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Abstract

Server consolidation has become an integral part of IT
planning to reduce cost and improve efficiency in to-
day’s enterprise data centers. The advent of virtualiza-
tion allows consolidation of multiple applications into
virtual containers hosted on a single or multiple physical
servers. However, this poses new challenges, including
choosing the right virtualization technology and consol-
idation configuration for a particular set of applications.
In this paper, we evaluate two representative virtualiza-
tion technologies, Xen and OpenVZ, in various configu-
rations. We consolidate one or more multi-tiered systems
onto one or two nodes and drive the system with an auc-
tion workload called RUBiS. We compare both technolo-
gies with a base system in terms of application perfor-
mance, resource consumption, scalability, low-level sys-
tem metrics like cache misses and virtualization-specific
metrics like Domain-0 consumption in Xen. Our exper-
iments indicate that the average response time can in-
crease by over 400% in Xen and only a modest 100%
in OpenVZ as the number of application instances grows
from one to four. This large discrepancy is caused by the
higher virtualization overhead in Xen, which is likely due
to higher L2 cache misses and misses per instruction. A
similar trend is observed in CPU consumptions of virtual
containers. We present an overhead analysis with kernel-
symbol-specific information generated by Oprofile.

1 Introduction

There has been a rapid growth in servers within data
centers driven by growth of enterprises since the late
nineties. The servers are commonly used for running
business-critical applications such as enterprise resource
planning, database, customer relationship management,
and e-commerce applications. Because these servers and
applications involve high labor cost in maintenance, up-
grades, and operation, there is a significant interest in

reducing the number of servers necessary for the appli-
cations. This strategy is supported by the fact that many
servers in enterprise data centers are under-utilized most
of the time, with a typical average utilization below 30%.
On the other hand, some servers in a data center may
also become overloaded under peak demands, resulting
in lower application throughput and longer latency.

Server consolidation has become a common practice
in enterprise data centers because of the need to cut
cost and increase return on IT investment. Many en-
terprise applications that traditionally ran on dedicated
servers are consolidated onto a smaller and shared pool
of servers. Although server consolidation offers great
potential to increase resource utilization and improve ap-
plication performance, it may also introduce new com-
plexity in managing the consolidated servers. This has
given rise to a re-surging interest in virtualization tech-
nology. There are two main types of virtualization tech-
nologies today —hypervisor-based technologyinclud-
ing VMware [1], Microsoft Virtual Server [2], and Xen
[3]; and operating system (OS) level virtualizationin-
cluding OpenVZ [4], Linux VServer [5], and Solaris
Zones [6]. These technologies allow a single physi-
cal server to be partitioned into multiple isolated virtual
containers for running multiple applications at the same
time. This enables easier centralized server administra-
tion and higher operational efficiency.

However, capacity management for the virtual con-
tainers is not a trivial task for system administrators. One
reason is that enterprise applications often have resource
demands that vary over time and may shift from one tier
to another in a multi-tiered system. Figures 1(a) and 1(b)
show the CPU consumptions of two servers in an enter-
prise data center for a week. Both have a high peak-to-
mean ratio in their resource usage, and their peaks are
not synchronized. This means if the two servers were
to be consolidated into two virtual containers on a shared
server, the resources may be dynamically allocated to the
two containers such that both of the hosted applications
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Figure 1: An example of data center server consumptions

could meet their quality-of-service (QoS) goals while
utilizing server resources more efficiently. An adaptive
CPU resource controller was described in [7] to achieve
this goal. Similar algorithms were developed for dy-
namic memory management in VMware ESX server [8].

There is another important issue that is worth con-
sidering in terms of capacity management. Figure 1(c)
shows the total CPU consumption from the two nodes.
As we can see, the peak consumption is at about 3.8
CPUs. However, it does not necessarily imply that a to-
tal of 3.8 CPUs are sufficient to run the two virtual con-
tainers after consolidation due to potential virtualization
overhead. Such overhead may vary from one virtualiza-
tion technology to another. In general, hypervisor-based
virtualization incurs higher performance overhead than
OS-level virtualization does, with the benefit of provid-
ing better isolation between the containers. To the best
of our knowledge, there is little published work quanti-
fying how big this difference is between various virtu-
alization technologies, especially for multi-tiered appli-
cations. In this paper, we focus on two representative
virtualization technologies, Xen from hypervisor-based
virtualization, and OpenVZ from OS-level virtualization.
Both are open-source, widely available, and based on the
Linux operating system. We use RUBiS [9] as an exam-
ple of a multi-tiered application and evaluate its perfor-
mance in the context of server consolidation using these
two virtualization technologies.

In particular, we present the results of our experiments
that answer the following questions, and compare the an-
swers to each question between OpenVZ and Xen.

• How is application-level performance, including

throughput and response time, impacted compared
to its performance on a base Linux system?

• As workload increases, how does application-level
performance scale up and what is the impact on
server resource consumption?

• How is application-level performance affected
when multiple tiers of each application are placed
on virtualized servers in different ways?

• As the number of multi-tiered applications in-
creases, how do application-level performance and
resource consumption scale?

• In each scenario, what are the values of some criti-
cal underlying system metrics and what do they tell
us about plausible causes of the observed virtualiza-
tion overhead?

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 introduces
the architecture of our testbed and the various tools used.
The details of the experiments are described in Section 4,
and the results along with our analysis are presented in
Section 5 and 6. Finally, we summarize our key findings
and discuss future work in Section 7.

2 Related Work

A performance evaluation of Xen was provided in the
first SOSP paper on Xen [3] that measured its per-
formance using SPEC CPU2000, OSDB, dbench and
SPECWeb benchmarks. The performance was compared
to VMWare, Base Linux and User-mode Linux. The re-
sults have been re-produced by a separate group of re-
searchers [10]. In this paper, we extend this evaluation to
include OpenVZ as another virtualization platform, and
test both Xen and OpenVZ under different scenarios in-
cluding multiple VMs and multi-tiered systems. We also
take a deeper look into some of these scenarios using
OProfile [11] to provide some insight into the possible
causes of the performance overhead observed.

Menonet al. [12] conducted a similar performance
evaluation of the Xen environment and found various
overheads in the networking stack. The work provides
an invaluable performance analysis tool Xenoprof that
allows detailed analysis of a Xen system. The authors
identified the specific kernel subsystems that were caus-
ing the overheads. We perform a similar analysis at
a macro level and apply it to different configurations
specifically in the context of server consolidation. We
also investigate the differences between OpenVZ and
Xen specifically related to performance overheads.
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Menonet al. [13] use the information gathered in the
above work and investigate causes of the network over-
head in Xen. They propose three techniques for optimiz-
ing network virtualization in Xen. We believe that our
work can help develop similar optimizations that help
server consolidation in both OpenVZ and Xen.

Solteszet al. [14] have developed Linux VServer,
which is another implementation of container-based vir-
tualization technology on Linux. They have done a com-
parison study between VServer and Xen in terms of per-
formance and isolation capabilities. In this paper, we
conduct performance evaluation comparing OpenVZ and
Xen when used for consolidating multi-tiered applica-
tions, and provide detailed analysis of possible over-
heads.

Guptaet al. [15] have studied the performance isola-
tion provided by Xen. In their work, they develop a set of
primitives to address the problem of proper accounting
of work done in device drivers by a particular domain.
Similar to our work, they use XenMon [16] to detect per-
formance anomalies. Our work is orthogonal to theirs by
providing insight into using Xen vs. OpenVZ and differ-
ent consolidation techniques.

To the best of our knowledge, the virtualization tech-
nologies have not been evaluated in the context of server
consolidation. Server consolidation using virtual con-
tainers brings new challenges and, we comprehensively
evaluate two representative virtualization technologiesin
a number of different server consolidation scenarios.

3 Testbed Architecture

Figure 2(a) shows the architecture of our testbed. We run
experiments in three systems with identical setup. We
compare the performance of Xen- and OpenVZ-based
systems with that of a vanilla Linux system (referred to
asbase systemhere after). In a virtualized configuration,
each physical node may host one or more virtual con-
tainers supported by Xen or OpenVZ as shown in Fig-
ure 2(b). Because we are interested in multi-tiered ap-
plications, two separate nodes may be used for the Web
and the database tiers. Each node is equipped with a
sensor collecting various performance metrics including
CPU consumption, memory consumption and other per-
formance events collected by Oprofile [11]. This data is
collected on a separate machine and analyzed later.

We use HP Proliant DL385 G1 for all our servers and
client machines. Every server has two 2.6 GHz proces-
sors, each with 1MB of L2 cache, 8 GB of RAM, and
two Gigabit network interfaces.

3.1 System configurations

We conduct our experiments on three different systems
as explained below. All systems are carefully set up to be
as similar as possible with the same amount of resources
(memory and CPU) allocated to a particular virtual con-
tainer.

3.1.1 Base system

We use a plain vanilla 2.6 Linux kernel that comes with
the Fedora Core 5 standard distribution as our base sys-
tem. Standard packages available from Fedora repository
are used to set up various applications.

3.1.2 Xen system

Xen is aparavirtualization[17] technology that allows
multiple guest operating systems to be run in virtual con-
tainers (calleddomains). The Xen hypervisor provides a
thin software virtualization layer between the guest OS
and the underlying hardware. Each guest OS is a mod-
ified version of the base Linux (XenLinux) because the
hardware abstraction presented by the hypervisor is sim-
ilar but not identical to the raw hardware. The hyper-
visor contains a CPU scheduler that implements vari-
ous scheduling policies including proportional fair-share,
along with other modules such as the memory manage-
ment unit.

We use the Xen 3.0.3 unstable branch [18] for our ex-
periments as it provides a credit-based CPU scheduler (in
short, credit scheduler), which, in our experiments, pro-
vides better performance than the earlier SEDF sched-
uler. The credit scheduler allows each domain to be as-
signed acapand aweight. A non-zero cap implements
a non-work-conserving policy for the CPU by specifying
the maximum share of CPU time a domain can consume,
even if there exist idle CPU cycles. When the cap is
zero, the scheduler switches to a work-conserving mode,
where weights for multiple domains determine their rel-
ative shares of CPU time when the CPU is under con-
tention. At the same time, a domain can use extra CPU
time beyond its share if other domains do not need it.
In all our experiments, we use thenon-cappedmode of
the credit scheduler, and the system is compiled using
the uni-processor architecture. In this case, Dom0 and
all the guest domains share the full capacity of a single
processor.

3.1.3 OpenVZ system

OpenVZ [4] is a Linux-based OS-level server virtualiza-
tion technology. It allows creation of secure, isolated vir-
tual environments (VEs) on a single node enabling server
consolidation. Each VE performs and behaves exactly
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(a) Testbed setup (b) A virtualized server

Figure 2: System architecture

like a stand-alone server. They can be rebooted indepen-
dently and a different distribution with separate root di-
rectory can be set up. One distinction between OpenVZ
and Xen is that the former uses a single kernel shared by
all VEs. Therefore, it does not provide the same level of
fault isolation as in the case of Xen.

In our experiments, we use the uni-processor version
of OpenVZ stable 2.6 kernel that provides a FSS sched-
uler, which also allows the CPU share of each VE to be
either capped or not capped. Similar to the Xen system,
the non-capped option is used in the OpenVZ system.

In the remainder of this paper, we use the termvirtual
containerto refer to either a domain in Xen or a VE in
OpenVZ.

3.2 Instrumentation

To measure the CPU consumption accurately, we wrote
scripts that use existing tools to gather data. In the base
system, the output from commandtop -b is gathered
and then analyzed later. Similarly,xentop -b is used
in the Xen case, which provides information on the CPU
consumptions of individual domains. For OpenVZ, there
is no existing tool to directly measure the CPU consump-
tion by a particular container. We use the data provided
from /proc/vz/vestat to measure the amount of
CPU time spent by a particular VE.

3.2.1 Oprofile

Oprofile [11] is a tool for measuring certain hardware
events using hardware performance counters. For exam-
ple, one can measure the number of cache misses that
happen in a particular application. The profiles generated
by Oprofile are very detailed and can provide a wealth of
information. Menonet al. [12] have modified Oprofile to
support Xen. The resulting tool,Xenoprof, allows one to
profile multiple domains in a Xen system. For each set of
experiments, we analyze the data generated by Oprofile
and provide our insights on the performance overheads.

We concentrate on two aspects when analyzing the
data generated by Oprofile:

• Comparing hardware performance counters for var-
ious configurations;

• Understanding differences in overheads experi-
enced within specific kernels. We want to iden-
tify particular kernel sub-systems where most of the
overhead occurs and quantify it.

We monitor three hardware counters for our analysis:

• CPU_CLK_UNHALT: The number of cycles outside
of halt state. It provides a rough estimate of the CPU
time used by a particular binary or a symbol.

• RETIRED_INSTRUCTIONS: The number of in-
structions that are retired. It is a rough estimate of
the number of instructions executed by a binary or
a symbol.

• L2_CACHE_MISS: The number of L2 cache
misses. It measures the number of times the mem-
ory references in an instruction miss the L2 cache
and access main memory.

We thoroughly analyze differences in these counter
values in various configurations, and infer sources of
overhead in respective virtualization technologies.

4 Design of Experiments

The experiments are designed with the goal of quantita-
tively evaluating the impact of virtualization on server
consolidation. Specifically, we are not interested in
performing micro benchmarks that compare the perfor-
mance of system calls, page miss penalties, etc. Instead,
we focus more on how application-level performance, in-
cluding throughput and response time, are affected when
using different virtualization technologies as well as dif-
ferent configurations for consolidation.
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Today’s enterprise applications typically employ a
multi-tiered architecture, where the Web and the applica-
tion tiers serve static files and implement business logic,
and the database (DB) tier executes data queries and in-
teracts with the storage devices. During server consolida-
tion, the various tiers of an application that are tradition-
ally hosted on dedicated servers are moved onto shared
servers. Moreover, when virtualization is involved, each
of these tiers is hosted in a virtual container, which can
have performance implications for the application.

We have chosen RUBiS [9], an online auction site
benchmark, as an example of a multi-tiered application.
We use a version of the application that has a two-tier
structure: the Web tier contains an Apache Web server
with PHP, and the DB tier uses a MySQL database server.
RUBiS clients connect to the Web tier and perform var-
ious operations simulating auctions. Each client starts a
session in which the client browses through items, looks
at prices, and buys or sells items. In each session, the
client waits for a request to complete before sending out
the next request. If the request fails due to timed-outs, the
session is aborted and a new session is started. This gives
rise to a closed-loop behavior where the clients wait for
the server when it is overloaded. Although RUBiS pro-
vides different workload mixes, we use thebrowsing mix
in our experiments, which introduces higher load on the
Web tier than on the DB tier.

We consider running RUBiS on consolidated servers.
In addition to the comparison between OpenVZ and Xen,
we also need to understand how application performance
is impacted by different placement of application tiers on
the consolidated servers. We evaluate the following two
configurations for consolidation.

• Single-node: Both the Web and the DB tiers of
a single RUBiS application are hosted on a single
physical node (Figure 3(a)).

• Two-node: The Web and the DB tiers of a single
RUBiS application are distributed on two separate
nodes (Figure 3(b)).

There are additional reasons why one configuration
may be chosen over the other in a practical scenario. For

example, the single-node configuration may be chosen
since it reduces network traffic by hosting multiple tiers
of the same application on a single server, whereas the
two-node option may be preferable in a case where it can
reduce software licensing cost. In this work, we only
focus on application performance differences in the two
configurations and how performance scales as the work-
load increases.

In addition, we are also interested in scalability of
the virtualized systems when the number of applications
hosted increases in the two-node case. Each node may
host multiples of the Web or the DB tier as shown in Fig-
ures 3(c) and 3(d). In our experiments, we increase the
number of RUBiS instances from one to two and then to
four, and compare OpenVZ with Xen in application-level
performance and system resource consumption. For each
scenario, we provide a detailed analysis of the corre-
sponding Oprofile statistics and point to plausible causes
for the observed virtualization overheads.

5 Experimental Results

This section reports the results of our experimental eval-
uation using the RUBiS benchmark. In particular, we
compare two different configuration options,single-node
vs. two-node, for placing the two tiers of a single RU-
BiS application on physical servers. All experiments
are done on the base, OpenVZ, and Xen systems, and
a three-way comparison of the results is presented.

5.1 Single-node

In this configuration, both the Web and the DB tiers are
hosted on a single node, as shown in Figure 3(a). In
both the Xen and the OpenVZ systems, the two tiers run
in two separate virtual containers. To evaluate the per-
formance of each system, we scale up the workload by
increasing the number of concurrent threads in the RU-
BiS client from 500 to 800. Each workload is continu-
ously run for 15 minutes, and both application-level and
system-level metrics are collected.
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Figure 4: Single-node - application performance

5.1.1 Performance evaluation

Figures 4(a) and 4(b) show the throughput and aver-
age response time as a function of workload for the
base, Xen, and OpenVZ systems. In all three cases
the throughput increases linearly as the the number of
threads increases, and there is little difference between
the three systems. However, we do see a marked dif-
ference in the response time between the Xen system
and the other two systems, indicating higher performance
overhead in Xen compared to OpenVZ. As the workload
increases from 500 to 800 threads, the response time goes
up only slightly in the base and OpenVZ cases, whereas
in the Xen system, it grows from 18 ms up to 130 ms,
an increase of over 600%. For 800 threads, the response
time for Xen is almost 4 times that for OpenVZ. There-
fore, in the single-node case, the observed performance
overhead is minimum in OpenVZ but quite significant in
Xen. Moreover, the overhead in Xen grows quickly as
the workload increases. As a result, the Xen system is
less scalable with the workload than OpenVZ or a non-
virtualized system.

Figure 5 shows the average CPU consumptions of the
Web and the DB tiers as a function of workload in the
three systems. For both tiers in all the three cases, the
CPU consumption goes up linearly with the number of
threads in the workload. The database consumption re-
mains very low at about 1-4% of total CPU capacity, due
to the Web-intensive nature of the browsing mix work-
load. A bigger difference can be seen in the Web tier
consumption from the three systems. For each work-
load, the Web tier consumption in Xen is roughly twice
the consumption experienced by the base system, while
the OpenVZ consumption stays very close to the base
case. As the workload increases, the slope of increase is
higher in the case of Xen compared to the other two sys-
tems. This indicates higher CPU overhead in Xen than
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Figure 5: Single-node - average CPU consumptions

in OpenVZ, and should be related to the higher response
times we observe from the application.

5.1.2 Oprofile analysis

Figures 6 shows the aggregate values of the selected
hardware counters for the three systems when running
800 threads. For OpenVZ, each of the counter values
is for the whole system including the shared kernel and
all the virtual containers. For Xen, Oprofile provides us
with a counter value for each of the domains, including
Dom0. The DomU value in the figure is the sum of the
values from the Web and DB domains. All counter val-
ues are normalized with respect to the base case. While
all the counter values for OpenVZ are less than twice the
corresponding values for the base case, the total number
of L2 cache misses in Xen (Dom0 + DomU) is more than
eleven times the base number. We therefore speculate
that L2 cache misses are the main cause of the observed
response time differences between Xen and OpenVZ.
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Symbol Name OpenVZ Base
do_anonymous_page 31.84 25.24
__copy_to_user_ll 11.77 9.67
__copy_from_user_ll 7.23 0.73

Table 1: Base vs OpenVZ - % of L2 cache misses

This is consistent with the higher CPU overhead in Xen
from Figure 5, because more L2 cache misses causes
more memory access overhead and puts higher pressure
on the processor.

Table 1 shows the percentage of L2 cache misses for
OpenVZ and the base system for high overhead ker-
nel functions. The functiondo_anonymous_page
is used to allocate pages for a particular application by
the kernel. The functions__copy_to_user_ll and
__copy_from_user_ll copy data back and forth
from the user-mode to kernel-mode pages. The data in-
dicates that cache misses in OpenVZ result mainly from
page re-mapping due to switching between virtual con-
tainers. The increase in the number of L2 cache misses
causes the instructions to stall and reduces the total num-
ber of instructions executed.

Because Xen uses a modified kernel, it is not possible
to directly compare calls within it with the numbers ob-
tained from the base system and OpenVZ. Table 2 shows
the highest cache miss functions identified using Oprofile
for the Web domain in the Xen system.

The function hypervisor_callback is called

Symbol name L2 cache misses (%)
hypervisor_callback 32.00
evtchn_do_upcall 44.54
__copy_to_user_ll 3.57
__do_IRQ 2.45

Table 2: Xen Web tier - % of L2 cache misses

Symbol name Number of ret instr(%)
hypervisor_callback 39.61
evtchn_do_upcall 7.53
__do_IRQ 10.9l

Table 3: Xen kernel - % of retired instructions

Binary OpenVZ Base
libphp5.so 0.85 0.63
vmlinux 3.13 2.85
httpd 4.56 2.40
mysqld 4.88 2.30

Table 4: Base vs. OpenVZ - % cache misses/instruction
for binaries

when an event occurs that needs hypervisor attention.
These events include various activities including cache
misses, page faults, and interrupt handling that usually
happen in privileged mode in a normal kernel. Af-
ter some preliminary processing of stack frames, the
functionevtchn_do_upcall is called to process the
event and to set up the domain to continue normally.
These functions are the main source of overhead in Xen
and reflect the cost of hypervisor-based virtualization.

Looking at the number of retired instructions for the
Xen kernel (Table 3) for different functions, we see that
in addition to overheads in hypervisor callback and up-
call event handling, 10% of the instructions are executed
to handle interrupts, which also is a major source of over-
head. The higher percentage is due to increase in the in-
terrupts caused by switching between the two domains.

We also looked at the hardware counters for a par-
ticular binary (like httpd, mysqld). As we com-
pare OpenVZ to the base system, we do not see a clear
difference between the two in either the percentage of
cache misses or the percentage of instructions executed
for each binary. However, there is larger difference in
the percentage of cache misses per instruction. Table
4 shows this ratio for particular binaries that were run-
ning in OpenVZ and the base system. The dynamic
library libphp5.so is responsible for executing the
PHP scripts on the apache side. We can see that the
percentage of cache misses per instruction is higher in
OpenVZ for all four binaries. This indicates some degree
of overhead in OpenVZ, which contributes to small in-
crease in response times (Figure 4(b)) and slightly higher
CPU consumption (Figure 5) compared to the base case.
Unfortunately, we cannot directly compare the numbers
obtained from particular domains in Xen to the numbers
in the Table 4 as they do not include the associated work
done in Dom0.
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5.2 Two-node

In this configuration, we run the Web and the DB tiers
of a single RUBiS application on two different nodes, as
shown in Figure 3(b). The objective of the experiment is
to compare this way of hosting a multi-tiered application
to the single-node case. Note that in the case of Xen and
OpenVZ, there is only one container hosting each of the
application components (Web tier or DB tier).

5.2.1 Performance evaluation

Figure 7 shows the average response time as a function
of workload for the three systems. The throughput graph
is not shown because it is similar to the single-node case,
where the throughput goes up linearly with the workload
and there is little difference between the virtualized sys-
tems and the base system. We see a small overhead in
OpenVZ compared to the base case with the maximum
difference in the mean response time below 5 ms. In con-
trast, as the worklaod increases from 500 to 800 threads,
the response time from the Xen system goes from 13 ms
to 28 ms with an increase of 115%. However, this in-
crease in response time is significantly lower than that
experienced by using Xen in the single-node case (28 ms
vs. 130 ms for single-node with 800 threads).

Figures 8 shows the average CPU consumption as
a function of workload for both the Web and the DB
tiers. The trend here is similar to the single-node case,
where the DB tier consumption remains low and the Web
tier consumption goes up linearly as the the number of
threads increases. The slope of increase in the Web tier
consumption is higher for Xen compared to OpenVZ and
the base system. More specifically, 100 more concurrent
threads consume roughly 3% more CPU capacity for Xen
and only 1% more for the other two systems.

Figure 9 shows the Dom0 CPU consumptions for both
the single-node and two-node configurations for Xen. In
the two-node case, we show the sum of the Dom0 con-
sumptions from both nodes. In both cases, the Dom0
CPU consumption remains low (below 4% for all the
workloads tested), and it goes up linearly as the work-
load increases. If the fixed CPU overhead of running
Dom0 were high, we would have expected the combined
consumption in the two-node case to be roughly twice
that from the single-node case, since the former has two
Dom0’s. But the figure suggests it is not the case. The
difference between the two cases is within 0.5% of to-
tal CPU capacity for all the worklaods. This implies that
Dom0 CPU consumption is mostly workload dependent,
and there is very little fixed cost.
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Figure 10: Two-node - Oprofile analysis
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Figure 11: Single-node vs. two-node - Oprofile analysis

Symbol Name Single Two
do_anonymous_page 25.25 24.33
__copy_to_user_ll 9.68 12.53
__copy_from_user_ll 0.73 1.11

Table 5: Single-node vs. two-node - base system % of
L2 cache misses

Symbol Name Single Two
do_anonymous_page 31.84 33.10
__copy_to_user_ll 11.77 15.03
__copy_from_user_ll 7.23 7.18

Table 6: Single-node vs. two-node - OpenVZ % of L2
cache misses

Symbol Name Single Two
hypervisor_callback 32.00 43.00
evtchn_do_upcall 44.53 36.31
__do_IRQ 2.50 2.73

Table 7: Single-node vs. two-node - Xen Web tier % of
L2 cache misses

Symbol Name Single Two
hypervisor_callback 6.10 4.15
evtchn_do_upcall 44.21 42.42
__do_IRQ 1.73 1.21

Table 8: Single-node vs. two-node - Xen Web tier % of
L2 cache misses/instruction

5.2.2 Oprofile analysis

We now analyze the sources of overhead in the two-node
case using Oprofile. Figures 10(a) and 10(b) show the
values of the hardware counters for the two nodes host-
ing the Web tier and the DB tier, respectively, for a work-
load of 800 threads. For both tiers, we see that the total
number of L2 cache misses in Xen (Dom0 + DomU) is
between five to ten times those from the base case, and
the OpenVZ number is only twice that of the base case.

Figure 11 provides a comparison of these values be-
tween the single-node and two-node cases. Each counter
value shown for the two-node case is the sum of the two
values from the two nodes. All values are normalized
with respect to the base system in the two-node setup.
We observe that relative L2 cache misses are higher for
the single-node case as compared to the two-node case
for both OpenVZ and Xen. For example, for the total
number of L2 cahce misses, the ratio between the Xen
number (Dom0 + Domu) and the base number is 11 in
the single-node case vs. 7.5 in the two-node case. This
is expected due to extra overhead caused by running two
virtual containers on the same node.

Table 5 shows the number of L2 cache misses in the
base kernel for both the single-node and two-node con-
figurations. For the two-node case, we add the aggregate
counters for each kernel function in both nodes and nor-
malize them with respect to the total number of cache
misses from the two nodes. The same comparison is
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shown in Table 6 for the OpenVZ system. The per-
centage of L2 cache misses for different kernel func-
tions stay almost the same between the single-node and
two-node cases (within 4% of each other), except for
the__copy_to_user_ll function where we see the
two-node value being 28% higher. Comparing Table 6 to
Table 5, we see that all the values are higher in OpenVZ
than in the base case indicating higher page re-mapping
overhead in the OpenVZ system.

Table 7 shows a similar comparison for Xen-specific
kernel calls in the Xen system Web tier. If we add the
first two rows, we see that the total number of cache
misses for the functionshypervisor_call_back
andevtchn_do_upcall is very similar in the single-
node and two-node cases. The values for the_do_IRQ
call are similar too. However, the difference is larger
in the number of cache misses per instruction, which is
shown in Table 8. We see the sum of the first two rows
being 10% higher in the single-node case, and the per-
centage of L2 cache misses/instruction for interrupt han-
dling being 43% higher. The reason is that more instruc-
tions are executed in the two-node case because of less
stalling due to cache misses.

6 Scalability Evaluation

In this section, we investigate the scale of consolidation
that can be achieved by different virtualization technolo-
gies. We increase the number of RUBiS instances from
one to two then to four in the two-node configuration, and
compare the scalability of Xen and OpenVZ with respect
to application performance and resource consumption.

6.1 Response time

We omit figures for application througput. Even as the
number of RUBiS instances is increased to four, we still
observe linear increase in the throughput as a function of
workload, and approximately the same throughput from
both the OpenVZ and the Xen systems.

Figure 12(a) shows the average response time as a
function of workload when running two instances of RU-
BiS on two nodes. For either Xen or OpenVZ, there
are two curves corresponding to the two instances I and
II. The response time remains relatively constant for
OpenVZ but goes up about 500% (15 ms to roughly 90
ms) as the workload increases from 500 to 800 threads.

Figure 12(b) shows the same metric for the case of
running four instances of RUBiS, and we see an even
greater increase in the average response time in the Xen
case. As the workload increases from 500 to 800 threads,
the average response time experienced by each applica-
tion instance goes from below 20 ms up to between 140
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Figure 14: two-node multiple instances - Xen Dom0
CPU consumption

and 200 ms, an increase of more than 600%, yet the av-
erage response time in the OpenVZ case stays near or
below 30 ms in all cases.

In Figure 13(a), we compare the four consolidation
configurations for a workload of 800 threads per applica-
tion, and show the mean response time averaged across
all the application instances in each configuration. In the
Xen system, the average response time per application
in the two-node case grows from 28 ms for one instance
to 158 ms for four instances, an over 400% increase. In
contrast, this increase is only about 100% in the OpenVZ
case. This indicates much better scalability of OpenVZ
with respect to application-level performance.

What is also interesting is that the single-node con-
figuration (one-node one-inst in Figure 13(a)) results
in worse application performance and worse scalabil-
ity than the two-node case using Xen. For example,
if a maximum average response time of 160 ms is de-
sired, we can use the two-node option to host four in-
stances of RUBiS with 800 threads each, but would re-
quire four separate nodes for the same number of in-
stances and comparable performance if the single-node
option is used.

6.2 CPU consumption

In Figure 13(b), we compare the four consolidation con-
figurations in terms of the average Web tier CPU con-
sumption seen by all the application instances with a
workload of 800 threads each. We can see that the av-
erage consumption per application instance for Xen is
roughly twice that for OpenVZ. Moreover, with four in-
stances of RUBiS, the Xen system is already becoming
overloaded (with the sum of all four instances exceeding
100%), whereas the OpenVZ system has the total con-
sumption below 60% and should be able to fit at least
two more instances of the RUBiS application.
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Figure 16: Single instance vs. two instances - Oprofile analysis for Xen
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Figure 14 shows the Xen Dom0 CPU consumption as
a function of workload in the two-node case. The dif-
ferent lines in the graph correspond to different num-
ber of RUBiS instances hosted. For each scenario, the
Dom0 consumption goes up approximately linearly as
the workload increases from 500 to 800 threads. This
is expected because Dom0 handles I/O operations on be-
half of the domains causing its consumption to scale lin-
early with the workload. There is a slight increase in the
slope as the number of RUBiS instances grows. More-
over, as the number of instances goes from one to four,
the Dom0 consumption increases by a factor of 3 instead
of 4, showing certain degree of multiplexing in Dom0.

To investigate how much more overhead is generated
in the Xen system, we ran the four instances on two
CPUs running the SMP kernel. We observed that the
average CPU consumption by the Web domains is 25%
and the average Dom0 consumption is 14%. The latter is
higher than that obtained using the UP kernel.

6.3 Oprofile analysis

We also perform overhead analysis using Oprofile for the
case of two instances, and compare it to the results from
the one instance case. Figures 15(a) and 15(b) show the
hardware counter values from the two nodes hosting the
Web and the DB tiers for both Xen and OpenVZ. All
values are normalized with respect to the Xen Dom0 val-
ues. As seen before, the L2 cache misses are consider-
ably higher in Xen user domains on both nodes and are
the main source of overhead.

We now compare the counter values with those from
the two-node one-instance case. Figures 16(a) and 16(b)
show the comparison of counter values from both nodes
in the Xen system. We can see that the number of L2
cache misses for both tiers is 25% higher with two in-
stances. It is also interesting to note that the number of
instructions and percentage of execution time do not dif-
fer by much. We infer that the overhead is mainly due to
the cache misses caused by memory remapping etc.

Figure 17 shows the corresponding data for OpenVZ.
We observe similar patterns but the increase in the L2
cache misses is not as high as in Xen. Note that the L2
cache misses from both containers are included in the
two instance case.

Turning our attention to the cause of this overhead, let
us look into the hardware counters for particular binaries
in Xen. Table 9 shows the percentage of cache misses per
instruction for the Web tier with one and two instances of
RUBiS. The percentage of cache misses per instruction
experienced in the kernel (vmlinux) is 30% lower with
single instance (5.20%) than with two instances (7.44%
on average).

Table 10 shows the comparison of the percentage of
L2 cache misses for different kernel functions in Xen.
We see that there is not much difference in the percent-
age of L2 cache misses for any function. However, the
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Binary One-inst Two-inst
I

Two-inst
II

libphp5.so 0.80 0.73 2.10
vmlinux 5.20 7.35 7.53
httpd 3.01 3.13 4.80

Table 9: Web tier % L2 cache misses/instruction for bi-
naries in Xen

Symbol name One-
inst

Two-
inst
I

Two-
inst
II

hypervisor_callback 43.00 37.09 38.91
evtchn_do_upcall 36.31 42.09 34.32
__copy_to_user_ll 2.84 3.11 2.61
__do_IRQ 2.73 2.33 2.62

Table 10: Web tier % of L2 cache misses in Xen kernel

percentage of L2 cache misses per instruction is differ-
ent. We can conclude that the main reason of overhead
comes from the higher L2 cache misses caused by page
re-mapping, but the percentage of cache misses remains
the same.

We see similar patterns in the OpenVZ case shown in
Tables 11 and 12. Note that we cannot differentiate be-
tween the different containers in OpenVZ. It is interest-
ing to note that the addition of another instance does not
increase the overhead in OpenVZ that much.

7 Conclusions and Future Work

We summarize our key findings and provide answers to
the questions we raised in the introduction in terms of
how Xen and OpenVZ perform when used for consoli-
dating multi-tiered applications, and how performance is
impacted by different configurations for consolidation.

• For all the configurations and workloads we have
tested, Xen incurs higher virtualization overhead
than OpenVZ does, resulting in larger difference in
application performance when compared to the base
Linux case.

• Performance degradation in Xen increases as appli-
cation workloads increase. The average response

Binary One-inst Two-inst I + II
libphp5.so 0.60 0.78
vmlinux 2.40 2.86
httpd 2.94 4.73

Table 11: Web tier % L2 cache misses/instruction for
binaries in OpenVZ

Symbol name One-inst Two-inst
I + II

do_anonymous_page 33.10 33.31
__copy_to_user_ll 10.59 11.78
__copy_from_user_ll 7.18 7.73

Table 12: Web tier % of L2 cache misses in OpenVZ
kernel

time can go up by over 600% in the single-node
case, and between 115% and 600% in the two-node
case depending on the number of applications.

• For all the cases tested, the virtualization overhead
observed in OpenVZ is limited, and can be ne-
glected in many scenarios.

• For all configurations, the Web tier CPU consump-
tion for Xen is roughly twice that of the base sys-
tem or OpenVZ. CPU consumption of all systems
and all containers goes up linearly as the workload
increases. The slope of increase in the case of Xen
is higher than in OpenVZ and the base cases.

• The main cause of performance overhead in Xen is
the number of L2 cache misses.

• In the Xen system, relative L2 cache misses are
higher in the single-node case compared to the sum
of cache misses in the two-node case. Between the
base and OpenVZ systems, the difference is minor.

• In the Xen system, the percentage of L2 cache
misses for a particular function in the kernel is sim-
ilar in the single-node and two-node cases. But the
percentage of misses per instruction is higher in the
single-node case.

• The percentage increase in the number of L2 cache
misses for single and multiple instances of RUBiS
is higher in Xen than in OpenVZ. In other words,
as the number of applications increases, OpenVZ
scales with less overhead.

• In the Xen system in a two-node setup, the per-
centage increase in response time from single appli-
cation instance to multiple instances is significant
(over 400% for 800 threads per application) while
in OpenVZ this increase is much smaller (100%).
With our system setup in the two-node case, the Xen
system becomes overloaded when hosting four in-
stances of RUBiS, while the OpenVZ system should
be able to host at least six without being overloaded.

• Hosting multiple tiers of a single application on the
same node is not an efficient solution compared to
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the case of hosting them on different nodes as far as
response time and CPU consumption are concerned.

In conclusion, there are many complex issues involved
in consolidating servers running enterprise applications
using virtual containers. In this paper, we evaluated dif-
ferent ways of consolidating multi-tiered systems using
Xen and OpenVZ as virtualization technologies and pro-
vided quantitative analysis to understand the differences
in performance overheads.

More work can be done in extending this evaluation
for various other complex enterprise applications, in-
cluding applications with higher memory requirements
or database-intensive applications. We hope that systems
researchers can use these findings to develop optimiza-
tions in virtualization technologies in the future to make
them more suited for server consolidation.
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