
1

Supplement of “Reducing Peak
Power Consumption in Multi-
Core Systems Without Violating
Real-Time Constraints”

Jinkyu Lee, Buyoung Yun and Kang G. Shin

EXAMPLES IN SECTIONS 3, 4 AND 5
Example 1: [in Section 3] Consider the following multi-

core chip and task set:
• A chip with 4 cores {S1,S2,S3,S4}, and
• A set of 6 tasks to be executed on their designated

cores Φ1 = {τ1, τ2}, Φ2 = {τ3}, Φ3 = {τ4, τ5}
and Φ4 = {τ6}, with their respective peak power
consumption B1 = 20, B2 = 15, B3 = 9, B4 = 17,
B5 = 8, and B6 = 12 (W ).

Then, the first column of Table 1 shows Θ∗ for this
setting, where Θ∗(y) is the y-th element of Θ∗.

Example 2: [in Section 4.1] Consider a two-core chip
{S1,S2}, and a set of five tasks Φ1 = {τ1, τ2, τ3} and
Φ2 = {τ4, τ5}. Suppose that Θ � {(τ1, τ4), (τ2, τ4)} and
all tasks are active at t, i.e., Q(t) = {τ1, τ2, τ3, τ4, τ5} at
Step 1 in Algorithm 1. A global fixed priority is given
to each task such that the smaller task index, the higher
priority, i.e., τ1 > τ2 > τ3 > τ4 > τ5.
At t, τ1 is chosen by Step 3 in Algorithm 1, and then

τ2 and τ3, and τ4 are removed from Q(t) by Steps 6(a)
and 6(b), respectively. In the next iteration, τ5 is chosen
by Step 3. Then, while the traditional partitioned FP
scheduling algorithm chooses {τ1, τ4} at t, FPΘ chooses
E(t) = {τ1, τ5} at Step 8, due to the pair (τ1, τ4) in Θ.

Example 3: [in Section 4.2] We consider the same task
set and two-core chip as Example 2. Each task’s specifi-
cation is given in Table 5. Suppose Θ � {(τ1, τ4), (τ2, τ4)}.
Then, Γ4 = H4 ∪ F4 = ∅ ∪ {τ1, τ2} = {τ1, τ2} and
Γ5 = H5 ∪ F5 = {τ4} ∪ ∅ = {τ4}. Therefore, Γ4 ⊂ Γ5

does not hold in spite of τ4 ∈ Γ5, meaning that P1 does
not hold.
If P2 holds, the maximum blocking time of τ5 by tasks

in Γ5 = {τ4} in an interval of length 2 is to be upper-
bounded by

⌈
2
5

⌉
· 1 = 1. This occurs when τ4 and τ5 are

released synchronously.
However, if the release patterns of τ4 and τ5 (as well as

τ1 and τ2) are given as in Fig. 2, the maximum blocking
time of τ5 by tasks in Γ5 = {τ4} in an interval of length 2
can be 2, meaning that P2 does not hold. This is because
jobs of τ1 and τ2 do not directly block the job of τ5, but
they delay the execution of τ4, increasing the blocking
time of τ5 by τ4, as shown in Fig. 2.

Task Designated core Ti Ci Di Pi Bi

τ1 S1 5 2 5 1 20
τ2 S1 3 1 3 2 15
τ3 S1 6 1 6 3 9
τ4 S2 5 1 5 4 17
τ5 S2 4 1 4 5 10

TABLE 5
Task specification

Example 4: [in Section 4.2] We consider the same task
set and two-core chip as Example 3 (see Table 5). Sup-
pose that Θ � {(τ1, τ4), (τ2, τ4)}.
We calculate {Ri}5i=1 from R1 to R5 according to their

task priority as follows:

• Γ1 = ∅; R1 = C1 = 2.
• Γ2 = {τ1} and δ(2,1) = 0; R2 = 3.
• Γ3 = {τ1, τ2} and δ(3,1) = δ(3,2) = 0; R3 = 5.
• Γ4 = {τ1, τ2} and δ(4,1) = δ(4,2) = 0; R4 = 5.
• Γ5 = {τ4} and δ(5,2) = 5− 1 = 4; R5 = 3.

Then Ri ≤ Di, ∀τi holds. Therefore, the task set is
schedulable by FPΘ with Θ = {(τ1, τ4), (τ2, τ4)}.

Example 5: [in Section 5] We consider the same task
set and two-core chip as Example 3 (see Table 5).
In Step 1 in Algorithm 2, we construct Θ∗ as shown

in Table 6. In Step 2, we remove Θ∗(6) because Θ∗(6) =
19 < Bmax = B1 = 20. Then, we check to find that this
setting does not satisfy both Steps 3(a) and 3(b). By Steps
4–6, we set succ, fail and curr to 0, 6 and 3, respectively.
In the first iteration of Steps 7–10, Theorem 1

deems the task set unschedulable by FPΘ with Θ =
[Θ∗(1),Θ∗(2),Θ∗(3)] because Γ5 = {τ1, τ4}, so R5 > 4.
Then, fail and curr are set to 3 and 1. In the second
iteration, the theorem deems the task set schedulable
by FPΘ with Θ = [Θ∗(1)], and then succ and curr

are set to 1 and 2. In the third iteration, the theorem
also deems the task set schedulable by FPΘ with Θ =
[Θ∗(1),Θ∗(2)], and then succ and curr are both set to 2.
Now, fail > succ+1 does not hold, so the iteration halts.
Finally, the algorithm return FEASIBLE with FPΘ with
Θ = [Θ∗(1) = {τ1, τ4},Θ∗(2) = {τ2, τ4}], and in this case
B (the design-time chip-level peak power consumption)
is set to B1 +B5 = 30.

SOME DETAILS OF SECTION 6.1
We generated task sets based on the technique in [17],
which has been widely used to generate real-time
task sets. For each task, Ti is uniformly distributed in
[1, Tmax = 1000]; Ci is chosen according to the expo-
nential distribution of Ci/Ti, whose probability density
function is λ · exp(λ · x) with 1/λ = 0.3; and Di is set
to Ti for implicit deadline task sets and is uniformly
distributed within [Ci, Ti] for constrained deadline task
sets.



2

an upper bound
Θ∗(i) = on the chip-level

(task on S1, task on S2) power consumption (W )
Θ∗(1) = (τ1, τ4) 20 + 17 = 37
Θ∗(2) = (τ2, τ4) 15 + 17 = 32
Θ∗(3) = (τ1, τ5) 20 + 10 = 30
Θ∗(4) = (τ3, τ4) 9 + 17 = 26
Θ∗(5) = (τ2, τ5) 15 + 10 = 25
Θ∗(6) = (τ3, τ5) 9 + 10 = 19

TABLE 6
An upper-bound of the chip-level power consumption when two

tasks on different cores are executed at the same time

For each type of task sets (implicit or constrained), we
repeat the following procedure and generate 20,000 per-
core task sets (i.e., Φi).
1. Initially, generate a set of 2 tasks.
2. Check whether the generated task set can pass the

exact uniprocessor schedulability test of FP [11].
3. If it fails to pass the test, discard the generated task

set and return to Step 1. Otherwise, include this set
for evaluation. Then, this set serves as a basis for the
generation of a new set; create a new set by adding
a new task into an already created and tested set,
and return to Step 2.

ADDITIONAL RELATED WORK
There has been a line of work on how to achieve
power efficiency of general-purpose systems when they
run linear algebra applications that are known to yield
high peak power [22], [25], [26]. However, since their
approaches utilize task parallelism (sub-tasks can be
executed concurrently on multiple cores), they cannot
be applicable to our sequential task model in Section 2.

[25] H. Ltaief, P. Luszczek, and J. Dongarra, “Profiling high per-
formance dense linear algebra algorithms on multicore architectures
for power and energy efficiency,” Computer Science - Research and
Development, vol. 27, no. 4, pp. 277–287, 2012.

[26] G. Bosilca, H. Ltaief, and J. Dongarra, “Power profiling of cholesky
and QR factorizations on distributed memory systems,” To appear in
Computer Science - Research and Development.


