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CHAPTER 1
INTRODUCTION

The goal of this dissertation is to introduce techniques for reasoning within an
integrated plan generation and execution system and to apply Othese methods to the
problem of safe, fully-autonomous operation within a complex real-time domain. Such a
system has /imited computational resources and may be required to utilize imprecise
knowledge to build potentially incomplete plans that must execute in hard real-time. In
this thesis, we describe methods for handling these constraints during plan development
and execution. We focus on mechanisms to detect and respond in a timely fashion when
the environment deviates into an area not handled within an executing plan, and explicitly
make the tradeoffs required to ensure that each plan will not overutilize resources when

executed, thereby guaranteeing avoidance of all (modeled) catastrophic failure modes.

Motivation

Autonomous behavior in complex real-world systems requires accurate and
timely reactions to environmental events. These reactions must prevent all catastrophic
failures such as loss-of-life and should ultimately achieve mission goals such as arriving
at a destination on-time. Timely and accurate responses for a complex domain may
require a significant amount of computational resources, regardless of whether such
responses are pre-programmed or dynamically selected as the agent acts within its
environment. As processor speed and algorithm efficiency increase, it is tempting to
presume that resource limitations are not an issue because they can always be combated

with a bigger, faster system. However, the exponentially-complex search-based planning



and scheduling algorithms typically utilized to impart "intelligence" to a complex
autonomous system can quickly consume all such resources, as can the storage and
retrieval-time requirements for reactions in strictly plan-execution systems. Additionally,
hardware upgrades are not easily performed in unfriendly, resource-limiting
environments (e.g., space, underwater).

If neither dynamic planning nor plan-retrieval systems can alone be expected to
respond to the spectrum of situations that may be encountered, then one alternative is to
combine the two techniques, which has been done in several hierarchical architectures
that are often mapped to a generic 3-tier [17] conceptual framework illustrated in Figure
1-1. We adopt such a multi-layer concept in this work. Our top deliberation level
reasons about guaranteed real-time failure avoidance while building plans, then those
plans execute in hard real-time on the plan-execution layer, with specific directives
included to recognize and react as the system progressively deviates from the nominal
environment for which the plan was constructed. Our "reactive" layer is comprised of the
low-level algorithms required to interact with a [possibly continuous-time] complex
environment. Overall, this design results in a flexible, hard real-time execution system
that exhibits graceful performance degradation when computational resources are

overloaded.

Planning ) .
(Deliberation) <4—>» Plan Execution 4—p Reactive

Layer Layer Layer

Figure 1-1: Three-tier (3-T) Architecture Concept.

Maintaining close ties with an application domain ensures that our algorithms
have practical use and, in parallel, addresses key automation issues within that specific
application. In this thesis, we ground our discussions with examples and challenging

problems associated with achieving safe, fully-automated commercial aircraft flight, in



which the "simple" overall goal is to take off and safely fly to some destination airport.

In order to fully automate the tasks currently performed by the cockpit crew, the system
must be capable of analyzing and responding to a diverse set of sensory data input,
ranging from atmospheric conditions to other air traffic to detectable aircraft system
failures. Additionally, flight is inherently hard real-time: no "indefinitely safe" state set
exists once the aircraft leaves the ground because it cannot simply "stop in mid-air" while
planning its next course of action. To tackle such a problem, a system must be capable of
reasoning about a large array of complex environmental features to select reactions for
each potential in-flight situation and also compute and enforce associated real-time
deadlines so that the plane will not crash before the need to act was even detected.

Fortunately, techniques for automatic flight control are well developed and may
be utilized versus redesigned when taking the final steps to fully automate the cockpit.
Current flight management systems [44],[64] are capable of automatically flying an
aircraft from takeoff through landing, with the cockpit crew dialing in course/destination
changes and monitoring the progress of flight. Thus, if considering only nominal
situations, full automation is possible today. However, such a system cannot be
considered "safe" until it reacts to all dangerous situations for which the nominal plan is
insufficient.

As a simple example, consider a situation in which adverse weather conditions
arise at the destination airport. Once the problem has been identified, an appropriate
contingency response is to automatically re-route to an alternate airport, thereby averting
the problem. This specific behavior may easily be built into existing flight management
systems; however, devising a comprehensive set of such reactions is much more difficult.
For example, consider a more time-critical and low-probability event, such as the
situation that occurred near Sioux City, lowa, when engine parts violently flew off the
aircraft and severed all hydraulic lines. The required response to such a situation is

specific to the current aircraft state (e.g., altitude, bank/pitch angle, terrain, fuel, and



aircraft controllability parameters). Furthermore, this situation would have been difficult
to consider possible in advance because redundant backup systems were present and no
such situation had previously been recorded. By handling imprecise knowledge and
incomplete plans, we will illustrate how our architecture can be used to detect and
respond to such unlikely and dangerous situations, and also how such safety-critical

reactions will occur in time to avert an aircraft crash.

What's in a Plan?

For Al researchers, the term plan may refer to either an action sequence or else a
policy that applies to a group of world states. Due to our veritable obsession with hard
real-time plan execution, our plans must include more than constructs for matching
actions to states. This section is devoted to disambiguating the definition of "plan" that
we will presume throughout this dissertation.

Figure 1-2 illustrates two of the most popular interpretations of a plan. Figure 1-
2a shows a STRIPS [18] plan, a traditional format produced by numerous state-space and
plan-space planners. This specification is appropriate when actions must be strictly
executed in a predefined sequence. The STRIPS plan structure does not rely on active
sensing during plan execution, implying there can be no uncertainty about when or in
what order actions should execute. Figure 1-2b illustrates a policy representation such as
that generated by a traditional Markov Decision Process (MDP) [11]. In this model, there
is uncertainty regarding the exact progression of states that will be encountered, so the set
of current state features must be sensed and matched to the correct action to execute next.
As a result, reaction times to environmental events are a function of the total time

required to identify the current state, find the appropriate action, then execute that action.
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b) Hard-real-time Control Plan.

Figure 1-3: Evolution of the Real-time Control Plan.

Because we allow uncertainty about the progression of world states, we must

sense state features to select appropriate actions during plan execution. However, we

also require that the complete sense-act loop execute in hard real-time for failure-

avoidance purposes. To define our control plans, consider an MDP policy as the initial



representation. Now, in order to increase efficiency for matching the current world state
to an action, consider a new format in which the policy is post-processed so that a set of
general "preconditions", not fully-instantiated states, is used to uniquely match each
reachable state to a policy action. This "minimized-precondition" policy representation is
shown in Figure 1-3a.'

In a policy where the exact sequence of states cannot be predicted, the
"minimized-preconditions" for executing each action must be checked periodically, with
each action executing whenever its preconditions match. Otherwise, the action may never
execute in a state where it has been planned. This plan structure suggests a loop over the
precondition-action pairs to identify and execute the proper action for each state. A cycle
through the plan-loop will not execute instantaneously, so we must structure the plan so
that each action's preconditions will be tested with sufficient frequency to guarantee
avoiding any failures that might occur should action execution delay too long.

If all actions are required for failure-avoidance and all actions have the same real-
time execution deadlines for failure-avoidance, then the best we could do is to cycle
through the plan-loop as-is. However, typically, only certain actions are required for
failure-avoidance while others are used only for goal-achievement. We attach to each
action the worst-case timing requirements for guaranteed failure-avoidance, and classify
all actions with specified worst-case timings as "guaranteed" while all others are "best-
effort", as illustrated in Figure 1-3b. Now, if all guaranteed actions have the same worst-
case timing requirements, we can execute the "plan-loop" over all guaranteed actions,
inserting best-effort actions into slack time intervals when available. However, in

general, the guaranteed actions may have a very diverse set of real-time requirements.

" In the worst-case, the minimized precondition will be equivalent to observing all state
features. Generally, however, nontrivial feature-sensing activities can be reduced with
the minimized-precondition format.



Thus, instead of looping over each action in the guaranteed set, we may maximize our
ability to guarantee that all execute in time by explicitly scheduling these actions in
accordance with their resource requirements and real-time deadlines.

Figure 1-3b includes a cyclic schedule that specifies the "plan-loop" for the set of
guaranteed actions for this plan. We define a task as the combination of the minimized-
precondition feature tests for the action as well as the action itself. For guaranteed
performance, this schedule must be built assuming worst-case task resource consumption,
and must verify that all real-time constraints for the associated action will be met during
execution.

For this dissertation, we define a plan as the Figure 1-3b combination of a
minimized-precondition task set and cyclic task schedule that guarantees real-time
failure-avoidance during plan execution. Figure 1-4 shows the generic components
required for generating and executing a real-time plan, including a planner, task
scheduler, and plan executor with predictable worst-case task execution properties.
During execution, highest priority will be given to timely execution of the guaranteed
cyclic task schedule, then any lower-priority best-effort tasks will be dynamically
inserted into any slack-time intervals, as is done in traditional real-time task execution

models [37].

Deliberation Layer

.......................

Planner
Execution Layer

I i PLAN ) Real-time
: Plan Executor

Real-time
Scheduler

.
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Figure 1-4: Architecture for Generating and Executing Real-time Plans.



Problem Statement

This dissertation addresses the problem of successfully constructing and
executing these real-time control plans in a complex system with incomplete domain
knowledge, limited resources, and a dangerous environment in which missing a deadline
may be quite deadly. Such catastrophic system failure is typically avoided in other
planning, scheduling, and plan execution systems by making restrictive assumptions
about resource availability and knowledge base extent. We relax these assumptions to
better reflect a real-world environment, but are then forced to perform tradeoffs in
ensuring safety and goal completion.

Guarantees of safety and goal completion on a system with limited computational
resources are problematic. Additionally, traditional planners assume sufficient memory
and time will always be available, and thus do not even address resource limits. When a
planner proposes a set of tasks with real-time constraints (i.e., deadlines), a scheduler
may find it impossible to fit all tasks into the fixed set of plan-execution resources. One
approach to this problem is to modify this set of tasks to reduce plan resource
requirements, but traditional real-time schedulers are not able to reason about the
environmental implications of such modifications. Our architecture adopts this approach
by prioritizing safety over goal completion during planning, and by providing for clear
communication between scheduler and planner to allow negotiation between the two
when required. Our planner is thus able to intelligently direct tradeoffs necessary to
satisfy scheduling requirements as well as ensure overall safety.

An absolutely safe plan may, however, still be incompatible with limited
resources operating in a dangerous environment where hard real-time guarantees must be
met to avoid failure. In this case, we may be required to relax absolute safety guarantees
to probabilistic guarantees, especially in a domain with a variety of diverse failure modes

having calculable or empirically derived probabilities. Our planner will thus incorporate



flexible parameters, such as a probability threshold below which unlikely states are
ignored, that can be dynamically modified to reduce scheduling requirements. Solving
the problem of estimating the probabilities of various contingencies arising and
establishing an appropriate threshold will allow graceful performance degradation even
with severely constrained resources. The tradeoff associated with probabilistic
guarantees is that an executing plan may stumble into a state that has been considered
improbable, thus not planned for, and the system must be equipped to “find its way out”.
Incomplete domain knowledge generates a similar situation in which an executing
plan may reach an unexpected state, i.e., one it had no knowledge of, from which it
cannot continue. This incompleteness derives from two sources: First, plans are
constructed using a stochastic model of world events, which is common for probabilistic
planning algorithms but does not precisely specify the sequence of states that is expected
to occur. Second, we allow for an incomplete domain description since this is often the
case for real-world systems.” Such incomplete knowledge leads to incomplete plans,
which in turn may result in reaching unexpected states during plan execution.
Encounters with these unexpected or unplanned-for states are addressed by
requiring our system to recognize and react when the world (i.e., environment) enters a
state not handled within the executing plan. Thus, for a resource-limited system, the
problem is to design a system that knows its limits and devotes sufficient resources to
watching for such situations; in a sense it must "expect the unexpected". Otherwise,
catastrophic failure may occur without the system ever noticing (e.g., an office robot
without knowledge of terrain may happily drive off a cliff). Reacting to such state ties
together all components within the generic Figure 1-4 architecture, a version of which we

adopt in this dissertation. In our system, we must build actions into each plan to initially

> We do, however, require a model for all events that lead quickly to catastrophic failure.
Otherwise, we would not even be able to identify all dangerous situations.
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recognize each anomalous state, then the planner and scheduler must advise the executor,
via a new plan, of an appropriate reaction. This must be done in real-time if a failure-

avoidance reaction is required.

Approach

We utilize a combination of planning, scheduling, and real-time plan execution
algorithms to achieve safe, autonomous operation of a complex system. We place
primary emphasis on failure-avoidance by computing and adhering to hard real-time
deadlines that allow failure-avoidance guarantees. However, since we also emphasize
practical issues associated with automating complex systems, we must allow for tradeoffs
when it impossible to simultaneously guarantee safety along with all other mission goals.
Thus, we place secondary emphasis on goal-achievement, requiring only best-effort (soft
real-time) execution of tasks that are not safety-critical.

Because of the difficulties in simultaneously achieving timeliness and accuracy
while performing search-based planning and scheduling operations, our system adopts
the philosophy that the planner and scheduler should reason about real-time, and be
carefully designed such that it need not be constrained to reason in real-time. Developed
plans are specified so that, when executed, they will be guaranteed to meet all safety-
critical hard real-time deadlines. This approach may be debated because in the worst
case, a universal plan set [63] is infeasible to create [23] and even more difficult to
execute under hard real-time constraints, thus any fixed set of reactive plans may be
constrained such that dynamic updates (replanning) may be required, even to avoid
catastrophic failure. Our system explicitly reasons offline about how to minimize the
likelihood of catastrophic failures, not by assuming "indefinite safety" during execution
of each plan, but instead by caching a group of contingency plans that are specifically

designed to redirect the system into a temporarily-safe set of states (e.g., a holding pattern
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for an aircraft) that maximize the amount of time the planner has to replan (e.g., develop
a new route to an alternate airport).

A key aspect of our approach is the consideration of imprecise knowledge during
planning. We utilize a probabilistic model to represent world events, and additionally
incorporate algorithms that allow recovery of the system even if this external event model
is incomplete or incorrect. However, in order to allow any assurances of failure
avoidance, we must place some restrictions on knowledge accuracy. Otherwise, system
behavior may be random at best, destructive in the worst-case. In our system, we assume
that all features are fully-observable, although a non-trivial [bounded] set of resources
may be required to actively determine feature values. We also assume specified actions
will always execute safely, given that they are only executed when their preconditions
match the current state. In this manner, we allow imprecise knowledge about external
events, but require precise knowledge about the system itself and its ability to act on the
environment.

We did not develop a new architecture for this research, maximizing our ability to
incorporate existing architectural capabilities as well as avoiding introduction of yet
another member to the already-overpopulated "Al architectures" cauldron. Instead, we
built upon the Cooperative Intelligent Real-time Control Architecture (CIRCA) [51],[53]
which combines planning, scheduling, and plan execution to enable hard real-time system
response for plan execution, thus already addressing many of the integrated
planning/execution coordination issues demanded for a fully-autonomous system. We
have added new capabilities and relaxed several restrictive assumptions (e.g., accurate,
complete knowledge and "indefinite safety" during plan-execution), resulting in a
"second-generation" system we aptly entitle "CIRCA-II".

Both CIRCA and CIRCA-II approach automation problems by requiring
guaranteed failure-avoidance and giving secondary consideration to goal-achievement.

Instead of directly addressing issues of optimality across the overall hybrid
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planning/execution system, CIRCA-II explicitly divides available computational
resources into two distinct groups: planning and plan execution. For this work, the set of
planner/scheduler computational resources is presumed to be sufficient, given that no
real-time constraints on deliberation have been imposed.> Then, plan-execution resources
are explicitly scheduled to allow hard real-time response for guaranteed failure-
avoidance. In this manner, CIRCA and CIRCA-II are able to make failure-avoidance
guarantees by constructing and scheduling plans offline that require hard real-time
response, requiring online construction of new plans only if the original plan set does not
accomplish all secondary goals (e.g., compute a route to an alternate airport after an
immediate turn to avoid adverse weather that could jeopardize aircraft safety).

Although we do not explicitly limit planning resource usage, we have developed a
temporal model for planning that minimizes resource usage via a cyclic state-space
representation and an abbreviated state transition set. This temporal model uses time-
dependent event probabilities to compute state probabilities during planning.
Additionally, the planner determines plan-execution timing constraints from "dangerous"
event parameters along with action worst-case execution times. The popular Markov
Decision Process (MDP) planners [11] provide a framework for optimal policy
construction using a probabilistic transition model, and our approximate temporal model
used for CIRCA-II planning is often compared to this approach. Ideally, CIRCA-II
would incorporate an MDP planner, and then plans would be optimal whereas CIRCA-
II's current plans are only sufficient. However, the MDP becomes highly complex for
our problem because it must be augmented to consider action deadlines and state history

(path) information as is currently done within our planner. We describe the MDP model

? A crucial element of future development for CIRCA-II is to explicitly consider resource
constraints within planning/scheduling themselves, particularly when real-time
constraints for online deliberation must be imposed. Although no such algorithms have
yet been fully developed, this topic is discussed in Appendix D of this dissertation.
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in Chapter II, then revisit the comparison of our approach to the MDP model in Chapter
IV of this dissertation.

In addition to constructing plans and determining their real-time constraints, the
CIRCA-II planning system must also be able to make tradeoffs when a plan cannot be
successfully scheduled to meet these constraints. We always bias the system to favor
safety over goal achievement; thus we begin by enforcing real-time constraints
exclusively for failure-avoidance tasks. Even with this bias, all preemptive tasks sets
developed through exhaustive planner backtracking may still be unschedulable. In this
case, the original CIRCA would simply fail. However, we utilize our probabilistic
temporal model to relax real-time constraints such that absolute guarantees become
probabilistic, thereby allowing a non-zero chance of failure, but certainly a better chance
of success than if the planner simply "gave up" because absolute guarantees were
impossible to achieve.

Whenever a given set of actions cannot be scheduled, the set of actions must be
modified. Because the planner and scheduler perform different functions, it is not
straightforward for the scheduler to specify information that will guide the planner
toward a schedulable plan. We first approached this problem by testing the ability of the
planner to estimate its probabilistic guarantee requirements based on overall processor
utilization, and have further adopted a heuristic cost-function approach so that the planner
is directed to modify or replace specific "bottleneck" tasks during backtracking. We
continue work on this problem to improve our heuristic for selecting bottleneck tasks, and
have begun work to identify how the scheduler may alter task Quality-of-Service (QoS)
levels to make tradeoffs that complement planner backtracking to alter the planned task
set.

Once the set of carefully-scheduled plans have been developed, the plan-
execution system must execute them such that all specified real-time constraints are met.

We allow execution of incomplete plans, where "incomplete" means there may exist
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reachable state(s) that are not handled within the executing plan. For some "unplanned-
for" states, the system may be able to continue blindly executing its plan without
compromising safety. In other states, the system may need to recognize it has deviated
from the planned-for state set and request help before safety is compromised. To do this
in CIRCA-II, we require that the planner identify and build tests to detect important
"unplanned-for" states, and that the execution system must be able to recall prebuilt plans

to react to these states in hard real-time when necessary.

Contributions

The contributions of this thesis are directed toward the development of algorithms
for the CIRCA-II architecture and demonstration of their use for enhancing safety in
fully-automated domains. However, many of these algorithms and systems have general
application to the Al, real-time, and aircraft automation communities. For the
probabilistic planning community, this thesis presents a novel discrete-time probabilistic
planning approach that requires substantially fewer resources than an MDP-based system
at the cost of plan optimality. From a multi-layer architectures perspective, this thesis
describes how a system can automatically build tests for and subsequently react to
"unhandled" states, in real time when required. CIRCA-II must incorporate an integrated
planning-scheduling system to enable real-time guarantees. This thesis also explores
efficient and expressive communication protocols between distinct Al planning and
traditional real-time scheduling algorithms to assist with the tradeoffs required when
scheduling a proposed plan does not succeed. Finally, this thesis studies the application
of all CIRCA-II techniques toward the ultimate goal of safe, fully-automated aircraft
flight, and describes the flexible simulation and actual hardware testbeds that have
already become an integral part of funded industrial research efforts. We describe

pertinent details of each contribution in terms of CIRCA-II below.
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Probabilistic Planning

We have developed and incorporated into CIRCA-II a temporal model that
represents the state-space probabilistically and compactly, allowing for time-dependent
state transition probabilities and non-trivial feature observation delays. As in CIRCA, we
maintain the ability of the planner to compute preemptive task requirements for
guaranteed failure avoidance. Additionally, we incorporate the ability to identify and
ignore low-probability states when scheduling fails, enabling graceful performance
degradation by trading off absolute failure-avoidance guarantees in favor of probabilistic
safety guarantees when required.

Our temporal model uses a discrete time representation to describe transition and
state probabilities, along with a cyclic state-space representation to minimize planning
memory and time requirements. This model can show substantial representational and
computational efficiency gains over Markov-based models but to-date contains no
principled methodology for measuring solution optimality. Although not perfect, this
introduces an alternative to the MDP community, which we hope will as a minimum
rekindle discussions of when to use state-space planners rather than MDPs for complex,

probabilistic problem domains.

Multi-layer Architectures

Incomplete plans are inevitable with imprecise knowledge and low-probability
states that are either ignored or unmodeled. A plan-execution system cannot be expected
to automatically "know" when it has deviated from the "planned-for" state set, so we have
augmented the CIRCA-II planner such that it builds active perception tasks into each plan
to detect crucial "unplanned-for" states, including those that may ultimately lead to
catastrophic system failure. The planner also builds contingency plans to handle the

"dangerous" subset of these unplanned-for states in real-time should they actually be
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encountered, and is capable of dynamic replanning when the plan-execution system feeds
back an unplanned-for state that has not been completely handled by an existing
contingency plan.

We have integrated a plan cache into the plan-execution layer of CIRCA-II. This
cache is part of a "plan dispatcher" that is responsible for managing plan storage and
controlling the execution of individual plans by monitoring the current world state and
matching this state to the cached plan set for both "goal-oriented" and "contingency"
plans required to maintain system safety. The dispatcher manages all communications
from the planner and state feedback generated within an executing plan, such that new
plans are added to the cache as they arrive and retrieved in hard real-time as they are

required.

Planner-Scheduler Negotiation

The CIRCA-II planner proposes a set of tasks with execution constraints to be
scheduled. In the original CIRCA, if the scheduler was unsuccessful, it fed back a non-
descript "fail" message to the planner, which then blindly backtracked in an attempt to
find a schedulable set of tasks. For this thesis, we directed our research efforts toward
increasing the expressivity of scheduler feedback to help guide the planner when
scheduling fails. Cooperative work in [47] illustrates how overall processor utilization
can be used to guide planning during backtracking when all plan-execution occurs on a
single processor. In follow-on work, we have developed a method by which utilizations
from a multi-resource scheduler may be heuristically combined with planning data to
select "bottleneck" tasks for guiding the planner during backtracking. Additionally, we
have proposed a method for developing a set of fault-tolerant plans, allowing the planner

to alter the content of plans when computational resources fail instead of just re-
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scheduling them on available resources as is traditionally done in the fault-tolerant

scheduling field.

Safe, Fully-Automated Flight

No grand-scale claims of "safe, fully-automated flight" can realistically be made,
but we have begun to address crucial issues that have not been considered within flight
management systems. We utilize CIRCA-II to perform "pilot-oriented" decision-making
tasks automatically and in real-time. Such decisions include identifying and acting on
conditions that necessitate a go-around during landing, or modifying the flight plan
appropriately when significant airframe icing is detected. For this research, we primarily
utilize the "flight domain" for demonstrating the operation of our CIRCA-II algorithms.
However, to do this, we have become very much involved with the details of achieving
automated flight, both from the "simulated" and "real" aircraft perspective.

The primary testbed for CIRCA-II algorithms has been the Aerial Combat
Maneuver (ACM) F-16 simulator [58] that runs under Windows and on most UNIX
platforms. We have built a low-level controller that interfaces with CIRCA-II, and added
several "interesting" keyboard-driven events to the simulated environment. We wrote a
planner knowledge base that allows fully-automated flight along with response to a
number of simulated emergency situations.

We have also worked to implement CIRCA-II on an actual aircraft, the University
of Michigan Uninhabited Aerial Vehicle (UAV). Research has included the development
and implementation of a real-time software architecture for the aircraft running under the
QNX real-time operating system. Additionally, we have implemented CIRCA-II in
QNX and integrated it into the software for mission planning and fault recovery

operations. We are currently implementing state estimation, control, and fault detection
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software for our UAV so that CIRCA-II can be used to fully-automate the aircraft during

test flights which we expect to begin within the next six months.

Outline

We begin this thesis (Chapter II) with an overview of related work. We first
study Markov-based planning algorithms, a popular set of techniques that are often
compared to our probabilistic model. Then, we survey current methods for real-time
planning and plan execution and present the CIRCA architecture as it existed prior to
work reported in this thesis.

In Chapter III, we present the CIRCA-II architecture and describe its components,
focusing on how they connect and their complementary roles in overall system
functionality. Chapter IV describes in detail the CIRCA-II temporal model, starting with
the nondeterministic STRIPS-like transition model used by CIRCA, then describing the
compact probabilistic transition-based model used by CIRCA-II, focusing on both the
details of the probabilistic model and its use for computing state probabilities and the
preemptive task deadlines sent to the scheduler. We present a qualitative comparison of
CIRCA-II to the original CIRCA as well as an MDP configured to emulate the
functionality of the CIRCA-II planner.

Chapter V contains the methodology by which we detect and react to "unplanned-
for" states as they arise. First, a state classification scheme is proposed to assist with the
identification of "important" unplanned-for states, which must be detected. We then
describe the algorithms used to build tests that can detect these states as they occur during
plan execution and propose a methodology for responding to these states that strongly
biases the system toward failure-avoidance over goal-achievement when such a tradeoff

is required. We discuss how CIRCA-II with unplanned-for states compares to the
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original CIRCA and also how the addition of the plan cache improves performance,
measured in terms of a system's ability to remain safe in its environment.

Chapter VI describes our progress to develop algorithms that enable planner-
scheduler negotiation, starting with the single-processor scheduler we have implemented
and tested and venturing into algorithms that will also allow expressive feedback to the
planner when a multi-resource allocation and scheduling system is implemented in the
CIRCA-II architecture. We then describe recent work to introduce fault-tolerance to the
CIRCA-II plan-execution platform and discuss methods for adopting Quality-of-Service
(QoS) negotiation techniques for allowing both planner and scheduler to degrade system
performance, as opposed to requiring that the planner be responsible for all performance
degradation computations required to successfully build and schedule each plan.

Chapter VII describes the flight simulation tests we have performed to
demonstrate the utility of our algorithms and to explore the use of the CIRCA-II
architecture for fully-automating aircraft flight. First, we describe tests with an F-16
simulator that allow us to explore how CIRCA-II can be used to guide the F-16 during
fully-automated pattern flight even when specific anomalous situations occur. Next, we
describe the next-generation F-16 simulator recently used by Honeywell Technology
Center and the University of Michigan for a joint UCAV (Unmanned Combat Aerial
Vehicle) demo. We describe the University of Michigan Uninhabited Aerial Vehicle
(UAV) project, from hardware to software architecture, and look at the application of
CIRCA-II to that vehicle for mission planning and fault recovery tasks.

Chapter VIII summarizes the topics covered and contributions of this thesis and
also discusses the diverse set of future research problems that may be addressed in the
context of CIRCA-II and more generally the spectrum of hard real-time autonomous

systems.



CHAPTER IT
RELATED WORK

In this chapter, we describe existing methods for planning and plan execution that
are applicable or similar to our work, focusing on their capabilities and limitations with
respect to the real-time failure-avoidance properties we require. Figures 2-1 and 2-2
show generic conceptual diagrams of distinct "Al planning" and "real-time" systems,
respectively. Traditionally, the Al community has designed architectures that include
modules for planning and/or plan execution. The planner takes as input domain
knowledge and outputs one or more plans or policies of the type illustrated previously in
Figure 1-2. The plan execution system takes plan(s) as input and interprets these plans,
ultimately selecting a specific sequence of actions to be executed over time.
Environment state feature information (e.g., from sensors) is typically used by the plan
execution module to select appropriate actions and/or plans to execute, and may also be

provided to the planner to better guide plan development.

Domain Pl i -
Knowledge Llanner —- 45> Plan Executor ﬂ’ >

]

Figure 2-1: A "Generic" Planning/Plan-Execution Architecture.”

* The 3-T architecture [17] was developed to conceptually describe systems with distinct
planning, plan-execution, and reactive layers. In Figure 2-1, we hide any reactive layer in
"Environment" because we are not concerned with its operation in this discussion.

20
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Figure 2-2: A "Generic" Real-time Resource Allocation/Scheduling System.

The real-time community has designed a wide array of algorithms that take as
input a set of tasks along with their execution requirements and constraints, allocate
resources (e.g., processors, communication channels) for these tasks, then schedule the
tasks on each individual resource. As shown in Figure 2-2, the "environment" for a real-
time task allocation and scheduling system is the execution platform. Execution
resources are typically monitored to provide feedback regarding dynamic changes in the
available resource set.

In our work, we combine planning and scheduling algorithms based on techniques
developed by planning and real-time systems researchers. To do so, we require a planner
with a sufficiently expressive temporal model of the world to succeed in a dynamic real-
time environment. Additionally, we require a real-time task scheduler that is sufficiently
versatile to accept tasks (actions) produced automatically by a planner as well as provide
feedback that is understood by that planner. In this chapter, we describe algorithms and
techniques that have been used by others to combine action selection (planning) with the
temporal reasoning required for a real-time environment.

In order to use the term "response guarantee" in reference to a system operating in
a dynamic environment, we require a planner that is capable of performing a temporal
analysis to determine how each action will affect its environment as a function of when it
is executed in that environment. Actions responsible for maintaining system safety can
succeed only if executed prior to a fixed deadline, and thus must execute in hard real-

time. The concept of a hard real-time system is illustrated in Figure 2-3, with the
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compromise in safety after a hard deadline passes represented by a sharp drop in reward.
This behavior contrasts with best-effort or soft real-time tasks in which reward (or
performance) degrades more gracefully over time. As we will describe below, many of
the popular "real-time" planning and/or plan execution architectures exhibit only best-
effort execution capabilities. Thus, they can be at best coincidentally real-time when

applied to a hard real-time domain.’

rewardA Y hard

TS
e soft
b ~
- _response
.
\ time
deadline

Figure 2-3: "Hard" versus "Soft" [Best-effort] Real-time System.

This chapter begins with a discussion of related planning research. Because we
admit systems with limited resources and imprecisely-specified domain knowledge, we
utilize a probabilistic planning model for our research. The Markov Decision Process
(MDP) [11],[45] is perhaps the most flexible existing probabilistic planning model, thus
we devote a section of this chapter to a discussion of this popular technique. Next, we
describe research in real-time planning in which researchers explicitly place bounds on
deliberation time to allow response before a hard task deadline occurs.

Because state-space planning is generally NP-complete, such planning algorithms
are generally not viewed as sufficient for a stand-alone hard real-time system (e.g.,

without any supporting scheduling and/or plan execution processes). As a result, a

> Some researchers argue that such systems can be used for hard real-time domains by
performing an extensive battery of tests that verify real-time performance. We agree with
this verification method in theory, but in practice one must be able to demonstrate that all
possible situations have been encountered during testing. In our opinion, this diminishes
the attractiveness of the system and provides a formidable challenge for each application
of the architecture to a new problem.
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multitude of architectures have been developed that incorporate distinct plan-execution
components to augment (or replace) a planner. This design has improved the Al
community's ability to build systems capable of automating complex and dynamic
domains, as demonstrated by their success in real-world applications. However, many of
these architectures exhibit the coincidental real-time response for which we are skeptical
in safety-critical systems. We conclude this chapter with a description of the Cooperative
Intelligent Real-time Control Architecture (CIRCA) [51],[53] which was explicitly
designed to guarantee failure-avoidance via integrated planning/scheduling/plan-
execution software. We have built upon the CIRCA architecture in this dissertation, thus

we also discuss its limitations and preview how we address these issues in CIRCA-II.

Probabilistic Planning: The Markov Decision Process

The Markov Decision Process (MDP) model is the basis for many state-of-the-art
probabilistic planning (policy construction) algorithms, and is very attractive due to its
ability to convert state transition probabilities into optimal plans, where optimality is
measured in terms of a value or utility function. Described in [11], the general MDP is
given by M = (S, A, P, R). In this representation, S is a finite set of Ns states where Ng
represents the combinatorial set of all state features and their possible values, 4 is a finite
set of N, actions, P is a state-transition matrix, and R is a reward function. The MDP
presumes the system evolves in stages, where the occurrence of some event (or action)
results in the transition from some state ¢ to the next state 7+/. Although the progression
of stages need not necessarily correspond to a progression in time, this is a valid mapping
appropriate for our "real-time plan" development purposes.

Several terms are used to classify systems within an MDP framework. The
Markov assumption [11] says that "knowledge of the present state renders information

about the past irrelevant to making predictions about the future". This is a required
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property of an MDP system to allow a tractable representation of state transition
probabilities. Also, in any system that can presume the effects of each event depend only
on the current state, and not the stage (i.e., time) at which the event occurs, we say the
MDP is stationary and can be represented using only two stages. Otherwise, for a 7-
stage nonstationary Markov chain, state transition probabilities are dependent on the
current stage number (e.g., amount of time that has passed). Due to this dependence, in
the worst case (fully-connected state-space), T transition matrices of size N xNsxNs must
be provided. Using the notation in [11] and [45], the probability of transitioning from a
state s, to state s; at stage # is then given by p';, and the full state transition matrix P is of
size Tx N4xNsxNs.

One key property of the basic MDP is that all state features must be observable in
each stage so that the correct action for each state can reliably be chosen. A partially-
observable MDP (POMDP) [13] is defined as an MDP in which some state feature
measurements are either noisy or unavailable, in which case probabilistic distributions
regarding the likelihood of unobservable state features must be incorporated into the
model instead of directly observed. The requirement to use a POMDP for system
modeling dramatically increases planning computational complexity, and thus is
generally avoided when it is possible to measure all state feature values.

Our emphasis in this research is on the development and execution of "control
plans" (defined in Chapter 1) in which all reactions are sufficiently accurate and timely to
guarantee safety in dangerous dynamic environments. We presume that a system can
measure all state features, although in some cases with non-negligible cost, thus we do
not require a POMDP formulation for our problem. However, we do require a system
capable of reasoning about the time at which each event will occur so that the system can
explicitly compute all action deadlines required to preempt states that represent
catastrophic failure. Further, in MDP terminology, we require a state transition matrix

that accurately reflects the effects of selecting different action execution deadlines so that
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we can construct an optimal (or at least sufficient) control plan in which all failure-
avoidance actions will be guaranteed to execute in hard real-time on the limited set of
plan execution resources.

To account for the probabilistic effects of varying action execution deadlines, an
MDP must be augmented such that one action is specified for each deadline available for
each action. So, for example, suppose an automated aircraft system has an action
"emergency-land". Then, the MDP transition matrix will require actions such as
"emergency-land-in-1-minute", "emergency-land-in-2-minutes", etc., since the
probabilities of other transitions (e.g., crash) will be conditional on the amount of time
that passes before the [failure-avoidance] activity completes.® This addition to the MDP
effectively increases the set of actions from the previous N4 to N4 x Np, where Np
represents the number of unique deadlines that may be assigned to each action.

We seek a general technique for reasoning about the temporal characteristics of
exogenous events and actions during planning. Figure 2-4 shows a simple three-stage
state transition diagram excerpt illustrating an "engine-failure" exogenous event coupled
with actions (deadline excluded from figure labels) to start the aircraft engine, fly to new
locations, and "emergency-land" if the engine fails during flight. Now, presume the
system begins at stage ¢ with two possible states, one in which the engine has been
running since some previous time and the other in which the engine is off. Now, as will
be discussed in Chapter 4, a state transition such as "engine-failure" can have very
different probabilistic properties depending on factors such as how long the engine has

been operating, particularly as the engine approaches or passes the end of its normal

% For actions that execute with different deadlines, either the time between stages in an
MDP must vary in accordance with the action execution deadline or else the action must
continue executing across multiple stages. We presume the former because the latter
requires a violation of the Markov assumption unless special features are added to the
state to effectively "remember" which action is executing and when it began, further
increasing MDP complexity.
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operating life.” So, presuming that the time between stage ¢ and 7+/ is non-trivial, the
likelihood of an engine-failure from the "Engine=ON" state in stage +/ may be
dependent on the path in which the system arrived at stage +/. Thus, the Figure 2-4
model violates the Markov assumption.

As discussed in [11], any non-Markovian model whose dynamics (e.g., event
probabilities) depend on at most k previous stages can be converted to a larger Markov
model.® This conversion to "state form" [46] requires that information be added to each
state to keep track of how much time has passed (e.g., since the engine has been started)
so that state transition probabilities can accurately reflect these effects. Note that as k
increases, the number of states in the "converted Markov model" also increases, in the
worst-case exponentially in & (i.e., to Ns*). This worst-case represents the fully-
connected situation in which all possible states are expanded in all stages and all state

information must be "remembered" from each of the previous & stages.

stage t : stage t+1 : stage 1+2
Location=2 Location=3
Engine=OFF : ¢tqrt- > fly-to-3 Engine=ON
engine ©  Location=2 : :
:  Engine=ON : o
fly-to-2 : ; engme—;
. R __'3) ! failure ¢ Location=2
Location=1 2 ’ | Engine=FAIL |
Engine=ON } enginee : : :
§f“"h” €”:  Location=1
Engine=FAIL lemergencis | ocaion=ap § 2 Action
land  * Event

Engine=FAIL

Figure 2-4: Three-Stage State Transition Diagram.

’ Note the effects are exaggerated here for effect, so the reader should not allow this
dissertation to instill a fear of flight, which is statistically much safer than travel by car.

% As limiting cases, k=1 represents a "naturally" Markovian model and k=T (the
maximum number of stages expanded) indicates that all stages must be "remembered".
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For small k and large number of stages 7 (i.e., translatable for our purposes to
time horizon #.iz0n), the above "k-level" (i.e., k-stage memory) conversion process is
perhaps the most efficient method for utilizing a generic MDP planner. In the special
case where £k is equal to the number of stages and the model is Markovian so long as each
state "remembers" the current stage number (corresponding to time in our model), a
system can utilize the standard non-stationary MDP described above. For the Figure 2-4
example, knowledge of stage number is not sufficient because engine operation time
varies between states within a particular stage. Thus, we adopt the "k-level" conversion
model that includes actions for each possible deadline as the MDP-equivalent for "control
plan" development as defined in Chapter 1. As discussed above, this MDP model has a
transition matrix P of worst-case size (N4 xNp)x Ns* x N§".

It is not difficult to observe that this MDP model grows large very quickly.
Methods such as Bayesian Networks [61] have been developed to efficiently represent
conditional state probabilities like those found in P. Then, algorithms such as Policy
Iteration and Value Iteration [11] are used to compute an optimal policy (i.e., mapping of
actions, along with deadlines for our model, to states). For large problems, recent
advances such as factoring the state-space [14] and using algebraic decision diagrams to
solve factored MDPs [30] have been developed. We have not yet verified whether these
methods will be capable of significantly reducing complexity for our problems of
interest.

We have devoted this section exclusively to a discussion of MDPs, but have opted
for a probabilistic state-space planner with a STRIPS-like [18] state transition
representation for our CIRCA-II architecture. This decision was based on a number of
factors. First, since computing flexible action deadlines to accommodate execution on
limited resources is a key part of each control plan, we find it overly restrictive to require
a knowledge base in which a unique action must be specified for each possible deadline.

Additionally, we have observed that the transitions and "intuitive" features associated



28

with hard real-time domains often require multi-level histories as was illustrated by
Figure 2-4, and that the development of the "k-level" model for large k will be a difficult
undertaking in itself. For these reasons, we present an approximate probabilistic state-
space planning model in this dissertation, sacrificing MDP optimality for knowledge and
state-space compactness while maintaining the ability to select actions and corresponding

deadlines that guarantee hard real-time failure-avoidance during plan execution.

Real-time Planning

In this section, we briefly discuss methods to restrict planning time so that real-
time response deadlines are met. Such systems typically employ approximate planning
techniques, and thus have the advantage of controllable and predictable real-time
execution. However, due to the unavoidable complexity of planning, real-time planners
often have difficulty in guaranteeing result accuracy simultaneously with timeliness, as
discussed in [51]. Nevertheless, powerful techniques have been developed for real-time
planning, and in the future we hope to incorporate an algorithm to bound planning time
that will most likely be based on work described in this section.

One of the most basic approaches to time-limited planning is to build a minimal
plan then iteratively improve this plan until planning time expires. This idea has been
labeled anytime planning [15], and has been implemented in many interesting algorithms.
In an anytime system, a planner must produce a very approximate plan almost
immediately; this plan may be a random guess in the worst case. As time passes, the plan
is refined to become more accurate, until the planner is interrupted by the anytime
monitoring process for the best result it has computed given planning time available so
far. Abstraction planning algorithms such as that in [10] and [31] illustrate the utility of
anytime planning. For a variety of problems, the combined anytime-abstraction approach

is sufficiently fast to produce high-quality approximate plans. Additionally, different
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anytime algorithms can be merged to produce an optimal result given deliberation time
constraints [74],[75]. However, even the most efficient anytime algorithm must assume
that sufficient time is available for a “minimally-accurate plan” to be developed.’

Design-to-time planning [21] presumes the system can compute or approximate in
advance the amount of time that will be available for planning. Then, the planning
process is tailored via the choice of parameters (e.g., level of abstraction, planning
technique) so that a solution will be returned within the available time. This approach
presumes there is a function that allows planning time to be predicted based on the choice
of parameters, a difficult computation for a number of NP-complete planning problems in
which worst-case execution time (based on domain knowledge size) will often be much
larger than available computation time, although planning average-case execution time
may be available. A major advantage of design-to-time planning is that the system will
know in advance whether it can expect to succeed given the available planning time. So,
in systems that begin in a “safe” environment, if the planner predicts it cannot produce
minimally-accurate plans in real-time, it can remain safe by never venturing away from
safety (e.g., an aircraft will never leave the ground). Alternatively, if the planner predicts
it can produce minimally-accurate plans for the fastest responses required for that
domain, the system may even be able to make guarantees regarding system safety.

Design-to-criteria scheduling [70], based on the earlier design-to-time research, is
the soft real-time process of finding an execution path through a hierarchical task
network so that all execution constraints are met, including real-time deadlines, cost
limits, and plan quality requirements. This procedure incorporates a probabilistic model
to make approximations when required, as does the planner we describe in this work.

However, discontinuities in the utility functions used to guide the design-to-criteria

? For the safety-critical systems considered in this dissertation, a minimally-accurate plan
must be capable of responding in a timely manner to all events that lead to system failure.
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processes may compromise the result, as would be the case when a hard real-time
response deadline is exceeded.

In this dissertation, we do not directly address the problem of real-time planning
due to the tradeoff between planner response timeliness and plan accuracy. However, as
discussed in Chapter VIII, we will be revisiting the real-time planning issue in follow-on
research as we work to make dynamic replanning for anomalous world states temporally-

bounded" when required.

Real-time Plan Execution

When deadlines are so tight that none of the available real-time planning
techniques provide sufficiently accurate results, they must either be integrated with or
replaced by real-time plan-execution algorithms. At the opposite end of the "planning -
plan execution" spectrum, consider the concept of a Universal Plan set [63]. The
existence of such a set is desirable because it completely avoids dynamic planning by
including responses for all modelable states, regardless of whether they are reachable
given the initial state and goals for a particular mission (e.g., flight)."" However, as
discussed in [23], for complex domains, bounded planning resources (e.g., memory, disk
storage capacity) may make creation of the complete Universal Plan set infeasible, and
hard real-time plan execution constraints may prohibit response guarantees due to the
time required for retrieving the appropriate plan(s) from such a large database.

Many researchers have addressed the challenges associated with utilizing a

predefined plan set. Because such plan databases can be large, if not "Universal", plan-

' We use the term temporally-bounded to indicate that a process is timely but not
necessarily accurate, both of which are required for a designation of hard real-time.

" The Universal Plan concept is distinct from the MDP policy in that the MDP only
builds into its policies reactions for states that are reachable with non-zero probability
from the known initial state(s).
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execution architectures employ a wide array of efficient plan retrieval procedures that
allow successful execution in real-time environments. First, the RAPs architecture [19]
specifically addresses the issue of fast reactions in complex domains. Using a set of
production-like rules, the system takes sensor information about its environment and
selects appropriate reactions using a set of predefined rules (or RAPs). Similarly, the
Procedural Reasoning System (PRS) [33] addresses real-time plan execution by
employing a plan (or procedure) database, and reacting to situations as they occur by
retrieving one or more of these plans for execution.

Searching through a procedure or rule database has been shown to be sufficiently
fast for a variety of real-time domains, including numerous mobile robot experiments
such as those in [32]. However, absolute real-time guarantees are impossible to achieve
in RAPs and PRS unless they are augmented with a module to prove that the worst-case
database search-and-act time is less than or equal to the fastest response that might be
required for failure avoidance, as was discussed for C-PRS in [32]. Additionally, even
with an execution time proof, in many cases the absolute worst-case search-and-act time
would be greater than the minimum response time required so the proof would only show
that the system could fail in the worst case.

Architectures such as CYPRESS [71] and SOAR [40] have demonstrated the
ability to succeed in real-time environments, including SOAR's success during a variety
of military simulation exercises [34] and the world of RoboCup [69]. Both architectures
combine efficiency with flexibility by using a reactive plan-execution system whenever a
response is available and by performing dynamic planning (subgoaling) otherwise.
However, neither explicitly reasons about task deadlines or worst-case resource
utilization, so they fall under the classification of “coincidentally” real-time systems
defined previously.

A number of researchers have begun to carefully consider hard real-time

constraints when applying planning and plan-execution techniques to real-world
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problems. For example, in [27], a set of conditional schedules have been demonstrated to
provide predictable plan-execution response times for an aircraft avionics problem. Such
systems address the same critical hard real-time issues we consider in this dissertation.
However, our work is distinguished by specifically separating the failure avoidance
problem from goal achievement, and by considering classes of both probable and
improbable situations that require hard real-time responses.

The New Millennium Remote Agent (NMRA) architecture used for the Deep
Space One (DS-1) spacecraft [55] employs a constraint-based planner and scheduler to
allow real-time responses to a variety of situations. Although NMRA may be generalized
to other domains, it relies on the fact that DS-1 has brief periods requiring hard real-time
response (e.g., a fuel burn sequence during orbit insertion) interspersed with longer time
periods in which significant “slack time” is available for planning/scheduling.'> A basic
premise in our work is that we cannot rely on the occurrence of such slack intervals, thus
we need to be able to recall pre-built contingency plans to guarantee safety in time-
critical situations, even if these reflex actions actually make the system diverge from its
task-level goals. With such an assumption, our system is not as appropriate as NMRA
for a spacecraft like DS-1, where achieving major task-level goals is as time-critical and
crucial as maintaining spacecraft safety. Instead, we focus on problems in which a clear
distinction can be made between failure-avoidance tasks and less-important goal-
achievement tasks, but allow our system to operate continuously in a “dangerous”

dynamic environment, as illustrated in Chapter VII for the autonomous flight domain.

2 This limitation is necessitated by the limited resource set (i.e., one processor) on the
DS-1 spacecraft that prohibits any appreciable planning or scheduling simultaneously
with other critical low-level activities.



33

Planner
Knowledge

Base
initial state(s),
goal, transitions
) TAP pl TAP lists
Real-time = Al Subsystem = Scheduler
Subsystem = ————> AMP<»SSP <

Figure 2-5: The Cooperative Intelligent Real-time Control Architecture.

CIRCA: Reasoning About Real-time Plan Execution

The Cooperative Intelligent Real-time Control Architecture (CIRCA) [51],[53]
combines aspects from planning and plan-execution systems, and was designed to
explicitly separate the time-consuming planning process from real-time plan execution.
Using this approach, the planner reasons about real-time, but does not have to make
approximations that permit planning in real-time. To build real-time plans, CIRCA’s
planner employs a time-dependent state transition model and a representation for system
“failure” such that plans contain two classes of fest-action pairs (TAPs): “guaranteed”
with hard deadlines for failure avoidance, and “soft real-time” with best-effort execution
for goal achievement.

As shown in Figure 2-5, CIRCA is divided into an Al subsystem that includes a
high-level automated mission planner (AMP) and state-space planner (SSP), a real-time
task scheduler, and a real-time [plan execution] subsystem (RTS). The Al subsystem is
responsible for compiling a set of actions to achieve its overall mission goals while
guaranteeing failure avoidance. The guaranteed set of these TAPs is sent to a real-time
scheduler, and if scheduling is successful, downloaded to the RTS for execution. If
scheduling is not successful, a simple "fail" status is returned from the scheduler. The
state-space planner then backtracks to (hopefully) find a different set of actions that will

still be guaranteed to avoid failure while achieving the same goal. Otherwise, the AMP
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must somehow modify the planning problem so that a schedulable plan may be
developed.”

Because of its careful consideration of real-time failure avoidance, we have
adopted CIRCA as the basis for the architecture presented in this dissertation, aptly titled
CIRCA-II. The original CIRCA has many desirable properties, including its real-time
execution guarantees and its separation of planning from plan execution such that
significant (and often unpredictable) planning approximations are not required for real-
time performance. However, CIRCA also makes significant assumptions which may
cause difficulties in complex real-time environments. First, CIRCA presumes that any
executing plan can maintain safety indefinitely. This assumption is valid for many
domains, such as a mobile robot that can either stop (in a benign environment) or perform
a fixed safety-maintenance loop (in a closed, predictable world) forever. However, other
domains cannot include “stop” or indefinite “safety-maintenance” actions. For example,
during fully-automated flight, the aircraft cannot remain safe indefinitely once it has left
the ground, since fuel must continuously burn and a variety of anomalous situations may
prohibit the aircraft from reaching its planned-for landing destination.

Another important CIRCA assumption is that there exists at least one schedulable
plan that can achieve the complete set of task-level goals while guaranteeing failure
avoidance. Because of CIRCA’s non-deterministic state-space model, it is impossible to
make any approximations (e.g., remove improbable states), thus the planner would
simply fail if no one schedulable plan could be produced after exhaustive backtracking.

In this dissertation, we describe algorithms that directly address these limitations and thus

" In the original CIRCA implementation, the AMP relied solely on human intervention
to manually redefine the planning problem (e.g., by removing knowledge of some failure
modes from the model) when SSP backtracking alone could not provide a schedulable
plan. Theoretically, the AMP could have automatically redefined mission goals or
somehow removed state transitions from the SSP knowledge base; parallel research
efforts at Honeywell Technology Center are focusing on better defining such procedures.
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distinguish CIRCA-II from CIRCA. Topics include inclusion of a probabilistic planning
model that allow planning approximations to enhance schedulability (Chapter 4),
description of a methodology by which CIRCA-II detects and handles "unplanned-for"
states, thereby accounting for [limited] domain knowledge imprecisions (Chapter 5), and
techniques utilized to provide more expressive scheduler-to-planner feedback to guide

backtracking operations prompted by a plan scheduling failure (Chapter 6).



CHAPTER III
CIRCA-II ARCHITECTURE

The original CIRCA architecture was designed to provide guarantees about
system performance with limited resources, given closed-world assumptions about
transition model accuracy, preemptive action schedulability, and the ability of the system
to maintain safety indefinitely during plan execution. CIRCA-II is based on CIRCA, but
is distinct in that its state-space planner is based on a probabilistic rather than non-
deterministic state-space model (see Chapter IV), admits incomplete knowledge and
graceful performance degradation via detection and handling of "unplanned-for" states
(see Chapter V), and extends the communication protocol between planner and scheduler
to help guide planner backtracking toward a schedulable plan (see Chapter VI). In this
chapter, we describe the CIRCA-II architecture and its components, all of which will be
referenced throughout this dissertation. We focus on module interconnections in
CIRCA-II, and provide a high-level description of component functionality. See
Appendix A for a more detailed description of the C++ CIRCA-II software
implementation, which focuses on custom architectural components in terms of their
current implementation as well as possibilities for future enhancements.

Figure 3-1 illustrates the CIRCA-II architecture. At the highest level, the
architecture is divided into a Planning Subsystem and a Plan-Execution Subsystem.
CIRCA and CIRCA-II both draw distinct boundaries between real-time and non-real-time

processes to facilitate reasoning about the hard real-time guarantees required for failure-

36
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avoidance during plan execution. In CIRCA-II, we have designated that the Planning
Subsystem include all processes for which we cannot easily define reasonable worst-case
execution properties. At best, CIRCA-II will be able to complete Planning Subsystem
operations in coincidental real-time. Thus, we relegate the majority of planning and
scheduling operations to occur offline before the system ever enters its "dangerous"
environment. Conversely, safety-critical tasks in the "Plan-Execution Subsystem"
require hard real-time execution. This module includes a "Plan Executor" with analogous
functionality to the original CIRCA Real-Time Subsystem (RTS) [53], and a new "Plan
Dispatcher" that is responsible for managing a Plan Cache, communicating with the

Planning Subsystem, and starting/killing all individual Plan Executor processes."*

Planner
Knowledge
Base

Initial state(s), subgoal(s),
state transitions

start/kill : plans ¢
- rocess . . :
Real-time P Plan Dispatcher  : : State-space
Plan Executor state S S Planner
feedback $ feedback ™ %
- TAP plan JSeedback :
: Plan Cache :
s Plan-Execution (Database)
DSUBSISIENE e i et Resource
. Scheduler
»
Scheduler Resource usage,
Database real-time constraints: .
: Planning Subsystem

ooooooooooooooooooooooooooooooooo

Figure 3-1: CIRCA-II Architecture.

' In CIRCA-II, each new plan is executed as a separate process. This is markedly
different from the original CIRCA RTS, in which a set of plans (including multiple goal-
achievement plans but no contingency plans) was downloaded from the planner and
stored in a buffer until executed within the single RTS process. We made this change to
move CIRCA-II's plan executor toward a real-time-thread execution model and expect
further change as we move toward a multi-resource execution platform as well.
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Upon startup, CIRCA-II builds and schedules the set of "nominal" plans required
to achieve its pre-defined mission goals and a set of "contingency" plans specifically
developed to be retrieved in hard real-time for failure-avoidance purposes (see Chapter V
for more details on nominal and contingency plans). Both plan sets are developed offline
and stored in the plan cache on the hard real-time Plan-Execution Subsystem. Next, the
planner signals that plan execution should begin, and the first goal-achievement-oriented
nominal plan stored in the cache begins execution. If only likely, planned-for events
occur, the sequence of nominal plans will execute to completion. However, if a transition
leads out of the “planned-for” state set in any goal-achievement plan, the plan cache
module reacts with a pre-computed failure-avoidance contingency plan to maintain safety
(if necessary), then the planner develops a new set of actions to redirect the system
toward its goals. In the following sections, we briefly look at the functionality inside the
Planning and Plan-Execution Subsystem modules. Again, for further details regarding

specifics of the implementation, see Appendix A.

Planning Subsystem Operation

Figure 3-2a and 3-2b show the algorithm used by the Planning Subsystem to
create a plan that executes with hard real-time guarantees of failure-avoidance. Upon
startup, the planner processes initial states and transitions (Process_Knowledge_Base in
Figure 3-2a), then selects a subgoal from the knowledge base.”” Next, the planning
process is initiated, as will be described below. The state-space planner produces as
output a set of TAPs (test-action pairs) which is then passed into the real-time scheduler.

This resource scheduler, algorithms for which are discussed in Chapter VI, builds a cyclic

1> A pre-defined sequence of subgoals to achieve are currently specified in the knowledge
base. Ideally, subgoals would be automatically created from a single high-level goal.
Researchers at Honeywell and the University of Michigan [4] are in the process of
designing methods to automatically generate the goals to be achieved within each plan.
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schedule for all guaranteed TAPs assuming worst-case execution properties, as in CIRCA
[51]. If scheduling is successful (i.e., all task deadlines can be met given the available
plan-execution resources), the plan is downloaded to the Plan Dispatcher in two pieces: a
plan file to be compiled into a plan execution process and a message containing a
decision-tree [57] database index specifying the set of states for which this plan should
execute. Otherwise, the plan must be modified so planning is again initiated, with

scheduler feedback (see Chapter VI) used to guide backtracking.

Process_Knowledge_Base EXPAND_NEXT_STATE

| '

—p Select_Subgoal SELECT_ACTION

UPDATE_PROBABILITIES
Run_Planner ¢
Generate-
i feedback L CHECK_INTERMEDIATE_PLAN
Run_Scheduler failure L
LSM(TCGSS BUILD_TAPS
~ Download_Plan i

BUILD_SPECIAL_TAPS

msg-from- | plan msg-to-
dispatcher | file dispatcher
r = < Finish >

CIRCA-II Dispatcher

a) CIRCA-II Planning Subsystem Procedure. b) “Run_Planner” Procedure.

Figure 3-2: CIRCA-II Planning Subsystem.

A loop from the Download_Plan operation to Select_Subgoal is shown in Figure
3-2a because CIRCA-II continues building nominal plans for each subgoal in the
specified sequence, as well as contingency plans for failure-avoidance should unplanned-
for states be reached. Only when this set of plans is fully developed does the dispatcher

direct the system to enter its dangerous environment via execution of the first nominal



40

plan. During plan-execution, the CIRCA-II Dispatcher may send a "replan" message to
the planner to accommodate "safe" unplanned-for states. The planner uses state feature
feedback information to select a new subgoal that can be achieved from this state (by
matching user-specified subgoal "preconditions" from the knowledge base), then builds
and downloads the new plan to the dispatcher.

As in CIRCA, CIRCA-II adopts a forward-chaining planner to expand the state-
space from initial to goal state(s). The probabilistic planner enables the use of a best-first
search state expansion strategy with states ordered from most probable to least probable.
Although this expansion ordering is not crucial in the current CIRCA-II implementation,
future research to implement real-time planning (see Appendix D) with an anytime
component in CIRCA-II may rely on best-first search ordering to maximize plan quality.
As shown in Figure 3-2b, for each "reachable" state, the planner expands the state (i.e.,
identifies matching transitions and the "child" states resulting from those transitions),
selects an action for that state (if any are judged as beneficial either for failure-avoidance
or goal-achievement), and then updates the probabilities to include effects of this newly-
expanded state. As will be described more completely in Chapter IV, during probability
computations, any execution constraints for actions requiring hard real-time execution
will also be updated/added so that the probability of system failure (i.e., traversing a
temporal transition to failure (##f)) remains below a small threshold Pj.s» from each state.

The state expansion cycle terminates with a comprehensive check of the
"intermediate plan" (i.e., action and associated deadline for each reachable state), which
verifies that the plan can achieve the specified subgoal.'® If no goal state is in the
reachable set, the planner backtracks to select different actions until at least one goal path

is identified. After a valid intermediate plan is constructed, the set of planned actions is

'® The plan need not be re-checked for failure-avoidance because Update_Probabilities
verifies preemption of all #fs during plan construction.
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compiled into Test-Action Pairs (TAPs), one TAP per unique planned action, along with
special TAPs constructed to report the detection of unhandled states (i.e., states that were
not explicitly handled during nominal plan development) as well as to flag when goal

states (i.e., state with features matching all specified subgoal features) are reached.

Plan

Feature test m Feature test m, Action m

Figure 3-3: CIRCA Test-Action Pair (TAP) Plan Composition.

Figure 3-3 illustrates the structure of a plan that will be sent to the scheduler then
downloaded to the dispatcher. The set of planned (and special) TAPs is divided into two
classes: guaranteed (hard real-time) and if-time (best-effort). Guaranteed TAPs must be
inserted into a schedule that meet their associated ##f preemption deadlines, while best-
effort TAPs are executed during slack time as part of an if-time server TAP (see
Appendix A). Each TAP contains one action but may execute in multiple states (e.g., all
reachable states for which the TAP action has been selected). CIRCA-II (like CIRCA)
uses ID3 [57] to build a set of feature tests which will return a true/false value indicating
whether the current state requires execution of the TAP action. As depicted in Figure 3-
3, these feature tests and action together comprise a TAP, and are critical to consider
during scheduling (e.g., worst-case TAP execution time is the sum of all feature test and

action worst-case execution times) and subsequently during plan-execution (e.g., since



42

the system must perform Action m only when feature tests m;-m, return values that match

those in the associated TAP test).
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Figure 3-4: CIRCA-II Plan Dispatcher.

Plan-Execution Subsystem Operation

The CIRCA-II plan execution system is responsible for executing the TAP plans
developed and scheduled by the Planning Subsystem in hard real-time when required for
failure-avoidance. As shown in Figure 3-1, the Plan-Execution Subsystem contains the
Plan Dispatcher (including the plan cache) and the Plan Executor. Upon CIRCA-II
startup, we presume a system is in an indefinitely safe state (e.g., a commercial aircraft is
parked at an airport gate) since we may require extensive [unbounded] planning and
scheduling operations to populate the plan cache sufficiently for safe entry into the
"dangerous" environment (e.g., aircraft engine spool-up then takeoff from an active
runway). In this section, we first discuss operation of the new CIRCA-II Plan

Dispatcher. Next, we discuss features internal to the Plan Executor that allow real-time
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execution guarantees both while executing a single plan and while switching to a new
plan from the CIRCA-II plan cache.

Figure 3-4 illustrates the functionality of the CIRCA-II Plan Dispatcher. This
program module is labeled "dispatcher" because its main program is simply comprised of
a loop that waits for and processes messages from the CIRCA-II Planning Subsystem and
Plan Executor, similar to the sequencing layer in the ATLANTIS architecture [17].
However, functions triggered by messages are responsible for all plan database
operations, plan-execution process management, and state feedback processing.
Ultimately, dispatcher operation is dictated by control commands downloaded by the
planner or inserted into plans to be triggered during execution (e.g., unhandled state
feedback). Upon dispatcher startup, the plan cache is empty and no plan is executing.
Thus, the dispatcher sits idle until the planner begins downloading the initial set of plans
to the cache. The planner notifies the dispatcher of each new plan with an
"ADD_PLAN" message that includes a plan ID (for common plan reference between
dispatcher and planner), plan type (nominal or contingency), and ID3-generated decision
tree index to be used by the dispatcher to match this cached plan to state feedback.
Alternatively, the planner may send a "DELETE_PLAN" message to prune an entry from
the plan cache when the planner determines it is no longer required."’

After the planner fully populates the plan cache with the set of nominal and
contingency plans it expects to require for this execution sequence, it downloads an
"EXECUTE" message to the dispatcher. The dispatcher then executes (i.e., starts the

plan-execution process associated with) the first [nominal] plan downloaded,

' This function is implemented and tested in the dispatcher, but the decision-making
mechanisms required to select plans for deletion have not yet been incorporated into the
Planning Subsystem. We suspect such software will be incorporated concurrently with
algorithms to determine when the cache should "remember" frequently-used plans
between CIRCA-II runs.
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corresponding to the first subgoal to be achieved. At this point, both planner and
dispatcher monitor the system for incoming messages until the Plan Executor feeds back
state information to the dispatcher, corresponding to either a "GOAL" or
"UNHANDLED" state, either of which is detected via one of the executing plan's special
TAPs. The dispatcher will then search the appropriate cache partition (i.e., nominal or
contingency) for a matching plan using the supplied state feature feedback. If a match is
found, the dispatcher kills the executing plan process, starts the new plan process, and
sends a "NEW_PLAN" message with the new plan ID to the planner.'® Otherwise, the
dispatcher sends the state feature information back to the planner as part of a "REPLAN"
message. Then, after the Planning Subsystem downloads the plan developed as a result
of the "REPLAN" message, it again transmits an "EXECUTE" message indicating that
the dispatcher should pull the most recent plan from the cache and execute it.

As described above, plan execution processes are spawned and killed by the
CIRCA-II Plan Dispatcher. However, they are responsible for ultimately carrying out all
planned actions and remain the only link between CIRCA-II and its environment, as
shown in Figure 3-1. Figure 3-5 outlines the functionality of each CIRCA-II Plan
Executor process. Upon startup, the TAPs and TAP schedule for that plan are initialized.
Then, the main program loops over the cyclic schedule of guaranteed TAPs."” Ifa
guaranteed TAP takes less than its worst-case execution time, the quantity used for

scheduling, then slack time will be available before the next scheduled TAP must begin.

'® The worst-case execution time (wcet) for each plan switch must include the worst-case
plan cache search time plus delays due to killing the old plan process, then starting and
initializing the new plan process. To-date, our test domains have had TAPs with wcets
on the order of 0.1+ seconds, and plan switch overhead has been comparatively
insignificant thus easily included. We will be forced to more carefully consider plan
switch overhead for a domain with TAP wcets falling into the millisecond range or less.

' The guaranteed TAP schedule may include the if-time server if plan-execution
resources were under-utilized even after all failure-avoidance TAPs are inserted.
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During this interval (if it exists), the Plan Executor calls the if-time server to run best-
effort (if-time) TAPs. Appendix A discusses the current if-time server options
implemented within the CIRCA-II Plan Executor that build upon the "Round-Robin"
procedure utilized by the original CIRCA [51].

In the chapters that follow, we will examine in more detail the major research
advancements implemented within CIRCA-II. First, we will describe the probabilistic
model built into the CIRCA-II planner. Next, we will look from a more general
perspective at how CIRCA-II can detect and handle "unplanned-for" states, and describe
our rationale and procedures for building the nominal and contingency plans that
populate the CIRCA-II plan cache. We will then focus on a very specific part of CIRCA-
II: the interface between the planner and scheduler within the Planning Subsystem, and

finally describe how CIRCA-II has and is continuing to fit into a system for safe, fully-

Initialize TAPs and TAP Schedule

!

—» Run next TAP in schedule

m

yes

automated aircraft flight.

Run if-time server

’

Set schedule pointer to
next TAP (reset to start <«
if at end of schedule)

Figure 3-5: CIRCA-II Plan Executor.



CHAPTER 1V
THE PROBABILISTIC TEMPORAL MODEL IN CIRCA-II

Although many probabilistic planners have been developed, most do not consider
event probabilities as functions of time. Many real-world events may be accurately
represented only with such time-dependent probability functions, and a reliable system
must also react with sufficient speed and accuracy to preempt all dangerous events,
effectively forcing the probabilities of those events close to zero for all times. In CIRCA-
II, we employ an algorithm that prioritizes states of the world by the probability of
visiting each at least once, which we define as a state's probability. We perform this
computation so that the system can consider the most probable eventualities first and, in
the worst-case, ignore less-likely situations if required by resource constraints (see
Chapter V). What makes this problem challenging in the context of a complex, dynamic
environment is that the probabilities of encountering particular states of the world are
dependent not only on the choices of what actions the agent performs, but also by its
choices of how quickly it will perform them. The sooner an agent in a dynamic
environment detects and responds to a situation, the less opportunity there is for
environmental events to intervene.

In this chapter, we provide a foundation for computing state probabilities in a
dynamic environment, where the probability of moving from one state to a successor is a
function of how long the state persists. In fact, as we point out in what follows, some

events could occur in any of a sequence of states, and the time-dependent probability of

46
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such an event occurring must take into account the time spent across multiple states,
including state-space cycles.

CIRCA-II's probabilistic planning algorithm directly addresses these challenges
and is designed to benefit from the compact representation like that found in
nondeterministic finite-state automata [42] while also maintaining a probabilistic state-
space model like that from a Markov Decision Process (MDP) model [11],[45]. Because
there is no "free lunch", the CIRCA-II model is less representationally-efficient than a
finite-state machine and may produce suboptimal (but sufficient) plans whereas the MDP
would produce plans that maximized overall utility.

This chapter is structured in accordance with the evolution of the CIRCA-II
temporal model, including details of how it is used to compute state probabilities and the
hard real-time deadlines used to guarantee system safety during plan execution. Because
CIRCA-II's planner is based upon the original CIRCA planner, we begin by describing
the original non-deterministic state-space model which assumes worst-case properties for
all state and action transitions. We also discuss how the recent addition of "reliable"
temporal transitions (developed at Honeywell Technology Center) augments this
nondeterministic model.

CIRCA-II uses a probabilistic world model to allow statistical knowledge
specification and to allow graceful performance degradation (as opposed to the planner
failing to return any plan in the original CIRCA) when the Planning Subsystem
determines it is impossible to schedule a plan that absolutely guarantees safety during a
worst-case execution scenario. Before launching into the details of our model, we
present examples to illustrate the types of state-space structures that might be revealed
during planning. These examples are intended to clarify terminology used in this chapter
and are referenced during subsequent model development. Next, we describe in detail
the CIRCA-II probabilistic planning world model, first describing how the user specifies

probabilistic state transitions, then working through the equations we have implemented
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for estimating state probability values from temporal transition probability "rate"
functions. We discuss how state probability and timing information is used to guarantee
temporal transition to failure (##f) preemption, present an example illustrating the use of
our equations, then conclude by with a qualitative comparison of our model to a Markov-

based model as well as the original CIRCA nondeterministic approach.

CIRCA's Non-Deterministic Temporal Model

In the original CIRCA [51], the state transition model includes temporal, event,
and action transitions. Actions are selected by the planner. If guaranteed, they have a
known worst-case execution time so they can preempt all temporal transitions to failure
for each state expanded by the planner. Otherwise, their execution time is not computed.
Figure 4-1a illustrates the transition timing models used in CIRCA, with time on the x-
axis and likelihood of occurring as a function of time since the transition was first active
(P(tt,t)) on the y-axis. The value minA represents the time delay before the transition has
non-zero probability, while the gray regions represents the “unknown” area in which the
transition may or may not occur, but must be considered by the planner. Using this
model, event transitions have a minA time of 0, indicating they could occur any time.
Temporal transitions have a minA value greater than 0, meaning that, in principle, a hard
real-time action might be scheduled (with deadline <minA) to guarantee transition
preemption.

Using this notion of temporal and event transitions, CIRCA is able to build its
nondeterministic state model, including all transitions that could occur within the “gray”
area of Figure 4-1a. For each state with a matching temporal transition to failure (##f), a
“guaranteed” action was chosen, and its deadline was set to the minA value for that
temporal transition, thereby preempting the transition and guaranteeing system safety

should this state be reached during plan execution. For other states without a #f, any
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action was considered strictly best-effort to minimize scheduling requirements, so all
matching temporal and event transitions were considered possible.

One drawback of the simple nondeterministic transition model from Figure 4-1a
is that there is no guarantee a temporal (or event) transition will ever occur. In some
cases, a ttff may actually be preempted by a ## matching the same state (e.g., a climbing
aircraft will transition to a new altitude so will not hit distant traffic at its current
altitude). The original CIRCA model had no mechanism for representing this possibility,
thus was restricted to always finding some action which will preempt the #f, which in
some cases is more difficult than letting another ## avert the disaster automatically.

Parallel CIRCA research has maintained this basic nondeterministic transition
model but added a model for a “reliable” temporal transition as illustrated in Figure 4-1b.
This new transition model includes a new time value, maxA, representing the maximum
amount of time that may elapse before the transition must occur, as well as the previous
minA value. Although not all temporal transitions must be assigned a maxA value, those
that are guaranteed to happen before maxA has elapsed will be able to preempt a ¢#f, thus
can be relied upon in states where disaster will be averted without intervention.

Even with the minA / maxA model, CIRCA’s non-preempted (reachable) state-
space is still completely nondeterministic, a structure that does not provide any
straightforward measure(s) to use for state prioritization. A major focus of this research
is to incorporate approximate knowledge and to facilitate scheduling by removing
unlikely states from consideration when required. To achieve much better than a random
selection criterion, we must assess the relative importance of states, a quantity difficult to
identify in the nondeterministic CIRCA model. In CIRCA-II, we adopt state probability
as the measure of state importance, so that only improbable states are removed from

consideration in “nominal” goal-achievement plans, effectively maximizing the chances
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that the nominal plan will succeed alone.”® Additionally, CIRCA-II's planner develops
and caches contingency plans to explicitly react to these improbable states should they

occur. Below, we describe the CIRCA-II probabilistic temporal model.

Pttit)
A
1.0 1.0
0.0 | 0.0 — T 1
minA min4 max4
a) CIRCA Temporal Transition Model. b) “Reliable” Temporal Transition.

Figure 4-1: Temporal Transition Model for a Nondeterministic State-Space.

State-space Examples

We begin our description of the CIRCA-II probabilistic model with examples to
illustrate the various types of state-space structures that may be encountered during
planning. The examples are organized from simplest to most complex, and will be
referenced again in subsequent sections of this chapter. Note that in all examples, state
identifiers (specified as sx above each state) denote the order in which the states are added
to the stack, which is not necessarily the [best-first] order in which they are expanded.
Additionally, in all figures, a double arrow denotes a temporal transition while a single
bold arrow represents an action transition.

Figure 4-2 shows the most basic state-space structure possible in CIRCA-II. The

state space forms a tree, and only two actions are selected: one best-effort for travelling

20 Probability is not the only possible measure of state importance for CIRCA-II. In
Chapter VIII, we discuss future work to incorporate additional parameters (e.g., time
horizon, guaranteed task resource usage) along with probabilities for an overall
assessment of state importance that will be used when pruning the planner search space.
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to the goal location (set-fix2) and one guaranteed (set-land) to avoid the crash ttf
following an engine-failure event. This simple example could be accurately handled by
the original CIRCA and CIRCA-II. However, the CIRCA-based approach to explicitly
scheduling failure-avoidance actions may still be required for this example if plan-
execution resources are so limited that both set-fix2 and set-land cannot simultaneously
be scheduled into a control plan given action deadline and worst-case execution
properties.”!

Figure 4-3 shows a simple example with a state-space cycle between states sy and
5. In this example, again a best-effort action (set-fix2) is included to direct the aircraft
toward a new location. However, additionally, the system must react (c/imb) if the
aircraft descends from a high to low altitude (e.g., during a wind shear event) before it
can impact the ground (crash).** Intuitively, since the crash #tf must be preempted, an
aircraft in state s, will always transition back to sy. Thus, due to the persistent state-space
cycle with no (non-preempted) exit paths, the system ultimately will transition from s, to
s; with 100% probability, regardless of the exact number of sy - s, transitions.

Figure 4-4 illustrates the concept of a dependent temporal transition (dtt). The
basic goal path shown in Figure 4-4 is for the aircraft to fly from syto s;to s3. However,
at each state along this path, the same temporal transition (engine-failure) may occur.
For many world events, the probability of that transition occurring is a function of the
amount of time the transition has been continuously active (i.e., matched a state or state

sequence). As will be discussed later, the probability of engine-failure depends on how

*! If this is the case, set-fix2 will only execute when sufficient slack time exists in the
CIRCA-II TAP schedule, as described in Chapter 1.

*? As a disclaimer, these examples are not intended to be overly realistic from the control
perspective. See Chapter VII for examples of more "realistic" autonomous flight.
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long the aircraft engine has been running,” thus the CIRCA-II planner must be able to
account for apparent "shifting" of the time-dependent ## probability functions when they
are part of a dtf sequence as is illustrated in Figure 4-4. Figure 4-5 depicts a typical state-
space that includes multiple cycles and a d#f sequence (chain). This example contains no
one distinctive feature but is included to illustrate the fact that CIRCA-II's planner must

be careful to simultaneously consider the effects of drts and cycles.

so SI S3
set- = -to-fix2 Nav = FIX2
_setfin2 Iggz - lljgg Jy-to:fix ng — DO Features and Values:
Status = Norm Alt = High Alt = High Navigation fix (Nav) =
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Figure 4-2: Aircraft State-space with Tree Structure.
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Figure 4-3: Aircraft State-space with a Cycle (s - s>).

» We presume the engine will run continuously during all flights, otherwise we would
require a global feature that "remembered" how long the engine had been running.
Introducing a global notion of time in CIRCA-II's planner would be analogous to
converting an MDP into a non-stationary process, a costly endeavor in either system that

we have not yet tackled for CIRCA-II.
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As a final example, we show a state-space that has to-date not been handled
within any implemented version of CIRCA or CIRCA-I1.** For CIRCA-II, the
probability and action-timing-constraint computation algorithms we have incorporated
effectively combine the timing and probabilistic information from different parents (e.g.,
s; and s,) so that we can consider overall transition cumulative probability values for
each state s; when assessing ##f preemption. In the Figure 4-6 case, two dependent ttfs
(hit-ground and hit-obstacle) may be simultaneously present in state s3. Figure 4-6
depicts a valid plan, because all temporal transitions may have sufficient delays before
they can occur for preemption with guaranteed actions. However, this plan may not be
found by CIRCA-II for certain sets of transition timings due to the combination of
dependent transitions and the cycle leading from s;back to s;. Further details regarding
this specific state-space structure and our ongoing efforts toward developing a solution

for the CIRCA-II stochastic planner are described in Appendix E.

Probabilistic State Transitions

CIRCA-II is built upon the basic algorithms used for CIRCA, so for planning, we
keep the same model of a “temporal” and “action” transition set.”> However, we now
account for the fact that individual temporal transitions may occur over time with
different and predictable probability distributions. In this section, we describe the

specification and utilization of CIRCA-II transition probabilities.

* Note that the Figure 4-6 example can be handled with a non-stationary MDP
representation because it does not allow state cycles. Parallel CIRCA research efforts
[26] have begun to address this problem by incorporating a model-checking algorithm
into the state-space planner.

> The term “event transition” was dropped because an event transition can be modeled as
a temporal transition with minA = 0.
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The CIRCA world model is constructed from initial state(s) and a set of state
transitions. Action transitions are explicitly controlled by the plan executor thus only
occur when selected during planning. All events that cannot be directly controlled are
modeled as temporal transitions. When expanding a state, CIRCA finds all temporal
transitions with matching preconditions, and selects an action (if any) based primarily on
failure avoidance when a ##f'is present and secondarily on proximity to the goal. The
three possible outgoing state transition cases are illustrated in Figure 4-7. Figure 4-7a
illustrates the situation where the transition set (action and/or other #£s) must preempt a
ttf. We define any transition #f out of a state Pi,; as preempted when, for each visit, the
probability of departing from state P,; via tt is less than Py, Figures 4-7b and 4-7c¢
contain no tffs, so the Figure 4-7b goal-achievement action is strictly best-effort, while
the planner has determined that no action enhances goal achievement possibility for P;,;

in Figure 4-7c.

P thresh
n—1

(Pim'r - Pr/n-exh ) < Px < Pim‘r

i=1 i=1 i=1
a) ttff must be b) Best-effort ¢) No Action
Preempted. Action Planned. Planned.

Figure 4-7: Matching Transition Sets for a CIRCA-II State.

As discussed above, the original CIRCA state-space was nondeterministic,
designed specifically to allow the planner to guarantee in the worst-case that all ##fs
would be preempted. In a subsequent CIRCA model [8], cumulative probability

functions were attached to each temporal transition, and an algorithm was presented for
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computing approximate state probabilities. These state probabilities allowed the removal
of improbable states when necessary for scheduling purposes, thus enabling the graceful
degradation we require for plan scheduling when resources would otherwise be over-
utilized. However, this model had several limitations. First, “groups” of temporal
transitions all had to match the same set of states; otherwise, the conditional effects of
one temporal transition on the cumulative probability of another could not be accurately
modeled. This created an unnecessarily large knowledge base. Also, the model from [8]
used a strictly local approximation of state probability which did not account for the
effects of state-space cycles, new sources to a state already expanded, or dependent
temporal transitions (dtts).

We have captured the "spirit" of the basic CIRCA action/temporal transition
model, but the CIRCA-II probabilistic planning process is significantly different from
both the original nondeterministic and probabilistic algorithms. The user (i.e., person
specifying the planner knowledge base) now describes discrete-time temporal transition
probabilities as probability rate functions (P,4.(tt;t;)) over a specific time step interval
(e.g., seconds). The function P,..(t,t;) may be described as the likelihood of transition ¢t
(i.e., statistical rate at which #; occurs) during time step #; given that #; has not already
occurred in that state during any earlier time step #; (0 <k <i). This definition is local in
the sense that time 7y corresponds to the time at which the #; preconditions were first
activated at the current location in the CIRCA-II planner's state-space.

Although the P,,. functions presented in this thesis are quite simple, P,y
specification is purposely made flexible so that the user can incorporate statistical data
and time intervals of any shape or size into a CIRCA-II knowledge base. For example,
Pae(tt,t;) may be constructed from an experimentally-derived histogram that describes
the likelihood of ¢ in "bins" corresponding to observed time steps [or intervals] #; at
which ##; occurred. Or, the user may use a Poisson distribution [16] for temporal

transitions that will occur at some expected time (the mean) but with some uncertainty
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(the variance). In this dissertation, we have not had sufficient resources to gather
accurate statistical data for our knowledge bases. However, we hope to incorporate
statistical data in future CIRCA-II knowledge bases for modeling events (e.g.,
meteorological phenomena) to aid with the "go/no-go" decisions made during flight.

As a simple and intuitive example for P,..(tt;t;), consider a fair coin flipped once
per second. The "probability rate" function for a transition from heads to tails has a
constant value of 0.5 over each second, because 50% of all coins flipped will land in a
"tails" position after exactly one flip, regardless of exactly when that flip occurred with
respect to 7y, the time at which this transition was activated. Figure 4-8a shows the

probability rate function for this coin flip example.

P, ye(tails,t) P, .(engine-failure, )
06 0.1
0.5 0.08
04 0.06
0.3
0.2 0.04
0.1 0.02

0 0

2 t;
1.2 3 4 5 6 7 8 9 10 toreakin e toverhaul
a) Coin-flip. b) Engine-failure.

Figure 4-8: Example Temporal Transition Probability Rate Functions.

As another example, consider the temporal transition “engine failure” for an
aircraft. When an engine is first put into service, the “failure rate” decreases during a
break-in period, then becomes very small during the normal operation period. When the
engine nears the end of its life (e.g., 2000 hours for a small propeller-driven engine), the
failure rate increases until the engine is considered “unsafe” and must be retired. An
example of the probability rate function for engine failure is shown in Figure 4-8b. We
capture such a multi-valued function using a probability rate table attached to each
CIRCA temporal transition, with probability rate information provided for all time

intervals with non-zero probability rate values.
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For failure avoidance, the CIRCA-II planner must show that all #/s have a
"sufficiently small" probability of occurring before another transition is guaranteed to
take the system away from each dangerous state. We define P, as the probability
threshold value below which a state sy is effectively considered preempted for each sy
encounter. Figure 4-9a shows a generic trend for a # probability rate function that can
possibly be preempted. Consider as an example a transition Ait-obstacle which matches
a state when a collision-course object appears on aircraft radar. Such a preemptible tt has
an initial period where its probability of occurrence is quite low or even zero (e.g., when
the obstacle is still far away), then after some delay the # can occur, with a maximum for
this particular example during the time interval in which the obstacle will be closest to
the aircraft. In the figure, this delay is labeled minA in reference to the original CIRCA
nomenclature. However, as will be described below, the conditional effects of other
temporal and action transitions matching each state must be incorporated before
computing preemptive transition timing requirements (e.g., the action execution deadline

for maneuvering to a "safe" area).

P, ..(hit-obstacle, t) P,..(-to-fix2, t)
0.2 1
0.15 0.8
0.6
0.1
04
005 0.2
0 , 0 )
minA i maxA i
a) “Preemptible” #t. b) “Reliable” #t.

Figure 4-9: Temporal Transition Probability Rate Function Trends.

Figure 4-9b shows a sample probability rate function corresponding to a reliable
temporal transition, such as the fly-tfo-fix transitions in the state-space examples presented
previously. For such a transition, the probability rate function must eventually increase
to 1.0 for some time step, effectively guaranteeing that, if that transition has not occurred

earlier, it will occur at this time. Note that both Figures 4-9a and 4-9b are only examples
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of probability rate functions that could be modeled for preemptible and reliable temporal
transitions; other functional forms that satisfy the basic minA/maxA requirements are also
possible. For example, if one knows precisely the time step at which a reliable 7 will
occur, the probability rate function can be modeled as 1.0 at that time step and 0.0
everywhere else. As mentioned above, we have used simplistic probability rate functions
for the examples presented in this thesis. However, there are no restrictions for their
specification so long as consistent time step sizes are used within each knowledge base.”

We also require probability rate functions for action transitions so CIRCA-II can
assess the relative likelihood of temporal transitions with respect to actions. For
guaranteed actions, we know the corresponding state-space transition must occur before
or at the action deadline. However, we cannot predict this value more precisely because
we do not know where in the cyclic TAP schedule the state requiring the action is first
reached. Figure 4-10 illustrates this uncertainty. In the ideal case (labeled best-case in
the Figure), any state requiring the guaranteed action from TAP4 will be reached just
before executing TAP4, in which case the action will complete well before its deadline.
In the worst-case, a state requiring the TAP4 action will be reached immediately after the
TAP4 test determines the TAP4 action need not execute (labeled worst-case in the

Figure), in which case the entire schedule must cycle before TAP4 will again execute.

best-case worst-case
for TAP4 for TAP4
TAP1 TAP2 TAP3 TAP2 TAPI TAP2 l TAP4 l TAP2
| J ‘ [
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4-10: Cyclic TAP Schedule in CIRCA-IIL.

%0 Several test cases have been run on functions ranging from a simple Poisson
distribution to periodic, although a periodic probability rate would be rare unless some
state features (e.g., plane position around a holding pattern) are not modeled.
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Equation 4-1 shows the action probability rate function we adopt to reflect the
uncertainty illustrated in Figure 4-10, where maxA(ac) is the time at which ac must have
occurred to preempt all ##fs. As shown, the probability of the action occurring during
each time step (given that it has not yet occurred) increases until it reaches 1 just before
maxA. Graphically, this function is identical to the example "reliable" temporal transition

probability rate shown in Figure 4-9b.

1
Pr(ac,t; )= (maxA(ac)—t;)
0 (¢, ? maxA(ac)) 9

(t; <maxA(ac)) (4-1)
?

For “if-time” (best-effort) actions, we currently use a constant probability rate
function with [relatively small] magnitude assigned by the user in the knowledge base.
This is not necessarily an accurate representation. However, the actual best-effort action
rate function depends on the TAP schedule (i.e., where the if-time-server is inserted, if at
all) as well as slack time available during plan execution. In future work, we plan to
assign more accurate best-effort action probability rates by iterating between scheduler
and planner. We hope to incorporate a probability rate function similar to that for
guaranteed actions when the if~time-server can be placed into the TAP schedule.
Otherwise, we will build the best-effort TAP probability rate function based on average
slack time that will be available during plan execution, computed from differences

between average and worst-case execution times for the guaranteed TAPs.

State Probability Computation

As described above, all transitions will be assigned probability rate functions that
have consistent interval sizes in the CIRCA-II knowledge base. We begin by using these
values to compute the relative probability of each temporal and action transition ever

occurring from a state, and we presume that all transitions are mutually exclusive because
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CIRCA-II contains no model of simultaneously transitioning to multiple states. Then, we
use transition probabilities to compute state probabilities. CIRCA-II does not presume
any particular structure to the state-space, so we must handle dependent temporal
transitions as well as cycles in the state-space. In this section, we describe the equations
that form the basis for the probabilistic CIRCA-II temporal model.”’

Perhaps the most challenging problem with specifying the CIRCA-II stochastic
model is accounting for all timing information so that we can have a state-space
representation in which individual states are independent of time but have incoming and
outgoing transitions with probabilities that are dependent on time. Table 4-1 defines the
set of symbols we will be using to describe state probabilities in CIRCA-II. The planner
begins with a set of initial states (each initialized to probability Pjniia(si)) and knowledge
of all unconditional temporal transition probability rate functions P,,.(tt;t;), from which
it builds the conditional transition probabilities Pco.q(trans; ts,si) based on other
transitions that match state s;. Then, the CIRCA-II planner uses the resultant cumulative
probabilities P, (trans;,si) to compute child state probabilities P(s.) from each parent.

The remainder of this section describes the procedure by which transition and
child state probabilities are computed/updated during the state expansion process. On
startup, the planner is given a set of initial states and assigns them equal probability as

defined in Equation 4-2, in which we also set Pj,ia(Sx) to zero for all non-initial states.

1 o
skL initial _states

P,-m-n-gl (sk )= ninitial?smres (4-2)

0 S [ initial _ states

%7 After we discuss the rather involved set of equations used in our state probability and
action deadline computations, we present a simple example that works through this entire
sequence of computations in an illustrative fashion. We encourage the reader to flip
between the equation descriptions and this example frequently to minimize any confusion
that may result from this extensive equation set.
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Table 4-1: Symbol Definitions for the CIRCA-II Probabilistic Planning Model.

Symbol Description
tt; temporal transition i
ac; action transition i
trans; transition i, including both temporal and any selected action
transitions matching the current state
Sk state k
th discrete time step /
Winitial_states number of initial states for this plan
Premoved Threshold below which states are ignored (removed) due to
scheduling constraints.
Pinvesn User-defined probability preemption and convergence
threshold (default = 0.)
Pinitiai(sx) Initial state probability contribution to state s currently
computed assuming a non-informative prior distribution.
Prae(tt, t) User-defined probability rate function; specifies the

probability of transition #; occurring during time interval
[tw,th+1) given that transition #¢; has been continuously active
for & time steps.

Prate(ﬁj; th,Sk)

Unconditional probability of temporal transition #
occurring in state s; during time interval [, t,4,).

Prate(acy th,Sk)

Unconditional probability of the selected action ac
occurring in state s; during time interval [t;,¢,+;). This
value is 0 if no action has been selected for state s

Prase(trans;,ty,si)

Unconditional probability of transition trans; occurring in
state s; during time interval /1,71 ;).

Prae(none,ty,si)

Probability of no transition occurring from state s; during
time interval /t),7,+,).

Pau(tti,t,sp,trans;)

"Shifted" probability rate function to reflect effects of
dependent temporal transitions (d#f); specifies the
probability of temporal transition ##; occurring during time
interval [#,1,+;) given the current state was reached via
transition trans; from parent state s,,.

Peona(trans;, ty,si)

Conditional probability of transition trans; occurring in
state s; during time interval /[t;,241,).

Poum(trans;, si)

Cumulative probability of #rans; occurring in state sy.

P(Sk, t/,)

Probability of being in state si at time #, given P(sy,t9)=1

P(Sk)

Probability of reaching state s; at least once along any state-
space path.

minA(tt;,sx)

Time step at which the cumulative probability of #; out of s;
crosses Piresh

maxA (acguar,St)

Maximum time step at which acg..- can preempt the fastest
ttf out of s

deadline(acguar,St)

Deadline (in time steps) for completing ac,..- €xecution
after state sy first becomes active
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CIRCA-II incorporates unconditional probability rate information for each
transition from the knowledge base.*® Ideally, this rate function could be directly used to
approximate conditional probabilities. However, in cases where one or more parent
states (s,) match a temporal transition (7t;) that is also active in the current state being
expanded (s3), some delay has passed that effectively shifts #7; 's probability rate function
by the amount of time ##; was active before ever reaching the current state (s;). When this
situation is encountered, we say that #7; is a dependent temporal transition (dtt), and we
must account for this situation when computing conditional probabilities. Equation 4-3
describes the time-dependent probability rate function for transition #7; in state s;. This
formulation is based on a weighted average of dependent temporal transition shifting

effects for #¢; over all parents s,, including any contribution when s, is an initial state.

Rm’tial (Sk )Rfate (ttz ’ th ) + P(Yp )Pz?um (transj ’ Sk )Ddtt (ttt ’ ZLh ’ Sp ’ ZLransj)
p ( ) V(p.j)7s,? ¥ e s, (4'3)
> (et t,,s,)=
e Pinitial (Sk )+ P(yp )R'um (transj 4 Sk )

V(p.j)>7s, 2 e S,{\j

Equation 4-4 describes how a single parent state (s,) affects the probability rate
function in state s. If parent s, does not match #, then the original probability rate
function is passed as Py, to Equation 4-3. Otherwise, if parent s, does match ##;, then we
shift the probability rate function by the amount of time it has taken parent s, to transition
via transition frans; to s;. Since we only have a probabilistic representation of the amount
of time required to transition from s, to sx (Pcons term used in Equation 4-4), we again use
a weighted average formulation to express the shift of the probability rate function,

normalizing by the cumulative probability of the s, s transition. Equation 4-4 takes

% Although we refer to all P, functions as unconditional, a more precise way to define
these functions is conditional on nothing else happening to the state, and we seek to
incorporate the effects of other transitions into our conditional probability P.,,sestimate.
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into account the case where a sequence of states all match the same dtt since the P4,
function for s, has already incorporated this information. When a dtt is present in all
states around a cycle that includes states s, and sy, the relative effect of this "shift" should
be included in the overall rate function for sx. CIRCA-II performs a depth-first search
from transitions out of s; and its descendants to identify and account for their overall dtt
contribution effectively as separate "parents" s," of si

P, (t.t,) when 1, [ {trans(yp )} (4-4)

Pdtt Qti;th,sp,trans/)z

- Pw"d (transf ’té’ Sy )Drare (tti ’tg +1, S, )
o Pl ) )

g=0

We have just defined a state-dependent # probability rate function that accounts
for all dtts in a state s;. In our model, we assume that we will never require dependent
action transitions, since we control their execution properties. Thus, for actions, the
probability rate function is either the "reliable probability rate" expression described in
Equation 4-1 for guaranteed actions or else the user-defined constant for best-effort
actions.

A basic premise of our probability model is that we wish to minimize knowledge
base size by allowing the user to specify conditionally-independent state transitions.” In

our model, multiple transitions may match a state and we assume that these events will be

*? Currently, this search terminates after the first cycle is expanded (i.e., each cycle is
only traversed once for dff computations). In the future, this algorithm will be modified
to terminate only when the probability addition due to repeated cycle traversals
converges.

%% In cases where the postcondition features and/or the ¢ probability rate tables change
markedly due to other world event(s), the knowledge base creator must be careful to
manually insert conditional dependencies that will not be computed by our model. We
have not encountered such a situation to-date but acknowledge that it could exist.
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mutually exclusive.”’ The CIRCA-II planner approximates conditional probability rate
functions (P.onq) from independent probabilities (P4.) using a model similar to the
"noisy-OR" formulation defined for Bayesian Networks [61]. First, we compute the
probability that no transition occurs during time step #, in state s, as shown in Equation
4-5. Next, we approximate the conditional probability of transition #rans; occurring
during time step ¢, from state s;. As shown in Equation 4-6, P,,s is based on P, (from
Equation 4-3) and is weighted by the probability that some transition occurs during time
step ¢, normalized by the sum of the P,,. functions for all transitions matching s.

R‘ate (none’ th ’ Sk ): C (1 - })mte (transr ’th 4 S]{ )) (4-5)
VtransHans( Si )

)_ R‘ute (transj ’ th ’ Sk )(1 - Prate (none’ th ’sk ))
- P, (trans t,,s,)

rate
Vierans, | trans(s; )

Pcond Qransj ’th ’Sk

(4-6)

After CIRCA-II computes P4 for all transitions out of s, the planner is finally
ready to compute state probability information. As a first step, Equation 4-7 shows the
probability of remaining in state s, given that the system has entered sy just prior to time
step #9. This recursive computation is based exclusively on the probability that no
transition takes the system out of state s, at time step #;, scaled by the probability that the

system has not already left state s; prior to .

1 when h =0,

P(s,.t,)= -
Gets) P(s,.t, )P, .(nonet, ,,s,) when h>0. (4-7)

* If a combination of transitions could happen simultaneously, CIRCA-II accounts for
this by allowing one transition to occur then calculating that the next transition occurs
immediately (minA=0).
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Next, Equation 4-8 describes the computation of overall cumulative probability
for each transition trans; from s;. Since a planner cannot actually sum to infinite time, we
define a convergence criterion in Equation 4-9 which will be met whenever either Pong
for trans; decreases to near-zero (as defined by Py.s) or else the likelihood of still being
in state s; has diminished to near-zero.

To maximize computational efficiency, the CIRCA-II planner computes the set of
quantities described by Equations 4-3 through 4-8 for each time step #, before moving to
the next time step #,+,. Equation 4-4 (for P4,) also included a summation to infinity, but
the entire computation sequence will automatically terminate when the planner

determines that P,,, has converged.

B ansj’sk )= X Lo Qransj:thrsk )P(Sk’th) (4-8)

h=0

P, converged at {tc 3 v(th > tc XP'ond (transj’th ’Slf )< thesh )'.‘ (P(Sk ’Zh )< Pthresh )} (4-9)

cum [

Our ultimate goal is to compute time-independent state probability values (P(sx)).
Because of CIRCA-II's cyclic state-space, we have incorporated a matrix algorithm based
on theoretical constructs from [36] to compute CIRCA-II state probabilities.”> In this
paragraph, we summarize the algorithm used to convert P, values from Equation 4-8 to
state probabilities P(s;) for all states s; identified thus far in the planner's state-space
search. Let the matrix M represent the current planner state-space, where each element
my is the cumulative probability P, (trans;sy) of transitioning from state sy via trans; to
child state s;. M is partitioned as shown in Figure 4-11 such that the first r rows and

columns contain only absorbing nodes (i.e., states that either have not yet been expanded

32 The matrix algorithm for handling cycles during probability computations was
motivated by the MDP literature and implemented by Haksun Li. An evaluation of this
matrix algorithm and overall CIRCA-II probabilistic planner accuracy is provided in [43].
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or that are expanded but contain no outgoing transitions), while the last (n-r) rows and
columns are transient nodes (i.e., expanded states with outgoing transitions). As
described in [36], the probabilities of transitioning from any node in the transient set to
any node in the absorbing set is given by the matrix P in Equation 4-10, while Equation

4-11 then shows the computation of P(s;) for each absorbing node.”

Child state s,

I 0
(Identity) (Zero)

R Q

(Transient to Absorbing) | (Transient to Transient)

-

~ Source state #

Figure 4-11: Matrix M used for CIRCA-II State Probability Computation.

P=(I-Q) 'R (4-10)

VS;L absorbing _ states P(s;)= Dil

skL initial_states

(4-11)

The Figure 4-11 construction of M gives P(s) for all absorbing nodes (states). To
compute transient state probabilities, we rebuild M for each transient state s;.4,; with all
outgoing edges truncated. Then, we recompute P from Equation 4-10 and sum all initial
state probabilities into Sygns t0 give P(Syans), as shown for M in Equation 4-11. As
discussed further in [43], truncation of outgoing edges for transient state probability
computation is acceptable because, for all states s, we define P(sy) is the probability of
visiting sy at least once (see Table 4-1), thus multiple visits (i.e., by traversing around a

cycle from s; back to s;) need not contribute.

3 For notational simplicity, we use py to represent the element of matrix P corresponding
with the probability of transitioning (via one or more transitions) from s, to s, However,
P must be ordered to partition the transient and absorbing nodes, thus state s; (where /
corresponds to the order in which CIRCA-II created the state) need not be matrix row /.
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Failure-Avoidance Guarantees

To assure guaranteed real-time failure avoidance, the CIRCA-II planner must be
capable of reasoning about #f preemption with either a guaranteed action or a reliable #
(or a sequence of actions and/or reliable #zs). In the original CIRCA, we presumed that
the user had defined precise values for minA that would allow the planner to set the action
deadline (separation constraint for the single-processor scheduler) to the smallest 77/ minA
that action must preempt, or else verified that a reliable # (with pre-specified maxA)
automatically preempted all #7fs. Unlike with the original CIRCA, we cannot a priori
define a specific time minA at which a ##f may occur because we now utilize a probability
model that necessitates dynamic computation of state probabilities over time. We also
need an analogous representation of maxA for guaranteed action and reliable temporal
transitions to ensure preemption.

In keeping with the original CIRCA terminology as much as possible, we define
the time step minA for a t#; (or ttf;) out of state sy as that time step at which the cumulative
probability for ##; crosses (or reaches) the preemption threshold P .sn. Equation 4-12
shows our minA (time step t,,) definition, given by the conditions that the cumulative
probability up to #,.; must be less than Py,.s, but at ¢,, must be greater than or equal to
Pirresn. In the current CIRCA-II implementation, we only use Equation 4-12 for #f
preemption computations, but give a more general definition here because other #/'s can

theoretically be preempted as well.

—m-l —m
mln A(ZLZLI"Sk ): tm 3 Pz‘ond (tti’th ’Sk )P(Sk'th )< Pthr@vh V |
.J

h=0

Pcand (tti’th’sk )P(sk’th)? Pthrexhﬁ (4'12)

h=0

Our ultimate goal is to effectively push minA for the set of #fs to infinity. In other
words, we never want the cumulative probability of any #f out of any reachable state s to
cross Puresn. All reachable states s, with one or more matching ##fs must also have a

"reliable set" of action and/or temporal transitions (excluding the #fs) that are guaranteed
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to occur prior to any #f.>* CIRCA-II dynamically computes transition, state, and #f minA
values at each time step (starting with 7). After time step ¢, during which the probability
of remaining in state s (P(si, t,) computed previously in Equation 4-7) drops below
Pinresh, we consider our computations converged. If no minA has been defined for any #f
upon reaching #;, we know all #fs have successfully been preempted since we have
already departed state s; via some other transition. For cases in which the set of #s alone
are sufficient to preempt all ##fs in 5%, we say the ##fs have been preempted by a "reliable
set of ts". Otherwise, CIRCA-II must select and compute timing information for a
guaranteed action to allow preemption of all ##fs in s;. Once the action is selected (details
of which are discussed in Appendix A), hard real-time constraints for this action must be
computed to guarantee ##f preemption. Equation 4-13 describes maxA(acgyar,sk), defined
as the maximum number of time steps that may elapse between first entering state s; and
safely exiting sx. This value is set to the minimum maxA for all #fs in state s; and is used

by the planning "post-processor" for computing action real-time deadlines.

maxA(acguw,,sk )=AminA(etf, s, ) > min A, s, )< minA(tzf].,sk)thﬁ,tlij tf(s, )i ? j § (4-13)

Once planning is complete, we have to compile all information for the guaranteed
actions to pass along to the CIRCA-II scheduler. Equation 4-14 defines the action
deadline (equal to separation constraint for the single-processor scheduler) that will be
passed along to the scheduler. These deadlines are computed separately for all acgqr €
{planned, guaranteed action set!. We require that each acg..- be assigned the worst-case

(minimum) maxA to guarantee preemption of all ##fs from all s; € {reachable state set S}

** The nondeterministic CIRCA planner requires one reliable # or a guaranteed action to
preempt a ttf. We now are able to measure the conglomerate effects of multiple
transitions acting on sx. Thus, we are able to use multiple #s (along with an action if
required), each of which alone would not be able to assure preempting the s ##fs, but
which together preempt all #fs out of reachable state s;.
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for which acgq-1s planned. Then, we must subtract the action worst-case execution

(wcet) 0 that acg,. actually completes execution prior to its deadline.”

deadline(ac,,, ) = min_ (nax A(acgum, ,8, ))— weet(ac,,, ) (4-14)

Figure 4-12 summarizes the probabilistic planning algorithm used for CIRCA-II.
Much like in the original CIRCA, state expansion is performed with actions selected for
each state as required. The overall loop of the algorithm (Steps 2-8) occurs for each
reachable state s, expanded by the planner. The inner loop (Steps 4-6 in Figure 4-12)
performs a binary search on the guaranteed action maxA for state s; to determine the
maximum allowable value that can still preempt the sy #fs. As will be discussed in
subsequent chapters, we utilize our state probability model not only to select actions and
assign their hard-real time deadlines, but also to assign relative priority values to states
and the actions planned for them and incorporate algorithms to remove unlikely states
from consideration when scheduling the preemptive actions required to guarantee
absolute failure avoidance is impossible.

Several situations can occur that necessitate backtracking during planning. First,
we may discover a state from which all #/s cannot be preempted (e.g., no action is "fast
enough"). In this case, we perform dynamic backtracking [24] through the sources to that
state in an attempt to either preempt transitions to this state or else choose different
actions which do not lead to this state.® The basic implementation of dynamic

backtracking in CIRCA-II is discussed in [4].

% If the Equation 4-14 computation results in a negative deadline, the planner must
backtrack and select an alternative action with smaller wcet.

%% The original CIRCA performed chronological backtracking and added such a state to a
"blacklist" avoided during future state expansion. Our incorporation of path-based state
probability updating has resulted in this migration toward dynamic backtracking.
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1. Put initial state set on state stack to be expanded.
2. Pop next highest-probability state s, off stack for expansion.
3. Select action for state s, (if any). [See Appendix A for details.]

If there is no ttf from s, classify action as "best-effort".
Otherwise, classify the action as "guaranteed" and assign it a
preliminary maxA value of infinity.

4. Compute all outgoing transition cumulative probabilities (P, up to
convergence time t..
5. If at least one ttf minA has been defined prior to t., store the

current action maxA as maxA,; then reset maxA per Equation 4-13.
Go to Step 4.

6. If (maxA, s - maxA) > Neopyergea Cime steps (a user-specified value),
increase maxA to (maxA,,; - maxA)/2. Go to Step 4.

7. Create new offspring states when they do not already exist; add new
or modified states back on the state stack for further expansion.

8. Compute state probabilities using the matrix algorithm for both
absorbing and transient states.

9. While more states require expansion, go to Step 2.

Figure 4-12: CIRCA-II Probabilistic Planning Algorithm.

Another situation that must be addressed via backtracking is that in which a
dependent temporal transition chain exists with a #7f. Our algorithms will work without
backtracking if a sequence of "reliable" temporal transitions (or a sequence of "reliable"
temporal transitions terminating with one guaranteed action) preempt a dependent ##f'in
all states in the sequence. However, because our algorithms are set up to automatically
maximize action maxA and consider only local preemption requirements (i.e.,
guaranteeing that no immediate descendants of expanded state s; are failure states), any
immediate descendant state s, of s; that results from a guaranteed action and matches the
same ttf will see an unrealistically small minA value for this ##f unless some other #¢ for s4
fortuitously occurs with near-100% probability within the first few time steps. When
such a situation currently occurs, we backtrack to the previous state and decrease the

maxA value used until it is sufficiently small.”” We are in the process of designing a

7 We currently do not optimize this value, so maxA may be set to a smaller value than is

necessarily required. This condition is safe but makes the guaranteed action more
difficult to schedule than might otherwise be necessary.
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global methodology for computing maxA with dependent ##fs, along with more efficient

backtracking processes both for guaranteed #ff avoidance and goal achievement.

State Probability and Deadline Computation Example

In this section, we provide an example that illustrates the use of the above
probability model for computing state probabilities and action deadlines during planning.
Figure 4-13 shows the first planning step. Initial state sy has two outgoing #¢s (lose-
altitude and fly-to-fix3) but is safe because neither is a ##f. Our first goal is to estimate the
conditional probabilities of these transitions from their rate functions. As given by
Equation 4-3, since neither temporal transition is a d#¢, the rate functions for the #s out of
state sy are unmodified (Pas(tt;th, So) = Prae(tt;, 1)) and are illustrated in Figure 4-14
(note the different axis scaling in the Figure). We use Equations 4-5 and 4-6 to compute

conditional probabilities P.oa(tt;, 14, o) for both #ts, with the result plotted in Figure 4-14.

S 57
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Figure 4-13: Expansion of Initial State sy.
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Figure 4-14: sy Transition Probabilities.
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Next, we compute the cumulative probabilities for the transitions from Equations
4-7 through 4-9. Table 4-2 shows the computation of conditional and cumulative
probabilities for the Figure 4-13 example. The final (converged) values for cumulative

probability are highlighted in the Table.

Table 4-2: Transition Probabilities out of sy.

T"ne Step (h) Prate(tto,th) Pmte(tthth) Pnone(SO,th) Pcond(tto,th,so) Pcond(tthth,so) P(So,th) Pcum(ttO,SO) tOth Pcum(tthso) tOth
0 0.000 0.050 0.950 0.000 0.050 1.000 0.000 0.050
1 0.000 0.050 0.950 0.000 0.050 0.95%0 0.000 0.098
2 0.000 0.050 0.950 0.000 0.050 0.903 0.000 0.143
3 0.000 0.050 0.950 0.000 0.050 0.857 0.000 0.185
4 0.000 0.050 0.950 0.000 0.050 0.815 0.000 0.226
5 0.200 0.050 0.760 0.192 0.048 0.774 0.149 0.263
6 0.250 0.050 0.713 0.240 0.048 0.588 0.289 0.292
7 0.333 0.050 0.633 0.319 0.048 0.419 0.423 0.312
8 0.500 0.050 0.475 0.477 0.048 0.265 0.550 0.324
9 1.000 0.050 0.000 0.952 0.048 0.126 0.670 0.330

The state probabilities may now be computed for s; and s,. For this system, there
are one transient state (initial state sy with probability P(sy) = 1.0) and two absorbing
states, s;and s,. For this simple example, one may immediately observe that the
absorbing state probabilities correspond to the cumulative probabilities (P(s;) = 0.67 and
P(s;) = 0.33). In CIRCA-II, these same values are computed using the matrix algorithm,
which we will utilize in more detail below.

After computing s; and s, state probabilities, the CIRCA-II planner expands the
next most-probable state, s;. For this example, assume no outgoing transitions match s,
so s; remains an absorbing state even after expansion. The planner then expands state s,
which matches one #f (crash) as shown in Figure 4-15. The planner selects an action
(climb) that must be guaranteed to preempt the ##f, and iterates to compute a maxA time of
5 to preempt the #tf with 100% certainty. The probability rate functions for the transitions
out of s, are shown in Figure 4-16. Note that the conditional probabilities are identical to
the unconditional rate functions because the two transitions never simultaneously have
non-zero probabilities during any time step. As with sy, we now compute s, transition

cumulative probabilities, shown with all supporting calculations in Table 4-3.



74

So
Nav = FIX3
Loc =FIX2
Alt =High

Sy
Nav = FIX3

Loc =FIX3
Alt=High

fly-to-fix.

Nav = FIX3
Loc=FIX2  n2=uf0: 3 Failure
Alt=Low crash

Figure 4-15: Expansion of State s..
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Figure 4-16: s, Transition Probabilities.

Table 4-3: Transition Probabilities out of s».

Time step (h) | Prate (tt2,th) |Prate(@C0,th)| Pnone(So,th)| Pcond (tt2,th,S0) |Pcond(@Co,th,S0)[ P(So,th) | Pam(tt2,S0) t0 th |Peum(aco,So) to ty
0 0.00 0.20| 0.80 0.00 0.20 1.00 0.00 0.20
1 0.00 025 0.75 0.00 0.25 0.80 0.00 0.40
2 0.00 0.33| 0.67 0.00 0.33 0.60 0.00 0.60
3 0.00 050| 0.50 0.00 0.50 0.40 0.00 0.80
4 0.00 100/ 0.00 0.00 1.00 0.20 0.00 1.00
5 0.05 0.00| 0.9 0.05 0.00 0.00 0.00 1.00
6 0.10 0.00| 0.90 0.10 0.00 0.00 0.00 1.00
7 0.15 0.00| 0.8 0.15 0.00 0.00 0.00 1.00
8 0.20 0.00| 0.80 0.20 0.00 0.00 0.00 1.00
9 0.20 0.00] 0.80 0.20 0.00 0.00 0.00 1.00

CIRCA-II now computes state probabilities using the matrix algorithm. The
matrix M containing all edges shown in Figure 4-15 is shown in Figure 4-17, partitioned
such that the absorbing states appear in rows/columns before transient states. Also shown
in Figure 4-17 is the P matrix computed via Equation 4-10. The probabilities of
absorbing states s; and failure (f) are then computed from the initial state (sg) row of P,

giving final values P(s;)=1.0 and P(f)=0.0. When truncating the outgoing edges from s,
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and recomputing P with s, as an absorbing state, we observe that the probability of state
s, remains P(s;)=0.33, an intuitive result since we have truncated all edges that were not
present during the first state expansion step from Figure 4-13.

Child state

<

s, f Sy S,
c5, 1 010 0 p
g f 10 1 0 0 s Tnitial to
; So |1 () | « absorbing
So 1067 0 0 0.33 state row
S2 11
$210 0 1 0

Figure 4-17: M and P Matrices used for State Probability Computations.

The state expansion process illustrated by this example continues until all states
have been expanded and all state probabilities have been computed. If the resulting
action set is successfully scheduled, plan development is complete. Otherwise, tradeoffs
are required for development of a schedulable plan. In this dissertation, we primarily
consider a procedure by which we dynamically modify a state probability threshold
Premovea below which states are ignored, thereby facilitating scheduling by reducing the
set of states for which ff preemption must be guaranteed.™®

For this example, we assumed a value Pyesn =0.0, where Py 1s the probability
threshold below which individual #fs are considered preempted. Increasing the value of
Puresn Will, in many cases, also allow an extension of guaranteed action maxA (thus
deadline) value. Table 4-4 shows the cumulative probabilities for ##f) out of state s, for
different maxA values between 5 and 10. If, for example, Py.sn were set to 0.05,

corresponding to a 5% chance of system failure each time state s is reached, the acy

* We do not explicitly place limits on Pemoves in this work, so we are always able to
eventually generate a schedulable plan with a large P,emoves value. In the future, CIRCA-
I should automatically decide whether to work toward its goals versus refuse to even
enter its environment when a substantial set of states (with high Pyemoveq) are ignored.
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maxA could be relaxed from 5 to 7, or with Py,.sn set to 0.2, the original maxA could be
doubled to 10, effectively cutting in half the scheduling resources required for this action.
In future work, we will augment the CIRCA-II planner to reason about the tradeoffs

associated with the simultaneous relaxation of both Pemoved aNd Pipresh.

Table 4-4: Crash (ttfy) Probability from s, for Various Climb (ac,) maxA Values.

aco maxA| Py (tt,=tf 5,5 5)
5 0
6 0.01
7 0.032
8 0.069
9 0.123
10 0.187

Comparative Evaluation of the CIRCA-II Temporal Model

We have not yet quantitatively evaluated the probabilistic temporal model for
CIRCA-II presented in this chapter, except for an analysis of the sources and relative
magnitudes of inaccuracies resulting from our "weighted average" approach (see [43]).
In this section, we discuss overall properties of our model gualitatively by comparing
aspects of the CIRCA-II model to the original CIRCA and MDP models. Figure 4-18
shows a qualitative plot of system success probability® (Psccess) Vs. the inverse of
resource capacity (c). In this plot, we presume there is at least one set of actions that can
preempt all ##fs given sufficiently large plan-execution resource capacity. As might be
expected, in the original CIRCA (depicted by the bold line in Figure 4-18), there is a
100% probability of success so long as a valid plan can be scheduled on ¢, but when
scheduling fails for any action set that preempts all #/s, no tradeoffs are available and the

probability of success immediately drops to 0%.

39 . . .
Due to our bias toward "safety first", we measure "success" in terms of failure-
avoidance instead of goal-achievement.
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With CIRCA-II, the probability of success depends on the setting of Piyesn and
also the setting of a "removed-state" probability threshold (Pemoveq) Which will be
discussed in the next chapter. In Figure 4-18, we show the qualitative expected
performance of both CIRCA and CIRCA-II as resource capacity decreases (i.e., 1/c
increases). The bold curve represents CIRCA's performance. With Py esn= Premovea =0.0,
CIRCA-II performance emulates that of the original CIRCA, since only absolute
preemption is sufficient. The solid curve set in Figure 4-18 represents CIRCA-II
performance for varying Pesh With Premovea =0.0. As shown, with even a small but non-
zero Puyesh, the system may show marked adaptation to reduced resource capacity. This
is in part because the CIRCA-II planner can utilize multiple temporal and action
transitions to cooperatively preempt ##fs, such that there is at least a (1- Pyyesn) probability
of having exited each state s, via some transition other than a ##f. As Py increases, the
probability of success decreases but the system is able to accommodate a smaller

resource capacity for the same domain complexity.
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Figure 4-18: Success Probability vs. Inverse Plan-Execution Resource Capacity.

The user currently specifies the constant Py.;» before CIRCA-II begins.
However, CIRCA-II does automatically adjust a threshold P,emoves below which states are
not considered in the current plan being developed to improve schedulability. The dashed

curve in Figure 4-18 shows how P,.moveq adaptation affects the success likelihood within a
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single plan. Although this curve does not fit a specific set of generated data points, we do
expect a sigmoid shape to this curve, since at the limits, the success probability will be
100% when sufficient resources are available (again emulating CIRCA) and 0% when too
few resources are available for executing any actions. As shown in the Figure, points
along the curve for varying Pemoveq n€€d not precisely align with identical Py.sn values
since they are utilized differently by the planner (see details for P,emoves in Chapter V).

In the Figure 4-18 plot, we only compare CIRCA and CIRCA-II "success" rates
because an MDP planner would need to be cast in a CIRCA-like framework to actually
produce the "guaranteed" task schedule for us to actually assess Pgyccess- In future work,
regardless of MDP complexity, we would like to better study the fit of an MDP planner
into CIRCA-II to analyze its ability to generate plans that gracefully degrade as plan-
execution resources are increasingly over-utilized.

kbase_size

A

8"

CIRCA-II

»
»
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Figure 4-19: Knowledge Base Size vs. Np for MDP and CIRCA-II planners.

Recall that in Chapter II we described the Markov Decision Process (MDP) and
argued that to develop general real-time control plans for guaranteed failure-avoidance,
we require a "k-level" MDP model in which the state transition matrix has worst-case
size (N4 xNp)x Ns* x Ns', where N, is the number of unique actions, Np is the number of

different deadlines assigned to each action, Ngis the number of modelable states and is
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exponential (/) in the number of unique state features (f) and values (v), and  is the
number of previous stages that must be effectively "remembered" in the current state.
CIRCA-II produces a sufficient but not optimal control plan, and contains only an
approximate conditional probability model. However, CIRCA-II completely avoids the
MDP complexity due to Np by explicitly computing deadlines for its set of N, actions
and incorporating their effects directly into the online conditional probability
computations described in this chapter.*

Figure 4-19 illustrates the knowledge base savings in CIRCA-II over the
unsimplified MDP (i.e., MDP with no state aggregation, etc. used for efficiency gains) as
Np grows large, where the initial offset in kbase_size is due to CIRCA-II's use of abstract
state transitions instead of a full set of conditional probabilities for all states. Large Np
will also complicate MDP plan generation because it must search through the full set of
(Np*N,) actions for each state for each iteration when building an optimal policy. In
cases with limited backtracking, CIRCA-II planning will have a distinct efficiency edge
over MDP planning. However, in the worst-case, both planners will be slow, MDP
because of the large set of action deadlines, and CIRCA-II because of its necessity to
exhaustively backtrack through all possible combinations of actions and states to find a
schedulable plan.

CIRCA-II directly addresses the difficulty of "remembering a k-stage history" in
the MDP formulation via the use of time-dependent transition P, functions and the

propagation of dependent temporal transitions effects throughout the expanded state-

*In fact, since CIRCA-II can assign any numerical value as an action deadline, the MDP
would theoretically require infinite Np to fully-emulate the flexibility of CIRCA-II when
assigning deadlines. Our experiments typically have required fewer than ten Np values
for each action over the duration of a mission, but we would not have been able to easily
predict the exact set of Np values required until after the mission plans were developed.
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space.”’ Additionally, since we use STRIPS-like abstract preconditions and
postconditions when specifying a domain model, a CIRCA-II knowledge base will
generally contain far fewer entries than even the total number of modelable states N.

The expected divergence in CIRCA-II and MDP knowledge base size as the modelable
state-space Ny increases is illustrated in Figure 4-20 for different k. Again, we again
cannot readily generate execution time or memory usage trends for MDP vs. CIRCA-II
planner for varying Ny or k. However, for large k and Np, the CIRCA-II planner certainly
has a "good" chance of out-performing the MDP planner unless a worst-case
backtracking scenario is encountered.

The evaluation presented in this section is strictly qualitative and based on
complexity and/or expected results. The intent of this section is to motivate our use of
the specific CIRCA-II techniques for complex problem domains that require tradeoffs
due to insufficient plan-execution resource capacity. We have biased our MDP
formulation to produce the control plans required for CIRCA-II and compared it to a
planner designed specifically to produce control plans as we have defined them. Thus,
we emphasize that this section is not attempting to diminish the importance of MDP-
based planners, but rather to argue that there is cause to develop an alternate
methodology such as that presented in this chapter.

Even with our tailored planning formulation, we are only able to generate
sufficient plans that will maintain system safety, whereas an MDP planner will be able to
produce optimal plans. We will continue to analyze the tradeoff between MDP and state-

space planners for CIRCA-II, particularly as we transition to the realm of time-

*I Dependent temporal transition computations cover the specific history information we
require for CIRCA-II state probability computations given our P,,. functions. As an
analogy to the k-level MDP, each dtf in our state-space will be continously active through
a sequence of at most £ states.
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constrained dynamic planning and are able to compare a future anytime [15] CIRCA-II

planner (see Appendix D) with a bounded-optimal MDP [62].
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Figure 4-20: Knowledge Base Size vs. # of Modelable States.



CHAPTER V
DETECTING AND REACTING TO ANOMALOUS EVENTS

We require a system that is capable of safely operating with imprecise knowledge
and incomplete plans, resulting in the possibility of reaching states during plan execution
that were not expanded during planning. If ignored, the consequences of such
"unhandled" states may be disastrous, particularly if these states are dangerous and no
reaction fortuitously guides the system back to a safe path.

As defined in Chapter I, our control plans are a set of actions with minimized
preconditions (i.e., potentially costly feature tests) that match multiple world states.

Each plan is specified as a cyclic task schedule to guarantee hard real-time response in
dangerous world states. A more traditional plan specifies a list (database) of states and
corresponding actions to execute in each state. For a probabilistic or nondeterministic
state-space, the traditional plan (policy) requires complete state feature sensing at each
plan step and a search for the appropriate state-action combination, a procedure which
cannot guarantee timely action retrieval and execution thus cannot guarantee safety in our
hard real-time environment.

A system using our definition of a control plan cannot simply “know” when it has
deviated from the set of states for which an executing plan is valid. Instead, a plan must
contain explicit directives for determining when such a deviation has occurred. We
define a handled state as a situation which has been expanded by the planner and both

lies along a goal path and is safe (i.e., no unpreempted #tfs exit from the state). All other

82
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states are classified as unhandled. A control plan reacts to all handled states
appropriately, thus no further intervention is required when such situations are
encountered. In this section, we identify classes of unhandled world states we argue are
the most important to detect, describe the algorithms used by the CIRCA-II planner to
build detection TAPs for these states, and then present an algorithm for maintaining

safety and responding appropriately when an unhandled state is actually observed.

World State Classification

We approach the problem of detecting important unhandled states by first
developing a classification of all world states. Then, we can gain efficiency by
exclusively enumerating and building reaction mechanisms for unhandled (or unplanned-
for) states that we classify as"important”. Figure 5-1 shows the relationship between
subclasses of possible world states. Modeled states have distinguishing features and
values represented in the planner’ s knowledge base. Because the planner cannot consider
unmodeled states without a feature discovery agorithm, unmodeled states are beyond the
scope of this paper. “Planned-for" states are those the planner has expanded. Thissetis
divided into two parts: "handled" states from which failure is assured to be avoided and
from which the goal can be reached, and "deadend" states from which failureis avoided
but from which the goal cannot be reached using the current plan.

All World States

: Modded )

4 Planned-for-

Imminent

"Handled" -- .
an Failure

Deadend |  can reach god

J

\_ World States Actually ReacheAd)
.

J

Figure 5-1: World State Classification Diagram.
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A variety of other states are modelable by the planner. Such states include those
identified as reachable, but “removed” because attending to them along with the
“planned-for” states exceeds system capabilities. Other modeled states include those that
indicate “imminent failure;” if the system enters these states, it islikely to fail shortly
thereafter. Note that some states might be both “removed” and “imminent-failure’, as
illustrated in Figure 5-1. Finally, some modeled states might not fall into any of these
categories, such as the states the planner considered unreachable but that are not
necessarily dangerous. Asillustrated by the boldly outlined region in Figure 5-1, states
actually reached may include any subclass. To assure safety, the set should only have
elements in the “planned-for” region. When the set has elements outside this region,
safety and performance depend on classifying an unplanned-for state if and when itis
entered and responding appropriately. For this reason, we provide more detailed
definitions of the most important classes.

A "deadend" state (DS) results when atransition path leads from an initial state to
a state that cannot reach the goal, as shown in Figure 5-2. The deadend state is safe
because there is no transition to failure. However, the planner has not selected an action
that leads from this state via any path to the goal. Deadend states produced because no
action can lead to agoal are called "by-necessity”, as when an arriving aircraft cannot
reach its designated airport gate because it is occupied by another plane. Conversely,
those deadend states produced because the planner simply did not choose an action
leading to the goal are called "by-choice”, often created in order to decrease plan
complexity or to avoid the potential for future system failures. For example, an aircraft
with a goal destination airport might build a plan that invokes actionsto land at the
nearest airport upon approach to any inclement weather, effectively producing deadend
states whenever a“bad weather ahead” transition occurs. These states may be deadend

“by-choice” because a more complex plan might have been able to invoke actions that
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alow the aircraft to safely go around the bad weather, but the planner chose simplicity

over completeness since system safety was not at stake.

Initial
State

tt or action

Figure 5-2: "Deadend State" Illustration.

A “removed” state results from the planner’ sinability to guarantee that the system
will avoid failure. A planner that generates real-time control plans needs to backtrack
whenever scheduling fails. When backtracking, the planner may select different actions
so long asfailureis still avoided. However, even after exhaustive backtracking, a planner
may fail to find actions that meet all objectives while still being schedulable. One option
isignoring some reachable states, thus not planning actions for them. A control plan so
constructed cannot claim to be foolproof. However, for real-time control applications, it
may be more important to make timing guarantees under assumptions that exceptional
cases will not occur than to make no guarantees about a more inclusive set of cases. Our
heuristic for pruning states is to overlook the most unlikely states. A "removed" state set
is created when the planner has purposely removed the set of lowest probability states, as
illustrated in Figure 5-3. In thefirst planner iteration, all states with nonzero probability
are considered, as depicted by the "Before Pruning” illustration. Here the planner must
consider alow probability transition leading to a state which transitions to failure, and

must guarantee a preemptive action to avoid failure.
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Figure 5-3: "Removed State" Illustration.

Suppose the scheduler fails. The planner will backtrack and build a new plan
without low-probability states. The resulting state diagram -- "After Pruning” -- is shown
in Figure 5-3. All states downstream of the low probability transition in the new plan are
no longer expanded. The preemptive action is no longer required, giving the scheduler a
better chance of success. A flight simulation example with removed statesis shownin
Chapter VI, illustrating why removal of these states was necessary and how the system
successfully detected and reacted to these improbable situations.

During plan development, all temporal transitions to failure (ttfs) from reachable
states are preempted by guaranteed actions. If preemption is not possible, the planner
fails. However, the planner does not worry about ttfs from any statesit considers
unreachable from theinitial state set. The set of all model able states considered
unreachable that also lead via a modeled state transition to failure are labeled "imminent-

failure".* Actually reaching one of the recognizable imminent-failure states indicates

It is also possible that states that are unmodelable could lead directly to failure with a
known transition, or that modelable states could lead directly to failure with transitions
not known to the planner, or that states that are not modelable could lead directly to
failure with an unknown transition. We exclude these cases from the “imminent-failure”
set because the planner is incapable of classifying them in this way.
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either that the planner’ s knowledge base is incomplete or incorrect (i.e., it failed to model
a possible sequence of states), or that the planner chose to ignore this state to allow other
guarantees.

Figure 5-4 shows a diagram of areachable state set along with an isolated state
(labeled “Imminent-failure”) leading via one temporal transition to failure. This state has
no incoming transitions from a reachabl e state, so the planner will not consider it during
state expansion. However, if this state is reached, the system may soon fail. The
imminent-failure unhandled states are important to detect because avoiding system failure
isusualy aprimary system goal. Consider an aircraft that “trusts’ air traffic control to
maintain traffic separation. During flight through controlled airspace, such an aircraft
would have no model of atransition to a state in which another aircraft is on a collision-
course. However, amid-air collision, if it does occur, usually leads to catastrophic
failure. During controlled-airspace flight, we model the “collision-course traffic”
scenario as an imminent-failure state for the aircraft that implicitly trusts air traffic
control, provided the knowledge base includes a ttf that describes the failure when two

arcraft collide.

mminen

B Failure
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Figure 5-4: "Imminent-failure State" Illustration.
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Detecting Unhandled States

As discussed above, a planner cannot be expected to somehow just “know” when
it has deviated from plans---it must explicitly plan actions and allocate resources to detect
such deviations.® We have identified classes of "unplanned-for" states that we consider
important to detect, and in this section we describe the methods we use to actually detect
these states should they occur during plan execution.

In our CIRCA-II implementation, after the planner buildsits normal plan, it builds
special TAPsto detect deadend, removed, and imminent-failure states. Other unhandled
states, such asthose “modeled” but outside “ planned-for”, “removed”, and “imminent-
failure” regionsin Figure 5-1, are not detected by CIRCA-II. If it reaches an unhandled
state that is not detected by CIRCA-I1, the system may transition back to a planned-for
state (where the original plan executes properly), transition to an imminent-failure state
(where CIRCA-I1 will detect the state and react), or simply remain safe forever without
reaching the task-level mission goals.

We have devel oped algorithms to build detection tests for deadend, removed, and
imminent-failure states. CIRCA-II TAPs could include tests for every set of featuresin
that unhandled state list (e.g., each deadend state), but these tests would be repeated
frequently during plan execution and may be time-consuming, asin PRS[32], where
context checking could involve alarge, non-minimal number of tests, including updates
from sensors. In CIRCA-II, once an unhandled state list is completed, the planner calls
ID3 [57] using the information-gain splitting heuristic with all of that class of unhandled
states as positive examples and all “planned-for” states not also in the unhandled state

class as negative examples. 1D3 returns what it considers a minimal test set which isthen

* This premise is consistent with both CIRCA and CIRCA-II control plan designs in
which each state must be classified to see if a particular TAP's action applies. CIRCA-II
is distinct from CIRCA in that CIRCA-II takes the "extra step" to classify and react to
states outside the planned-for set.
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used to detect that unhandled state class. During plan execution, when any of the
unhandled state detection TAP tests are satisfied, the plan executor notifies the plan cache
(and subsequently the Planning Subsystem) of this deviation. Below, we discuss how
CIRCA-II builds lists of the different unhandled state classes.

Although they do not result in system failure, deadend states have no temporal
transitions or planned actions that ever lead to agoal state, thus are important to identify.
To build alist of these states, CIRCA-I| searches the transition links from each state to
the goal state(s). If no goal isfound, that state islabeled "deadend" while the reachable
states along a goal path are labeled "non-deadend". Deadend states are the positive ID3
examples and non-deadend states are the negative examples.

Whenever the CIRCA-11 Planning Subsystem backtracks due to scheduling
difficulties, low-probability states are removed from consideration in the current plan
based on a minimum probability threshold (P, . bPelOW which states are considered
unreachable by the planner. Thisthreshold is gradually incremented until a schedulable
“nominal” plan based on the most likely set of states is produced.” The set of
“reachable”’ (planned-for) statesis defined as those expanded during development of this
nominal plan. The remaining states on the state stack that have not been expanded (i.e.,
because their probability isless than P,..,.) aethen set as"initia states', and the
planner executes its state expansion routine on these states presuming this plan’s planned
actions are executed. All states expanded, including the initial states, are included in the
list of “removed” states because they are possible to reach from the nominal plan, even

though the likelihood of reaching such states may be minimal. To build the removed

* For some domains, it may be desirable to assign a maximum value for Prepoveq. If N0
schedulable plan can be found without exceeding this limit, then the CIRCA-II planner
will fail.
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state detection tests, ID3 is called with this “removed” state list as positive examples and
all states expanded during nominal plan creation as negative examples.®

While the planner should look for deadend and removed states because they are
more likely to occur than other unhandled states (i.e., the planner knows they could
arise), likelihood is not the only criterion for allocating resources to detection. No matter
how unlikely, detecting imminent-failure states isimportant because of the potentially
catastrophic consequences of being in such states. When building imminent-failure state
sets, we assume the modeled set of temporal transitions to failure (ttfs) is complete and
correct, even though reaching such a state implies at least one other transition is not
accurately modeled. The planner begins with alist of all precondition feature sets from
ttfs. Thislist is expanded to fully enumerate all possible states that would match these
preconditions. Any reachable states are removed from thislist. Imminent-failure
detection TAP tests are then built with thislist as D3 positive examples and the
reachabl e states as negative examples. Note that a complete list of fully-instantiated
states to detect can be quite large. We continue to search for alternatives or
approximationsto ID3 that will provide sufficient accuracy with improved computational
efficiency, although planning efficiency will not be of paramount importance to CIRCA-

[ until we impose real-time bounds on our planning processes.

* A simpler version currently implemented for removed state generation is to consider all
states remaining on the state list with probability below P;epoveq as the set of removed
states. This is the first-level group of removed states. However, they may not be
sufficient for detection of all deviations into "removed state regions" since such states
may be transient and thus not still be present when the corresponding detection TAP
executes.
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Real-time Reaction to "Unplanned-for" States

For real-time operation, an automated system must guarantee both a timely and
accurate response. CIRCA-II utilizes explicitly-scheduled control plans to guarantee that
the system will be safe so long as the environment remains within the set of planned-for
states (see Figure 5-1). In this section, we describe a method to improve CIRCA-II's
ability to also remain safe in the important unplanned-for state classes we have defined
above.

Because accurate planning is generally an NP-complete problem, online planning
must be invoked only when time is available, with offline deliberations utilized to
develop reactions for the most time-critical situations and online planning to react to
other, “safer” states. This combination of offline and online planning is desirable
because it is generally infeasible to create a universal plan set [63] in complex problem
domains (using strictly offline deliberation), as discussed in [23], but, conversely, it is
also impossible to guarantee timely online planning responses when the response must
occur very quickly. To directly address the tradeoff between [slow] dynamic planning
and a large pre-defined plan database, we require a planner that explicitly computes
available deliberation time based on the notion of failure avoidance. Next, the planner
uses these time-to-failure computations to identify situations in which pre-computed
plans are mandated for failure avoidance, versus situations in which dynamic planning
can occur with sufficient speed to avoid any far-term failures that might occur.

Figure 5-5 illustrates the idealistic “plan-space” concept we adopt as our failure
avoidance model. In Figure 5-5, plan execution begins in “Planned-for States 17, and in
best-case situations, execution will remain within that block using reactions from the
executing plan. However, we account for cases in which some state (temporal) transition
(#t) leads away from that block, either via a model inaccuracy or plan incompleteness.

When such a deviation occurs, we must identify it and react in sufficient time to avoid
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catastrophic failure, modeled in the figure by a state transition to failure (#zf). In this
paper, we describe a method for detecting such “unhandled” states, with primary
attention paid to those requiring time-critical responses.

Must Detect transition to State set that may be reached
Unplanned-for State set prior to taking corrective action

Action:
Retrieve Cached Plan

Planned-for
States 2

“Fast” ttf
—___ >
Action: Invoke

“Very Slow” 1f “moderate-time” replanning

Planned-for
States 1

Action: Invoke
full replanning

Figure 5-5. Plan-space Transitions based on Time to Failure.

If a “fast ttf” matches an unhandled state, a pre-computed plan must be quickly
executed before failure can occur, since insufficient time exists for online deliberation.
Otherwise, an appropriate planning algorithm may be selected based on how much time
remains before failure can occur.* For example, as shown in Figure 5-5, the “moderate
time” planning algorithm might be a case-based technique [28] for which worst-case
execution time is a function of case database size, or an anytime planner [15],[74],[75]
which includes a careful definition of worst-case execution time for development of a

“minimum quality” plan to avoid failure. The “full replanning” algorithm may be a state-

* In the most general case, more than two planning algorithms might be available.
Adopting a design-to-time approach [21], additional classifications of ttf “speed” would
then be identified such that each planner would be invoked based on ttf “speed” from the
identified unhandled state.
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based planner with difficult-to-predict execution properties, often required for complete
and precise plan development. We assume planning accuracy is a function of
deliberation time, so that the “full replanning” algorithm will produce the most detailed
(best) response set.

We consider the Figure 5-5 "plan-space" concept with any number of intermediate
planning levels to be idealistic because, for each level, one must carefully define the
utility of selecting that level for responding to the next state versus the next "higher" or
"lower" planning level. With many planning algorithms, it is challenging to clearly
specify result accuracy and response timeliness without actually performing the planning
operation. In this thesis, we present a two-level "plan-space" design and describe how it
specifically fits into CIRCA-II.

Figure 5-6, illustrates the plan-space diagram utilized in CIRCA-II. We
incorporate two distinct methods for handling unplanned-for states: plan retrieval from
the cache and replanning. As discussed previously, CIRCA-II contains an “unbounded”
state-space planner and a plan cache that must have “bounded” retrieval times. CIRCA-II
dynamic replanning should only be required from unhandled states that cannot lead to
failure (e.g., deadend states), while the plan cache should contain a failure-avoidance plan
for all unhandled states (e.g., “dangerous” removed and imminent-failure) with ##fs that
occur quickly. As depicted in Figure 5-6, the contingency plans may not re-direct the
system to the “planned-for” state set, because they focus exclusively on failure-
avoidance. Instead, they redirect the system to states with a longer time before failure
can occur, effectively “buying time” for the CIRCA-II planner to construct a new goal-

achievement plan.
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Figure 5-6: Plan-space Transitions in CIRCA-II.

As in the original CIRCA, CIRCA-II control plans are explicitly scheduled such
that failure-avoidance is guaranteed while in any set of planned-for “probable” states.
The remaining challenge is to meet all hard real-time deadlines required for successfully
responding to each unhandled state with a contingency plan. To maximize plan retrieval
efficiency, the plan cache is empty upon system startup”’, then offline planning populates
the two cache partitions, nominal and contingency, and assigns each contingency plan a
“matching” nominal plan. Therefore, when an unhandled state is encountered, only the
set of contingency plans associated with the currently-executing nominal plan must be
searched for a match with the unhandled state.

Ideally, the CIRCA-II planner will have built a set of contingency plans that can
be retrieved quickly enough to make hard real-time guarantees of failure-avoidance in all
time-critical unhandled states. However, in practice, some unhandled states may have

sufficiently fast ##fs that it is impossible to assuredly retrieve a contingency plan in time,

* In future work we plan to study tradeoffs associated with "remembering" or "learning"
contingency plans that are frequently used to minimize the overhead during startup
currently required to populate the cache from scratch.
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particularly when a large set of unhandled states require a large group of contingency
plans. For each nominal plan, we can assess CIRCA-II’s ability to make real-time
failure-avoidance guarantees for unhandled states. First, the worst-case contingency plan
retrieval time (#,) may be computed from Equation 5-1, where # is the number of
contingency plans associated with the executing nominal plan, and #,,, is the maximum

time required to test for an unhandled state match in any of these contingency plans.

=1l (5-1)

For failure-avoidance to be guaranteed in an unhandled state, Equation 5-2 must
be satisfied, where minA(s,) is the minimum delay before any ##f from unhandled state s,
can occur (minA definition for a ## was described earlier in Equation 4-11), ¢, is the worst-
case time between the occurrence and detection of state s, (equal to the execution period
of the nominal plan’s "unhandled state" detection TAP for that state class), and #,,., is the

near-constant overhead time required to actually start up the new plan once retrieved.

minA(s,)? (1, +t, +1,. ) (5-2)

Using Equations 5-1 and 5-2, we are able to identify the set of time-critical
unhandled states that achieve guaranteed failure avoidance. In many cases, CIRCA-II
may make absolute failure-avoidance guarantees for all states, even for “improbable”
states handled via contingency plans. However, time-critical situations may exist in
which Equation 5-2 does not hold for all the unhandled states. In these worst-case
scenarios, CIRCA-II will perform analogously to an overloaded real-time system -- it will
guarantee a subset of all failure-avoidance reactions but will only be able to achieve best-

effort response for the others.
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We have assigned a preference in the CIRCA-II planner for building contingency
plans for “dangerous removed” states before those for “imminent-failure” states, since
both are critical for failure-avoidance but removed states have a small but non-zero
probability, whereas imminent-failure states will occur only if the model is inaccurate.
With contingency plans retrieved in first-in-first-out (FIFO) order, the most “likely” set
of improbable states will have the minimal retrieval times (i.e., their matching
contingency plans will be searched first), thus the plan cache will be able to meet plan
retrieval deadlines more often when the model is accurate.

Figure 5-7 shows a qualitative plot of expected CIRCA and CIRCA-II
performance as a function of [inverse] plan-execution resource capacity c¢. Previously
(Figure 4-12), we illustrated how CIRCA-II achieves flexibility in trading off the
probability of mission success (i.e., safety) for schedulability when resources would
otherwise be over-utilized. In Figure 5-7, we add a new curve (labeled "CIRCA-II w/
cache") that illustrates how the detection of unhandled states and incorporation of the
CIRCA-II plan cache improves overall chances for success, even when the model is not
precise (so imminent-failure states may be reached) and resources are limited (so states
may require removal). As shown in the Figure, safety is guaranteed with 100%
likelihood (Psuccess=100%) as with CIRCA until resource capacity requires incrementing
Premovea about 0. Then, performance will drop off until no actions can be scheduled to
execute in a timely fashion, giving a near-zero chance of success regardless of how many
plans are cached. The distinction between CIRCA-II with and without the real-time
cache is simply that, in the region where the resource set is marginally over-utilized, the
plan cache enables CIRCA-II to more effectively utilize its resources for failure-
avoidance by moving through a hierarchy of real-time schedules that guide the system

safely through its environment.
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Figure 5-7: Success Probability vs. Resource Capacity: With and Without Plan Cache.



CHAPTER VI
PLANNER-SCHEDULER NEGOTIATION

Planning for real-time applications involves decisions not only about what actions
to take in what states, but also about how to realize those actions within hard real-time
deadlines given the inherent resource limitations of an execution platform. Determining
how to arrange planned actions in a sequence such that timely execution is guaranteed
within constraints is a manifestation of the scheduling problem. We adopt a modular
approach that couples separate planning and scheduling components into the CIRCA-II
architecture, so that the planner and scheduler can separately apply their expertise to
ultimately build an appropriate plan that will execute with hard real-time guarantees on
the plan execution platform.

The planner is an expert at determining which tasks must be performed subject to
which constraints to solve the global problem at hand, while the scheduler is an expert at
manipulating the tasks into a specific order such that constraints are not violated. Ideally,
one would like the scheduler to know only how to manipulate tasks into a cyclical
sequence which does not violate constraints, while a planner knows about the global
problem at hand and the tasks required to solve the problem, but not the details of how to
organize the tasks into a schedule. For communication between planner and scheduler,
however, the two must share some knowledge. How much knowledge should be shared

and how to represent this knowledge is not clear. This problem generally requires

98
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iteration between developing alternative plans and evaluating the schedulability of those
plans until an executable plan that maximally accomplishes goals is found.

In this chapter, we describe our efforts to identify and utilize a minimal but
expressive shared knowledge representation for coupled planner and scheduler agents,
and describe how this information supports the iterative formation of real-time
guaranteed control plans. We have approached this work in several stages. First, we
look at the specific case of a single-processor plan execution platform and describe how
the CIRCA-II scheduler computes and feeds back resource usage information to help
guide replanning efforts when plan scheduling fails. Next, we admit a general multi-
resource plan execution platform and describe how generic allocation and scheduling
algorithms may provide "bottleneck task" feedback for guiding planner backtracking
efforts when scheduling fails. A major advantage of a multi-resource execution platform
is the ability to introduce fault-tolerance. We discuss a limited fault-tolerance
methodology for CIRCA-II, based on the multi-resource allocation and scheduling
algorithms and the CIRCA-II plan dispatcher. Finally, we venture into a discussion of
how Quality-of-Service (QoS) negotiation may be incorporated into CIRCA-II such that
both the planner and scheduler can make tradeoffs when scheduling the "ideal" plan is

impossible given the limited execution resources.

Scheduler-to-Planner Feedback™®

The single-processor CIRCA-II scheduler is based on a non-preemptive
separation-constrained method of scheduling described in [52]. The scheduler simulates

the execution of a dynamic scheduler by maintaining a time counter and iteratively

* This work was done cooperatively with C. B. McVey. Further details of the CIRCA-II
Schedule Manager, including the computation of under-utilization parameters and a more
detailed specification of the feedback message structure, are provided in [47].
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incrementing it as TAPs are chosen for execution. At each iteration, the TAP with the
shortest slack time is chosen to be executed. TAP slack time (¢qc(TAP;)) is defined in
Equation 6-1, where f,,(TAP;) is the TAP's separation constraint specified by the planner,

tur 18 the current time, and #,,,(TAP;) is the time TAP; was last chosen to execute.

tstack(TAP;) = tsop(TAP;) - (teur - tiast(TAP;)) (6-1)

If any other TAP (TAP)) has sufficiently small worst-case execution time
(wcet(TAP))) to fit within the slack time of the originally-chosen TAP (wcet(TAP;) <
tsaack(TAP;)), it will be selected for placement in the schedule instead. If the slack time of
any TAP is less than zero at any point, the TAP's deadline is violated and scheduling
fails. After all TAPs are present in the schedule, the scheduler continues its simulation
until a valid periodic subsequence containing all TAPs is extracted as the final schedule.

In this section, we first describe the Schedule Manager which was added to the
original CIRCA scheduler to construct and direct message-passing between planner and

scheduler. Then we provide an example that illustrates the use of this feedback.

Schedule Manager

A scheduler capable of providing meaningful feedback to a planner must have
authority to manipulate and retry scheduling the requests it receives from the planner.
Given this capability, the scheduler can use the difference between a satisfiable request
and over-constrained request to provide more accurate feedback to the planner. We have
augmented the original CIRCA scheduler with a rule-based system (the "Schedule
Manager") which directs the processing of all scheduling requests from the planner.
Depending upon the request, this Manager may perform a variety of actions: schedule a

request, modify some constraints in a request, modify parameters which govern behavior
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of the core separation-constrained scheduling algorithm, calculate appropriate feedback
for the planner, and transmit a valid schedule or feedback.

A high-level summary of Schedule Manager algorithm is shown in Figure 6-1.
Upon receiving a schedule request from the planner, the manager first checks that overall
processor utilization U is less than one and tests for task-pair conflicts (i.e., whether
every combination of two guaranteed tasks will fail to fit together on the single processor
given their separation constraints and wcets). If both of these tests "pass", the Manager
calls the scheduler. Otherwise, it concludes the scheduler will have no chance at
complete success with the current plan and constructs feedback for the planner.

The primary feedback from Schedule Manager to planner is a suggested
probability threshold (P,emoveq) below which "unlikely" states are to be ignored. This
Pemovea recommendation is made based on a heuristic-guided binary search between the
minimum, maximum, and current threshold that have been used during development of
this plan. When the planner adopts an increased probability threshold, the state-space
search is pruned, effectively generating the "removed" states described previously in
Chapter V. This pruning ultimately results in increased TAP separation constraints

and/or the removal (or replacement) of some TAPs from the scheduling request.

Scheduler Feedback Example

We have incorporated the Schedule Manager into CIRCA-II, and here present a
simple flight domain example to illustrate the utility of scheduler-to-planner feedback.
Figure 6-2 shows the state-space from an automated flight simulation test run to test the
CIRCA-II Schedule Manager algorithms. Note that, for state diagram conciseness, the
"tornado" temporal transition, which is very unlikely but matches every state while the
aircraft is in flight, leads to a "generalized" state with (Tornado = T), which must be

countered with the "avoid-tornado" action that leads back to the "pre-tornado" state.
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Figure 6-1: CIRCA-II Schedule Manager Algorithm.

Wait for new p&

Done with
this plan.

Table 6-1: Required TAP set (+ if-time-server) for "Traffic Avoidance" Plan.

TAP # Name wceet lsep Probability Priority
0 if-time-server 3550 N/A N/A N/A
1 climb 2150 45000 1.0 41
2 avoid-tornado 4150 9000 0.057 15
3 avoid-traffic 2150 20000 0.943 47
4 course-correct 5325 90000 0.9 41
5 resume-heading 2150 45000 0.89 38
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Figure 6-2: CIRCA-II "Traffic-Avoidance" Excerpt from Automated Flight State-Space.

The set of "guaranteed" actions required to avoid ##fs are listed in Table 6-1. We
present for this example the output from one possible planner-scheduler iteration cycle
from this state-space. Following the Figure 6-1 algorithm, the schedule manager first
determines that U<1, so it looks for TAP pair conflicts. Unfortunately, TAP #2 conflicts
with Tap #4 since the sum of their wcets is greater than TAP #2's separation constraint
(tsep). At this point, the scheduler computes and returns Pyemoveq to the planner. To
compute Pjemoved, the scheduler performs a binary search to find the maximal set of
guaranteed TAPs that can be scheduled, then sets Pjemoves to the highest-probability value
for the TAPs that did not fit into this set (see [47] for further details). For our example,

Promovea 18 set to 0.057 since a successful schedule could be constructed with all other
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TAPs. Upon replanning, TAP #2 disappears because all "Tornado=T" states fall below
this probability threshold. Thus the scheduler is successful on the next pass, constructing
and downloading the TAP schedule {3, 1, 0, 4, 0, 3, 5, 0}, where schedule numbers
correspond to TAP numbers and the "if-time server" (TAP #0) has been inserted as

frequently as possible.

Bottleneck Task Selection with a Multi-Resource Scheduler

We have extended CIRCA-II to consider multiple resources during plan
scheduling. This work again focuses on augmenting the expressivity of scheduler-to-
planner feedback to guide replanning when scheduling fails. However, we generalize on
the "Schedule Manager" algorithms in two respects. First, we allow both multiple
instances of a specific resource (e.g., multiple processors) as well as multiple classes of
resources (e.g., processors, communication channels). Second, the above communication
protocol between planner and scheduler were explicitly tied to the planning and
scheduling algorithms used in CIRCA-II. We maintain a sufficiently expressive
message-passing structure, but make the messages generic so that any planner and
scheduler capable of generating and utilizing these messages can effectively be "plugged
into" our planner-scheduler interface module.

We begin this section by introducing the real-time resource allocation and
scheduling problem in terms of CIRCA-II. We then describe our heuristic planning-
resource allocation interface, including how it may be "plugged into" CIRCA-II, and
provide a simple example illustrating how this interface is used to select bottleneck tasks

when scheduling fails.
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Resource Allocation and Scheduling

For a real-time computing system, a "plan" is a set of tasks 7 = {7}, ..., T} with
resource requirements and timing constraints. The problem of resource allocation is to
map the set of planned tasks onto a set of available resources such that all constraints are
met. In CIRCA-II, all guaranteed tasks are considered periodic, and each task 7; € Tipu
has worst-case computation time C; (wcet(T;) previously) and period P;. The worst-case
computation time includes scheduler context-switching overhead. The jth invocation of
task 7; becomes ready for execution at time (j-1)P;, called task arrival time, a;/j/. The
deadline, d;/j], of a task invocation is usually such that d;/j] < a;[j] + P; since each
invocation must complete its execution before the next one arrives. It is sufficient for the
resource allocation algorithms to find a task schedule within a finite interval, L, equal to
the least common multiple of all task periods, called the "planning cycle" in the real-time
community. The resulting task schedule repeats itself in subsequent planning cycles.
Each task may be composed of one or more separately schedulable modules (i.e., threads)
with arbitrary precedence constraints. The resource requirements of each module are
known a priori since we know the resource profile for the application code.

The selection of a proper resource allocation algorithm depends on the execution
platform considered. An optimal resource allocation algorithm is described in [72] for
uniprocessors, in [73] for multiprocessors, and in [56] for distributed systems. Once the
task assignment is fixed, an optimal offline scheduling algorithm such as [3] can be used
to preschedule the tasks. In this section, we presume the use of [56] for task assignment
due to its ability to handle distributed systems, and use [3] as the "generic" periodic task
scheduler. These algorithms are used to schedule all CIRCA-II guaranteed tasks (those
with g;=1). Best-effort tasks (those with g;=0) are then fit, when possible, into gaps of

this schedule. The resulting overall schedule for each processor is stored in a table.
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Planning -- Resource Allocation Interface

A primary objective of the planning-resource allocation interface is to utilize
existing resource allocation algorithms with minimal modification. In particular, the
planner should be told whether or not the current plan is schedulable, and if it isn't, which
task is judged to be the most costly "bottleneck". If the plan is found schedulable by the
resource allocation analyzer then its entire value is redeemed. However, if the plan is
unschedulable, the interface module points out a "costly" task to reconsider during
replanning.

In our design, we require a specific plan format for transmission to the planner-
scheduler interface module. As described previously, the CIRCA-II planner produces a
set of TAPs, a subset of which are guaranteed to preempt #fs along with the rest which
operate under strictly best-effort operation. Henceforth in this section we shall refer to
each TAP as a task T;. For each planned task 7; € Tjy, Where T}, contains all tasks in
the plan, the planner must output the triplet (g;, P;, V) to the planner-scheduler interface
module. g; is the "guarantee flag" that indicates whether task 7; is guaranteed (g; = 1) or
best-effort/"if-time" (g; = 0). P; is the maximum period® of T} required to preempt rtfs
when g; =1, and V; is the "priority" value of task 7;, currently set to n;*max(prob;), where
n; is the number of reachable states in which task 7; executes and max(prob;) is the
maximum probability of any state in which 7; executes. This heuristic reflects a
preference to keep tasks chosen for the highest-probability states, as well as the fact that
large n; will likely require many backtracking steps should 7; be altered. We define the

set Tandatory as all tasks T; € Tipr With g; =1.

* For the CIRCA-II planner, P; must be set to twice the TAP separation constraint (tsep)
because periodic schedulers may place a task either at the "beginning" or "end" of each
task period within a schedule, as described in [52]. This will often result in inefficient
scheduling of CIRCA-II plans, but is more generic due to the multitude of periodic task
allocation and scheduling algorithms.
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The resource allocation analyzer receives input (T; € Tnandatory, Pi) then returns a
success/failure status and utilization matrix U in which each element U(i,q) is the
utilization consumed by task 7; of resource class g. The scheduler database defines the
worst-case resource requirements of all task modules (or threads) M; € T;. Elements
U(i,q) are computed by the resource allocation analyzer as follows. Within each planning
cycle L the total capacity of a resource g is pQL, where p is the number of instances of
the resource and Q is the capacity of each. If module M, of period P and execution time
Cy requires an amount 7, of the resource throughout its execution, then its total demand
on that resource within the planning cycle is 7 ,CiL/P. The ratio of that demand to the
total available resource capacity is the utilization u(k,q) consumed by module (or thread)
M;, of resource ¢, and is shown below in Equation 6-2. The utilization U(i,q) consumed
by task 7; of resource ¢ is the sum of the utilizations u(k,g) of all modules Mj € T; and is

shown below in Equation 6-3.

C
u(k,q)="1a"% (6-2)
prab;
U(i,q)= u(k,q) (6-3)
Vi ML T,

To compute the most "costly" task in cases of over-utilization (failure), the
interface combines priorities V; from the planner with the utilization matrix U from the
resource allocation analyzer. The interface module tentatively deletes one action, 7},
from the plan and recomputes the resulting aggregate utilization Y(g) by adding U(i,q) for
all i#j. The bottleneck resource g(j) for task 7; is the one for which ¥(g) is maximum, as
shown in Equation 6-4.

a,(J)=max,(7,(¢))=max,( U(i.g)) (64

ii?j
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The total value Sum; remaining after eliminating 7} is the sum of ¥}, as shown in
Equation 6-5. The total value per unit of bottleneck-resource-usage is thus Sum;/ ¥(qs(j)).
The interface recommends removal of the action Thouienecr that results in the maximum
value per cost ratio, as shown in Equation 6-6. Note that the Sum; defined here is not
exact, since removal of one action could affect the V; values of other actions. Exact
computation of Sum; would require detailed knowledge of the planning state-space after
this action was removed, which is time-consuming.

Sumj = V.
Iy, (6-5)

— Sumj \/

Tottenec =max; . -
et " yi(a,(7) (6-6)

This heuristic is used to suggest which part of the planner's search space to
expand next, via dynamic backtracking to each state in which Thouiencck Was guaranteed to
preempt a ttf. However, it does not actually prune parts of the search space. Since the
planner's search is exhaustive in the worst-case, it will find a feasible plan if one exists.
Much like with the "Schedule Manager" utilization feedback, this "bottleneck task
selection" heuristic merely increases the odds of finding such a plan earlier in the search

process.

Example: Selecting a Bottleneck Task in an Unschedulable Plan

We illustrate the computation of #ouiencck With a simple example in this section.
Assume the plan as downloaded from the planner consists of four tasks, Tipm = {711, T>,
Ts, T4}, and that all of these tasks are guaranteed (g;=1) since best-effort tasks are not
considered by the interface module. Further, assume all tasks have priority value V;=1.0

for simplicity, thus the bottleneck task will be determined strictly from utilization
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considerations. Let Table 6-2 describe the utilization matrix U(i,g) returned from the
resource allocation/scheduling module, where the columns represent utilization values for
the four guaranteed tasks and the rows represent utilization values for the three available
resource classes. As can be observed from this matrix, at least resource g3 is overutilized

since the sum of individual task utilizations is greater than 1. Thus, scheduling has failed

and a bottleneck task must be identified.

Table 6-2. Example Utilization Matrix U(i,q).

T T, T3 T4
qQi 0.1 0.35 0.4 0.05
qQ2 0.25 0.3 0.1 0.15
qs 0.15 0.4 0.25 0.3

Table 6-3. Values used for Computation of Trouienect-

T; removed T, removed T removed Ty removed
Y1) 0.8 0.55 0.5 0.85
JACEY 0.55 0.5 0.7 0.65
%(43) 0.95 0.7 0.85 0.8
9v(}) qs qs qs q1
value/cost 3.16 4.29 3.53 3.75

Table 6-3 shows the aggregate utilization values ¥(g) and bottleneck resource

q»(j) after the removal of each task 7; as computed from Equation 6-4. In this example,
the value Sum; remaining after eliminating any one task is always the same (equal to 3,
the number of tasks remaining, since V;=1 for all tasks). Table 6-3 also shows the value-

to-cost ratios after removal of each task. The maximum value-to-cost ratio remains after
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removing task 7%, thus Thomieneck = T2, which is then fed back to the planner for dynamic
backtracking.

The reader may question why we include the previous "Schedule Manager"
section in this thesis, given that this new planner-scheduler interface module functionally
subsumes the single-processor Schedule Manager. One compelling reason is that the
Schedule Manager is fully-implemented while only the Planning Subsystem CIRCA-II
component for this model is sufficiently implemented to test the feasibility of our
planner-scheduler interface heuristic and message-passing algorithms. To experimentally
verify the multi-resource scheduler-to-planner feedback proposed here, CIRCA-II's Plan
Execution Subsystem would require substantial redesign to accommodate multiple
resources and handle resource failures (see below). The simple part of multi-resource
plan execution is running a single plan on multiple resources as prescribed by the multi-
resource scheduler.”’ However, it will be non-trivial to implement the plan dispatcher
such that it can process feedback from any execution resource then efficiently switch
plans uniformly across all resources.”’ Then, to continue experimental verification of the
fault-tolerance procedure outlined below, we will also have to implement resource
monitoring procedures as "feature sensing" actions, as well as the capability to execute
tasks on any subset of operational resource instances. We are currently working to
address these implementation challenges within CIRCA-II's Plan Execution Subsystem
and hope to have a preliminary multi-resource, fault-tolerant system design and prototype

that operates on the QNX real-time operating system within the next few months.

50 .
We presume homogeneous resource instances, so each task can access feature values
and execute actions from any particular instance of a resource.

>! In fact, the plan dispatcher should itself be distributed across multiple processors for
maximally-efficient resource utilization. Otherwise, if a processor containing the
dispatcher fails, no further plan switches will be possible thus the system will not even be
capable of retrieving the plan to handle the "processor failure" fault, as described next.
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"Internal" Fault-Tolerance during Plan Execution

Both the original CIRCA and CIRCA-II are designed to accommodate any
"external faults" in the world that can be modeled with as sensed features and handled via
some action on the environment. However, neither system can consider the possibility of
"internal" computational resource faults so long as processes require a fixed set of
resources as was the case with a single-processor scheduler and plan-execution system.
With the introduction of the multi-resource allocation and scheduling procedures
described above, we can also begin to introduce the notion of tolerance to computational
resource failures in CIRCA-II, specifically to the critical plan-execution platform which
must execute plans reliably and in hard real-time to avoid any possible catastrophic
system failures. In this section, we first describe how we build upon the planner-
scheduler interface to develop plans that exhibit tolerance to a limited user-specified set
of faults, and then give an automated aircraft example that illustrates the utility of

specifically designing plans to accommodate computational resource failures.

Developing Fault-Tolerant Plan Sets

We establish tolerance to "internal" computational resource faults (e.g., single
processor failures) by using the planner-resource allocation interface module to
effectively manage a preset list of faults for which the system must be tolerant. This list,
Frow, 18 specified by the user as part of the scheduler knowledge base. It includes the
nominal "no-fault" case fj in which all computational resources work properly, and
progressively describes more severe faults, terminating with the worst fault £, the system
must tolerate.

The CIRCA-II multi-resource allocation and scheduling system access a
description of the available resource types and quantities for each fault f; € Fy from the

scheduler database. In this manner, the allocation and scheduling processes will schedule
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each plan in accordance with the actual set of fully-functional resources that would be
available given a specific fault condition instead of presuming that the complete, fixed set
of computational resources are always available for plan execution.

Figure 6-3 shows the planner-scheduler interface algorithm used to control all
data flow between the CIRCA-II planner and scheduler, including both "nominal" plan
development as described in the previous section and all additional steps required to
develop the set of fault-tolerant plans required to handle each fault f; € Fipu. To
summarize, the interface module incorporates plan and utilization data for each fault to
classify plans as "good" or "unschedulable". A good plan is added to Fg,oq, then
downloaded to the plan dispatcher along with indices to all faults for which that plan was
"good". These faults are removed from the working fault list (i.e., placed in F,pe), since
they only require one plan. For the first (i.e., least severe) fault that over-utilized
resources, a "bottleneck" task is recommended for removal using the heuristic described
in the previous section, then fed back to the planner which backtracks to find a safe
alternative plan. This procedure continues until all faults have been handled successfully
by some schedulable plan, even if safety guarantees for the final most-severe faults in
Fiowr are only probabilistic (with perhaps even a decent chance of failure).

This algorithm enables creation and storage of (i) a set of plans that can meet all
required hard real-time constraints when any internal fault from F},,; occurs, and (ii) a
pre-computed execution schedule for each plan. After the plan dispatcher fills the cache
with "good" plans for all faults, the plan indexed for the nominal no-fault condition f0
(for the first planned subgoal) is selected and begins execution according to the computed

schedule. When the system detects an internal fault,” plan execution switches to the pre-

>2 As was noted earlier, we are still in the process of implementing the CIRCA-II multi-
resource plan-execution platform, thus we also still have to build fault-detection monitors
into our software.
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scheduled plan designated to handle that fault. Thus, response to internal faults is
prompt, and the system does not fail due to internal faults except when a computational

fault occurs that is outside the limited set Fyz41.

1. Plan T,y is received; each T; € T, is specified by the triplet (g;, P;, V).
2. Y(fi € Fowr fi € Faone
-- Send (P; for all T; € Tyandaton» f3) 10 scheduler, which returns matrix U(j,q).
-- If scheduling succeeds, add f; to list Fgopq for plan Tys; add f; t0 Fone-
3. If (Fgooa #0), download T, with indices Fgooq to dispatcher; reset Foooq=.
4. If (Faone # Fota)s
-- Find first element f; € Fi,y such that f;  Fpne.

-- Send to planner "bottleneck" task Tomencer identified from Equation 6-6.

-- Go to Step 1.

Figure 6-3: Planning-Scheduling Interface with Fault-Tolerant Plan Development.

Autonomous Aircraft Example

We consider an example from automated flight to illustrate the utility of plan
development with the fault list. Our plan execution system in this example includes two
resource types: Proc (processor) and Comm (communication channel). The system
contains two processors of type Proc and a single communication channel of type Comm,
and we define a fault set which includes the nominal no-fault case (f;) and a "single
processor failure" fault (f;), in which the number of Proc instances is reduced from 2 to 1.

For our automated flight mission, the CIRCA-II planner is given the goals of
maintaining safety while following a specific flight trajectory. The aircraft must follow
standard air traffic procedures and maintain communication with Air Traffic Control

(ATC) via the Comm channel resource, which we assume to have guaranteed worst-case
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execution properties. For this example, we present a very simplified aircraft world model
which illustrates how safety is maintained during flight, even in the presence of a single
processor failure from the set of Proc resources.

In its initial phase, the planner builds the state set shown in Figure 6-4. In this
plan, two failures must be avoided: an impact with an obstacle (e.g., the terrain or
another aircraft) and any airspace-violation (e.g., flying in a restricted military area). To

prevent these ##fs, CIRCA-II selects two actions: avoid-collision and maintain-trajectory.

initial_state

maintain-trajectory  OQn-Course = False v
~

Obstacle = False RS

On-Course = True
Obstacle = False

~
~

< avoid-collision
<
~

Status = Normal Status = Normal ~
course-deviation v Seo
g obstacle Seo
- ~o
.
obstacle L On-Course = False
avozd—cnlllslon/ - e Obstacle = True
s . o Status = Normal
. airspace-violation

-
-

On-Course = True -
Obstacle = True

Status = Normal -
Transition key:

impact
impact v == temporal
Failure “m o action
Figure 6-4: Nominal Flight Plan.
Table 6-4: Flight Example Task Set.

T; P; Vi Modules
avoid-collision (7}) 6 (nominal plan) 1 M;, M, M;
maintain-trajectory (75) 12 (nominal plan) 1 My, M
declare-emergency (73) 6 (reduced plan) 1 Ms
follow-radar-vectors (7,) | 12 (reduced plan) 1 M;, Ms
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The decomposition of all tasks available in our flight example is shown in Tables
6-4 and 6-5. To detect a state with Obstacle=True, task T; runs modules M, scan-TCAS
(Terminal Collision and Avoidance System), to sense nearby obstacles and M>, monitor-
traffic, to detect other air traffic based on ATC data. If an object is detected, the avoid-
obstacle action is executed. The maintain-trajectory task (T,) executes to detect course
deviations with My, monitor-course, and correct them by sending reference trajectory

(r(t)) commands to the low-level controller via Ms, update-controller-reference.”

Table 6-5: Flight Example Module Worst-Case Resource Usage.

Module Function Cion Proc | Cion Comm
M, scan-TCAS 2 -
M, monitor-traffic 3 2
M; avoid-obstacle 4 -
My monitor-course 4 -
M;s update-reference 4 -
Ms declare-emergency 1 1
M; receive-vectors 2 5

Table 6-4 also includes the period (P;) and priority (V;) used by the scheduling
and planner-scheduler interface algorithms. For this example, we again set all task
priorities equal (V;=1). Note that all actions are guaranteed (g;=1) since all states with

planned actions have ttfs. The computing system is composed of two processors, each a

> As will be discussed in Chapter 8, CIRCA-II relies on a traditional low-level control
system to read sensors and compute actuator commands. This controller is presumed to
have its own set of fault-tolerant resources since it is always required for autonomous
operation.
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resource of type Proc, interconnected with each other and ATC by a communication bus,
a resource of type Comm. Once CIRCA-II has developed the initial plan, the
allocation/scheduling system attempts to schedule it for each specified fault f; € {fo,f1/}.
For the no-fault case (f;), a valid task assignment [56] and schedule [3] is computed such
that all constraints are met. The resource allocation for fis shown in Figure 6-5. This
schedulable plan (Plani) for the nominal no-fault case f is now added to the "good" list,

Fa0d, and fy is added to the set of handled failure modes Fyone.

M1 M4 M1 M5
Pmﬁ—ﬁ—y—yﬁ’
0 1 2 3 4 5 6 7 8 9 10 11 12
M2 M3 M2 M3
Proc2 >
[t N I N R R I R N I D
0 1 2 3 4 5 6 7 8 9 10 11 12
M2’s msg M2’s msg
|-
cmmTT—T T T T T T T T T T T°"
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6-5: Nominal Plan Resource Schedule (fy).

As shown in Table 6-6, the processor (Proc) utilization exceeds a value of one for
/1, thus the initial plan must be altered for f;. The planner-scheduler interface uses
utilization matrix feedback to recommend that the planner remove 77 (avoid-collision)
due to its high Proc utilization. Backtracking during replanning yields the state diagram
shown in Figure 6-6, with the new task declare-emergency (75) selected.”® Once the
emergency is declared, ATC effectively takes much of the computational responsibility

from the aircraft, clearing airspace so that obstacles will no longer be a factor.

>* All states from the nominal plan (Planl) are possible. The temporal transitions
obstacle and course-deviation are not preempted since they may happen too quickly.
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Additionally, after an emergency has been declared, the efficient action follow-radar-
vectors can be selected, in which ATC specifies the course and corrections required for

the aircraft to safely reach its destination.

Table 6-6: Utilization Matrix for the Nominal Plan.

T; U(i, Proc, fy) U(, Proc, 1) U(i, Comm)
T, 14/24 14/12 4/12
T, 8/24 8/12 0/12

initial_state

On-Course = True
Obstacle = False
Status = Normal

declare-emergency

> On-Course = True Jollow-radar-vectors
Obstacle = False -------- n

obstacle _y Status = Emergency

1
1
1
1
. . 1
course-deviation == declare-emergency !
On-Course = True course-deviation !
1
1
1
1
1
1

Obstacle = True

On-Course = False Status = Normal

Obstacle = False declare-emergency On-Course = False
Status = Normal |\ 77 7° ¥ Obstacle = False ----
IR 4 Status = Emergency

course-deviation

-

obstacle -~ declare-emergency

Transition key:

= temporal
Failure Tk action

On-Course = False __--
Obstacle = True impact
Status = Normal

v

v

airspace-violation

Figure 6-6: Reduced Flight Plan for Failed Processor (7).

This reduced plan (Plan2) is now sent to the resource allocation/scheduling
module, which finds the plan can easily be scheduled even with the processor failure (f;),
as computed with task utilizations shown in Table 6-7 and a valid task assignment
illustrated in Figure 6-7. With this plan, CIRCA-II can handle both fj and f;, so Plan2 is

stored and planning (for this subgoal) terminates.
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Table 6-7: Utilization Matrix for the Reduced Plan.

T; U(, Proc, 1) U(i, Comm)
T; 2/12 2/12
Ty 6/12 5/12
M6 M7 M6 M5
T e
0 1 2 3 4 5 6 7 8 9 10 11 12
M6’s msg M7’s msg M6’s msg
Comm [ — >
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6-7: Reduced Plan Resource Schedule (f7).

In this example, we have identified unschedulable plans and made them
schedulable via replanning. This is in contrast to traditional resource allocation
algorithms which simply fail if a plan is unschedulable. It also contrasts with planning
algorithms which do not consider failures of computing resources, and do not guarantee

schedulability of plans in a hard real-time sense.

QoS Negotiation during Scheduling™

In CIRCA-II, we have presumed that each task module has fixed execution
properties, thus each has inflexible worst-case resource requirements that must always be

used by the scheduler. The real-time community has recognized that many functions may

> This work was done cooperatively with T. F. Abdelzaher. Further details of the QoS
Negotiation protocol, including its incorporation into middleware services called
RTPOOL, are provided in [1] and [2].
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be written with the flexibility to trade off result accuracy with resource requirements.
Furthermore, often the relative accuracy may be captured numerically so that software
can subsequently trade off the efficacy of degrading one software module versus another.
The Quality-of-Service (QoS) negotiation research field has been introduced to develop
principled ways of degrading software to reduce its resource requirements for real-time
systems. We have begun work to study how QoS-level adaptation to can be used to relax
scheduling constraints on hard real-time tasks with a focus on tailoring QoS negotiation
algorithms to fit within future implementations of CIRCA-II.

As discussed previously, whenever a proposed plan is found to be unschedulable,
CIRCA-II has to-date placed the burden of creating a schedulable plan solely on the
planner. We hope to incorporate QoS adaptation techniques into CIRCA-II specifically
so that the scheduler can use a table of QoS levels for each thread/module to trade off
task execution requirements (e.g., worst-case execution times) with execution
performance (e.g., result accuracy). Then, if scheduling fails when assuming all highest
(best-performing) QoS levels as is currently done in CIRCA-II, the scheduler can degrade
these QoS levels and propose alternate schedules that execute sufficiently but not
optimally. This process will have two benefits. First, feedback from scheduler to planner
can be made even more expressive by letting the planner know exactly how much
performance must degrade to make the plan schedulable, based on the relative cost
associated with decreasing each QoS level. This is in contrast to totally removing a
"conflicting" hard real-time task (with the Schedule Manager) or selecting an ordering for
bottleneck tasks (with the planner-scheduler interface module) to be used during planner
backtracking. Additionally, should the planner be completely unable to build a
schedulable plan when all tasks assume their absolute worst-case execution times,
reducing task module QoS levels may enable plan scheduling with only a minimal
degradation in performance, whereas previously the system would either fail or assume

an unrealistically large probability threshold below which all states were ignored.
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In this section, we first describe QoS negotiation and the heuristic we use to
decide how QoS levels will be degraded during scheduling, then present an example
illustrating how graceful performance degradation may be achieved when using this

algorithm for autonomous flight control.

QoS Negotiation Protocol

For this discussion, we will generalize beyond CIRCA-II to consider a group of
clients making requests on a platform which must schedule these requests on its available
resources. We map CIRCA-II into this framework by considering a "client" to be a task
(T;) that requires a group of threads to be executed with a specified maximum period (P;).
Thus, a complete CIRCA-II plan specifies a set of "clients" that simultaneously send
resource requests to a scheduler.

Our QoS negotiation model is centered around three simple abstractions: QoS
levels, rewards, and rejection penalty. A client requesting service specifies in its request
a set of negotiation options and the penalty of rejecting the request derived from the
expected utility of the requested service (i.e., task execution). Each negotiation option
consists of an acceptable QoS level for the client to receive from the provider and a
reward value commensurate with this QoS level. The QoS levels are expressed in terms
of parameters whose semantics need to be known only to the client and service provider.
For example, in processor capacity reservation, they may express the required processor
bandwidth, while in a multicast protocol they may represent the semantics of the
requested multicast service, such as reliable, ordered, causal, or atomic delivery. The
reward represents the "degree of satisfaction" to be achieved from the QoS level (i.e.,

application-perceived utility of supplying the client with that level of service).”® Thus,

> When applying these QoS Negotiation techniques to CIRCA-II, reward value for each
thread QoS level will probably be based on a fraction of overall performance degradation
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the client's negotiation options represent a set of alternatives for "acceptable" QoS and
their "utility". The rejection penalty of a client's request is the penalty incurred to the
application if the request is rejected.’’

To control system load in a way that ensures predictable service, a scheduler must
determine whether the request can be guaranteed or must be rejected. We propose a
slightly different notion of guaranteeing a request, as compared to the conventional
notion of a guarantee. In our proposed model, guaranteeing a client's request is the
certification of the request to receive service at one of the QoS levels listed in its
negotiation options. The selection of the QoS level it will actually receive, however, is
up to the scheduler. Furthermore, during plan execution, the service provider will be free
to switch this QoS level to another level in the client's negotiation options if it increases
perceived utility (e.g., if tasks take much less than their worst-case requirements, the
dynamic scheduler can insert one or modules with a higher QoS level to take advantage
of the extra slack resources).

The real-time group at the University of Michigan has designed a middleware
service, RTPOOL [1], that has been used to illustrate the utility of our QoS Negotiation
protocol.”® Each incoming client request for scheduling a task includes its rejection
penalty along with the different QoS levels and their rewards. A client task's QoS level is
specified by the parameters of its execution model. For an independent periodic task, the

parameters consist of task period, deadline, and execution time. We model period and

relative to the highest QoS level for that module scaled by the "priority" for the task
containing this module. However, we have not yet formalized this computation.

>7 Rejection penalty may be set to (1/V;) for CIRCA-II best-effort tasks.

 RTPOOL is more general than the CIRCA-II scheduler in that it is capable of
dynamically receiving requests from a variety of different clients while other requests are
already executing, but since RTPOOL effectively subsumes the functionality of the
CIRCA-II scheduler, its algorithms and their functionality will be transferable to CIRCA-
II in future implementations.
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deadline as negotiable parameters for all soft real-time tasks. Task execution time, on the
other hand, depends on the underlying machine speed and thus should not be hardcoded
into the client's request. Instead, each QoS level in the negotiation options specifies
which modules of the client task are to be executed at that level. This allows the
programmer to define different versions of the task to be executed at different QoS levels,
or to compose tasks with mandatory and optional modules. The reward associated with
each QoS level tells RTPOOL the utility of executing the specified modules of the task
with the given period and deadline.

When one or more new requests arrives at a machine, RTPOOL executes a local
QoS optimization heuristic, which computes the set of QoS levels for all local clients to
maximize the sum of their rewards. Tasks are inserted into the schedule upon arrival
order (or randomly if multiple arrive simultaneously). A task may be rejected if both (i)
the new sum of rewards (including that of the newly-arrived task) is less than the existing
sum prior to its arrival, and (ii) the difference between the current and previous sums is
larger than the new task's rejection penalty. Otherwise, the requested task is guaranteed.
As a result, task execution requests will be guaranteed unless the penalty from resulting
QoS degradation of other local clients is larger than that from rejecting the request.
When a task execution request if rejected by the local machine, one may attempt to
transfer and guarantee it on a different machine using a load-sharing algorithm. Note that
conventional admission control schemes would always incur the request rejection penalty
whenever an arrived task makes the set of current tasks unschedulable. By offering QoS
degradation as an alternative to rejection and by using admission control rules, we can
show that the reward sum (or perceived utility) achieved with our scheme is lower
bounded by that achieved using conventional admission control schemes given the same
schedulability analysis and load sharing algorithms. Thus, in general, our proposed

scheme achieves higher perceived utility.
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Figure 6-8 gives an example of a local QoS optimization heuristic. The heuristic
implements a gradient descent algorithm, terminating when it finds a set of QoS levels
that keeps all tasks schedulable, if any. Note that unless all tasks are executed at their
highest QoS level, the machine suffers from unfulfilled potential reward. The unfulfilled
potential reward, UPR;, on machine N,, is the difference between the total reward
achieved by the current QoS levels selected and the maximum possible reward that would
be achieved if all local tasks were executed at their highest QoS level. This difference
can be thought of as a fractional loss to the mission and is often unavoidable due to
resource limitations. However, such loss may also be caused by poor load distribution, in

which case it can be improved by proper load sharing.

Let each client task T; have QoS levels M,;[0],..,M; [best;] with rewards

R,[0],..,R;[best;], respectively.

1. Start by selecting the best QoS level, M,;[best;], for each client T;.

2. While the set of selected QoS levels is not schedulable, do Steps 3
and 4.

3. For each client T; receiving service at level M;[j] > M;[0], determine
the decrease of local reward, R;[j]-R;[j-1], resulting from degrading
this client to the next lower level.

4. Find client T, whose R,[j]-R,[j-1] is minimum and degrade it to the
next lower level.

5. Go to Step 2.

Figure 6-8: Local QoS Optimization Heuristic.

RTPOOL employs a load-sharing algorithm that implements a distributed QoS-
optimization protocol. Described in Figure 6-9, the protocol uses a hill-climbing
approach to maximize the global sum of rewards across all clients in the distributed pool.
It is activated between two machines N; and N; when the difference UPR; - UPR; exceeds
a threshold Viesn. Close examination of the local QoS optimization heuristic and the
distributed QoS optimization protocol reveals that neither makes assumptions about the
nature of the client and the semantics of its QoS levels. The distributed QoS-negotiation

protocol, however, assumes service to a given client can be migrated to another node. In
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the near future, we hope to incorporate QoS negotiation algorithms from RTPOOL into
the CIRCA-II multi-resource scheduling system described previously. Below, we
illustrate how a scheduler may automatically degrade task QoS levels for a flight control
system. In this example, we do not alter the actual tasks, but rather their execution

properties, thus the CIRCA-II planner need not re-plan to find a solution.

1. On source machine N; find client T, whose removal will result in max.
increase, W, in total reward.

2. N; requests reassigning T, with reward W.

3. Each machine N;, where UPR; - UPR; > Vg, receives the request and
recomputes QoS levels for its local clients plus T,. If its total
reward is higher with T,, N; bids for T, with the reward increment W,
resulting from accepting it.

4. N, transfers T, to the highest bidder.

Figure 6-9: Distributed QoS Optimization Protocol.

Example of QoS Negotiation for Autonomous Flight

We have performed a preliminary test of our QoS negotiation protocol with an
aircraft simulation, which will be described in more detail in Chapter VII. Our QoS-
negotiation scheme enables the application domain expert (or the CIRCA-II planner via
its knowledge base) to express application-level semantics using QoS levels, rewards,
and rejection penalty. Table 6-8 shows the minimal set of tasks we used to control the
aircraft during a short flight in which we were to destroy any observed enemy targets
using the simulated F-16's onboard radar and missiles. Four separate tasks were required
to control the aircraft: Guidance (Guid), Control (Ctrl), "Slow" Navigation (Snav), and
"Fast" Navigation (Fnav). These tasks function much like their similarly-named Flight
Management System counterparts. Guid is responsible for computing the reference
trajectory state for the aircraft. In our tests, Guid specified only heading and altitude to
lead the aircraft along its trajectory. The Ctrl task is responsible for executing the low-

level control loops to compute actuator commands from the high-level guidance
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trajectory. We have two navigation tasks (Snav, Frnav) to estimate aircraft state,
distinguished by required update frequency. More details on our specific control laws

may be found in Chapter VII.

Table 6-8: QoS Levels for the Automated Flight Control Plan.

Task L R ET(ms) | P(sec) | Ver
Guid 0 10 100 10 def*
1 15 100 5 def
2 20 100 1 def
Ctrl 0 1 80 5 sec**
1 100 60 1 prim
2 104 80 1 sec
3 120 60 0.2 prim
4 124 80 0.2 sec
Snav 0 10 100 10 def
1 20 100 5 def
2 25 100 1 def
Fnav 0 1 60 5 def
1 100 60 1 def
2 120 60 0.2 def
MC 0 1 500 10 def
1 30/200 500 1 def

*def is the default version to execute for each task.
**For the Ctrl task, two versions are available, one that uses only primary actuators
(prim) and another (sec) that allows higher-performance control through the use of
secondary actuators (e.g., afterburners).
Table 6-8 also shows the QoS levels (L) present for all tasks, including associated
rewards (R), execution time (E7), period (P), and version (Ver). In our simple tests, we
set each task deadline equal to its period, as would be required by the CIRCA-II planner,

although there would be no such requirements for our generic QoS negotiation protocol.

Also, because all tasks are considered critical to execute (at least at a degraded QoS
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level), we set all task rejection penalties sufficiently high that all tasks are always
accepted by the QoS negotiator.

In addition to the basic flight control tasks, we simulate a function necessary
during military operations: Missile Control (MC). MC is composed of two precedence-
constrained threads: read-radar and fire-missile. Read-radar monitors aircraft radar to
detect approaching enemy targets, then fire-missile launches a missile at any enemy
targets appearing on radar. As shown in Table 2, MC is computationally expensive and
has two QoS levels. In Level 1, radar will be scanned with sufficient frequency to allow
detection and destruction of most enemy targets. Otherwise (Level 0), fast-moving
targets may not be destroyed. During experiments, we varied the reward for MC QoS

Level 1 depending on the relative importance of destroying enemy targets.

QoS Negotiation Example Evaluation

In this section, we show results that illustrate how QoS negotiation can help
aircraft flight control degrade gracefully. First, we assess the QoS negotiation heuristic
for our flight asks by observing how the QoS of each task degrades with lower machine
speeds. Next, we look at aircraft performance during flight as a function of the Ctr/ task's
QoS level, and conclude with tests using the missile-control task to observe the effects of
load sharing between two machines, with processor failure used to demonstrate graceful
performance degradation.

Our gradient-descent-based local QoS optimization heuristic was designed to help
a service provider select a high-reward set of QoS levels for its clients. Using the QoS
levels and rewards listed in Table 6-8, we illustrate the behavior of the presented
heuristic. In this experiment we kept the task set fixed, and decreased the underlying
CPU speed (increasing task execution times), then observed the corresponding decrease

in task QoS levels. Figure 6-10 plots QoS levels (modes) selected vs. CPU speed,
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normalized by the minimum CPU speed for which the task set is schedulable. Since the
heuristic uses only reward information to guide its search for a feasible QoS level set
(thus being applicable as-is in any service that uses our QoS negotiation scheme),

optimality is compromised yet "graceful QoS degradation" is still illustrated.

4 -
3.51
3
< 2.5 Task #1 (Guidance)
>
3?29 B task #2 (Controller)
@ 1.51 o
o M Task #3 (Slow Navigation)
1 4
0.5 O Task #4 (Fast Navigation)
0 T

Figure 6-10: QoS Levels vs. CPU Speed for Flight Control Tasks.

For our next set of experiments, we evaluated system performance by studying its
ability to control the simulated F-16 during flight. All flight control tasks were executed
on one processor. As shown in Table 6-8, Ctrl QoS levels are a function of both task
period and version. We present tests that show flight performance differences due to
each of these variables, specifically during the critical takeoff/climb phase of flight.
Figure 6-11 illustrates differences between the two versions of C#r/ in their "best
performance" case (P; = 200 msec). Level 4 (with secondary actuation) requires larger
execution time than level 3 (primary actuation only), thus is harder to schedule. Climb
performance for level 4 is only slightly better for level 3, consistent with their small
reward difference. This example illustrates how QoS negotiation can achieve graceful
degradation. Overall processor utilization is decreased by reducing Ctrl to level 3, but

safety (controller stability) is not compromised.
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Next, we performed tests with varying Ctr/ task period. We isolated version from
period effects by exclusively selecting QoS levels with secondary actuation, although
similar trends result with the other Ctr/ version (levels 1 and 3). To illustrate
performance changes as a function of task period, we consider three QoS levels: level 4
(P;=0.2 sec), level 2 (P;=1 sec), and level 0 (P; =5 sec). We include level 0 among
Ctrl QoS negotiation options as a comparative example illustrating controller instability.
Of course, no unstable QoS levels should be defined among a client's negotiation options,

since the client should not "ask" for instability.
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Figure 6-11: Altitude with and without Secondary C#r/ Actuation.

Figures 6-12 through 6-15 show aircraft state as a function of time during takeoff,
climb, and a 90° turn. Figure 6-12 shows aircraft altitude for the different Ctrl task
periods. As period increases, climb performance gracefully degrades between QoS levels
4 and 2, but then becomes unstable in level 0 (P; = 5 sec), illustrating the necessity of
real-time response for the Ctrl task. Figures 6-14 and 6-15 show aircraft pitch and roll
angle, respectively, for the "stable" controller QoS levels. Note that we do not include
level 0 because the unstable response obscures the other plots. Pitch angle and altitude
are coupled, so pitch has largest magnitude during the climb, and as illustrated, the period

increase to 1 second causes a large pitch angle to be required longer, a stable (for this
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gentle-maneuver flight) but undesirable trait. Roll angle shows delay and longer
deviation from zero as well as significant overshoot when task period increases.

Load sharing capabilities were studied in a final test set which included both the
flight control tasks and the missile-control task. We started the system with two
processors available for task execution, thus the scheduler populates them accordingly.
In this configuration, the load sharing protocol places all flight control tasks on one
machine and the missile-control task on the other processor.

When the two machines function normally, both flight and missile control (MC)
asks run at their maximum QoS levels. In this case, enemy targets are quickly detected
and fired upon, while flight control is identical to the best performance profiles in Figures
6-12 through 6-15. However, when a processor failure occurs (analogous to the
occurrence of fault /7 in the earlier "multi-processor planner-scheduler interface"
example), the load sharing and QoS negotiation protocols (as implemented in RTPOOL)
dynamically adjust task QoS levels such that all tasks can fit on one machine. If MC is
assigned relatively low reward (the value 30 from Table 6-8), the system degrades MC,
Guid, and Snav tasks but keeps Ctrl and Fnav tasks at high levels. In this manner, flight
control is a bit sluggish but stable, but the aircraft is unable to launch missiles at most
targets. Alternatively, this system may be aboard an expendable drone whose most
important function is to destroy a target or attack enemy aircraft. In this case, the reward
set may be structured such that MC takes precedence over accurately maintaining flight
control. For a drone, we assign relatively high reward to MC (the value 200 from Table
6-8), and when a processor fails, the QoS negotiator reduces all flight control tasks to
QoS level 0 while maintaining the level of the "important" MC task. Thus, the aircraft
eventually becomes unstable and crashes, but will quickly detect and respond to enemy

targets on its kamikaze mission.
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Figure 6-12: Aircraft Altitude for Varied Ctr/ QoS Levels.
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Figure 6-13: Aircraft Heading for Varied Ctr/ QoS Levels.
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Figure 6-14: Aircraft Pitch Angle for Varied Ctr/ QoS Levels.




131

-0.1
-0.2

-0.3 :

-0.4 ! Period = 0.2
-0.5 N Period = 1.0
1
1

-0.6

roll angle (rad)

-0.7

EEEE T L
I

-0.8
-0.9

time (sec)

Figure 6-15: Aircraft Roll Angle for Varied Ctr/ QoS Levels.

Through these examples, we have shown that our QoS negotiation scheme allows
graceful performance degradation as resources become overloaded. It is important to
note that, had we used traditional schedulability analysis algorithms that do not allow
negotiated QoS degradation for this example, the system would have failed to
guarantee/accept the entire task set on the same processor, leading to complete mission
failure. We still have a substantial amount of CIRCA-II work to complete before a viable
combination of dynamic scheduling and the existing "offline" scheduling algorithms can
include QoS negotiation algorithms with or without the remainder of RTPOOL.
However, given that in many circumstances the CIRCA-II planner may not otherwise
produce a viable plan, the flexibility in task execution provided by QoS negotiation may
be critical to mission success. We foresee such algorithms from RTPOOL and beyond as
important future CIRCA-II additions to further enhance its ability to succeed in limited-

resource systems that can experience computational resource faults/failures.



CHAPTER VII
FULLY-AUTOMATED FLIGHT WITH CIRCA-IT

Automated aircraft flight is an attractive domain for this research because it
requires a complex knowledge base and because continuous real-time control is essential
since an aircraft cannot "stop and remain safe indefinitely” once it has left the ground. In
today’ s commercial aircraft, flight management systems (FMS) [44],[64] are capable of
automated flight from takeoff through landing, but only when the aircraft is operating
within its nominal performance envelope (i.e., few, if any, anomalous situations have
arisen). Mapped to CIRCA-I1I, the nominal goa achievement plans developed and
cached offline are those that would correspond to FM S plans.

In this chapter, we focus on how CIRCA-II real-time failure avoidance methods
can be used to enhance safety of automated flight during anomalous or emergency
situations. As described previoudly, the first key isto identify each such situation, then
quickly execute any required safety-preserving reaction. Additionally, since this reaction
may make the aircraft deviate from its goal path, the CIRCA-II planner may be invoked
during flight to produce plan(s) that will redirect the aircraft toward its goal, or toward a
new goal (e.g., asafe landing as a minimum) when the original is unreachable.

We have devel oped a knowledge base to automate [simulated] aircraft flight and
have tested it using a shareware aircraft smulator. Details of the smulator, CIRCA-II
control of the aircraft, and results from simulated flights that include anomal ous

situations are described below. Following our initial tests with CIRCA-I11, this simulator
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was adopted by researchers at Honeywell Technology Center (HTC) to demonstrate their
research efforts and plans to DARPA (Defense Advanced Research Projects Agency).
Recently, we demonstrated updated CIRCA-II capabilities as part of ajoint research
project with HTC. We highlight the safety-preserving activities of this Unmanned
Combat Aeria Vehicle (UCAV) under CIRCA-II control as presented in this
demonstration. Finally, we describe the University of Michigan’s Uninhabited Aeria
Vehicle (UAV) research project, originaly conceived as atest platform for control
researchersin the Aerospace Engineering department, then expanded to be a general
testbed for autonomous flight experiments. Although the UAV isstill initsinitial test
phase, we expect CIRCA-II will play acritical role in future UAV automation, and
describe our ongoing efforts to apply CIRCA-I11 to flight planning, real-time process

control, and fault recovery tasks.

Figure 7-1: Aeria Combat (ACM) Flight Simulator: Cockpit Display.



134
Autonomous Flight on the ACM Simulator

The CIRCA-I1I agorithms have been applied to fully-automate the Aerial Combat
(ACM) F-16 flight simulator [58], which we selected for our experiments due to its
readily-available shareware source code and its realistic 6-degree-of-freedom model of
flight dynamics. Figure 7-1 shows a cockpit view of the ACM simulation, originally
built for human pilot training (or gaming) and adapted by us to allow fully-autonomous
control using CIRCA-II. Because CIRCA-II is exclusively intended to perform high-
level symbolic-based actions, we added a simple proportional-derivative aircraft
controller set [60] linearized about two set points (i.e., elements of a gain-schedule table),
one for the climb/cruise flight phases and one for final approach through landing.”
CIRCA-II specifies altitude values as the reference input to the longitudinal controller
and heading values as the lateral controller reference. For the remaining parameters
required by the controllers (e.g., pitch angle or airspeed for the longitudinal controller),
the controller contains internal default values used to compute actuator outputs.

Our CIRCA-II model is purposely designed to minimize the number of states
required to complete the autonomous flight tests. Our model includes features for
atitude, heading, location (relative to fixesin Figure 7-2), gear and traffic status, severe
weather phenomena (severe turbulence, low-level wind-shear, tornado, etc.), and
navigation sensor data, allowing atotal of 50,176 modelable states. Appendix B includes
aversion of the ACM knowledge base we have used for CIRCA-II tests. A sequence of
five subgoals have been constructed to achieve the "flight-around-the-pattern” trajectory
illustrated by Figure 7-2. These subgoals include the takeoff climb and upwind flight to

Fix1, the crosswind pattern leg to Fix2, downwind leg to Fix3, base leg to Fix4, then final

> The operating envelope for our controller is extremely limited but was sufficient for
simulations of the gentle maneuvers performed by a commercial aircraft. The simulated
F-16 is capable of performing far more aggressive maneuvers with a better controller.
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approach to Fix0. Appendix B aso shows the set of nominal plans generated by the
CIRCA-II Planning Subsystem that successfully automate the flight-around-the-pattern
task from takeoff through landing.*® To generate this control plan set, CIRCA-II only

required the generation of approximately 200 of the 50,000 states.

Fixd ¥

approach Fixl

Figure 7-2: Simulated Flight Pattern.

Once the nominal flight was successfully automated, we introduced two
emergencies. “gear fails on fina approach”, and “collision-course traffic”. If either
situation occurs, failure to notice and react to the problem resultsin an aircraft crash
(modeled for CIRCA-I1I asttfs). Our knowledge base contains a"gear" feature with
values"up" and "down", and a"traffic" feature with values "true" and "false". We also
include several features (see Appendix B) for swerving to avoid traffic then resuming the
designated flight path to the next pattern Fix. We assign ssmplistic probability rate
functions for the various temporal transitions, predominantly a constant rate value with
zero probability below minA for ttfs and a probability 1 at maxA (then zero above) for

reliable tts.*

% In simulation, the presence of anomalous events was explicitly controlled by the user.
This greatly facilitated initial debugging of the basic "flight-around-the-pattern” activity.

%! The probability functions assigned to all examples shown in this chapter are not based
on actual statistics, but instead are intended to demonstrate CIRCA-II functionality.
Gathering accurate statistics for in-flight events was well beyond the scope of this
dissertation.
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During normal flight, the gear is down and no collision-course traffic is present.
A tt to gear indicating “up” has avery small constant probability rate, while att to
detecting collision-course traffic is also unlikely but has a higher probability rate than the
"gear up" tt. Also, atemporal transition to failure (ttf) isincluded to capture the scenario
of landing with gear up, which inevitably resultsin acrash. If it should occur, the proper
"pilot" reaction to a gear failure on final approach is to execute a go-around (i.e., continue
around the pattern a second time), performing available actions such as cycling the gear
retract/extend mechanism. We do not model the gear cycling activity in our knowledge
base, but the CIRCA-I1 planner naturally designs the "go-around" into any plan that must
handle gear failure since the planner reasons that any landing while the gear is up will
result in attf.

We purposely increased action worst-case execution times to test CIRCA-II's
ability to make tradeoffs when resources were over-utilized. During plan development,
the scheduler is then unable to guarantee all failure-avoidance activities for the "final
approach" plan but determinesit can schedule all activities except reaction to the [low-
probability] gear failure. The scheduler recommends a probability threshold P, 4, 10 the
planner which resultsin the removal of al states with "gear up”. The nominal plan
developed next is schedulable but contains no actions for handling failed gear, except for
a"removed state" detection TAP activated when gear fails (see "final approach” planin
Appendix B). The planner then devel ops a contingency plan that effectively performs a
go-around, leading the aircraft back on a course to "Fix1" (see Figure 7-2). This
contingency plan is also shown in Appendix B.

To illustrate CIRCA-II's ability to succeed with incomplete knowledge, we
removed the gear failure tt from the knowledge base and re-ran CIRCA-I1. For thisfinal
approach plan, CIRCA-II never expands any "gear up" states as part of anominal plan
because no tt leads to this situation. However, an imminent-failure detection TAP is built

into the plan since the ttf to a crash when landing gear-up is modeled. And, because
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CIRCA-II aso builds contingency plans for imminent-failure states, a"gear up" reactive
plan isagain built and stored in the plan cache, resulting in an identical response during
plan-execution to that devel oped when the "gear up" states were removed. The only
differencein this case is that CIRCA-I1 had no knowledge of that transition in this second
test run.

During execution, if the gear fails at any point during the climb and cruise flight
phases (i.e., planO-plan3 in Appendix B), the executing CIRCA-II plans will not notice,
because no failure isimminent and the goals of getting to the next pattern “FIX” can still
be achieved.” However, if the gear has either failed before initiating the approach or
during the approach (so long asit doesn’t fail at touchdown), the failure is detected, the
cached "go-around" plan isinitiated to “buy time”, and the CIRCA-II planner is notified
of the switch to a contingency plan. The CIRCA-II planner replans for the next
achievable subgoal, effectively re-directing the plane around the pattern a second time.
This allows re-use of al subsequent cached plans (planl-pland) for continued flight
around the pattern.®® If the gear fortuitously extend during the second flight around the
pattern, the aircraft will land safely. However, if the gear has failed permanently,
CIRCA-II continues executing go-arounds indefinitely, unaware that a crash isinevitable
when the unmodeled “run-out-of-fuel” transition occurs.

The ACM simulation continues to be utilized for testing basic algorithms as they

are implemented in CIRCA-I1. However, we have more recently become involved with

52 This behavior illustrates how CIRCA-II can save plan space and execution time by not
considering “unnecessary” events; however, this behavior also illustrates how a system
cannot simply detect when it is in danger without explicitly adding this to the set of
planned actions.

% As future work, we would like the planner to explicitly reason about the available
cached plans to direct the system back toward one of these plans when possible. For this
flight example, we are simply lucky that the exact goal states match both times around
the pattern.
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two other aircraft-related projects. Below, we describe tests with Honeywell's UCAV
simulation. Then, we venture into the "real-world" of actual aircraft flight in which we

hope to better-validate CIRCA-I1 agorithms in ongoing work.

Demonstration of CIRCA-II on the ACM/Honeywell UCAV

The ACM simulator described above has been adopted by Honeywell Technology
Center and augmented to perform as an Unmanned Combat Aerial Vehicle (UCAV)
simulation platform. Although the basic dynamics, control laws, and CIRCA-II interface
remain the same, the role of CIRCA-II has changed from responding to aircraft anomalies
to maneuvering away from attacking missiles while attacking targets. Figure 7-3
illustrates an overall view of the world as seen by the UCAV.

In previous simulations, CIRCA-II plans were responsible for directing the
aircraft away from dangerous situations as well as dictating the waypoint trajectory
followed during flight. In the UCAYV simulation, we rely on a separate trajectory
generator to specify aircraft waypoints, then use CIRCA-II as it was intended: to avoid
catastrophic failure situations. For the UCAV, a failure translates to the aircraft being hit
by an enemy missile. Thus, our CIRCA-II knowledge focuses on modeling missile attack
scenarios and reacting appropriately to them.

In our simple model developed for a recent coordinated demonstration with
Honeywell, we modeled two classes of weapons that may attack the UCAV: radar
missiles that typically attack from high altitude and infrared (IR) missiles that can only
detect and attack the aircraft when it is near the ground. Appendix C shows the
knowledge base we used during this demonstration. This knowledge base contains the

temporal transition probability rate functions illustrated in Figure 7-4.
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Targets
IR Threat

Radar Threat
4

__|

Figure 7-3: Hostile Environment Encountered during UCAV Flight.

To keep our model and state-space relatively simple for illustrative purposes, we
model only two ttfs, radar_kill and IR_kill. Each of these ##fs has a non-trivial delay
before it can occur, as labeled by minA in Figure 7-4. Then, for each time step, IR_kill
has a higher probability than radar_kill. For the CIRCA-II demonstration, we carefully
engineered the knowledge base so that we cannot schedule all actions required to avoid
both ##fs in one plan. Then, we ran a series of simulations to illustrate how CIRCA-II still
is able to minimize the likelihood of all ##fs.

For the first test run, we presume no probabilistic guarantee tradeoff mechanism
during CIRCA-II plan development. In this case, no plan could be scheduled to evade
both radar and IR missiles. However, we acknowledge that a higher-level decision maker
can easily pick the missile encounter with the lowest probability to ignore. In this case,
since radar_threat has the lower P,,, magnitude, it is removed from the knowledge base

and a plan is built without further difficulty. This plan is shown in Figure 7-5. During
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the simulated flight, the aircraft successfully avoids any IR missiles encountered, but
does not even attempt to evade radar missiles, thus they kill the aircraft when launched.

Because the majority of UCAV missions are flown at relatively high altitude, the
probability of being in a low-altitude state is low as modeled by the low-probability
swoop tt. For our next test, we reinstated the complete radar and IR missile transition
model and allowed CIRCA-II to build a plan that exhibited probabilistic guarantees.
However, we disabled the unhandled state detection and reaction software, thereby
forcing CIRCA-II to utilize only one plan during the entire flight. For this scenario,
CIRCA-II uses the state-probability computation model described in Chapter IV to
compute that encountering a radar missile is actually much more likely than encountering
an IR missile (even though the IR _threat has higher P,,.) because the probability of the
aircraft being in a "high altitude" state is much greater than being in a "low altitude" state
where the /R_threat may occur. Figure 7-6 shows the state-space diagram for this
scenario. During flight, this plan allows the aircraft to respond to all radar missiles but
the aircraft fails to evade all IR missiles. Given the primarily-high-altitude mission, this
scenario improves the likelihood of survival over the previous test, but the aircraft still
can be killed when encountering an IR missile.

For the final demonstration, we reinstated unhandled state detection algorithms
and directed CIRCA-II to construct and cache both nominal and contingency plans.
Figure 7-7 shows the state-space expanded for both the nominal and contingency plans
used by the CIRCA-II Plan Executor during flight. The nominal plan is identical to that
constructed in the previous experiment. However, now when an IR _threat is
encountered, a "removed state" is flagged and the dispatcher switches to the cached
contingency plan to handle the threat. After the threat has passed, the dispatcher switches
back to the nominal plan which executes until either another IR threat is encountered or
else the mission terminates as illustrated by the single absorbing state with state feature

Path=Done.
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Figure 7-4: UCAV 1t Probability Rate Functions.
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Figure 7-8: Success Probability vs. Resource Capacity: UCAYV Flight Test.

Figure 7-8 revisits the success vs. resource capacity curve illustrated in previous
chapters, this time focusing on the specific UCAYV test series described above. Using the
state probabilities computed by CIRCA-II (shown in Figure 7-7), we observe that if the
radar_threat transition is ignored, the probability of success is only 20% (presuming an
ignored radar threat always leads to failure) since the probability of visiting the first state
along the radar_threat path is 80%. When an [R-threat is ignored, success probability
jumps to 76% because of the relatively low probability (24%) of actually visiting the path
along which an /R_threat has occurred. Finally, the probability of success jumps back to
100% when all threats are handled within the real-time plan set.

This series of UCAV tests has been used to demonstrate that CIRCA-II increases
system robustness by using probabilistic guarantees to make intelligent tradeoffs about
what to ignore then detecting and responding to all ignored states. In the first test, we use
an ad hoc method for choosing a state transition to remove from the knowledge base.
This leads to a plan which had a relatively low probability of success since radar missiles
are ignored but are also most likely to be encountered. The intermediate experiment

increases the chances of success by handling the more-likely radar missiles, but still
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ignores IR threats. The final test illustrates how CIRCA-II can be used to handle more
situations than can be scheduled into a single plan, thereby allowing the aircraft to
respond to both radar and IR threats when they occur. Although these tests are relatively
simple, we expect similar results with an even more constrained model until the plan

retrieval process simply cannot occur quickly enough to avoid failure modes.

Flight with the University of Michigan UAV

The University of Michigan has recently embarked on an extensive Uninhabited
Aerial Vehicle (UAV) project, cooperatively supported by Michigan’s Aerospace and
EECS departments. The purpose of this section is to illustrate how CIRCA-II will be
applied to the task of fully-automating a "real" aircraft, as opposed to the carefully-
constructed simulation tests in which we had complete control over anomalous events.
We begin this section with a description of the UAV, its onboard instrumentation, and the
software architecture which is designed to achieve the real-time behavior required for
reliable automatic control. We also describe the integral role CIRCA-II plays in enabling
this architecture to support the fully-automated flight configuration.

We originally planned to include UAV test flight data in this dissertation to
further illustrate the utility of CIRCA-II for maintaining safety in a real-world system.
However, unforeseen difficulties with UAV hardware, including electrical noise and
power system failures, have delayed test flights to the extent that we have been unable to
include actual UAV data for CIRCA-controlled flights in this dissertation. Currently, we
are in the process of completing sensor calibration flights and within the next month hope
to begin incorporating aircraft dynamic parameters into our state estimation software.
Then, we must implement and test a minimally-capable longitudinal controller for
straight-line flight with gentle climbs/descents, after which we will couple this controller

to a lateral controller to allow gentle-bank turns to any commanded heading. Because the
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high-level actions executed by CIRCA-II can only be utilized after incorporation of
minimally-operational state estimation, control, and guidance software, CIRCA-II tests
on the UAV must be delayed past the verification of this low-level control software.
However, even with such delays, we have forged ahead with development of a
preliminary abstract plan set we hope CIRCA-II will generate and test on the UAV within
the next year. We conclude this section with a high-level description of these plans.

Figure 7-9 shows a picture of the University of Michigan UAV, a radio-controlled
(R/C) pusher-prop airplane with eleven foot wing span and a gross weight of just under
55 pounds.** The aircraft accommodates all sensors required for full automation,
including air-data system (to measure airspeed, angle-of-attack, and sideslip-angle),
differential GPS, inertial measurement unit (to measure aircraft body-axis angular
velocities and accelerations), tachometer, and complete set of potentiometers to measure
control surface deflection. Additionally, the current UAV is explicitly over-designed to
be very stable during normal flight, facilitating both controller design and manual flight
by inexperienced R/C pilots (including the author of this dissertation).

The UAYV is flown using both onboard and ground-based computers, connected as
shown in Figure 7-10. Sensors are filtered and read by onboard processor P1, and
actuator commands are transmitted from this same processor. Onboard processor P2
reads positions from the d-GPS unit, and communicates via a real-time serial link to the
ground station computer (G1). A human pilot maintains override capability via a
standard Pulse Position Modulation (PPM) R/C transmitter/receiver pair, as the

“ultimate” real-time failure avoidance mechanism for our research flights.

% Our original UAV was an off-the-shelf Citabria model, shown in [6]. After adding the
minimal instrumentation required for automation, the flight-worthiness of the Citabria
was roughly equivalent to that of a radio-controlled brontosaurus. As a result, we
designed the current aircraft specifically to carry and easily access this instrumentation.
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All UAV processors (P1, P2, and G1) run the QNX real-time operating system,
so that hard real-time tasks can have reliable execution guarantees. Figure 7-11 shows
the high-level process set run on the UAV processors. Processor P1 runs exclusively
hard real-time tasks at frequencies ranging from 10 Hz (Controller) to 100 Hz (Sensor
sampling). Task structure and worst-case execution properties can be characterized in
advance for the P1 processes regardless of the aircraft’s specific mission plan. So, hard
real-time execution on P1 is guaranteed from a fixed schedule.”

P2 contains tasks executing with longer deadlines (on the order of seconds), but
most of these tasks have larger execution variance than those on P1. Model identification
(ID), guidance, and serial communications may have near-constant execution times
during “nominal” flight cases (e.g., model requires minimal modification, a "regular" set
of status messages is sent to G1). However, during anomalous situations (e.g., requiring
a new dynamic parameter estimate), adaptive algorithms such as that used for model ID
[35] may require more resources to converge upon an accurate solution. Additionally,
higher-level mission-related tasks, like selecting the next waypoint in the trajectory, will
require more resources, particularly during anomalous situations for which the flight plan
must be altered. The ground station computer (G1), running solely in a soft real-time
execution mode, includes a real-time serial server for low-bandwidth communications
with the aircraft and a GUI for researcher observation of flight status.

As shown in Figure 7-11, CIRCA-II is an integral part of the UAV software
architecture. Before flight, the Planning Subsystem develops and uplinks to the aircraft
the set of nominal flight mission plans as well as a set of contingency plans to handle
improbable emergency situations. All these plans are sent via the serial link to the Plan-

Execution Subsystem on aircraft processor P2, which then begins executing the first

% Additionally, the P1 processes have a low-variance in execution times, so we expect
the worst-case to be near the average-case, thus P1 will typically have little slack time.
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nominal mission plan. CIRCA-II plans for the UAV include actions to specify the high-
level waypoint trajectory (analogous to the pattern fix model used in simulation tests) and
transmit results to the guidance process. Guidance is responsible for continuous

reference signal generation of altitude, airspeed, and heading used by the controller.

Figure 7-9: University of Michigan UAV.
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Figure 7-11: UAV Software Architecture.

CIRCA-II will be responsible for controlling execution of all P2 processes except
reading GPS, effectively treating guidance, ID, and the serial client processes as TAP
actions which must have predictable worst-case execution properties, or else be
interruptible should the allotted worst-case execution time expire. CIRCA-II feature
values for TAP tests will be derived from the state estimate, available to all P2 processes
via the dual-port memory connection to P1. In this manner, feature “tests” will
effectively be instantaneous, and the worst-case execution times for all CIRCA-II TAPs
will be solely due to actions.

Although we have no concrete UAV dynamic model or control software to utilize
for CIRCA-II flight tests, we have begun to develop a CIRCA-II knowledge base and
plan set we believe is feasible given the predicted UAV model properties. In conjunction
with control researchers in the Aerospace Engineering Department, we plan to study our
UAV's ability to perform fault detection, identification, and recovery to two specific
emergency situations: engine failure (presuming a single-engine aircraft like our UAV)

and airframe icing.®® We selected these particular emergencies because they are the most

% During UAV flight tests, engine-failure is easy to simulate by setting the throttle to
idle. We plan to simulate airframe icing with software between controller and actuator
command output that reduces the magnitude of control surface commands in accordance
with the expected reduction for the [simulated] amount of ice present.
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common occurrences that are also not adequately detected or handled by existing flight
management systems, and that are interesting both from the control and high-level
mission reconfiguration (i.e., contingency response) perspective. From the full UAV
software architecture perspective, "detection and isolation" of an engine failure or icing
event will be performed by the model identification software. Initial research efforts
toward the detection and isolation of airframe icing based on actual test data from a twin-
otter research aircraft are described in [48] and [49]. CIRCA-II then interfaces to the ID
module with feature flags that indicate whether an icing or engine-failure event has
occurred ((Icing=True) or (Engine_failure=True)), and must plan explicit reactions to
respond appropriately to these events.

Figure 7-12 describes a “nominal” flight plan for UAV flight around the R/C
airfield, similar to the pattern shown in Figure 7-2. We include TAPs that allow updating
and following the flight trajectory around the flight pattern, as well as TAPs to detect the
improbable engine-failure and airframe-icing events. Because a significant fraction of
P2 resources may be required to respond to either of these improbable events, we expect
that engine-failure and airframe-icing will each be handled with a contingency plan.
Figures 7-13 and 7-14 outline the contingency plans required to avoid failure after an
engine-failure or airframe-icing event, respectively. As illustrated by these plans, goal-
achievement actions (e.g., go around the complete rectangular pattern as in Figure 7-2)
are not included. Instead, the safety of the UAV is considered in terms of the specific
emergency encountered. To summarize, the engine-failure contingency plan directs the
system to land anywhere on the R/C field when possible or in a straight-ahead location
when required by low altitude (instead of attempting the classic "impossible turn" back to
the field that would result in a stall-and-crash situation). The “airframe icing”
contingency response focuses on exiting the [simulated] clouds, and updating weather as

permissible during slack intervals between stability-preserving actions.
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Tap 1: If (altitude or course error)

Update dynamic UAV model (guaranteed)
Tap 2: If (engine-failure or airframe-icing)

Notify plan dispatcher of unhandled state (guaranteed)
Tap 3: If (approaching pattern corner)

Turn left to next heading (best-effort)
Tap 4: If (on final approach to landing)

Notify plan dispatcher of goal state (best-effort)

Figure 7-12: Overview of the “Nominal” CIRCA-II UAV Flight Plan.

Tap 1: If (approaching stall)

Establish best-glide via model update. (guaranteed)
Tap 2: If (altitude < minimum)

Setup for landing ahead. (guaranteed)
Tap 3: If (minimum < altitude)

Set turn time/direction so UAV follows best glide-path

to R/C field. (guaranteed)
Tap 4: If (True)

Attempt engine restart. (best-effort)
Tap 5: If (Engine restarted)

Tap

Notify plan dispatcher of unhandled state (best-effort)
6: If (No code sent yet)
Transmit emergency code. (best-effort)

Figure 7-13: Overview of the CIRCA-II “Engine-failure” Contingency Plan.

Tap
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Tap

Tap

Tap

Tap

1: TIf (approaching stall)

Update dynamic model to fit icing parameters. (guaranteed)
2: If (just entered clouds or precipitation and no previous icing)

Turn 180° to get out of clouds. (guaranteed)
3: If (aircraft can climb and near cloud tops)

Climb out of ice. (guaranteed)
4: If (not near terrain and icing prohibits climb

and surrounded by clouds)

Descend to melt ice. (guaranteed)
5: If (airframe icing dissipated)

Notify plan dispatcher of unhandled state (best-effort)
6: If (communications operational)

Report icing and get updated weather report. (best-effort)

Figure 7-14: Overview of the CIRCA-II “Airframe-icing” Contingency Plan.




153

We have not yet determined how to build the CIRCA-II knowledge base so that it
will generate the proposed best-effort actions for these contingency plans, but include
them as part of our abstract plans in this section because our ultimate goal is to allow
CIRCA-II to at least emulate human pilot activities in emergency situations. We suspect
that as automatic subgoaling is better developed in the CIRCA-II architecture, we can
utilize this capability to identify and handle reduced goals (e.g., notify air traffic control
of the impending emergency landing when the engine fails) in contingency plans instead
of planning for no particular goals as is currently the default for contingency plan

construction.

In this chapter, we have described the progression of CIRCA-II tests from
successfully automating simulated flight-around-the-pattern to automating a simulated
UCAYV mission with multiple threats. Although no concrete results from actual UAV
flights are yet available, we expect to continue the pursuit of integrating CIRCA-II into
the UAV control system to maximize UAV safety via operation only in the controllable

partition of its state-space even when significant emergency situations are encountered.



CHAPTER VIII
CONCLUSION

This dissertation introduced techniques that permit structured tradeoffs in an
integrated plan generation and execution system when computational resources are
limited, domain knowledge is uncertain and may also be imprecise, and dynamic world
events occur rapidly. In accordance with an intuitive "safety first" policy, we required
guaranteed hard real-time response to all dangerous world states but allowed best-effort
reactions in states where the action strictly enhances mission goal-achievement. This
prioritization was originally introduced in the Cooperative Intelligent Real-time Control
Architecture (CIRCA) [51], which was designed to build control plans that are explicitly
scheduled to provide hard real-time failure-avoidance guarantees when executed. We
adopted CIRCA as the basis for this research and described its evolution to CIRCA-II.

The purpose of the planning system in CIRCA-II is to create control plans that
guarantee safety while attempting to reach mission goals when executed. It is unrealistic
to assume that an absolutely safe plan will always fit on a limited-resource execution
platform, so we have incorporated the necessary capabilities that allow the CIRCA-II
planner to degrade safety guarantees from absolute to probabilistic when required. To
this end, we have implemented a stochastic state-space planner that handles uncertain
domain knowledge and prioritizes the reachable state-space based on the relative
likelihood of visiting each state. Our planner expands states using a knowledge base

specified by a transition set with unconditional time-dependent probabilities, and
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employs a variety of weighted-average functions to approximate the likelihood of ever
visiting each reachable state, even when the state-space is cyclic and dependent temporal
transition chains (see Chapter I'V) are present. The plans developed with our model are
sufficient for failure-avoidance purposes, but may not be optimal, particularly with
respect to goal achievement. We considered a Markov Decision Process (MDP) planner
[11] as a particularly attractive alternative approach because of its ability to generate
optimal policies. However, due to the additional complexity required for an MDP
planner to represent and reason about action deadlines and state "history", we opted to
use our simpler but approximate model. If we utilize state probabilities for more than
relative state prioritization in future work, we will revisit the possibility of incorporating
an MDP planning model into our architecture.

After prioritizing the state-space in terms of probabilities, we were able to relax
safety guarantees from absolute to probabilistic by constructing plans that only classify a
state as reachable if the probability of visiting that state is above a flexible threshold
Premovea- In the current CIRCA-II implementation, a value for this threshold was
recommended by the scheduler from an analysis of proposed task priorities, probabilities,
and identified bottlenecks (e.g., two tasks conflict) that prohibited meeting all guaranteed
task deadlines. For a future CIRCA-II implementation, we also proposed a method by
which a more general multi-resource scheduler can heuristically identify a bottleneck task
to help guide the planner through a dynamic-backtracking [24] search for a schedulable
plan. We expect this approach to increase the efficiency of plan development and
minimize the value for Pyemoveq, thereby minimizing the number of "removed" states.

Ignoring improbable states greatly facilitated schedulable plan development but
jeopardized system safety when an unlikely state was actually encountered. In this
dissertation, we developed a state-space classification that extended beyond the reachable
state set to all states that were modelable from the symbolic set of state features and

values. During planning, important "unhandled" states were enumerated and tests were
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built into each plan to ensure that they were identified as they occur during execution.
We specifically detected three classes of unhandled states: removed states that were
unlikely thus ignored during planning, imminent-failure states that led to failure but were
not considered reachable unless a transition was modeled incorrectly or was missing from
the knowledge base, and deadend states that were safe but did not lead to any goal. The
CIRCA-II architecture included a plan cache to allow real-time plan retrieval and
switching when required. The planner constructed a set of safety-critical contingency
plans offline (i.e., prior to the system entering its dangerous environment) then retrieved
and executed each as needed to react to unhandled states. We ultimately could not
circumvent the limited-resource problem when the plan cache grew so large that
contingency plans could not be retrieved in time to avoid failure. However, we were able
to guarantee real-time failure avoidance even with a non-real-time planner for many
situations in which a single control plan would fail.

We applied CIRCA-II to the challenging problem of achieving safe, fully-
automated aircraft flight. We first described simulation results in which we attached
CIRCA-II through a low-level control system to the ACM F-16 flight simulator [58] and
fully-automated a complete flight. Although the domain knowledge only contained a
token set of emergency situations, we illustrated the ability of CIRCA-II to react in real-
time to critical but improbable in-flight situations such as a "gear-up-failure" by detecting
the failure and retrieving a contingency plan that reacted to the situation appropriately
and in real-time. We also presented results from a recent UCAV (Unmanned Combat
Aerial Vehicle) demonstration that further illustrated CIRCA-II's ability to minimize the
probability of failure, which in this case was represented by the aircraft being struck with
an enemy missile. We described ongoing work to implement and test CIRCA-II on the
University of Michigan's Uninhabited Aerial Vehicle, both to further validate CIRCA-II
algorithms and to improve our representation of the critical features and values required

to issue appropriate high-level commands for a fully-automated aircraft.
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Contributions

In Chapter I, we described a specific set of research contributions made by this
dissertation. In the following paragraphs, we revisit these contributions and refer to

specific techniques presented in this dissertation that substantiate our claims.

Probabilistic Planning

The stochastic planning community has traditionally focused on the development
of optimal policies as defined in Chapter I. We introduce a new perspective to this
classical problem in that we are not that concerned with plan optimality or even state
probability accuracy. Instead, we require the computation of accurate action timing
constraints (deadlines) for our hard real-time execution environment and utilize state
probabilities only to prioritize the reachable state-space. We have devised and built into
CIRCA-II a probabilistic planning algorithm (Chapter I'V) that requires a substantially
smaller knowledge base than does an equivalent MDP planner and provides an
approximate state probability distribution. We believe our method will be attractive to
researchers studying complex real-time problem domains in which approximate state
probabilities are sufficient, especially if these researchers have been frustrated with the
complexity required even to specify the MDP for large state-spaces that include state

history information.

Multi-layer Architectures

Our combination of distinct planning and plan execution layers provides a good
fit for CIRCA-II within the multi-layer architectures community. We introduce a "real-
time" bias to our system, as did the original CIRCA, defining our layers in terms of their
ability to guarantee hard real-time response (plan-execution) versus best-effort

(planning). The contribution of this dissertation to the architectures community lies in
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the ability of our algorithms to explicitly detect unhandled states during plan execution
and dynamically react to this information (Chapter V). This dynamic reaction occurs
internally to the plan-execution system when real-time response is required and
externally (by requesting a new plan) when a best-effort response is acceptable. Al
architectures are increasingly being applied to remote systems requiring hard real-time
response to a variety of situations. In the majority of deployed systems, real-time
response is verified only through exhaustive software testing, as opposed to the CIRCA-
based approach of planning then scheduling to analytically verify meeting real-time
constraints. We have made the CIRCA approach more attractive by introducing the
capability to automatically respond in real-time to "unexpected" situations, a desirable

capability for automated systems that cannot easily be reprogrammed.

Planner-Scheduler Negotiation

Instead of designing a "planner that schedules" or a "scheduler that plans",
CIRCA and CIRCA-II use a state-space planner to select a set of actions for a plan and a
traditional real-time scheduler to fit these actions onto available resources. We contribute
to the field of "integrated planning-scheduling systems" by presenting methods to
efficiently communicate quantities between scheduler and planner (Chapter VI). We use
feedback from the scheduler as a new approach to guide planner backtracking when
tradeoffs are required to schedule a plan. Specific examples of this feedback include
suggesting a probability threshold for "ignoring" states and identifying a bottleneck task
to be modified or removed. We also introduce an algorithm for Quality-of-Service (QoS)
negotiation during task scheduling that continues to gain momentum as a viable method

for making scheduling tradeoffs within the real-time community.
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Aircraft Automation

Current flight management systems employ sophisticated control algorithms but
have little higher-level software to reason about emergency situations. By considering
the automation problem from the "human-pilot " perspective, an approach that lends itself
to symbolic feature-value representations and high-level actions, we have imparted
emergency response capability to simulated autonomous flight. For our research,
CIRCA-II functions as the high-level "expert pilot" for which we have written the
necessary low-level control laws to allow automated flight from takeoff through landing.
This simulator is proving to be useful as a research testbed and has already been adopted
by other research groups within the real-time systems laboratory at the University of
Michigan and at Honeywell Technology Center. The flight control community will
largely ignore this work in its present form. As we employ our techniques in future UAV
experiments, we hope to gradually gain recognition by demonstrating automated fault
(unhandled state) recovery techniques that complement ongoing system identification
research in fault detection and isolation. This work may be particularly important when
applied to dangerous situations such as airframe icing in which existing flight

management systems may exacerbate the problem (e.g., by delaying pilot detection).

As with most research, delving deeply into specific topics serves to uncover more
issues than are solved. This dissertation contributes techniques to researchers studying
complex, real-time control problems from the high-level mission planning and real-time
plan-execution perspective. We plan to continue this work into the next millennium and
can only hope that future research will be as fun and intellectually-stimulating as has been
this adventure into the interdisciplinary world of Al, real-time systems, and aircraft

automation.
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Future Research Directions

Several research areas we have addressed in this dissertation remain open for
future study. We have presented algorithms for making tradeoffs during the development
of real-time control plans, and we have given examples illustrating how the algorithms
improve upon existing methods. Below, we describe ongoing efforts to quantitatively
evaluate the accuracy and performance of the algorithms presented in this dissertation.
We also describe future additions planned for the CIRCA-II architecture that will further
enhance system plan generation and real-time execution capabilities. Then, we consider
future UAV work and more general aspects of research that must be addressed before

commercial aircraft flight can be both safe and autonomous.

CIRCA-II Evaluation

Definitively evaluating and quantitatively comparing the capabilities of numerous
Al architectures is a challenging topic that spurs much discussion within the Al research
community. We have argued that CIRCA and CIRCA-II are both more capable of
operating in hard real-time environments than are many other architectures because the
CIRCA approach proves that real-time plan execution deadlines will be met via explicit
task scheduling. Additionally, we have demonstrated that CIRCA-II has the ability to
fully-automate a flight simulator during normal flight and a specific set of emergency
situations. However, we also acknowledge the need for a more formal evaluation.

Because CIRCA-II is composed of several distinct modules, the simplest way to
attack the evaluation problem is to consider each component as a stand-alone system.
We are currently in the process of evaluating the CIRCA-II planner probability model
and outline our approach below. Next, we describe the challenges associated with

evaluating the performance of our unhandled state detection and response mechanisms
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followed by a discussion of future plans to better assess CIRCA-II performance gains due
to our planner-scheduler negotiation algorithms.

The CIRCA-II stochastic model is designed to compute approximate state
probabilities by averaging history effects over all parent paths into each state. This
model is a relatively recent addition to the CIRCA-II software, replacing an earlier
version that is of limited use when dependent temporal transitions and cycles are present
in the state-space. We have verified that our algorithms provide the expected results for
simple examples. Although analysis is not yet complete, we are beginning to more
formally assess the stochastic model via individual algorithm proofs of correctness (e.g.,
least-squares error minimization) as well as a comparison of CIRCA-II-generated state
probabilities with stochastic simulation results. To perform the experimental evaluation,
we generate a number of unique state-space structures from a set of generic non-domain-
specific CIRCA-II knowledge bases. The state probabilities computed by CIRCA-II are
then stored and compared to the results of a battery of stochastic simulations based on the
same state transitions and probability rate functions. With this combined approach, we
hope to develop a better understanding of the different state-space structures in which the
CIRCA-II stochastic model is accurate as well as specific structures (such as that
identified in Chapter IV) which are not well-characterized by the CIRCA-II weighted-
average probabilities.

We also are working to better evaluate our approach to detecting and reacting to
unplanned-for world states. Our initial evaluation strategy will include a parametric
characterization of situations in which CIRCA-II will and will not perform well due to
this approach. Although we have not yet determined the exact variables we will include
during our tests, we expect to include knowledge base properties such as number of
failure states and ##fs normalized over all states and state transitions, state-space

characteristics such as the presence of cycles and/or dependent #zs, and final plan
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properties such as the percentage of hard versus best-effort TAPs and resource utilization
required for this plan.

Following our introspective analysis of CIRCA-II performance, we then hope to
compare CIRCA-II with other architectures to better assess its relative capabilities. The
challenge with this approach is in describing domain knowledge "equally" in the different
architectures, then to execute the systems in a "fair" set of environments. Simply stated,
an unplanned-for state in CIRCA-II may be planned-for in architecture X (or vice versa),
depending on exactly how the knowledge was specified. Additionally, since few
architectures guarantee hard real-time response, one might easily bias the tests such that
the tradeoffs made by CIRCA-II are absolutely essential for success. Alternatively, one
might bias the tests such that even a soft real-time response system will be adequate, in
which case CIRCA-II will always "lose" in the comparisons. Although we feel such
comparisons are challenging, we hope to borrow or manually craft a set of hard real-time
problems then collaboratively run and compile results to more convincingly situate
CIRCA-II as a viable approach for real-time automation problems.

We have provided tools for supplying the CIRCA-II planner with useful feedback
from the scheduler to guide the backtracking process when a proposed plan cannot be
scheduled. We have provided examples that illustrate the utility of this approach, but
have not yet identified the parameters that can be used to specify circumstances under
which our heuristic algorithms will be beneficial versus detrimental for our heuristic
feedback approach. We envision planner-scheduler negotiation tests that exercise
CIRCA-II in two directions: plan generation and plan execution efficiency.

We will assess plan generation efficiency as a function of whether the scheduler
was able to provide useful feedback (e.g., whether the suggested P,emoveq threshold
sufficiently reduces task scheduling requirements or whether the identified bottleneck
task can actually be safely modified during dynamic backtracking). As with the

unhandled state tests, we suspect the best route to such tests is to develop a set of
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contrived examples in which states have a substantial range of probabilities (for Pemoved
consideration) and planned actions vary along several dimensions (e.g., number of states
in which each action is selected, TAP worst-case execution times, etc.).

During plan execution, we can simultaneously analyze the effectiveness of the
scheduler's choice for Pemoves along with the accuracy of the stochastic planning model.
A non-zero value for P,emeveq indicates that CIRCA-II will be making only probabilistic
safety guarantees. However, since our state probabilities are approximate and only
represent the likelihood of ever visiting each particular state, it is not straightforward to
translate state probabilities into an overall estimate of success.”” We hope to use the
same contrived domain with its "environment" linked to the stochastic simulation
referenced above. Then, we can gather actual statistics regarding the frequency with
which the system finds itself in a "removed" state, thereby assessing whether our notion
of Pjemovea g1Ven our approximate probability model is realistic.

Due to the breadth of the work undertaken for this dissertation, we have not yet
completed the extensive set of tests proposed in this section. Although the time spent on
developing appropriate example problems and constructing the support software for
CIRCA-II tests may be substantial, we are convinced such analysis is crucial to
demonstrate the utility of our algorithms to the research community. We also expect our

evaluation will guide us toward improvements in many of the CIRCA-II algorithms.

%7 In Chapter VI, we gave a simple example where only one unlikely path was removed.
In this case, we could estimate the probability of success based on the probability of
reaching the first state along the removed path. However, more generally, multiple paths
will have low-probability states removed, in which case we currently have no mechanism
for computing overall success probability.
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CIRCA-II Enhancement

Numerous opportunities remain for further improving the ability of CIRCA-II to
develop and execute real-time control plans. We have identified research areas that can
benefit from future enhancements in the context of existing CIRCA-II algorithms
throughout this dissertation. Below, we revisit these plus additional topics that will better

allow CIRCA-II to interact with its real-time environment efficiently and safely.

e Real-time Plan Development. We have incorporated a plan cache in CIRCA-II to
minimize the need for dynamic planning. However, real-time planning constraints
may be required when the cache becomes full (i.e., adding more plans would
compromise real-time retrieval guarantees) before responses to all dangerous states
are cached. CIRCA-II planning involves several algorithms, including planning,
scheduling, and iteration between the two when a proposed plan cannot be scheduled.
For real-time response, all of these processes must be bounded. Appendix D
describes a possible approach for bounding planning time in CIRCA-II. This
approach relies on the existing CIRCA-II stochastic state-space temporal model and
combines ideas from the anytime and design-to-time literature.

e Comprehensive Plan Development. To be truly exhaustive, CIRCA-II backtracking
processes must search through all possible state-action combinations, all possible sets
of guarantee flags and deadlines for each action, and all value assigned to threshold
Premovea- Except when directed by scheduler feedback, CIRCA-II backtracking is
largely an ad hoc procedure that guarantees each action is tried once from each state,
but not in all combinations. In addition to backtracking improvements, there are
specific cyclic state-space structures that CIRCA-II cannot describe with sufficient
accuracy to develop a valid plan. In Chapter IV, we identified a simple state-space

with multiple dependent ##fs and multiple cycles that neither CIRCA nor CIRCA-II
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handles adequately. Appendix E describes this example and outlines a preliminary
solution approach that may solve this entire class of problems without adding a
completely separate model-checking algorithm to the planner.

State-space Pruning. For our research, we have relied on state probability as the sole
measure of importance when the planner is forced to ignore states due to
schedulability constraints. Other parameters may also play an important role in
assessing areas of the state-space to prune when required. Perhaps the most intuitive
parameter is to consider is action cost in terms of plan-execution resource
requirements, a quantity that we have begun to consider during "bottleneck task"
identification in Chapter VI. Also, since we cannot assume CIRCA-II will develop
plans that are valid indefinitely, we may ultimately require at least an abstract notion
of the minimum (global) time before the system may first visit each state. Such a
time horizon is discussed in terms of imposing real-time bounds on planning in
Appendix D, but is also an important parameter to consider when selecting states to
ignore since exclusively far-term states may be handled in future plans. We expect
CIRCA-II may develop higher-quality plans more efficiently using a combination of
state probability, time horizon, and action computational cost when reasoning about
regions of the state-space to prune.

Automatic Subgoal Development. CIRCA-II requires that the user specify a list of
subgoals given in its knowledge base. A method for dynamic backtracking to
potential subgoal-splitting points is described in [4], but this procedure can only
succeed when finding intermediate states with no exiting temporal transitions.
Honeywell researchers are approaching this problem by implementing a distinct
subgoal-generation module to the original CIRCA Automated Mission Planner
module (see Chapter II). We hope their efforts will yield a solution that is also

feasible for the CIRCA-II stochastic state-space planning model.
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Planner-Scheduler Negotiation. In this dissertation, we have addressed planner-
scheduler negotiation from the perspective of "planner proposes plan; scheduler
succeeds or feeds back Pjemoves and/or a bottleneck task; planner backtracks and
proposes a new plan when scheduling fails". In the final section of Chapter VI, we
introduced a method for QoS negotiation within a general real-time systems
framework. We plan to investigate methods for incorporating QoS negotiation
protocols into the CIRCA-II scheduler so that we can distribute plan adaptation
between planner and scheduler when tradeoffs to permit plan scheduling must be
performed.

Machine Learning in CIRCA-1I. We foresee two near-term uses for learning-based
algorithms in CIRCA-II: improvements for TAP test generation and the ability to
"remember" contingency plans between missions. We have exclusively employed
ID3 for minimizing TAP preconditions. As discussed in Chapter V, this introduces a
substantial cost for building imminent-failure state detection TAPs, as do other
existing decision tree algorithms because they require states with fully-instantiated
feature values. We have not yet identified a better classification algorithm for TAP
test construction but are continuing the search. We have introduced a plan cache into
CIRCA-II that is always created from scratch for each mission. We adopt this
approach because we require real-time contingency plan retrieval, a process slowed
when searching through extraneous cached plans. CIRCA-II may see substantial
savings in initial plan development overhead if the cache remembers plans it expects
to require for multiple missions, although we have not yet identified the statistics that
should be gathered by the dispatcher when making the decision to keep or discard
plans after each run.

Multi-resource, Fault-tolerant Plan Execution. In Chapter VI, we describe a method
by which the CIRCA-II planner develops plans that execute on multiple resources and

are able to handle specific computational system faults (e.g., single CPU failure).
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However, the CIRCA-II Plan Execution Subsystem has always resided on a single
processor. Recently, we have ported the uniprocessor plan execution software to the
QNX operating system and migrated to a thread-based execution approach. In
Appendix A, we discuss ongoing efforts to extend the CIRCA-IT QNX-based
software toward multi-resource plan execution. After this work is complete, we will
next implement software to detect computational resource faults and respond in hard
real-time by retrieving a new control plan (if necessary) then dynamically allocating

the resources on which that plan will execute.

Safe, Fully-Automated Aircraft Flight

We have demonstrated that CIRCA-II can successfully automate simulated
flights, including response to a specific set of carefully-engineered emergency situations.
We have also constructed the hardware and designed the software architecture required to
automate the University of Michigan UAV. We are still developing UAV low-level
control and state estimation software that is necessary before CIRCA-II can even be
employed. When this software is complete, we will then incorporate CIRCA-II to
address challenging problems associated with the construction of real-time flight mission
plans that guarantee safety in the context of the aircraft's dynamic capabilities, which
necessarily evolve as system failures or environmental events (e.g., engine-failure or
airframe-icing) occur. Although the results of this research are difficult to predict at this
early stage, we hope the continued collaboration between control and symbolic planning
researchers for the UAV will more generally lead to principled methods for reasoning
about the controllability properties of complex nonlinear dynamical systems from the
high-level "expert systems" perspective.

Numerous stochastic planning procedures, including MDP and CIRCA-II

algorithms, have been demonstrated primarily on toy problems. In fact, for many
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complex problem domains, it is difficult to actually characterize the probability
distributions of various events occurring because these events have not yet been
considered in an approximate reasoning framework. For automated flight,
meteorological phenomena are some of the most important environmental factors that
require careful consideration both during initial flight planning and also when changes
occur during flight. Stochastic models are already used to predict the occurrence and
location of critical weather events (e.g., wind shear, thunderstorms, icing conditions) as is
evident by the probabilistic predictions given by weather forecasters.

We hope to incorporate stochastic weather models into future CIRCA-II
knowledge bases used for flight plan development. This research approach will yield two
important results. First, it will allow us to better assess whether real-world data can be
accurately incorporated into our state transition probability rate function format. Next,
due to the dynamic nature of weather patterns, we will also be able to carefully study the
effects of imprecise knowledge (i.e., outdated meteorological statistics) during
subsequent plan execution, giving us a practical avenue for testing the CIRCA-II
capabilities to detect and recover from the unhandled states resulting from weather
pattern changes.

As we add complexity to our CIRCA-II knowledge base for fully-automating
flight, we have observed that the likelihood of many important world events ranging from
adverse weather to nearby air traffic may significantly vary even after the aircraft enters
its environment. In CIRCA-II, we have assumed we could build plans to detect and react
to each of these events given a static and general knowledge base. However, as our
domain model complexity increases, we may eventually benefit from dynamic
knowledge modification which would then require online construction of new plans. We
have not yet begun to consider the practical implications of such a strategy except to note
that CIRCA-II must then exhibit hard real-time planning response time and also should

reason about minimally-modifying existing plans to maximize efficiency.
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One important lesson we learned during this research is that safe, automated flight
requires the solution of a multitude of research problems. We plan to continue our efforts
to automate traditionally pilot-oriented tasks and forge collaborative ties with
complementary research areas to ultimately achieve safe, fully-automated flight, even
though the author of this dissertation may be very old when such automation is finally

accepted.
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APPENDIX A
CIRCA-II C++ IMPLEMENTATION

This appendix is intended to serve as a reference for the CIRCA-II software and
includes suggestions for upgrades in future work. Chapter III of this dissertation
described the overall CIRCA-II components and their functions. However, we did not
focus on any details of the software that weren't specifically designed to support the
research presented in this thesis. Here, we present implementation details that will be
critical as CIRCA-II undergoes further development, focusing on items that we already
foresee a need to re-design or modify.

We organize this appendix into sections corresponding to modules within the
CIRCA-II software. We first describe the CIRCA-II Planning Subsystem which will
execute offline to develop the startup-set of nominal and contingency plans then online
when required for reacting to unhandled states. We look at modules within the planner
which would benefit from upgrades, including the algorithms used for action selection,
backtracking, and building unhandled state detection tests. Next, we describe the
implementation details of the CIRCA-II Plan-Execution Subsystem. As discussed briefly
in Chapter VI, we will be migrating this software to a multi-resource environment and
integrating the monitoring software necessary for detecting computational resource
failures. The multi-resource CIRCA-II Plan-Execution Subsystem is slated to be

implemented on the QNX real-time operating system, and we hope this conversion will
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more closely link CIRCA-II with recent research in dynamic resource allocation and

scheduling from the real-time community.

Planning Subsystem

The CIRCA-II Planning Subsystem performs all the “unbounded” planning and
scheduling tasks required to develop mission plans that will later execute in hard real-
time on the CIRCA-II Plan-Execution Subsystem. Figure A-1 shows the algorithm used
by the Planning Subsystem, including the basic plan development and plan-execution
interface procedures. Note that the algorithm presented in this appendix is simply a more
detailed version of the high-level Planning Subsystem described in Chapter III.

Upon startup, CIRCA-II builds the nominal and contingency plans it expects to
require during plan execution. The initial (startup) state and list of task-level goals
(subgoals) must be included in the domain knowledge base, along with the action and
temporal state transitions. As shown in Figure A-1, nominal plans are developed from
initial state(s) and a selected subgoal (Step 1) using a basic forward-chaining planning
algorithm (Step 2), which employs best-first search based on the state probabilities
computed from the algorithm described previously in Chapter IV. For each state, the
planner selects actions (and their deadlines) required to preempt any temporal transitions
to failure (##fs) or a “best-effort” action (if required) to achieve task-level goals. When
state expansion is completed, for each action, ID3 [24] is used (Step 3) to build a
minimized “test” to determine whether that action should execute, with the set of states in
which that action was selected as positive examples and all other “reachable” states as
negative examples. Each minimized test and associated action is compiled into a TAP
(test-action pair), with associated deadline (if any) set to the “worst-case” value for all

states requiring that action.
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1. Set open list to initial state(s); select first subgoal from a pre-
specified “mission goals” list.
2. While (states above probability threshold P, ,ov.q ©On oOpen list)
° Select next “best” (highest probability) state
Choose action (if any) based on failure avoidance and goal
achievement
Update all state probabilities (with Chapter IV algorithm)
Move expanded state from open to closed list
3. Compile TAPs and hard real-time action deadlines
in all expanded states
4. Build set of “unhandled” state detection TAPs
5. Schedule list of all “guaranteed” TAPs and maximize “if-time” TAP
execution frequency
6. If (No schedule possible for guaranteed TAPs)
° Resource scheduler suggests TAPs (based on utilization and

o]

priority) for removal
Go to Step 2 for Backtracking, removing/relaxing period for
time-consuming TAP (s) when possible, incrementing probability

o]

threshold P, oveq fOr “removing” (ignoring) states otherwise
7. Download plan to Plan Cache with ID3-minimized “initial state test”
as index
8. If (time-critical “unhandled” states exist for this plan)

o]

Go to Step 2 with initial states (and open list) set to
remaining time-critical “unhandled” state set; set goal to NIL
(failure avoidance only)
9. If (more subgoals)

° Select next subgoal from “mission goals” list

° Set initial state(s) to goal state(s) from last subgoal plan;
set open list to initial state(s)

° Go to Step 2

10. If (plan execution not started yet)
° Send “start” message to Plan-execution Subsystem
11. Wait for message from Plan-execution Subsystem
12. If (unhandled state message received)
° Set initial state(s) to unhandled state and its “descendants”.

The set of descendants is produced using state expansion with
the unhandled state as the initial state and the currently-
executing plan for all actions.
° If (one or more descendants is failure)
- Set subgoal to NIL (failure avoidance only); Go to Step 2
else
- Select subgoal for replanning; Go to Step 2
13. If (plan switch message received)
Log new executing plan
° If (new plan is failure avoidance only)
- Set initial state set to all states reachable from
executing plan
- Select subgoal for replanning and Go to Step 2
14. Go to Step 11
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Figure A-1: CIRCA-II Planning Subsystem Algorithm.

The set of unhandled state detection TAPs is created (Step 4) using the algorithm
from Chapter V, with deadlines set such that “removed” and “imminent failure” states
will be detected before failure can occur. Finally (Step 5), the scheduler attempts to build
a cyclic schedule for all guaranteed TAPs, with “if-time” (best-effort) TAPs filling any
slack time. If scheduling fails (Step 6), the scheduler suggests removal of “bottleneck”
TAP(s) and provides an estimate of the degree of failure (over-utilization), as described
in Chapter VI. The planner backtracks (to Step 2) and continues (Steps 2-6) until a
schedulable plan is produced.

When the plan is complete, it must be downloaded (Step 7) to the Plan-execution
Subsystem to be stored in the cache. The most accurate index to this plan is the complete
list of initial states. However, since this list could be very large and expensive to search
through, and we require real-time cache access, we employ ID3 for building a minimal
index to each plan, using the plan’s initial states as positive examples and all other states
identified so far as negative examples.

Next, the planner builds contingency plans required for timely response to any
“unhandled” state for which a time-critical response is required. This planning process
begins (Step 8) with the set of initial states containing all of the imminent-failure states
and the “dangerous” removed states which have been produced during development of
this nominal plan (Step 4). Contingency planning assumes a “NIL” goal, indicating the
plan need only include failure avoidance actions. In the best-case (i.e., few “dangerous”
states), one schedulable contingency plan can handle all these states. Generally, though,
on the first pass (Steps 2-8) only some of the time-critical unhandled states will be
handled by the generated contingency plan. Contingency plan development continues
iteratively (Steps 2-9) until schedulable plans exist for all time-critical unhandled states
associated with the current nominal plan, or until real-time plan retrieval time limits on

the plan cache prohibit further contingency plan storage.
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Once the first nominal and associated contingency plans have been downloaded,
further offline planning iterations are initiated with the remaining subgoals (Step 9) until
nominal and contingency plans to achieve all subgoals and avoid failure in time-critical
states have been produced. Next, the CIRCA-II Planning Subsystem notifies the Plan
Dispatcher that it may begin executing the first plan (Step 10), at which time any
remaining planning is dynamic (online) and prompted by messages received from the
Dispatcher (Step 11), which include notification of an unhandled state (Step 12) and
execution of a new plan (Step 13). An unhandled state message is received (Step 12) only
if the Plan Cache has no nominal or contingency plan to react to this state, so the planner
must produce a new plan that can respond appropriately. Because the world state
(environment) can change while the planner is deliberating, the initial state(s) for this
new plan must include both the unhandled state and its descendants. The possible
descendant set is built using the planner’s state expansion algorithm, with the fed-back
unhandled state as the sole initial state, TAPs from the currently-executing plan as action
transitions, and all temporal transitions from the knowledge base. If one of these
descendants is failure, replanning occurs with the goal of failure-avoidance only to
minimize planning time; otherwise, the unhandled state is a “deadend”, so a new task-
level goal is selected and full replanning occurs. Note that, when a dangerous state (e.g.,
a state matching a ##f) requires dynamic replanning, CIRCA-II can provide no real-time
failure-avoidance guarantees. However, such a situation may occur in the worst case, so
CIRCA-II attempts to respond and if “lucky” (i.e., planning and scheduling time are
brief; 7t/ delay is longer than minimum) may “coincidentally” succeed. We address
possibilities for implementing algorithms to bound planning time in Chapter IX of this
dissertation.

Below, we discuss details of specific planning algorithms that we expect to
require modification in future research. First, we describe the procedure by which the

CIRCA-II planner selects the "best" action for each state and highlight methods that may
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be used to improve this procedure. Next, we describe algorithms available for
backtracking during planning and recommend future improvements to both move the
planner toward exhaustive backtracking as well as to better define the parameters over

which the planner backtracks.

Action Selection

When a state is expanded, all actions with preconditions matching this state are
added to a "candidate" list. Then, the planner calls an action scoring function which
returns a numerical value associated with the input {s4, ac;} pair. The original CIRCA
architecture [53] uses a multi-level lookahead search to score each action, increasing the
score for each downstream goal state and decreasing the score for each #tf. Several
problems arise from this method. First, downstream states may not yet have actions
planned for them, so there is no way to factor the likelihood of each goal state or ##finto
this equation. In fact, either goal or failure states may be ultimately preempted by
actions, resulting in an inaccurate initial score estimate. Additionally, if the n-level
lookahead terminates even one step away from a goal state or #f (i.e., at level n+1), the
action scoring is unaffected.

Due to these difficulties, when we first adopted CIRCA-II for this research, we
radically jumped to the conclusion that the n-level lookahead was not really giving
significantly better results than would a 1-level lookahead, especially since the
computational requirements for the n-level lookahead were nontrivial for large » and
branching factor (i.e., number of ##s matching each state). Therefore, in CIRCA-II we
implemented a strictly one-level lookahead and measured action value based on
immediate-descendant ##fs and goal states. Although we intended to revisit the action-
scoring issue as part of this dissertation research, as of the writing of this dissertation all

ideas remain in the highly conceptual phase, some of which we outline below.
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In the above paragraphs, we paint the original CIRCA action scoring procedure in
a negative light. However, a search-based procedure is really the only available option
for a planner with a knowledge base containing only state transitions specified by
symbolic-valued preconditions and postconditions. As an example, consider a feature
"altitude" with values "zero", "low", "medium", and "high". Now, consider a knowledge
base with an action "setup-climb" and temporal transitions to model the actual altitude
changes. In order for a search-based scoring function to notice that the "setup-climb"
action will lead to a goal state with "high" altitude from the current state with "zero"
altitude, it must perform at least a 4-step lookahead. At the first step (level 0 to 1), a
feature "climbing" is set to true, then at each subsequent level, the value of altitude
progresses from "zero (level 1)->low (level2)->medium (level 3)->high (level 4)". Thus,
if n for the n-level lookahead is set to 3 or less, the planner will not give the "setup-
climb" any credit for moving the system "in the right direction".

For accurate action scoring, we really would like to have a measure of proximity
for feature values relative to each other. For continuous numeric values such as altitude,
this would simply allow the action scoring mechanism to note that a value of "low" or
"medium" is closer to "high" than a value of "zero", thus it could add value for
transitioning from "zero" to one of these values without explicitly performing the
lookahead search. This functionality could be added to CIRCA-II by modeling the subset
of features that represent continuous values with the median numeric value previously
represented by a symbol. As a first step, these values could then be used to numerically
judge feature distance from a goal or failure state, where distance could either be
estimated as a feature value difference (the natural default) or else could be returned from
a function that converted two feature values into a distance estimate. Then, either the 1-
or n-level lookahead procedures might augment the distance-based estimate for

inherently-symbolic feature values (e.g., "true" or "false").
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We have not yet even developed concrete examples that argue for the combined
distance/lookahead algorithm proposed here, thus we cannot yet assess whether this
particular approach will find utility in CIRCA-II. However, we believe this avenue
should at least be investigated in future work, because our past experiences with the
existing action scoring algorithms in both CIRCA and CIRCA-II have indicated a definite

need for future improvement.

Backtracking

The original CIRCA planner [53] expands states in depth-first order and performs
chronological backtracking to the last action choice point whenever a #f cannot be
preempted, no goal state is reachable after state-space expansion terminates, or a plan
cannot be scheduled. As backtracking progresses, each action with matching
preconditions will eventually be selected for each state. However, this procedure is not
exhaustive because the software does not try all possible combinations of actions for all
expanded states.

If we were to implement the above procedure into the probabilistic CIRCA-II
planner that performs its search in best-first order, chronological backtracking would not
be so straightforward to implement because the planner jumps throughout the state-space
rather than progressing down individual paths until they terminate or loop back to an
expanded state.

Thus, we looked for alternate algorithms that might better enhance basic CIRCA-
II capabilities. As described in [4], CIRCA-II currently utilizes a dynamic backtracking
[24] algorithm based on traversing path-vectors that lead throughout the expanded state-
space (and potentially to unexpanded child states of expanded parents). In this
dissertation, the primary references to CIRCA-II backtracking occur when a plan cannot

be scheduled. In Chapter VI, we describe an algorithm that identifies a "bottleneck" task.
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Dynamic backtracking allows the planner to go directly to states for which this task's
action was planned. This results (for the average case) in a much more efficient task
modification/removal than would backtracking chronologically until that task is modified
or removed in all states for which it must preempt a #f.

The dynamic backtracking procedure is also not exhaustive, thus CIRCA-II may
also fail to find a valid plan that could have been discovered with exhaustive
backtracking. Additionally, individual action deadlines can significantly affect state
probabilities, so different sets of states may be considered reachable (given preemption
threshold Pysn and removed-state threshold Pemoveq) Using the same set of planned
actions if the deadline for one or more of these actions is modified. We recommend that
future CIRCA-II researchers implement the backtracking modifications required to

account for these and other issues unique to development of real-time control plans.

Plan Execution Subsystem

As described in Chapter 111, the Plan Execution Subsystem in CIRCA-II is
responsible for reliably meeting all deadlines required for failure avoidance as dictated by
the planner. Figure A-2 shows the basic top-level algorithm employed on the Plan
Dispatcher module of the Plan Execution Subsystem (see Figure 3-1). Upon startup, no
plan is executing, and CIRCA-II assumes the system will be indefinitely “safe” so long as
no plan is begun (e.g., an aircraft sitting at a terminal gate prior to flight). The plan cache
waits until the planner downloads all nominal and contingency plans (Step 1). As
received, each plan is stored and indexed by plan type (nominal or contingency), as well
the ID3-minimized test to determine whether a state matches the initial state set for that
plan. Each contingency plan is also matched with a nominal plan to increase real-time

plan retrieval efficiency.



180

Once all plans developed “offline” have been received, the planner will send a
start message, at which time the first nominal plan received will begin execution (Step 2).
After plan execution begins, any operation of the plan cache is explicitly controlled by
received planner messages (Step 5) or executing TAPs that detect goal or unhandled
states (Steps 3 and 4). When a TAP detects an unhandled state (Step 3), the plan cache
searches its “contingency” plans for a match. If a match is found, this plan begins
execution to “buy time” for the goal-oriented replanning required for the “unhandled
state” deviation, and the cache sends a message notifying the planner of the plan switch.
Otherwise, the state is not considered as time-critical as others for which contingency

plans have been developed, so the old plan keeps executing while replanning occurs.

1. While (no EXECUTE message received from Planner)
° As downloaded, add plans to cache, indexed by decision tree
and plan type (nominal/contingency) for state-to-plan matching

2. Begin execution of first plan received as a Plan Executor process
3. If (plan cache gets “unhandled state” message from Plan Executor)
° Search “contingency” subset of cache for matching plan

° If (plan found)
- Begin execution of this plan on Plan Executor
- Notify planner of contingency plan, since goal-
achievement replanning may be required
° Else
- Feedback unhandled state information to planner for
replanning
4. If (“goal achieved” message received from Plan Executor)

° Search cache for nominal plan to achieve next subgoal (indexed

by current goal=next initial state)

Place contingency plans matched with this nominal plan at top
of queue for fast retrieval

Begin execution of nominal plan on Plan Executor

o]

o]

° Notify planner of executing plan

5. If ("add plan" message received from Planner)
° Add new plan to cache, indexed by decision tree and plan type
for state-to-plan matching
6. If (EXECUTE message received from Planner)
7. - Begin execution of this plan on Real-time Plan Executor
° Add new plan to cache, indexed by decision tree and plan type

for matching Plan Executor feedback messages
7. Go to Step 3

Figure A-2: CIRCA-II Plan Dispatcher Algorithm.
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When a TAP detects a goal state (Step 4), the plan cache searches its “nominal”
plans for a match with the goal state, since the appropriate next plan has an initial state
equal to the old plan’s goal state. Provided execution has proceeded as expected (i.e., the
executing plan was also a nominal plan), a new plan will be found in the cache and will
subsequently execute. Otherwise (i.e., a contingency plan is already executing), no goal
state detection TAP will be included, so no goal state message will be produced. “New
plan” messages received from the Planning Subsystem (Step 5) most often occur because
an unhandled state has prompted replanning. In this case, the plan cache has been
waiting for the new plan and it begins execution immediately. Alternatively, it is
possible that the planner must develop a sequence of new plans during replanning (e.g.,
when one plan alone cannot redirect the system to the set of nominal goal-achievement
plans), in which case the plan cache will store the plan as it did the original downloaded
set (in Step 1).

The critical components for real-time operation of the Plan-execution Subsystem
can be identified in terms of the Figure A-2 algorithm. Because Steps 1 and 2 occur
during the startup period of “indefinite safety”, they need not occur in hard real-time thus
are of no concern from a timeliness perspective. Step 4 also need not occur in hard real-
time because achieving task-level goals in CIRCA-II is strictly a best-effort endeavor,
and retrieving a nominal plan is part of the goal-achievement process. Step 3, the search
for a contingency plan and start of its execution, is the crucial part of the plan dispatcher
that must execute in guaranteed real-time, as the entire purpose of the contingency plan
set is to guarantee failure avoidance in improbable situations. Step 5 ordinarily does not
require hard real-time guarantees, since it is most often associated with the receipt of
plans that redirect the system to its task-level goals. However, CIRCA-II uses
contingency plans to “buy time” for replanning (see Chapter V), and the amount of time

it can “buy” may not be infinite. In such cases, one might consider Step 5 to benefit from
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hard real-time execution guarantees, although such guarantees will mean little since Step
5 relies on the “unbounded” planner for reactive plan development.

Below we look at two aspects of the CIRCA-II Plan Execution Subsystem that
will most likely be studied in future work. First, we consider the implementation of the
If-time Server used to execute best-effort (i.e., if-time) TAPs, then we consider future
work to convert CIRCA-II Plan Execution to a multi-resource platform running the QNX

real-time operating system.

If-time Server Implementation

CIRCA-II executes best-effort (goal-achievement) TAPs only when extra time is
available during execution of a guaranteed TAP schedule. As described in Chapter I1I,
all best-effort TAPS execute under a "special" TAP named the if~time server. During the
plan scheduling process, the scheduler attempts to maximize best-effort TAP execution
by inserting the if-time server as frequently as possible into the guaranteed TAP schedule,
setting the if-time server worst-case execution time (wcet) to the largest wcet of all best-
effort TAPs. Regardless of whether the if-time server fits into this guaranteed schedule,
the plan executor still executes the if-time server TAP whenever it finds a slack time
interval (i.e., period of time between scheduled TAP completion and the wcet slot it was
allotted in the schedule).

When invoked, the if-time server's job is to select a best-effort TAP to execute.
This TAP must fit into the available slack time interval (equal to the if-time server wcet
when the if-time server is called as part of the guaranteed TAP schedule). The if-time
server would ideally also be "fair" regarding which TAP to execute next. In this section,

we present three algorithms currently available for the if-time server in CIRCA-IL.%

% The user must define a constant in the plan executor source code to select between the
three available if-time server algorithms.
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The original CIRCA used a simple round-robin strategy for selecting the next
best-effort TAP to execute, as shown in Figure A-3. We have also implemented this
algorithm in CIRCA-II. In the round-robin algorithm, the if-time server maintains a
pointer to an element of the best-effort TAP list. When invoked, the if-time-server
checks whether the current best-effort TAP (i.e., the TAP referenced by the pointer) will
fit into the available slack time. If so, this TAP executes, the pointer moves on to the
next TAP, and that next TAP is tested to check whether it fits into the available slack
time. Whenever the remaining slack time is less than the wcet of the next TAP to be

executed, control returns to the calling program.

Current TAP wecet

.. . yes Execute current TAP;
< remaining slack time?

set pointer to next TAP

Figure A-3: Round-Robin [f-time Server.

Figure A-4 illustrates a slight modification of the round-robin protocol we have
labeled the modified-round-robin if-time server algorithm. This algorithm is also
available in CIRCA-II (as well as in certain versions of the original CIRCA). In this
algorithm, a pointer is also maintained to the next item on an if-time server list. When
invoked, the if-time-server again tests whether the current TAP will fit into the available
server time slot. If so, it is executed and the pointer is incremented as with the round-
robin algorithm. However, if not, instead of "giving up", the modified-round-robin
protocol increments the pointer and checks whether the next TAP on the list will fit into

the available time slot. As shown in the figure, this procedure continues until either the
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remaining available time falls below a minimum value or else the pointer cycles back to
where it began during this if-time server function call. This algorithm is viewed as an
improvement in that more best-effort TAPs will execute. However, the modified-round-
robin server never resets its TAP pointer, so the TAP originally referenced by the pointer
may not have executed during this invocation and will not be immediately referenced
during the subsequent if-time server call. As a result, best-effort TAPs with relatively
large wcets may not execute as frequently as would they would within the traditional

round-robin if-time server.

urrent TAP wcet
< remaining slack time?

yes
Execute current TAP

l

Set pointer to next TAP

More slack time and
[untested] if-time TAP.

Figure A-4: Modified-Round-Robin If-time Server.

Figure A-5 depicts an if-time queue algorithm, the newest of the if-time server
algorithms and available only in CIRCA-II (both the UNIX and QNX versions). In this
algorithm, the if-time server maintains a queue. Upon invocation, the server checks
whether the TAP at the top of the queue will fit into the slack interval. If so, this TAP
executes and migrates to the end of the queue. Regardless of whether the TAP at the top
of the queue executes, the pointer is set to the next TAP in the queue which then executes
if time is available. As with the modified-round-robin algorithm, this process continues
until either the slack time expires or the pointer moves sufficiently deep into the queue to

reach a TAP that has already been executed.
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We do not yet have analytical results to compare these three algorithms, but
intuitively find the if-time queue algorithm the best approach because it treats the best-
effort TAPs fairly, at least in terms of attempting to execute all best-effort TAPs at as
close to the same frequency as is feasible given the slack interval size and TAP wecets.

Work by others has begun to analyze whether the if-time server can use quantities
such as TAP priority or probability from the planner and TAP last-finished-execution-
time (Ifet) to better order server selection of TAPs to execute. However, no definitive
algorithms or analytical comparisons of such methods exist to-date. As CIRCA-II
continues its migration to the QNX real-time operating system, the if-time server may
disappear in favor of real-time dynamic [priority] scheduling algorithms. If/when this
change occurs, these quantities can be incorporated into a cost function that can be used

as a priority input for the dynamic scheduler.

Set pointer to top of queue

urrent TAP wcet
< remaining slack time?

yes Execute current TAP;
place TAP at end of queue

l

Set pointer to next
TAP in queue

More slack time
[untested] if-time TAPs2

Figure A-5: If-time Queue [/f-time Server.

O/S- and Domain-Dependent Software

To-date, the majority of CIRCA and CIRCA-II testing has been done on a UNIX-

based platform (except for the QoS Negotiation work from Chapter VI). Unfortunately,
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realistic worst-case execution times are nearly impossible to predict in typical UNIX
environments, so we have had little success in actually plotting performance results
during plan execution. We have outfitted CIRCA-II so that it will execute under the
QNX real-time operating system for the University of Michigan UAV project. As
discussed in Chapter VII, the UAV requires that the complete CIRCA-II Plan-Execution
Subsystem execute on one processor, thus the current QNX implementation, like its
UNIX predecessor, still presumes a single-processor execution platform.

The UAV software is designed as a group of distinct processes spawned after
startup. After CIRCA-II develops and caches its initial set of plans, the dispatcher
spawns a Plan-Executor process for the first plan. As described with more detail in [65],
a plan executor process begins by spawning separate processes for each TAP in its plan.”
The main executor process then attaches a proxy to each TAP that is "kicked" each time
that TAP should execute. Each TAP process sits idly waiting to be kicked and then
executes. This design is similar to a multi-thread execution model often adopted by the
real-time community. In future work, we hope to extend CIRCA-II to a multi-resource
execution platform, as discussed briefly in Chapter VI. We believe the thread-based
model currently implemented under QNX will facilitate the augmentation of the CIRCA-
IT Plan-Execution Subsystem to a multi-resource platform, although a substantial number
of issues still need to be addressed, including the design and implementation of an
algorithm to distribute dispatcher execution among the available resources and an
algorithm to monitor the system for faults and reallocate TAPs to use the remaining

resources.

% We presume feature values can be communicated easily to all processes. For our
UAYV, we have shared memory available to all executing processes. This memory
contains all feature value data (determined during state estimation) so that determining
feature values consumes a trivial amount of time during TAP test execution. This
situation may not be true in other domains in which feature tests may require the system
to interact directly with its environment.



APPENDIX B
AUTOMATION OF THE ACM SIMULATOR WITH CIRCA-II

The algorithms presented in this dissertation were first tested for fully-automated
"flight-around-the-pattern" (see Chapter VII) during which we introduced anomalous
events and costly actions to challenge the ability of CIRCA-II to develop a schedulable
plan. In this appendix, we first include one version of a knowledge base capable of
guiding the aircraft around the pattern, with each pattern "leg" specified as a separate
subgoal for which a plan is developed. The initial ACM tests performed using this
particular knowledge base relied on an earlier version of a CIRCA-II probabilistic model
that is described [8]. We did not re-run these experiments because their main purpose
was to illustrate procedures to detect and react to unplanned-for states, and state
probabilities were used simply to identify unlikely states to "remove".

Following the knowledge base, we include the nominal plans produced that when
executed in sequential order guide the aircraft around the pattern to a safe landing. In the
specific scenario presented in this appendix, the reaction to "gear-up-on-final-approach"
could not be scheduled into the final approach plan, thus the nominal final approach plan
contains a TAP to detect a "gear up" event as a removed state. CIRCA-II develops and
caches a contingency plan to handle the "gear up" emergency should it arise, then the

dispatcher retrieves and executes this plan if it is required during flight.

187
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Knowledge Base

FHASHHAFHHAFHAFHHAFHAFHHAFHAF RS HAGHH AT HAS R AT H A A A A A AR A

#

# CIRCA _C Knowledge base file

#

# Written: Ella M. Atkins, April 1997

# Last Modified: April 1997

#

# Use this format to create CIRCA (C++ version) knowledge

# Dbase files. The program "make kbase" will use this data to

# create a more efficient program for CIRCA to use during planning.
#

# Note: "make kbase" is made easier by order-dependent data
specification.

# 1. Initial State(s),

# 2. Subgoal (s),

# 3. Feature wcet's.

# 4. Action transition(s),

# 5. Temporal transition(s).

# 6. Temporal transition probability function definitions.

#

# ****x Al]l names (features, values, transitions) must be <=20 chars
each,

# with no "special" embedded characters (e.g.,space,.,',",+,-
/)

# Feature names and values must begin with a capital letter;

# feature names and action transition names must correspond to
# function names for plan execution (in domain.cpp) .

#

HHAEHAHHAHAHHAHAH AT H AR H S A R R R
#

FHHAFHHAFHHAFHAFHHATHAF AT HASHHAFH AR AT H A S H AT A A A A R AR

#
#
# Section 1: 1Initial States
#
# In the following lines, specify all features for each initial state,
# marking beginning with "begin initial state:" and ending with "end"
# for each different possible initial state.
#
#
begin initial state:
Failure = False; Traffic = False; Tornado = False; Hurricane = False;
Swerve = False; Avoiding Traffic = False; On_Course = True; Gear =
Down;

Altitude = Zero; Heading = S; Location = Fix0; Obs = Fix0; Nav_Freq =
Land;
end

# (Additional initial states may be specified here using
# this same "begin-end" format)



189

FHAFHHAFHHAFHAFHHATHAFHHASHASHHAFHA SR AT A S H AT H AR AT H AR RS AR A

#
#
# Section 2:
#

#

#
format

# shown below.
will

Subgoal (s)

Specify all subgoal features
preconditions for achieving each subgoal,

Note:

For now,

(need not be a complete list)
using the "begin-end"

and

the order of subgoals specified here

# Dbe the default order CIRCA uses during planning iterations.

#
begin subgoal:
features:

preconditions:

end

begin subgoal:
features:

preconditions:

end

begin subgoal:
features:

preconditions:

end

begin subgoal:
features:

preconditions:

end

begin subgoal:
features:
:S;

preconditions:

end

Obs Fixl;
Location

Obs Fix2;
Location

Obs Fix3;
Location

Obs Fix4;
Location

Nav_Freqg

Location

Location
Fix0;
Location
Fixl;
Location
Fix2;
Location
Fix3;
Land; Obs
Fix4;

Fixl; Heading

Fix2;

Fix3;

Fix4;

Fix0;

= S;
Heading = E;
Heading = N;
Heading = W;
Location = Fix0; Heading

FHHAFHHAFHHAFHAFHHATHAFHHAFHASHH A H A HAT AR A A A A R AR

#
#
# Section 3:

#

F

# In the following lines,

eature WCET's

# worst-case execution times

#
#

begin feature wcets:

0.0
100
100
1

Failure
Traffic
Tornado

Hurricane

0.0;
0.0;
000.0;

(wcets) .

specify all feature test
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Swerve = 1000.0;
Avoiding Traffic = 1000.0;
On_ Course = 1000.0;
Gear = 1000.0;
Altitude = 1000.0;
Heading = 1000.0;
Location = 1000.0;
Obs = 1000.0;
Nav_Freq = 1000.0;
end

FHHAFHHAFHHAFHAFHHATHAFHHAFHASHHAFH AR AT A S H AT AR A A R AR

#
#
# Section 4: Action Transitions
#
# Specify action transitions here, using similar "begin-end" format
# as shown by example below. Each must have a name, preconds,
postconds,
# and wcet.
#
# -- For preconds, specify a C-formatted test sequence enclosed by ()
like
# that used as a test for "if ()". This test sequence should
return
# True 1f transition preconditions are matched. Feature value
# comparisons are given by: (f[feature name] == (or !=)
feature value) .
# -- For postconds, specify C-formatted statements that change values
# in an array f[] to their "new" postcondition wvalues.
#
begin action:
name: climb_to altitude
preconds: ((£[Altitude] == Zero) && (f[Nav_Freq] == Fly))
postconds: f[Altitude] = Pos;
wcet: 5000
end

begin action:

name: turn_left to E
preconds: ((f[Heading] == S) && (f[Altitude] == Pos)
&& (f[Traffic] == False) && (f[Swerve] == False)
&& (f[Obs] == Fix2))
postconds: f [Heading] = E;
wcet: 5000
end

begin action:

name: turn_left to N
preconds: ((f[Heading] == E) && (f[Altitude] == Pos)
&& (f[Traffic] == False) && (f[Swerve] == False)
&& (f[Obs] == Fix3))

postconds: f [Heading] = N;
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wcet: 5000
end

begin action:

name: turn left to W
preconds: ((f[Heading] == N) && (f[Altitude] == Pos)
&& (f[Traffic] == False) && (f[Swerve] == False)
&& (f[Obs] == Fix4))
postconds: f[Heading]l = W;
wcet: 5000
end

begin action:

name: turn left to_S
preconds: ((f[Heading] == W) && (f[Altitude] == Pos)
&& (f[Traffic] == False) && (f[Swerve] == False)
&& (f[Location] == Fix4))
postconds: f[Heading] = S;
wcet: 5000
end
begin action:
name: turn left to_Sb
preconds: ((f[Heading] == W) && (f[Altitude] == Pos)
&& (f[Traffic] == False) && (f[Swerve] == False)
&& (f[Obs] == Fix4) && (f[Location] == Fix6))
postconds: f [Heading] = S;
wcet: 5000
end
begin action:
name : obs_set fixl
preconds: ((f£[Obs] == Fix0) && (f[Nav_Freq] == Fly) &&
(f [Location] == Fix0) && (f[On_Course] == True))
postconds: f[Obs] = Fix1l;
wcet: 5000
end
begin action:
name: obs set fix2
preconds: ((f£[0Obs] == Fix1l) && (f[Nav_Freq] == Fly) &&
(f [Location] == Fix1l) && (f[On_Course] == True))
postconds: f[Obs] = Fix2;
wcet: 5000
end
begin action:
name: obs set fix3
preconds: ((f£[Obs] == Fix2) && (f[Nav_Freq] == Fly) &&
(f [Location] == Fix2) && (f[On_Course] == True))
postconds: f[Obs] = Fix3;
wcet: 5000

end



begin action:
name:
preconds:

postconds:
wcet:
end

begin action:
name:
preconds:

postconds:
wcet:
end

begin action:
name:
preconds:

postconds:
wcet:
end

begin action:
name:
preconds:

postconds:
wcet:
end

begin action:
name:
preconds:

postconds:
wcet:
end

begin action:
name:
preconds:
postconds:
wcet:

end

begin action:
name:
preconds:

Pos))
postconds:
wcet:
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obs set fix4

((£[Obs] == Fix3) && (f[Nav_Freq] == Fly) &&
(f [Location] == Fix3) && (f[On_Course] == True))
f [Obs] = Fix4;
5000
obs set fix4b
((£[Obs] == Fix6) && (f[Nav_Freq] == Fly) &&
(f [Location] == Fix6) && (f[On_Course] == True))
f [Obs] = Fix4;
5000
obs set fix5
((£[Obs] == Fix3) && (f[Nav_Freq] == Fly) &&
(f [Location] == Fix3) && (f[On_Course] == True))
f [Obs] = Fix5;
5000
obs set fixé6
((£[Obs] == Fix5) && (f[Nav_Freq] == Fly) &&
(f [Location] == Fix5) && (f[On_Course] == True))
f [Obs] = Fix6;
5000
obs set fix0
((£[Obs] == Fix4) && (f[Heading] == S) &&
(f [Location] == Fix4) && (f[On_Course] == True))
f [Obs] = Fix0;
5000
Nav_Freq fly
((£[Nav_Freq] == Land) && (f[Altitude] == Zero))
f [Nav_Freq] = Fly;
5000
Nav_Freq land
((£[Nav_Freq] == Fly) && (f[Location] == Fix4) &&
(f [Heading] == S) && (f[Obs] == Fix0) && (f[Altitude] ==
f [Nav_Freq] = Land;

5000
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end

begin action:

name : avoid traffic
preconds: ((f[Traffic] == True) && (f[Avoiding Traffic] == False) &&
(f [On_Course] == True) && (f[Swerve] == False))
postconds: f[Avoiding Traffic]=True; f[Swerve]=True;
f [On_Coursel] =False;
wcet: 5000
end
begin action:
name: course_ correct
preconds: ((f[Swerve] == True) && (f[On_Course] == False) &&
(f [Traffic] == False) && (f[Avoiding Traffic] == True))

postconds: f[Swerve]=False; f[On_Course]=True;
f [Avoiding Traffic]=False;

wcet: 5000
end

FHHAFHHAFHHAFHAFHHATHAFHHAFHASHHAFH AR AT H A S H AT AR A R AR

#

#

# Section 5: Temporal Transitions

#

# Specify temporal transitions. Use very similar format to that
described

# for action transitions above, and illustrated by example below.

# Each temporal transition must have a name, preconds, postconds, and
# a prob func (where each prob func referenced must be defined in the
# next section below) .

#

begin temporal:

name: zero_altitude
preconds: ((f£[Altitude] == Pos) && (f[Nav_Freq] == Fly))
postconds: f[Altitude] = Zero;
prob func: z_altitude
end

begin temporal:

name: fly fix0 to fixl
preconds: ((f[Location] == Fix0) && (f[Heading] == S) && (f[Obs] ==
Fix1)
&& (f£[Nav_Freq] == Fly) && (f[Altitude] == Pos) &&
(f [On_Course] == True))
postconds: f[Location] = Fixl;
prob func: fly fixes
end

begin temporal:
name: fly fixl to fix2
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preconds: ((f[Location] == Fixl) && (f[Heading] == E) && (f[Obs] ==
Fix2)
&& (f£[Nav_Freq] == Fly) && (f[Altitude] == Pos) &&
(f [On_Course] == True))
postconds: f[Location] = Fix2;
prob func: fly fixes
end

begin temporal:

name : fly fix2 to fix3
preconds: ((f[Location] == Fix2) && (f[Heading] == N) && (f[Obs] ==
Fix3)
&& (f£[Nav_Freq] == Fly) && (f[Altitude] == Pos) &&
(f [On_Course] == True))
postconds: f[Location] = Fix3;
prob func: fly fixes
end
begin temporal:
name : fly fix3 to fix4
preconds: ((f[Location] == Fix3) && (f[Heading] == W) && (f[Obs] ==
Fix4)
&& (f£[Nav_Freq] == Fly) && (f[Altitude] == Pos) &&
(f [On_Course] == True))
postconds: f[Location] = Fix4;
prob func: fly fixes
end
begin temporal:
name : fly fix4 to £ixO0
preconds: ((f[Location] == Fix4) && (f[Heading] == S) && (f[Obs] ==
FixO0)
&& (f[Nav_Freq] == Land) && (f[Gear] == Down) &&
(f [On_Course] == True))
postconds: f[Location] = Fix0; f[Altitude] = Zero;
prob func: fly fixes
end
begin temporal:
name: any traffic tt
preconds: ((f£[Traffic] == False) && (f[Nav_Freq] == Fly)
&& (f[Swerve] == False) && (f[On_Course] == True)
&& (f[Avoiding Traffic] == False))
postconds: f[Traffic] = True;
prob_ func: any traffic
end
begin temporal:
name: traffic passes tt
preconds: ((f[Traffic] == True) && (f[Swerve] == True) &&
(f [Avoiding Traffic] == True) && (£[On_Course] == False))

postconds: f[Traffic] = False;
prob func: traffic passes
end



195

begin temporal:

name: intercept course tt
preconds: ((f[Swerve] == False) && (f[On_Course] == False) &&
(f [Traffic] == False) && (f[Avoiding Traffic] == True))
postconds: f[Avoiding Traffic] = False;
prob func: intercept course
end

begin temporal

name: gear up failure
preconds: ((f[Location] == Fix4) && (f[Nav_Freq] == Land) &&
(f [Gear] == Down))
postconds: f[Gear] = Up;
prob func: gear up failure
end

# Temporal Transitions to Failure (TTFs)

begin temporal:

name : drive into ground O
preconds: ((f[Altitude] == Zero) && (f[Location] == FixO0)
&& (£[Obs] == Fixl))
postconds: f[Failure] = True;
prob func: drive into ground
end

begin temporal:

name : drive into ground 1
preconds: ((f[Altitude] == Zero) && (f[Location] == Fixl))
postconds: f[Failure] = True;
prob func: drive into ground
end

begin temporal:

name: drive into ground 2
preconds: ((f[Altitude] == Zero) && (f[Location] == Fix2))
postconds: f[Failure] = True;
prob_func: drive into ground
end
begin temporal:
name: drive into ground 3
preconds: ((f[Altitude] == Zero) && (f[Location] == Fix3))
postconds: f[Failure] = True;
prob_func: drive into ground
end
begin temporal:
name: drive into ground 4
preconds: ((f[Altitude] == Zero) && (f[Location] == Fix4)
&& (f [Nav_Freq] == Fly))

postconds: f[Failure] = True;
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prob func: drive into ground
end

begin temporal:

name : drive into ground 5
preconds: ((f[Altitude] == Zero) && (f[Location] == Fix5))
postconds: f[Failure] = True;
prob func: drive into ground
end

begin temporal:

name : drive into ground 6
preconds: ((f[Altitude] == Zero) && (f[Location] == Fix6))
postconds: f[Failure] = True;
prob func: drive into ground
end

begin temporal:

name: land gear_up
preconds: ((f[Altitude] == Zero) && (f[Gear] == Up))
postconds: f[Failure] = True;
prob func: drive into ground
end

begin temporal:

name : mid air collision_ tt
preconds: ((f[Traffic] == True) && (f[Avoiding Traffic] == False))
postconds: f[Failure] = True;
prob func: mid air collision
end

begin temporal:

name: fly way off course_ 1
preconds: ((f[Avoiding Traffic] == True) && (f[Swerve]l == True) &&
(f [Traffic] == False))
postconds: f[Failure] = True;
prob_ func: hopelessly off course
end
begin temporal:
name: fly way off course 2
preconds: ((f[Traffic] == False) && (f[Swerve] == False)
&& (£[On_Course] == False) && (f[Avoiding Traffic] ==
False))
postconds: f[Failure] = True;
prob_ func: hopelessly off course
end

FHHFHHAFHHAFHAFHHATHAF A H AR A H AR A A A A R AR

Section 6: Probability function definition
(for temporal transitions)

H H H H H
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# Each of these functions should be written as a valid C++ function or
macro.

# See example for format --> Assumes arguments (float time, float
prob); if
# prob set to <= 0.0, use time to compute prob; otherwise, use prob to

compute time. Returns a float (either time or prob).

#
#
# For returning impossible (beyond asymptote) probabilities, use
# value FLT MAX from <float.hs>.

#

begin prob func:

// z_altitude prob_ func
float z altitude(float time, float prob)
{
if (prob <= 0.0) {
if (time < 10000.0) return(((float) time)/100000.0) ;

else return(0.1) ;

} else {
if (prob <= 0.1) return (prob * 100000.0) ;
else return (FLT_ MAX) ;

}
}

// fly fixes prob_ func
float fly fixes(float time, float prob)
{
if (prob <= 0.0) {
if (time < 20000.0) return(0.0) ;
else if (time < 200000.0) return(((float) (time - 20000)) /
200000.0) ;

else return(0.9) ;
} else {
if (prob == 0.0) return(0.0) ;
else if (prob <= 0.1) return(20000.0 + (prob * 200000.0)) ;
else return (FLT_ MAX) ;

}
}

// any traffic prob func
float any traffic(float time, float prob)
{
if (prob <= 0.0) {
if (time < 10000.0) return(((float) time)/100000.0) ;

else return(0.1) ;

} else {
if (prob <= 0.1) return (prob * 100000.0) ;
else return (FLT_ MAX) ;

}
}

// traffic passes prob func
float traffic passes(float time, float prob)
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if (prob <= 0.0) {

if (time < 5000.0) return(0.0) ;
else if (time <= 50000.0) return(((float) (time - 5000))/50000.0) ;
else return(0.9) ;
} else {
if (prob == 0.0) return(0.0) ;
else if (prob <= 0.9) return(5000.0 + (prob * 50000.0)) ;
else return (FLT MAX) ;

}
}

// intercept course prob_ func
float intercept course(float time, float prob)

{

if (prob <= 0.0) {

if (time < 5000.0) return(0.0) ;
else if (time <= 50000.0) return(((float) (time - 5000))/50000.0) ;
else return(0.9) ;
} else {
if (prob == 0.0) return(0.0) ;
else if (prob <= 0.9) return(5000.0 + (prob * 50000.0)) ;
else return (FLT MAX) ;

}
}

// drive into ground prob_ func
float drive_into ground(float time, float prob)
{
if (prob <= 0.0) {
if (time < 100000.0) return(0.0);
else return(1.0) ;
} else {
return(100000.0) ;
}

}

// mid_air collision prob_ func
float mid air collision(float time, float prob)

{

if (prob <= 0.0) {

if (time < 100000.0) return(0.0) ;
else return(1.0) ;
} else {

return(100000.0) ;

}
}

// hopelessly off course prob func
float hopelessly off course(float time, float prob)
{
if (prob <= 0.0) {
if (time < 200000.0) return(0.0) ;
else return(1.0) ;
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} else {
return(200000.0) ;
}

}

end

Plan Sequence Generated for Flight-Around-the-Pattern

Plan0: Takeoff and Fly Upwind Pattern Leg to FIX1

HHAHAHHAHAHHAHAH S A HAH S HAHAHHHH

# planO.txt

#

# Automatically generated by CIRCA planner.
#

HHAEHAHHAH S HHAHAH S A H A S H A H A AR H

# Part 1: Define number of TAPs (if-time TAPs).

begin tap count:

NTAPS = 4;
NIF_TIME TAPS=3;
end
# Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap wcets:
tap0 = 9000.000000;
if time tap0 = 3000.000000;
if time tapl = 9000.000000;
if time tap2 = 6000.000000;
tapl 12000.000000;
tap2 = 12000.000000;
tap3 12000.000000;

end

# Part 3: Define schedule (by guaranteed TAP name) .
begin tap_ schedule:
{ tap2, tap0O, tap3, tapO, tapl, tapO };

end

# Part 4: Define TAPs.

begin tap:
name: tap0
preconds: (1)
action: iftime server();

end
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begin tap:
name: tapl
preconds: (( ((Nav_Freq() == Fly) && (Swerve() == False) &&
(Traffic() == False) && (Obs() == Fix0) && (Altitude() == Zero)) ||
((Obs () == Fixl) && (Altitude() == Zero))))
action: climb to altitude() ;
end
begin tap:
name: tap2
preconds: (( ((Obs() == Fix0) && (Altitude() == Zero) && (Swerve() ==
False) && (Traffic() == True)) ||
((Altitude () == Pos) && (Swerve() == False) && (Traffic() == True))))
action: avoid traffic();
end
begin tap:
name: tap3
preconds: (( ((Obs() == Fix0) && (Altitude() == Zero) && (Traffic()
== False) && (Swerve() == True)) ||
((Altitude () == Pos) && (Traffic() == False) && (Swerve() == True))))
action: course correct();
end
begin tap:
name: if time tapO
preconds: ((Heading() == S) && (Location() == Fixl) && (Obs() ==
Fix1))
action: run new plan();
end
begin tap:
name: if time tapl
preconds: (( ((Swerve() == False) && (Traffic() == False) &&
(Altitude () == Pos) && (Obs() == FixO0))))
action: obs set fix1l();
end
begin tap:

name: if time tap2
preconds: (( ((Nav_Freg() == Land))))
action: Nav_Freq fly();

end

Planl: Turn and Fly Crosswind Pattern Leg to FIX2

HHAHAHHAHAHHAHAH S HAH A S HAHAHHHH

# planl.txt

#

# Automatically generated by CIRCA planner.
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#
FHHAFHHAFHHATHASHHASHHASHASHHATHAH

# Part 1: Define number of TAPs (if-time TAPs).

begin tap count:

NTAPS = 4;
NIF_TIME TAPS=3;
end
# Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap wcets:
tap0 = 10000.000000;
if time tap0 = 6000.000000;
if time tapl = 10000.000000;
if time tap2 = 9000.000000;
tapl 10000.000000;
tap2 = 8000.000000;
tap3 8000.000000;

end

# Part 3: Define schedule (by guaranteed TAP name) .

begin tap_ schedule:
{ tap2, tap0O, tap3, tap0O, tapl, tapO };
end

# Part 4: Define TAPs.
begin tap:

name: tapO

preconds: (1)

action: iftime server();
end

begin tap:
name: tapl
preconds: (( ((Swerve() == False) && (Altitude() == |
((Obs () == Fixl) && (Swerve() == True) && (Altitude() == Zero))))
action: climb to _altitude() ;

® O

end

begin tap:

name: tap2

preconds: (( ((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == True))))

action: avoid traffic();
end

begin tap:

name: tap3

preconds: (( ((Altitude() == Pos) && (Swerve() == True) && (Traffic()
== False))))

action: course correct();
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end
begin tap:
name: if time tapoO
preconds: ((Heading() == E) && (Location() == Fix2) && (Obs() ==
Fix2))
action: run new plan();
end
begin tap:
name: if time tapl
preconds: (( ((Obs() == Fix2) && (Heading() == S) && (Altitude() ==
Pos) && (Swerve() == False) && (Traffic() == False))))
action: turn left to E();
end
begin tap:
name: if time tap2
preconds: (( ((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == False) && (Obs() == Fixl))))
action: obs set fix2();
end
Plan2: Turn and Fly Downwind Pattern Leg to FIX3
HHAHAHHAHAHHAHAH S A H A S H A HAHHHH
# plan2.txt
#
# Automatically generated by CIRCA planner.
#
HHAEHAHHAH S HHAHAH SRS HH A H A HHH
# Part 1: Define number of TAPs (if-time TAPs).
begin tap count:
NTAPS = 4;
NIF_TIME TAPS=3;
end
# Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap wcets:
tap0 = 10000.000000;
if time tap0 = 9000.000000;
if time tapl = 10000.000000;
if time tap2 = 9000.000000;
tapl 10000.000000;
tap2 8000.000000;
tap3 = 8000.000000;

end

# Part 3: Define schedule (by guaranteed TAP name) .
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begin tap_ schedule:
{ tap2, tap0O, tap3, tap0O, tapl, tapO };
end

# Part 4: Define TAPs.
begin tap:

name: tap0

preconds: (1)

action: iftime server();
end

begin tap:

name: tapl

preconds: (! ( ((Location() ==
= True) && (Altitude() == Zero))
((Altitude() == Pos))))

action: climb to altitude() ;
end

Fix2) && (Heading() == N) && (Swerve()
||

begin tap:

name: tap2

preconds: (( ((Altitude() == Pos) && (Swerve() =
(Traffic() == True))))

action: avoid traffic();
end

False) &&

begin tap:

name: tap3

preconds: (( ((Altitude() == Pos) && (Swerve() =
== False))))

action: course correct();
end

True) && (Traffic()

begin tap:

name: if time tapO

preconds: ((Heading() == N) && (Location() == Fix3) && (Obs() ==
Fix3))

action: run new plan();
end

begin tap:
name: if time tapl
preconds: (( ((Obs() == Fix3) && (Heading() ==
Pos) && (Swerve() == False) && (Traffic() == Fals
action: turn left to N();
end

E) && (Altitude() ==
e))))

begin tap:

name: if time tap2

preconds: (( ((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == False) && (Obs() == Fix2))))

action: obs set fix3();
end
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Plan3: Turn and Fly Base Pattern Leg to FIX4

FHHAFFHAFHHATHASHHAFHHASHASHHATHAS

# plan3.txt
#

# Automatically generated by CIRCA planner.

#

FHHAFFHAFHHATHASFHAFHHASHASHHATHAH

# Part 1: Define number of TAPs

begin tap count:
NTAPS = 4;
NIF_TIME TAPS=3;
end

# Part 2: Define wcets for TAPs

begin tap wcets:
tap0 = 12000.000000;
if time tapO
if time tapl
if time tap2 = 9000.000000

tapl = 10000.000000;
tap2 = 8000.000000;
tap3 = 8000.000000;
end
# Part 3:

begin tap_ schedule:

I

12000.000000;
10000.000000;

(if-time TAPs).

{ tap2, tap0O, tap3, tap0O, tapl, tapO0 };

end

# Part 4: Define TAPs.
begin tap:

name: tap0

preconds: (1)

action: iftime server();
end

begin tap:
name: tapl

preconds: (( ((Swerve() == False)
) == True)

((Obs () == Fix3) && (Swerve
action: climb to altitude
end

begin tap:
name: tap2
preconds: (( ((Altitude()
(Traffic() == True))))
action: avoid traffic();

(
(

)i

== Pos)

&&

&&

(by tap name -- see below).

Define schedule (by guaranteed TAP name) .

(Altitude () == Zero))
&& (Altitude() == Zero
(Swerve () == False) &&



205

end
begin tap:

name: tap3

preconds: (( ((Altitude() == Pos) && (Swerve() == True) && (Traffic()
== False))))

action: course correct();
end
begin tap:

name: if time tapO

preconds: ((Heading() == W) && (Location() == Fix4) && (Obs() ==
Fix4))

action: run new plan();
end
begin tap:

name: if time tapl

preconds: (( ((Obs() == Fix4) && (Heading() == N) && (Altitude() ==
Pos) && (Swerve() == False) && (Traffic() == False))))

action: turn left to W();
end
begin tap:

name: if time tap2

preconds: (( ((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == False) && (Obs() == Fix3))))

action: obs set fix4();
end

Plan4: Turn to Final Approach and Initiate Autoland

HHAHAHHAHAHHAHAH S A H A S H A HAHHHH

# plan4.txt

#

# Automatically generated by CIRCA planner.
#

HHAEHAHHAH S HHAHAH SRS HH A H A HHH

# Part 1: Define number of TAPs (if-time TAPs).

begin tap count:

NTAPS = 5;
NIF_TIME TAPS=3;
end
# Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap wcets:
tap0 = 15000.000000;
if time tap0 = 15000.000000;
if time tapl = 15000.000000;
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if time tap2 = 9000.000000;
if time tap3 = 10000.000000;
tapl = 11000.000000;
tap2 = 9000.000000;

tap3 = 8000.000000;
tap4 = 14000.000000;
end

# Part 3: Define schedule (by guaranteed TAP name) .

begin tap_ schedule:
{ tapl, tap0O, tap4, tapO, tap2, tap3, tap0 };
end

# Part 4: Define TAPs.
begin tap:

name: tap0

preconds: (1)

action: iftime server();
end

begin tap:

name: tapl

preconds: (( ((Location() == Fix4) && (Swerve() == False) && (Obs()
= Fix0) && (Altitude() == Zero)) ||

((Obs () == Fix4) && (Altitude() == Zero))))

action: climb to altitude() ;

end

begin tap:

name: tap2

preconds: (( ((Nav_Freg() == Fly) && (Traffic() == False) &&
(Altitude () == Pos) && (Obs() == FixO0))))

action: Nav_Freq land() ;
end

begin tap:

name: tap3

preconds: (( ((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == True))))

action: avoid traffic();
end

begin tap:
name: tap4
preconds: (( ((Nav_Freqg() == Land) && (Obs() == Fix0) && (Altitude()
== Pos) && (Traffic() == False) && (Swerve() == True)) ||
((Obs () == Fix4) && (Altitude() == Pos) && (Traffic() ==
(Swerve () == True))))
action: course correct();
end

False) &&

begin tap:
name: if time tapO
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preconds: (( ((Gear() == Up)) ))
action: notify planner removed() ;
end
begin tap:
name: if time tapl
preconds: ((Heading() == S) && (Location() == Fix0) && (Obs() ==
Fix0) && (Nav_Freg() == Land))
action: run new plan();
end
begin tap:
name: if time tap2
preconds: (( ((Altitude() == Pos) && (Swerve() == False) &&
(Traffic() == False) && (Heading() == W))))
action: turn left to S();
end
begin tap:
name: if time tap3
preconds: (( ((Heading() == S) && (Obs() == Fix4) && (Traffic() ==
False) && (Altitude() == Pos) && (Swerve() == False))))
action: obs set fix0();
end

Plan5: "Gear_up_failure" Contingency Plan

HHAHAHHAHAHHAHAH S A H A S H A HAHHHH

# plan5.txt

#

# Automatically generated by CIRCA planner.
#

HHAEHAHHAH S HHAHAH SRS HH A H A HHH

# Part 1: Define number of TAPs (if-time TAPs).

begin tap count:

NTAPS = 5;
NIF_TIME TAPS=2;
end
# Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap wcets:
tap0 = 15000.000000;
if time tap0 = 15000.000000;
if time tapl = 10000.000000;
tapl 11000.000000;
tap2 = 9000.000000;
tap3 8000.000000;
tap4 14000.000000;
end
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# Part 3: Define schedule (by guaranteed TAP name) .
begin tap_ schedule:
{ tapl, tap0O, tap4, tapO, tap2, tap3, tap0 };

end

# Part 4: Define TAPs.

begin tap:
name: tap0
preconds: (1)
action: iftime server();
end
begin tap:
name: tapl
preconds: (( ((Swerve() == False) && (Altitude() == Zero))))
action: climb to altitude() ;
begin tap:
name: tap2
preconds: (( ((Location() == Fix4) && (Gear() == Up) && (Obs() ==
Fix0) && (Nav_Freqg() == Land) && (Traffic() == False))))
action: Nav Freq fly();
end
begin tap:
name: tap3
preconds: (( ((Altitude() == Pos) && (Swerve() == False) &&
(Traffic () == True))))
action: avoid traffic();
end
begin tap:
name: tap4
preconds: (( ((Nav_Freqg() == Land) && (Obs() == Fix0) && (Altitude()
== Pos) && (Traffic() == False) && (Swerve() == True)) ||
((Obs () == Fix4) && (Altitude() == Pos) && (Traffic() == False) &&
(Swerve () == True))))
action: course correct();
end
begin tap:
name: if time tapO
preconds: (( ((Gear() == Down)) ))
action: notify planner deadend() ;
end
begin tap:
name: if time tapl
preconds: (( ((Heading() == S) && (Obs() == Fix0) && (Traffic() ==
False) && (Altitude() == Pos) && (Swerve() == False))))
action: obs set fixl1l();

end



APPENDIX C
UCAYV CIRCA-II KNOWLEDGE BASE AND OUTPUT PLAN FILES

Researchers at the University of Michigan recently participated in a joint UCAV
demo with Honeywell Technology Center to illustrate the utility of a probabilistic planner
with real-time contingency plan retrieval. In this Appendix, we first include the user-
defined text knowledge base for the UCAV, followed by the nominal and contingency
[text] plan files produced by the CIRCA-II Planning Subsystem. These plans are both
downloaded and stored in the cache, with the nominal plan executing first. Then, when
infrared (IR) missile threats are encountered and detected as removed states in plan0, the
contingency plan to handle that situation is executed. Ultimately, these plans allow the
aircraft to successfully fly its pre-defined route safely even though it is being attacked by

a variety of radar and IR missiles.

Knowledge Base
FHEH e e e
ucav_with radar.kbase
CIRCA C Knowledge base file

Written: Ella Atkins

#
#
#
#
#
#
# Last Modified: May 16, 1999
#

#

HHAFHHAFHAFHHAFHAFHH AT H AT AR A A A A A A A A AR

FHAFHHAFHHAFHAF HHAFHAFHHAFH A RS H AR AT A AT A A A A A A
#
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# Section 1: 1Initial States
#
# Note: TT is a "special" feature that is always True.

#

begin initial state:
Path = Normal;
Radar threat = False;
IR _threat = False;
Decoy deployed = False;
Altitude = High; # UCAV plan only acts after automatic UCAV takeoff
Failure = False;
TT = True;
end

FHEHAHHAHAEHHHHAH AT AR H A S AR A A R A R A
#

# Section 2: Subgoal(s)

#

begin subgoal:

features: Path = Normal;
preconditions: TT = True;
end

HHEFRHHH TSR H TSR H S R S
#
# Section 3: Feature WCET's --
# Set to zero for this test so that TAP wcet = action wcet
#
begin feature wcets:

Path = 0.0;

Radar_threat = 0.0;

IR Threat = 0.0;

Decoy deployed = 0.0;

Altitude = 0.0;

Failure = 0.0;
TT = 0.0;
end

HHFHHHH TSR HH TSR H S R S R TS R H
#
# Section 4: Action Transitions

#

begin action:

name: blow chaff

preconds: ((f£ [Radar_threat] == True) && (f[Decoy deployed] ==
False))

postconds: f[Decoy deployed] = True;

wcet: 5

end



begin action:

name:
preconds:
postconds:
wcet:

end

begin action:

name:
preconds:

postconds:
wcet:
end

begin action:

name:
preconds:

postconds:
wcet:
end

begin action:

name:
preconds:

postconds:
wcet:
end
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deploy flare sequence
((£[IR_threat] True) &&
f [Decoy_deployed] = True;
5

False))

(f [Decoy deployed]

begin radar evasive

((£[Path] == Normal) && (f[Decoy deployed]
(f [Radar_ threat] == True))

f [Path] = Evasive;

5

True) &&

begin IR evasive

( (£ [Path] Normal) &&
(£ [IR_threat] == True))
f [Path] = Evasive;

5

== (f [Decoy deployed] == True) &&

resume_normal path
((£[Path] == Evasive) &&

! ((£ [Radar_threat] == True)
f [Path] = Normal;

5

(f[IR_threat] == True)))

FHHAFHHAFHHAFHAFHHATHAFHHAFHASHHAFH AR AT H A SRS A A A A R AR

#
#

# Section 5:

#

Temporal Transitions

begin temporal:

name: radar_threat tt

preconds: ((f[Radar threat] == False) && (f[Altitude] == High) &&
(f [Path] == Normal))

postconds: f[Radar threat] = True;

prob_ func: radar threat rate
end
begin temporal:

name: IR threat tt

preconds: ((£[IR threat] == False) && (f[Altitude] == Low) &&
(f [Path] == Normal))

postconds: f[IR threat] = True;

prob_ func:
end

IR threat rate
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begin temporal:

name : evade radar missile tt
preconds: ((£[Path] == Evasive) && (f[Decoy deployed] == True) &&
(f [Radar_ threat] == True))
postconds: f[Radar threat] = False; f[Decoy deployed] = False;
prob func: evade radar missile rate
end

begin temporal:

name : evade IR missile tt
preconds: ((£[Path] == Evasive) && (f[Decoy deployed] == True) &&
(£ [IR_threat] == True))
postconds: f[IR threat] = False; f[Decoy deployed] = False;
prob func: evade IR missile rate
end

begin temporal:

name: swoop_tt
preconds: ((f [Radar_threat] == False) &&
(£ [IR_threat] == False) && (f[Altitude] == High))
postconds: f[Altitude] = Low;
prob_func: swoop rate
end

begin temporal:

name : climb tt
preconds: ((f [Radar_threat] == False) &&
(£ [IR_threat] == False) && (f[Altitude] == Low))
postconds: f[Altitude] = High;
prob func: climb_rate
end

# Temporal Transitions to Failure (TTFs)

#

begin temporal:

name: radar kills you tt
preconds: ((f[Radar threat] == True))
postconds: f[Failure] = True;
prob func: radar kills you rate

end

begin temporal:

name: IR kills you tt
preconds: ((f£[IR _threat] == True))
postconds: f[Failure] = True;
prob_func: IR kills you rate

end

FHEHAHHAHAEHHHHAH S S A A R R e
#
# Section 6: Probability rate function definition

#
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#

begin prob func:

// evade radar missile prob func -- "reliable" tt with staircase prob
float evade radar missile rate(float time, float dummy)

{

float min time = 0.0, max time=2.0;

if (time < (min time-0.001))
return(0.0) ;

else if (tlme < (max_time - 1.001))
return(l.0 / (max_time - time));

else if (time < (max time - 0.001))
return(l.0) ;

else

return(0.0) ;

}

// evade IR missile prob func -- "reliable" tt with staircase prob
float evade IR missile rate(float time, float dummy)

{

float min time = 0.0, max time=2.0;

if (time < (min time-0.001))
return(0.0) ;

else if (tlme < (max_time - 1.001))
return(l.0 / (max_time - time));

else if (time < (max time - 0.001))
return(l.0) ;

else

return(0.0) ;

}

// radar threat prob func -- "event" transition (can occur at any time)
float radar threat rate(float time, float dummy)

{
}

return(0.01) ;

// IR threat prob func -- "event" transition (can occur at any time)
float IR threat rate(float time, float dummy)

{
}

return(0.01) ;

// swoop prob func -- "event" transition (can occur at any time)
float swoop_ rate(float time, float dummy)

{
}

return(0.0001) ;

// climb prob func -- staircase "reliable" temporal transition
float climb rate(float time, float dummy)
{

float max time=20.0; // max-delta time

if (time < (max _time - 1.001))
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return(l.0 / (max_time - time));
else if (time < (max time - 0.001))
return(l.0) ;
else

return(0.0) ;

}

// radar kills you prob func -- ttf
float radar kills you rate(float time, float dummy)
{
if (time < 45.0) // before min-delay
return(0.0) ;
else
return(0.1); // after min-delay

}

// IR kills you prob func -- ttf
float IR kills you rate(float time, float dummy)

{

if (time < 35.0) // before min-delay
return(0.0) ;
else
return(0.3); // after min-delay
}

end
# End of kbase

Nominal Plan

HHAHAHHAHAHHAHAH S A H A S H A HAHHHH
# plan0.txt

#
# Automatically generated by CIRCA-II planner.

#
FHHAFFHAFHHATHASFHAFHHASHASHHATHAH

# Part 1: Define number of TAPs (if-time TAPs).

begin tap count:

NTAPS = 3;
NIF_TIME TAPS=2
end
# Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap wcets:
tap0 = 30.000000;
if time tapO0 = 30.000000;
if time tapl = 5.000000;
tapl = 5.000000;
tap2 = 5.000000;
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end
# Part 3: Define schedule (by guaranteed TAP name) .

begin tap_ schedule:
{ tap0, tapl, tap0O, tap2 };
end

# Part 4: Define TAPs.
begin tap:

name: tap0

preconds: (1)

action: iftime server();
end

begin tap:

name: tapl

preconds: (( ((Decoy deployed() == False) && (Radar_ threat() ==
True))))

action: Dblow chaff();
end

begin tap:
name: tapz2
preconds: (( ((Path() == Normal) && (Decoy deployed() == True))))
action: begin radar evasive() ;

end

begin tap:
name: if time tapoO
preconds: (( ((IR_threat() == True))))
action: notify planner removed() ;

end

begin tap:
name: if time tapl
preconds: (( ((Radar_ threat() == False) && (Path() == Evasive))))
action: resume normal path();

end

Contingency Plan for IR Missile Threats

HHAHAHHAHAHHAHAH S HAH A S HAHAHHHH

# planl.txt

#

# Automatically generated by CIRCA-II planner.
#

HHAEHAHHAH A HHAHAH S H S H A H A AR H

# Part 1: Define number of TAPs (if-time TAPs).
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begin tap_ count:

NTAPS = 3;
NIF_TIME TAPS=1
end
# Part 2: Define wcets for TAPs (by tap name -- see below).

begin tap wcets:
tap0 = 30.000000;
if time tap0 = 30.000000;

tapl = 5.000000;
tap2 = 5.000000;
end

# Part 3: Define schedule (by guaranteed TAP name) .

begin tap schedule:
{ tap0, tapl, tap0O, tap2 };
end

# Part 4: Define TAPs.
begin tap:

name: tapO

preconds: (1)

action: iftime server();
end

begin tap:
name: tapl
preconds: (( ((Decoy deployed() == False) && (Path() == Normal))))
action: deploy flare sequence() ;

end

begin tap:
name: tap2
preconds: (( ((Decoy deployed() == True) && (Path() == Normal))))
action: Dbegin IR evasive();

end

begin tap:
name: if time tapO
preconds: (( ((IR_threat() == False))))
action: notify planner deadend() ;

end



APPENDIX D
REAL-TIME RESPONSE IN THE PLANNING SUBSYSTEM

The plan cache was incorporated into CIRCA-II to react to dangerous situations
as they are encountered. In this dissertation, we present a simple "binary" algorithm in
which all dangerous unhandled states are built into contingency plans, and dynamic
replanning occurs only for the safe unhandled states. Realistically, we cannot presume
hard real-time plan retrieval in all situations if we require cached responses for the
exhaustive set of dangerous unhandled states. Thus, in future work, we plan to delve into
algorithms for placing bounds on plan development time. Of course, regardless of the
algorithm we define, we must still face the time-quality tradeoffs described in [51]. Our
goal, however, is to design an algorithm that makes the most "intelligent" tradeoff
possible given the state of the world at the time dynamic planning is invoked.

In this appendix, we discuss a possible algorithm for a time-bounded planner in
CIRCA-II. Incorporating a time-bounded planner is only the first step to bounding real-
time control plan development time. We must also eventually bound execution of the
other algorithms within the CIRCA-II Planning Subsystem. The real-time community
has a collection of dynamic real-time scheduling algorithms we may incorporate [37], but
worst-case time for the planner-scheduler iterations required to develop a schedulable

plan is more difficult to predict, especially since such operations may require extensive
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planner backtracking and multiple modifications of the threshold P,cmoves below which
states are ignored.”

We discussed related work on real-time planning in Chapter II of this dissertation.
The two most general approaches the problem are anytime [15] and design-to-time [21]
philosophies, each of which may be applied to a variety of algorithms. We propose an
approach to limiting planner deliberation time that combines elements from these two
methods. As shown in Figure D-1, upon receipt of a state for which plans must be
developed online, the planner first computes available deliberation time. This quantity is
used in a design-to-time fashion to set up CIRCA-II planning parameters. Finally, the
planner executes using a best-first search until deliberation time (#4.;:) expires. Each of

these procedures is described in more detail below.

initial state Compute available Design-to-time: t,, Anytime: planned
——— | ddiberationtime ‘—> Set planner parameters —p—> Plan using best-first oS
(tyy) (p(ty,)) searchuntil  t=t, deadlines

Figure D-1. Proposed Algorithm for Limiting Planner Deliberation Time.

To compute the planner deliberation time #4.5, we plan to use the planner’s initial
"unhandled" state (fed back from the Plan Execution Subsystem) to quickly compute an
initial estimate of a planning time limit, then potentially modify this estimate based on
environment changes during planning. Since CIRCA’s main goal is always maintaining
system safety, the limiting factor for deliberation time is how long the system will be

guaranteed to remain safe executing the currently executing plan. To estimate the time to

7 One possible method for bounding planning subsystem execution is to redesign the
overall algorithm such that the scheduler is called each time a new guaranteed action is
selected. In this manner, any schedulability violation will be immediately identified and
acted on before the planner completes its state expansion process. We have not explored
this avenue sufficiently to provide more details in this dissertation.
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failure from this initial state, CIRCA may perform a lookahead state-space projection
from this state, using all #¢s in the knowledge base as well as the currently executing plan
to specify action choices and timings. The nearest TTF identified with probability above
Piresn corresponds with the deliberation time limit.”!

Next, we wish to adjust planner parameters so that it expected time of completion
will be just under 4. We have no obvious parameters to control prior to planning
except for the probability threshold values Pyesn and Premovea (S€€ definitions in Chapter
IV). We are already modifying Pjemoves dynamically to adjust probabilistic failure-
avoidance guarantees as required for plan scheduling. Additionally, P emoves does not
affect plan development at each step, but instead affects the number of states the planner
must expand during its best-first search. Thus, we propose adjusting Py.s» in accordance
with design-to-time limitations, although we have not yet computed even an approximate
algebraic relationship between Pyyess and faep.

In CIRCA-II, state expansion occurs in decreasing-probability order until all
states remaining to expand have probability less than Pjpoveq. In the original version of
CIRCA, search proceeded depth-first, so there was no guarantee that the resulting goal
path was any more desirable than other possible goal paths. Research described in this
dissertation discusses the basic conversion to best-first search based solely on state
probability estimates. However, in this work, “best” is based completely on state

probability, with state expansion occurring in decreasing order of state probability.

"' To compute the time to the nearest #f, we must store the cumulative minimum delay
(i.e., sum of all transition minA values given the currently-executing plan and its action
deadlines) leading down the path to this #zf.

72 The mapping between Py.s, and planning time is not obvious and needs further study.
This choice is proposed because augmenting Py, makes failure states more likely, thus
if time permits Py,.s» should be minimized. However, since each "failure" state is
absorbing, an increased chance in reaching failure means new non-failure states with
probability above Piemoved.
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The planner may combine its knowledge about probabilities, temporal delays, and
proximity to failure to achieve a better measure than probabilities alone to control the
best-first search. State expansion may be ordered by decreasing utility u(sy), as shown in
Equation (D-1), where P(s;) is the probability of visiting state sy (see Chapter IV), #,in(Sk)
is the minimum time before the system can reach state sx, Prinre(S,1) 1s the probability of
any failure state occurring in # (or fewer) time steps from state s;. The constants a, b, c,
and n (if constant) are as yet undetermined. By expanding states in this order, we will
plan for the most “important” states, not just the most likely states, achieving a balance
between state probability, system safety (i.e., prioritizing expansion to handle states that
can reach failure), and the time horizon considered by the planner (i.e., near-term states

are handled; far-term states will be handled by subsequent plans).

u (sg) =a * P(sy) + (b/ twin(sK) + ¢ * Priiture(St, 1) (D-1)



APPENDIX E
TACKLING THE MULTIPLE CYCLE, MULTIPLE DTTF CHALLENGE

Figure E-1 depicts a state-space example that is not properly handled by the
probabilistic planner within CIRCA-II. This figure represents a valid plan because all
temporal transitions have sufficient delays to be preempted with guaranteed actions.
However, this plan will not be found because of the cycle leading from s;3back to s;. In
this appendix, we first describe this problem and then outline a possible solution

approach for this class of problems within both the CIRCA and CIRCA-II planners.

lose-altitude

. Features and Values:
INITIAL: Alt = Low

Alt =High Altitude (Alt) =
_______ Traf = No hit-ground {High, Low}
climb Traffic (Traf) =
fmﬁpi {Yes,No }

' avoid-

s2 : Ubstacle | obstacle Fallure
1
Transition key:
Alt = High lose-altitude Alt=Low % Y
Traf = Yes Traf = Yes hit-obstacle = temporal
--=p action

" hit-obstacle

Figure E-1: State-space Example with Multiple Cycles and Dependent ##/s.

For the example shown in Figure E-1, CIRCA-II begins by selecting no action for
state so. Then, when first expanding s;, CIRCA-II selects climb to avoid hit-ground and
can guarantee it will preempt Ait-ground since it is not yet a dependent temporal
transition. However, upon expanding s3;, CIRCA-II must select a preemptive action that
forms a cycle back to s;. CIRCA-II then re-expands s; and determines hit-ground is
dependent and may occur more quickly than previously thought (since the initial delay

between transitioning to the low altitude and crashing may have evaporated during the s;-
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s3- s; cycle traversal). For this example, after one cycle traversal, the system still has
time to execute c/imb and return to safe state s). However, if traffic occurs before climb
completes, the system will again be thrown into s; and the remaining safety margin
before hit-ground can occur disappears before the s3->s; transition again completes, thus
the planner fails. We have previously said there is a non-zero delay between the time a
transition is first active and when it could occur. From the sy-s; path, this delay may have
evaporated since traffic is also active in so. However, along the cyclic path returning
from s3, this delay is again available since traffic is not active in s3, thus the guaranteed
action c/imb will then preempt both hit-ground and traffic and return safely to state s.

This problem surfaces because both CIRCA and CIRCA-II are combining the
effects of all parent paths in order to minimize the state-space size. CIRCA-II
incorporates all parent path effects using the weighted-average algorithms described in
Chapter IV for both state probability and ##f/ preemption timing computations while
CIRCA presumes worst-case properties (e.g., smallest 7/ minimum delays; maximum
preemptive action delays) every state transition, including dfts.

To solve state-spaces similar to that in Figure E-1, CIRCA and CIRCA-II must
distinguish between the effects of entering state s; from parent s, versus s; because these
two paths result in different temporal constraints that ultimately give the appearance that
preempting hit-ground from s;is impossible. When CIRCA-II identifies such a situation
in which individual parent states impose more restrictive constraints fogether than would
be imposed due to each individual parent, we propose that the planner mark this state as a
candidate for splitting into two states with a special feature used to identify the parent(s)

for that state. Then, if timing constraints appear to be impossible to satisfy,” the state

7 Constraints will be impossible to satisfy immediately for this example, but could
require relaxation subsequently if scheduling difficulties arise.



223

would actually be split, with each of the split states requiring only preemption of its
parent, not the conglomerate set of parents into that original state.

For this example, splitting s; will allow the planner to accurately determine that it
can guarantee #ff preemption using the one action that leads from s, back to sg. However,
in general, the two states resulting from a split may require different actions. This is not
a problem for state-expansion because the parent reference feature value specified for a
split state acts as any other feature. However, during TAP development and plan
execution, the only way to detect the value for the parent feature (and thereby execute the
appropriate response) is to have sensed and stored the previous state, a function that is not
straightforward to implement given the current TAP plan structure. We have not yet
given careful thought to the tradeoffs involved or the mechanisms required for storing

any previous state history within the CIRCA-II Plan Execution Subsystem.
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