomposition in CIRCA-II, Technical
Report in progress, University of Michigan.

[5] E. M. Atkins, T. F. Abdelzaher, K. G. Shin, and E. H. Durfee, Planning and
Resource Allocation for Hard Real-time, Fault-Tolerant Plan Execution, in:
Proceedings of the Third International Conference on Autonomous Agents, Seattle,
Washington (1999) 244-251.

[6] E. M. Atkins, R. H. Miller, T. VanPelt, K. D. Shaw, W. B. Ribbens, P. D.
Washabaugh, and D. S. Bernstein, Solus: An Autonomous Aircraft for Flight
Control and Trajectory Planning Research, in: Proceedings of the American
Control Conference, Philadelphia, Pennsylvania, 2 (1998) 689-693.

[7] E. M. Atkins, E. H. Durfee, and K. G. Shin, Detecting and Reacting to Unplanned-
for World States, in: Proceedings of the Fourteenth National Conference on
Artificial Intelligence, Providence, Rhode Island, (1997) 571-576.

[8] E. M. Atkins, E. H. Durfee, and K. G. Shin, Plan Development in CIRCA using

Local Probabilistic Models, in: Uncertainty in Artificial Intelligence: Proceedings

of the Twelfth Conference, Portland, Oregon, (1996) 49-56.

[9] R. P. Bonasso, H. J. Antonisse, and M. G. Slack, Reactive Robot System for Find
and Fetch Tasks in an Outdoor Environment, in: Proceedings of the Tenth National

Conference on Artificial Intelligence, San Jose, California, (1992) 801-808.

226

[10] C. Boutilier and R. Dearden, Using Abstractions for Decision-Theoretic Planning
with Time Constraints, in: Proceedings of the Twelfth National Conference on

Artificial Intelligence, Seattle, Washington, (1994) 1016-1022.

[11] C. Boutilier, T. Dean, and S. Hanks, Decision-Theoretic Planning: Structural
Assumptions and Computational Leverage, to appear in: Journal of Artificial

Intelligence Research (JAIR).

[12] D. J. Brudnicki and D. B. Kirk, Trajectory Modeling for Automated En Route Air
Traffic Control (AERA), Proceedings of the American Control Conference (1995)
3425-3429.

[13] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, Acting Optimally in Partially
Observable Stochastic Domains, Proceedings of the Twelfth National Conference on

Artificial Intelligence, Seattle, Washington, (1994).

[14] T. Dean, R. Givan, and K. Kim, Solving Stochastic Planning Problems with Large
State and Action Spaces, Proceedings of the Fourth International Conference on

Artificial Intelligence Planning Systems, Pittsburgh, Pennsylvania, (1998).

[15] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson, Planning under Time

Constraints in Stochastic Domains, Artificial Intelligence 76(1-2) (1995) 35-74.

[16] J. L. Devore, Probability and Statistics for Engineering and the Sciences, Second
Edition (Wadsworth, Inc., Belmont, California 1987).

[17] E. Gat, Three-Layer Architectures, in: Artificial Intelligence and Mobile Robotics

(MIT Press, Cambridge, Massachusetts 1998).

[18] R. E. Fikes and N. J. Nilsson, STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving, Artificial Intelligence 2(3-4)(1971) 189-208.

[19] R. J. Firby, An Investigation into Reactive Planning in Complex Domains, in:
Proceedings of the National Conference on Artificial Intelligence (1987) 202-206.

[20] A. Garvey, K. Decker, and V. Lesser, A Negotiation-based Interface Between a
Real-time Scheduler and a Decision-Maker. Technical Report 94-08, University of

Massachusetts Department of Computer Science (1994).

[21] A. Garvey and V. Lesser, Design-to-time real-time scheduling, IEEE Transactions

on Systems, Man and Cybernetics 23(6)(1993) 1491-1502.

227

[22] E. Gat, Integrating Planning and Reacting in a Heterogeneous Asynchronous
Architecture for Mobil Robots, SIGART Bulletin 2(1991) 70-74.

[23] M. L. Ginsberg, Universal Planning: An (Almost) Universally Bad Idea, AI

Magazine, 10(4)(1989).

[24] M. L. Ginsberg, Dynamic Backtracking, Journal of Artificial Intelligence Research

1(1993) 25-46.

[25] R. Goldman, D. Musliner, K. Krebsbach, and M. Boddy, Dynamic Abstraction
Planning, in: Proceedings of the Fourteenth National Conference on Artificial

Intelligence, Providence, Rhode Island, (1997) 680-686.

[26] R. Goldman, M. Pelican, and D. Musliner, Hard Real-time Mode Logic Synthesis
for Hybrid Control: A CIRCA-based Approach, Working Notes of the AAAI

Symposium on Hybrid Control (1999).

[27] L. Greenwald and T. Dean, Solving Time-Critical Decision-Making Problems with
Predictable Computational Demands, in: Proceedings of the Second International

Conference on AI Planning Systems (1994).

[28] K. Hammond, Case-Based Planning: Viewing Planning as a Memory Task,

(Academic Press, New York 1989).

[29] S. Hanks, and D. McDermott, Modeling a Dynamic and Uncertain World:
Symbolic and Probabilistic Reasoning About Change, Artificial Intelligence

66(1)(1994) 1-55.

[30] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, SPUDD: Stochastic Planning using
Decision Diagrams, to appear in the Proceedings of the Uncertainty in Artificial

Intelligence (UAI) Conference (1999).

[31] E. Horvitz and M. Barry, Display of Information for Time-Critical Decision
Making, Uncertainty in Artificial Intelligence: Proceedings of the Eleventh

Conference (August 1995).

[32] F. F. Ingrand, R. Chatila, R. Alami, and F. Robert, PRS: A High Level Supervision

and Control Language for Autonomous Mobile Robots, in: Proceedings of the

Thirteenth IEEE International Conference on Robotics and Automation,

Minneapolis, Minnesota, 1 (1996) 43-49.

228

[33] F. F. Ingrand and M. P. Georgeff, "Managing Deliberation and Reasoning in Real-
Time AI Systems," in Proceedings of the Workshop on Innovative Approaches to
Planning, Scheduling and Control, (November 1990) 284-291.

[34] R. Jones, J. Laird, and P. Nielsen, Automated Intelligent Pilots for Combat Flight

Simulation, in: Proceedings of the Tenth Conference on Innovative Applications of

Artificial Intelligence, Madison, Wisconsin, (1998) 1047-1054.

[35] J. Juang, Applied System Identification, (Prentice-Hall, Englewood Cliffs, New
Jersey 1994).

[36] J. G. Kemeny, and J. L. Snell, Finite Markov Chains (1960).

[37] C. M. Krishna and K. G. Shin, Real-Time Systems, (McGraw-Hill, New York 1997).

[38] B. C. Kuo, Automatic Control Systems, sixth edition (Prentice-Hall, Englewood

Cliffs, New Jersey 1991).

[39] N. Kushmerick, S. Hanks, and D. Weld, An Algorithm for Probabilistic Planning,
in: Proceedings of the Twelfth National Conference on Artificial Intelligence

(1994) 1073-1078.

[40] J. E. Laird, A. Newell, and P. S. Rosenbloom, SOAR: An Architecture for General
Intelligence, Artificial Intelligence, 33(1)(1987) 1-64.

[41] D. A. Lawrence and W. J. Rugh, Gain Scheduling Dynamic Linear Controllers for a
Nonlinear Plant, Automatica, 31(3)(March 1995) 381-390.

[42] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation,
(Prentice-Hall, Englewood Cliffs, New Jersey 1981).

[43] H. Li, A Minimal Temporally-Dependent Probabilistic World Model Using

Temporally-Independent States, Directed Study Report, University of Michigan
(May 1999).

[44] S. Liden, The Evolution of Flight Management Systems, Proceedings of the 1994

IEEE/AIAA Thirteenth Digital Avionics Systems Conference, (1995) 157-169.

[45] M. L. Littman, T. L. Dean, and L. P. Kaelbling, On the Complexity of Solving
Markov Decision Problems, in: Proceedings of the Thirteenth National Conference

on Artificial Intelligence (1995).

229

[46] D. G. Luenberger, Introduction to Dynamic Systems: Theory, Models and

Applications. (Wiley, New York 1978).

[47] C. B. McVey, E. M. Atkins, E. H. Durfee, and K. G. Shin, Development of Iterative
Scheduler to Planner Feedback, in: Proceedings of the International Joint
Conference on Artificial Intelligence, (1997) 1267-1272.

[48] R. H. Miller and W. B. Ribbens, The Effects of Icing on the Longitudinal Dynamics
of an Icing Research Aircraft, Number 99-0636 in 37th Aerospace Sciences, AIAA
(American Institute of Aeronautics and Astronautics) (January 1999).

[49] R. H. Miller and W. B. Ribbens, Detection of the Loss of Elevator Effectiveness due
to Aircraft Icing, Number 99-0637 in 37th Aerospace Sciences, AIAA (American
Institute of Aeronautics and Astronautics) (January 1999).

[50] N. Muscettola, P. Nayak, B. Pell, B. Williams, Remote Agent: To Boldly Go where
no AI System has gone Before, Artificial Intelligence 103(1/2)(August 1998).

[51] D. J. Musliner, E. H. Durfee, and K. G. Shin, World Modeling for the Dynamic
Construction of Real-Time Control Plans, Artificial Intelligence, 74(1) (1995) 83-
127.

[52] D. J. Musliner, Scheduling Issues Arising from Automated Real-Time System
Design. University of Maryland Department of Computer Science Technical Report

CS-TR 3364, UMIACS-TR-94-118.

[53] D. J. Musliner, CIRCA: The Cooperative Intelligent Real-Time Control

Architecture. University of Michigan Department of EECS, CSE Division Technical

Report, CSE-TR-175-93.

[54] D. J. Musliner, Predictive Sufficiency and the Use of Stored Internal State, in:
Proceedings of the Conference on Intelligent Robotics in Field, Factory, Service,

and Space, Houston TX (1994) 298-305.

[55] B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscettola, P. Nayak, M. Wagner, and B.
Williams, Autonomous Spacecraft Agent Prototype, Autonomous Robots 5(1)
(1998) 29-52.

[56] T. Peng, K. G. Shin, and T. F. Abdelzaher, Assignment and Scheduling of
Communicating Periodic Tasks in Distributed Real-time Systems, IEEE

Transactions on Parallel and Distributed Systems, 8(12) (1997).

[57] J. R. Quinlan, Induction of Decision Trees, Machine Learning 1(1986) 81-106.

230

[58] R. Rainey, ACM: The Aerial Combat Simulation for X11,
(http://www.websimulations.com).

[59] O. R. Reynolds, H. Pachter, and C. H. Houpis, Full Envelope Flight Control System
Design using Qualitative Feedback Theory, Journal of Guidance, Control, and

Dynamics, 29(1)(1996) 23-29.

[60] J. Rowland, Linear Control Systems: Modeling, Analysis, and Design (Wiley, New
York 1986).

[61] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Prentice-
Hall, New Jersey 1995).

[62] S. Russell and D. Subramanian, Provably Bounded-Optimal Agents, Journal of

Artificial Intelligence Research 2(1995) 575-609.

[63] M. J. Schoppers, Universal Plans for Reactive Robots in Unpredictable
Environments, in: Proceedings of the International Joint Conference on Artificial

Intelligence, (1987) 1039-1046.

[64] J. Schreur, B737 Flight Management Computer Flight Plan Trajectory Computation
and Analysis, Proceedings of the American Control Conference, (1995) 3419-3429.

[65] J. Shapiro, Implementing CIRCA-II on the QNX Real-time Operating System,
Technical Report in progress, University of Michigan.

[66] T. Shepard and M. Gagne, A Pre-Run-Time Scheduling Algorithm for Hard Real-
time Systems, IEEE Transactions on Software Engineering, 17(7)(July 1991) 669-
677.

[67] R. A. Slattery, Terminal Area Trajectory Synthesis for Air Traffic Control
Automation, Proceedings of the American Control Conference, (June 1995) 1206-
1210.

[68] M. J. Stefik, Introduction to Knowledge Systems. (Morgan Kaufmann, San
Francisco, California 1995).

[69] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G. Kaminka, S. Marsella, and I.

Muslea, Building Agent Teams using an Explicit Teamwork Model and Learning, to
appear in Artificial Intelligence (1999).

231

[70] T. Wagner, A. Garvey, V. Lesser, Criteria-Directed Task Scheduling, International

Journal of Approximate Reasoning 19(1/2)(1998) 91-118.

[71] E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley, Planning and Reacting
in Uncertain and Dynamic Environments, Journal of Experimental and Theoretical

AI, 7(1)(1995) 197-227.

[72] J. Xu and D. L. Parnas, Scheduling Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations, IEEE Transactions on Software Engineering,
SE-16(3)(March 1990) 360-369.

[73] J. Xu, Multiprocessor Scheduling of Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations, IEEE Transactions on Parallel and

Distributed Systems, 8(12)(December 1997).

[74] S. Zilberstein and S. Russell, Optimal Composition of Real-time Systems, Artificial

Intelligence 82(1/2)(April 1996) 181-213.

[75] S. Zilberstein, Using Anytime Algorithms in Intelligent Systems, AI Magazine

17(3)(1996) 73-83.

