Regular Paper

Journal of Computing Science and Engineering,
Vol. 8, No. 3, September 2014, pp.

Journal of
J E Computing Science and Engineering

Page Replacement for Write References in NAND Flash Based
Virtual Memory Systems

Hyejeong Lee and Hyokyung Bahn™
Department of Computer Engineering, Ewha Womans University, Seoul, Korea
huizh@ewhain.net, bahn@ewha.ac.kr

Kang G:. Shin
Department of Electrical Engineering and Computer Science, The University of Michigan, MI, USA
kgshin@umich.edu

Abstract

Contemporary embedded systems often use NAND flash memory instead of hard disks as their swap space of virtual
memory. Since the read/write characteristics of NAND flash memory are very different from those of hard disks, an effi-
cient page replacement algorithm is needed for this environment. Our analysis shows that temporal locality is dominant
in virtual memory references but that is not the case for write references, when the read and write references are moni-
tored separately. Based on this observation, we present a new page replacement algorithm that uses different strategies
for read and write operations in predicting the re-reference likelihood of pages. For read operations, only temporal local-
ity is used; but for write operations, both write frequency and temporal locality are used. The algorithm logically parti-
tions the memory space into read and write areas to precisely keep track of their reference patterns, and then dynamically
adjusts their size based on their reference patterns and I/O costs. Without requiring any external parameter to tune, the
proposed algorithm outperforms CLOCK, CAR, and CFLRU by 20%—-66%. It also supports optimized implementations
for virtual memory systems.

Category: Embedded computing

Keywords: Memory; Secondary storage; Storage hierarchies; Swapping; Virtual memory; Flash memory

I. INTRODUCTION

NAND flash memory has become the most popular
secondary storage media in modern embedded systems,
such as smartphones, tablets, and portable media players
(PMPs). As these embedded systems provide an increas-
ing variety of functions, virtual memory support with
swap space is becoming an important issue. Since the tra-
ditional swap space (i.e., the hard disk) of virtual memory

system is now being replaced by NAND flash memory,
an efficient virtual memory management technique is
necessary for this emerging environment.

However, NAND flash memory is known to possess
significantly different physical characteristics from hard
disks. As a result, flash translation layers (FTLs) and
flash-specific file systems have been extensively studied
[1-8]. Unlike these studies, research on virtual memory
systems for NAND flash memory is in its infancy [9-11].

http://dx.doi.org/10.5626/JCSE.2014.8.3.00

http://jcse.kiise.org

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:/creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received 0 A 2014; Revised 0 A 2014; Accepted 0 A 2014
*Corresponding Author

* A subset of this paper was presented at the 17th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-

munication Systems (MASCOTS 2009).

Copyright © 2014. The Korean Institute of Information Scientists and Engineers

pISSN: 1976-4677 elSSN: 2093-8020

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 00-00

In this paper, we analyze the page reference characteris-
tics of a virtual memory system that uses NAND flash
memory as its swap space, and present a new page
replacement algorithm for this environment.

Page references in a virtual memory environment have
a temporal locality property, and thus, the least recently
used (LRU) and its approximated CLOCK algorithms
have been widely used. However when replacing clean
and dirty pages, they do not consider the different 1/O
costs of read and write operations in NAND flash mem-
ory. Dirty pages need to be swapped out or flushed to
NAND flash memory before their eviction, and this
incurs a write I/O that is about 3—10 times slower than a
read I/O [10, 12, 13]. Note that a dirty page is one that
has been modified during its residence in the memory,
while a clean page is one that has not been changed.
Thus, an efficient replacement algorithm needs to take
account of these asymmetric operation costs. Further-
more, when read and write references are independently
observed, the temporal locality of virtual memory refer-
ences should be revisited.

In this paper, we analyze the characteristics of virtual
memory read and write references separately in terms of
their temporal locality. We have discovered an important
phenomenon from this analysis; unlike read references
that exhibit strong temporal locality, the temporal locality
of write references is weak and irregular. Specifically,
more recently written pages do not incur more writes in
future for a certain range of page rankings. We call this
phenomenon the ranking inversion of write temporal
locality. Accordingly, temporal locality has limitations in
predicting future references for write operations.

Based on this observation, we propose a new page
replacement algorithm that uses different strategies for
read and write operations in predicting the re-reference
likelihood of pages. For read operations, temporal local-
ity alone is considered; but for write operations, write fre-
quency is used as well as temporal locality. With this
idea, the new algorithm individually keeps track of the
reference patterns of read and write operations, and accu-
rately predicts the likelihood of re-referencing pages. It
logically partitions the memory space into read and write
areas based on the different I/O costs of operations. Then,
it dynamically adjusts the size of each area according to
the change of access patterns. In each area, the recency of
page references is separately captured using a CLOCK
list. Our experimental results with various virtual memory
access traces show that the proposed algorithm, called
Clock for read and write (CRAW), significantly improves
the I/O performance of a virtual memory system. Specifi-
cally, it reduces 1/O time by 20%—66%, compared to widely
known algorithms, such as CLOCK, CAR, and CFLRU.

Moreover, in contrast to LRU, which needs to perform
list manipulations or time-stamping on every memory
reference, CRAW does not require either time-stamping
or list manipulations unless page faults occur. This makes

http://dx.doi.org/10.5626/JCSE.2014.8.3.00

CRAW suitable for virtual memory environments that
allow OS controls only upon page fault. Moreover, the
parameters of CRAW are automatically tuned differenti-
ating itself from the other approaches that require manual
parameter tuning to deal with workload changes. The
main contributions of this paper can be summarized as
follows:

1) To capture the characteristics of write operations
that are responsible for a large portion of I/O cost in
flash memory, we separately analyze the temporal
locality of memory accesses for read and write ref-
erences.

2) In the case of read references, we have discovered
that temporal locality is strong, and thus recency-
based algorithms, such as CLOCK, are suitable for
estimating the re-reference likelihood of read refer-
ences.

3) In the case of write references, we have uncovered a
prominent phenomenon that temporal locality is
weak and irregular. Hence, estimating the re-refer-
ence likelihood of write references with temporal
locality only is limited. We propose a new way to
estimate future references by considering write fre-
quency as well.

4) Considering the different I/O costs and reference
characteristics of read and write operations, we sep-
arately allocate memory space for reads and writes,
and dynamically change the allocated space accord-
ing to the evolution of workloads.

5) We also show how the proposed algorithm can be
easily deployed in various system environments with-
out any modification of existing hardware architec-
tures.

The rest of the paper is organized as follows. Section II
discusses some related work on page references in virtual
memory and reviews replacement algorithms for flash
memory. In Section III, we capture page reference char-
acteristics in virtual memory in terms of read and write
references, and analyze the observation results. Section
IV presents a new page replacement algorithm for virtual
memory systems built on NAND flash memory. Then,
Section V presents our experimental results obtained
through trace-driven simulations to assess the effectiveness
of the proposed algorithm, CRAW. Section VI describes
some practical issues related to the deployment of CRAW
in real system architectures. Finally, we conclude this
paper in Section VII.

Il. RELATED WORK

In this section, we briefly describe the characteristics
of page references in virtual memory environments, and
review existing page replacement algorithms for NAND
flash memory.

Hyejeong Lee et al.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

A. Page References in Virtual Memory

Page references in a virtual memory environment have
temporal locality in that a more recently referenced page
is more likely to be referenced again soon. In terms of the
hit ratio, the LRU replacement algorithm is known to be
optimal for references that exhibit this property [14].
LRU aligns all the pages in the memory in the order of
their most recent reference time and replaces the LRU
page, whenever free page frames are needed. It is the
most popular replacement algorithm in various caching
environments including file system buffer cache, since it
performs well, but has only a constant time and space
overhead.

Nevertheless, LRU has a critical weakness in virtual
memory environments. On every memory reference, LRU
needs to move a page to the most recently used (MRU)
position in the list. This involves some list manipulations,
which cannot be handled by the paging unit hardware.
Though LRU can also be implemented by hardware, this
is not feasible in virtual memory systems as it should
maintain the time-stamp of each page and update it upon
every memory reference.

CLOCK was introduced as a one-bit approximation to
LRU [15]. Instead of keeping pages in the order of refer-
ence time, CLOCK only monitors whether a page has
recently been referenced or not. On each hit to a page, the
paging unit hardware sets the reference bit of the page in
the page table entry to 1. Then, pages are maintained in a
circular list. Whenever free page frames are needed,
CLOCK sequentially scans through the pages in the cir-
cular list starting from the current position, that is, next to
the position of the last evicted page. This scan continues
until a page with a reference bit of 0 is found, and that
page is then replaced. For every page with reference bit
of 1 in the course of the scan, CLOCK clears the refer-
ence bit to 0 without removing the page from the list.

The reference bit of each page indicates whether that
page has recently been accessed or not; and a page that is
not referenced until the clock-hand comes round to that
page again is certain to be replaced. Even though CLOCK
does not replace the LRU page, it replaces a page that has
not been recently referenced so that temporal locality is
exploited to some extent. In addition to this, since it does
not require any list manipulation on memory hit, CLOCK
is suitable for virtual memory environments.

Not recently used (NRU) is another version of page
replacement algorithm that exploits the temporal locality
of virtual memory environments. NRU works similarly to
CLOCK using reference bits but it also uses modified bits
to distinguish clean and dirty pages [16]. While reference
bits are periodically cleared by the clock-hand to monitor
the recency of page references, the modified bit of a page
is set when the page becomes dirty; and is not cleared
until it is evicted from memory. The modified bit indi-
cates that the corresponding page should be written back

Hyejeong Lee et al.

to secondary storage before eviction. There are four dif-
ferent cases according to the state of the reference and
modified bits.

NRU preferentially replaces pages whose reference bit
is 0 to consider temporal locality. Of them, NRU evicts
the pages with zero modified bit first because they are
clean pages and can thus be evicted without incurring
additional write I/O operations. Similarly, among pages
with reference bit set to 1, NRU gives higher priorities to
pages with a modified bit of 1. In summary, the page
replacement order of NRU according to the state of (ref-
erence bit, modified bit) is (0, 0), (0, 1), (1, 0), and (1, 1).

B. Page Replacement for Flash Memory

Most operating systems, including Linux, are optimized
under the assumption that secondary storage devices will
be hard disk drives, which have almost identical costs for
read and write operations. Page replacement algorithms
therefore focus on maximizing the hit ratio by replacing
the page least likely to be referenced again. In this pro-
cess, the type of operation (read or write) that would be
involved in that reference is not considered. Unlike hard
disks, however, NAND flash memory has asymmetrical
read and write costs. In NAND flash memory, servicing a
write I/O request takes 3—10 times longer than servicing a
read I/O request for the same I/O size as shown in Table 1
[12,13].

In addition, NAND flash memory requires an erase
operation before writing data on the same place again.
Most systems, therefore, have a FTL, which hides the cost
of erase operations by performing out-of-place-updates.
As a result, traditional page replacement algorithms that
aim to maximize the hit ratio do not perform well in the
systems based on NAND flash memory because their
performance metric is the hit ratio, although it should be
the I/O time.

Clean-first LRU (CFLRU) [10] is a new page replace-
ment algorithm that considers the hit ratio as well as the
physical characteristics of NAND flash memory in which
reading and writing have different I/O costs. CFLRU can
accommodate the different eviction costs of a clean page,
which can simply be discarded, and a dirty page, which
should be written back to flash memory. CFLRU delays

Table 1. Read and write performance of NAND flash memory
NAND flash memory NAND-based SSD

SLC MLC Random Sequential
(2 kB page) (4 kB page) (4 kB IOPS) (bandwidth)

Read 25 ps 60 ps 35,000 IOPS 250 MB/s
Write 200 ps 800 s 3,300 IOPS 70 MB/s
Read : Write 1:8 1:133 1:10.6 1:3.6

SSD: solid state disk, SLC: single-level cell, MLC: multi-level cell.

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 00-00

Working region Clean-firstregion (=Window)

R o H e HHE A e HH v 5

list
LRU

[Jcweanpage /7] pirtypage victim PoSon

Fig. 1. An example of page replacement in clean-first LRU
(CFLRU). LRU: least recently used, MRU: most recently used.

position

the eviction of dirty pages to reduce the number of writes
to NAND flash memory, unless this will do too much
harm to the hit ratio. Though NRU also delays the
replacement of dirty pages, it uses the modified bit only
as a tiebreaker among pages with the reference bit offset
to 0.

CFLRU manages pages using the LRU list. CFLRU
divides this list into a working region and a clean-first
region as shown in Fig. 1. The working region contains
recently referenced pages that are replaced according to
the LRU policy. The evicted page from the working
region is inserted into the clean-first region, which con-
tains older pages whose last reference was made a rela-
tively long time ago. Dirty pages in the clean-first region
are preserved in the memory as long as a clean page is
available for eviction. CFLRU starts by searching the
clean-first region for a candidate for replacement. The
length of the clean-first region is defined as a fraction of
the total memory size, called the window size. Fig. 1
shows an example of page replacement in CFLRU. Py is
the LRU page; but when a free page frame is necessary,
CFLRU replaces P,, which is the LRU clean page. Since
dirty pages can only be evicted if no clean page exists in
the window, pages are evicted in the order of P,, Ps, P,
and finally Pq.

CFLRU was the first to adapt LRU for NAND flash
memory-based systems. However, its favor on dirty
pages varies greatly across the boundary between the
working region and the clean-first region. Moreover, the
window size should be tuned as the workload changes.
As a consequence, CFLRU does not cope well with
changes in workload characteristics, such as the ratio of
read to write accesses.

LRU with write sequence reordering (LRU-WSR) is
another replacement algorithm that favors dirty pages
[17]. Basically, LRU-WSR also manages pages using the
LRU list. Instead of setting the clean-first region, LRU-
WSR gives one more chance to a dirty page, when it
reaches the LRU position in the list. Specifically, LRU-
WSR keeps a cold flag for each page in the LRU list.
When a page is referenced, LRU-WSR moves the page to
the MRU position of the list. Additionally, if it is a dirty
page, LRU-WSR clears the cold flag of that page. When
replacement is needed, LRU-WSR checks the page in the
LRU position. If the page is clean, it is replaced. Other-
wise, the cold flag is checked. If it is set to 1, LRU-WSR
replaces the page. If the cold flag of the page is 0, LRU-

http://dx.doi.org/10.5626/JCSE.2014.8.3.00

WSR sets the cold flag to 1, moves the page to the MRU
position to give one more chance, and checks another
page at the LRU position. In this way, LRU-WSR consid-
ers asymmetric operation costs of reads and writes in the
flash memory, but it still does not consider their exact
costs in the algorithm design.

There are some categories of replacement algorithms
that exploit the device-specific information of NAND
flash memory. Since most of this information cannot be
delivered to virtual memory and/or file systems in current
system interfaces, the algorithms are usually targeted to
device-specific buffer managers, or some specific sys-
tems. Flash-aware buffer management (FAB) is proposed
as a replacement algorithm of DRAM buffer in flash-
based PMP systems [18]. PMP systems commonly have
long sequential accesses for media data and some short
accesses for metadata at the same time. One problem
with this situation is that short write accesses cannot be
buffered for a long time because they are pushed away by
a large amount of sequential data. This eventually incurs
frequent random write I/Os leading to degraded 1/O per-
formances due to full merge operations in log-block FTLs
[5, 19]. To cope with this problem, FAB manages buffered
data from the same NAND flash block as a group and
replaces them together. When free buffers are needed,
FAB evicts a NAND block group with the largest number
of buffers. If more than one group have the same largest
number of buffers, the LRU order is used as a tiebreaker.

Block padding least recently used (BPLRU) is a write
buffer management algorithm to improve the random write
performance of flash storage in desktop environments
[20]. BPLRU manages an LRU list for RAM buffers.
Similar to FAB, BPLRU groups buffers from the same
NAND flash block and replaces them together. When a
buffer is accessed by a write operation, buffers in the
same group are moved together to the MRU position of
the list. BPLRU selects buffers in the LRU position as a
victim and flushes all data in the group. This block-level
flushing reduces the total merge cost of NAND flash
memory in log-block FTLs. BPLRU also uses two heu-
ristics, called page padding and LRU compensation. Page
padding makes a partially buffered NAND block into a
fully buffered one by reading the rest of NAND pages
from the flash, just before evicting the block. LRU com-
pensation is a heuristic that evicts a fully buffered NAND
block first.

Cold and largest cluster (CLC) is another write buffer
replacement algorithm for NAND flash memory [21].
Unlike FAB and BPLRU, CLC uses byte-addressable
non-volatile memory as its write buffer. Similar to FAB
and BPLRU, CLC manages pages from the same NAND
flash blocks together. When replacement is needed, CLC
selects a NAND block group with the largest number of
pages among groups that have not recently been refer-
enced.

Hyejeong Lee et al.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

lll. PAGE REFERENCES IN VIRTUAL MEMORY

In this section, we analyze and capture page references
in virtual memory systems specially focusing on the zem-
poral locality of read and write operations. For write
operations, we also analyze the write frequency as well as
temporal locality to more precisely characterize the page
reference behavior. We capture the virtual memory access
traces from four different applications used on Linux X
Windows, namely, the xmms mp3 player, the gqview
image viewer, the gedit word processor, and the freecell
game. The characteristics of these traces will be
explained later in Section V. We first analyze the tempo-
ral locality of total references in the traces, and then clas-
sify them into read and write references to more precisely
examine the re-reference likelihood of each operation.

A. Temporal Locality

As shown in Fig. 2, virtual memory accesses exhibit
strong temporal locality. In the figure, the x-axis repre-
sents the page ranking in the LRU list (i.e., the LRU stack
distance). For example, the ranking 1 in the x-axis refers
to the page at the most recently referenced position in the
LRU list. Increased ranking of the x-axis increases means
that the pages were referenced a relatively longer time
ago. The y-axis represents the number of references that
occur for the page ranking in the x-axis.

As shown in Fig. 2, the shape of the curve can be well
modeled by a monotonic decreasing function implying
that a more recently referenced page is more likely to be
referenced again. For this reference pattern, the LRU
algorithm is known to perform well [14].

Fig. 2 shows the temporal locality of total page refer-

1000000 + 1000000
100000 100000
10000

10000

1000

100

Number of references

Number of references

10

1 -
1 10 100 1000 10000 1 10 100 1000 10000

Page ranking based on temporal locality Page ranking based on temporal locality
(a) (b)
1000000 1000000
100000 . 100000
10000 10000
1000

1000

100

Number of references

Number of references

10

1
1

- -
1000 10000 1 1000 10000

10 100
Page ranking based on temporal locality

(c) (d)

10 100
Page ranking based on temporal locality

Fig. 2. Reference counts versus temporal locality ranking for
total references including reads and writes. (a) xmms, (b) gqview,
(c) gedit, and (d) freecell.

Hyejeong Lee et al.

ences including both read and write references. Figs. 3
and 4 separately show the temporal locality of read and
write references. For example, the x-axis in Fig. 3 repre-
sents the recency ranking of read references and the y-
axis represents the number of read references that occur
for the given ranking. As shown in Fig. 3, read references
exhibit strong temporal locality. Unlike the plots in
Fig. 2(a) and (b) that contain some projecting points, the
plots in Fig. 3(a) and (b) are more fluent. This means that
the temporal locality of read references is stronger than
that of total references including both read and write ref-
erences.

100000 ; 1000000
100000

10000

10000

Number of read references

INUMDeT of read references

-
i i
.

1 10 100 1000 10000

Read page ranking based on temporal locality

(a) (b)

1000000 1000000

-
1 10 100 1000 10000
Read page ranking based on temporal locality

100000 100000 +

10000 10000

Number of read references
INUMDeT O reaa reterences
F

1
10000

10 100 1000 1 10 1000 10000
Read page ranking based on temporal locality Read page ranking based on temporal locality

(c) (d)
Fig. 3. Number of read references occurred versus temporal

locality ranking of read references. (a) xmms, (b) ggview, (c) gedit,
and (d) freecell.

1000000 + 1000000

8 8
& 100000 8 100000
e e
g o
S 10000 S 10000
o o '
2 o 2
E 1000 £ 1000
z 14 3 :
k) + 4 i 5
o 100 » L o 1o
2 W “jx 2
£ # £
z " i z " i
{1 TR
G
1 e 1 e
10 100 1000 10000 0 100 1000 10000
Write page ranking based on temporal locality Write page ranking based on temporal locality
(2) (b)
1000000 100000
@ @
8 100000 + 8
S 10000
e e
o o
D 10000 2
o 2 1000
L)
€ 1000 E
s ol s
s sy 5 100
5 100 o ¥
5 T
2 2 Yottty
£ " E Y s
35 1 TR 3 i
z i z L
U i
Wkt #
1 - ——— 1 -
10 100 1000 10000 1 10 100 1000 10000
Write page ranking based on temporal locality Write page ranking based on temporal locality

© (d)

Fig. 4. Number of write references occurred versus temporal
locality ranking of write references. (a) xmms, (b) gqview, (c)
gedit, and (d) freecell.

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 00-00

Now, let us examine the write references. As shown in
Fig. 4, the temporal locality of write references is rather
irregular. Specifically, Fig. 4 shows the ranking inversion
of temporal locality, i.e., a more recently written page
shows a smaller fraction of re-writes in some ranges of
ranking. We can clearly observe this phenomenon from
Fig. 4(a) and (b), which contain a relatively large number
of write references.

Based on this observation, we can conclude that tem-
poral locality alone is not sufficient to estimate the re-ref-
erence likelihood of write references in virtual memory.
We cannot pinpoint the exact reason for this phenome-
non, but we conjecture that it is due to the write-back
operation of the CPU cache memory. Since a certain por-
tion of memory references are absorbed by the cache
memory, page references observed at the virtual memory
layer contain only the references that are cache-missed.
In the case of read references, cache-missed requests
directly propagate to the virtual memory layer, thus not
much affecting temporal locality, although it becomes
rather weak. However, in the case of write references,
cache-missed requests do not propagate directly to virtual
memory, but are just written to the cache memory. Then,
the write references are delivered to virtual memory only
after the data are evicted from the cache memory. This
implies that the time a write request arrives is asynchro-
nous with the time that the request is delivered to main
memory. This is the reason why temporal locality of
write references is considerably dispersed.

B. Frequency of Write References

In Section ITI-A, we observed that the temporal local-
ity of write references in virtual memory is greatly dis-

1000000 1000000
100000 100000

10000 10000

Number of write references
Number of write references

1
10 100 1000 10000 1 10 100 1000 10000
Write page ranking based on frequency Write page ranking based on frequency

() (b)
1000000 100000

100000 10000

10000

Number of write references
Number of write references

1
1 10 100 1000 10000 1 10 100 1000 10000
Write page ranking based on frequency Write page ranking based on frequency

(c) (d)

Fig. 5. Number of write references occurred versus frequency
ranking of write references. (a) xmms, (b) gqview, (c) gedit, and
(d) freecell.

http://dx.doi.org/10.5626/JCSE.2014.8.3.00

persed. Here, we analyze the effect of write frequency on
the re-reference likelihood of write references. We can
consider two different types of frequency. The first is the
total write frequency, which counts the total number of
writes appearing in the trace; and the second is the so-far-
write-frequency, which counts the number of writes that
have occurred to the current point. We use the latter in
order to observe the impact of frequency on estimating a
page’s re-reference likelihood each time in comparison
with temporal locality. To do this, we maintain the rank-
ing of pages according to their past write counts, and
examine the number of write operations that occur again
for each ranking.

In Fig. 5, the x-axis represents the ranking of pages
based on their past write counts. The y-axis represents the
number of writes that occur on that ranking. To construct
the curve, we maintain the page ranking each time, and as
a page in a certain ranking is written again, we increase
the value of y-axis for that ranking by one possibly result-
ing in a reordering of the page rankings.

As shown in Fig. 5, most write references that are
made are in the range of top ranking. This means that a
page referenced frequently in the past is likely to be refer-
enced again in the future. Unlike the temporal locality of
write references, the frequency of write references does
not show the ranking inversion problem. It also exhibits
larger reference counts than temporal locality for a cer-
tain range of top ranking.

In summary, the re-reference likelihood of read refer-
ences can be well modeled by temporal locality. For write
references, however, using the write frequency as well as
temporal locality will be more effective. To more accu-
rately predict future write references, a page replacement
algorithm should consider the write frequency as well as
the recency of the references.

IV. A NEW PAGE REPLACEMENT ALGORITHM

In this section, we present a new page replacement
algorithm for virtual memory systems, called CRAW,
which uses NAND flash memory as its swap device.
CRAW separately allocates memory areas for read and
write operations so as to minimize the total I/O costs. It
does this by finding the contribution of each area and
dynamically adjusting their size.

For each area, replacement is efficiently performed,
similar to the implementation of the CLOCK algorithm.
To select a victim page in each area, CRAW exploits the
read and write characteristics of virtual memory explained
in Section I1I. That is, for read references, temporal local-
ity is exploited, and for write references, both temporal
locality and write frequency are used to predict the re-ref-
erence likelihood of pages. All the pages in the write area
are dirty pages, which need 3—-10 times higher cost in
terms of time to evict than clean pages. CRAW gives

Hyejeong Lee et al.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

higher priority to write pages that incur relatively high
costs; but it also preserves read pages if they are fre-
quently referenced, and thus their contribution to improv-
ing I/O performance is significant.

A. Adjusting the Size of Each Area

CRAW employs ghost areas to evaluate and adjust the
size of the read and write areas as shown in Fig. 6. Ghost
areas only maintain the metadata of recently evicted
pages without their actual data. By observing references
to a page in the ghost areas, CRAW predicts the effect
that extending each area would have on performance. If
there are frequent hits on pages in the ghost read area,
CRAW extends the read area to reduce the number of
page faults. The write area can be extended in the same
way. In addition to the hits to pages in the ghost areas, the
different cost of a read and a write is also considered in
adjusting the size of each area.

The size of each ghost area is adjusted as the size of
corresponding area changes such that the total number of
pages in these two areas is equal to the total number of
page frames, which is referred to as S. For example, after
extending the read area to accommodate one more page,
CRAW shrinks the ghost read area by one. This is
because the hit ratio for the whole memory can be pre-
dicted, if the sum of the allocated pages and the ghost
pages is equal to S. As explained in Fig. 6, S ghost pages
are sufficient for both read and write areas because S
pages are actually allocated. Maintaining this number of
ghost pages has very low overhead because a ghost page
only contains 20 bytes of information including pointers
and a page identifier, whereas each of the actual pages
contains 4 kB of data [22-26].

Fig. 6 briefly shows the read area R, the write area W,
and their ghost areas. In practice, however, R and W may
share pages. For example, a page that has been recently

R R’

Read area [[L [LI LICI LI LT[0 0 10] Shest

Ghost
I write area

W w’
@ After extending read area R
R R’
Read area [[]][] [CJCJCIJC O] 100 Ghost

read area

Ghost
write area

w w’
R[+ R =W+ W]=S Ghost page
S: total page frames in memory [] Real page

Fig. 6. Adjusting the sizes of the read and write areas by using
ghost areas.

Hyejeong Lee et al.

read, as well as written, is kept in both R and W. In this
case, the page data is in one page frame, and the page
descriptor is linked to both R and W using different link
pointers in order to independently and accurately manage
the areas. Consequently, [R|+|W]| can be larger than S, and
the number of ghost pages can be equal to or less than S.
Since CRAW allows pages to be simultaneously linked to
multiple areas, a page can be evicted from physical mem-
ory only if it is not linked to any area.

B. Details of the Algorithm

We now describe how the CRAW algorithm works in
detail. Fig. 7 depicts the basic structure of CRAW. Pages
in memory are managed by read area R and write area W.
The metadata of evicted pages from these areas are kept
in ghost read area R’ and ghost write area W', respectively.

Page replacement for each area is independently man-
aged by using an efficient design similar to the CLOCK
algorithm. When CRAW searches for a victim to evict
from the read area, it checks the read bit of the page to
which the clock-hand points as CLOCK also does. If the
read bit is 1, it is cleared; otherwise, the page is deleted
from the area. The clock-hand scans clockwise through
the pages until it finds a page with a zero read bit. When
CRAW searches for a victim in the write area, the write
bit instead of the read bit is investigated. In fact, the read
and write bits have similar meanings to the reference and
modified bits that are set by the paging unit hardware
during every memory access. The metadata for pages
deleted from R and W are inserted into ghost areas R’ and
W', respectively. When a replacement is needed in a
ghost area, the least recently inserted page is deleted.
Note that this is identical to the FIFO order in the ghost
areas. As shown in Fig. 7, a newly inserted page is linked
to the MRU location in the ghost area, and the oldest
page is evicted from the LRU location.

Since write frequency is also important to predict the
re-reference likelihood of write references, CRAW man-
ages the internal structure of write area W by two parti-
tioned sub-areas, namely write temporal locality area
W1, and write frequency areca W2. Ghost areas for W1
and W2 are also separately managed. Similar to R and W,

Write area W

Read area R

Ghost read area R’

Fig. 7. Basic structure of Clock for read and write (CRAW). LRU:
least recently used, MRU: most recently used.

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 00-00

Write area W

-1 Internals of
! / write area

w2

Fig. 8. The internal structure of the write area considering both
temporal locality and write frequency.

the sizes of W1 and W2 are adjusted by page hits in ghost
areas W1'and W2'. W1 maintains pages that are written
once while their metadata are resident in memory, and
W2 maintains pages that are written more than once.

A page may not be directly included in the write area
even after a write reference to that page happens. This is
the same for read references. For example, if a page is not
in write area W1 or W2 but exists in read area R, no page
fault occurs upon a write reference, and thus list manipu-
lation by kernel is not possible. In this case, the write bit
of this page is just set by the paging unit hardware, and
the page still remains only in the read area. The page is
finally included in the write area when the write bit is
found during the scanning of the read area to find a victim.

Now we will give further details of the CRAW algo-
rithm following the pseudocode in Fig. 9. If the CPU ref-
erences a page that is already in memory, CRAW does
nothing except for bit setting. The read bit of the page is
set on a read reference and the write bit of the page is set
on a write reference.

When a page fault occurs because a referenced page is
not in memory, CRAW first checks if there is a free page
frame. If not, CRAW invokes the reclaim() function to
get a free page frame by evicting a page from memory
and then stores the requested page in the frame after
retrieving it from secondary storage (we provide the descrip-
tion of CRAW from a theoretical aspect here. Actually,
commodity operating systems do not invoke reclaim()
function on demand but reserve a certain number of free
page frames in advance). Then, CRAW inserts the page
in the area corresponding to the access type and adjusts
the size of their areas, if necessary.

If a page fault results from a read access, CRAW
inserts the page at the tail position of the read area. If the
history of the page exists in the ghost read area R, it is
deleted from R’, and if necessary, the size of R is increased.
The size of R’ is then reduced to preserve the balance
between R and R".

If a page fault results from a write access, there are

http://dx.doi.org/10.5626/JCSE.2014.8.3.00

three different cases. First, if the history of the page exists
in W1', CRAW deletes it and inserts the page into the tail
position of W2. In this case, a hit occurs in ghost write
area W1'and thus the size of W1 is increased, and if nec-
essary, the sizes of other areas including ghost areas are
adjusted. Second, if the history of the page exists in W2’
CRAW deletes it and inserts the page to the tail position
of W2. In this case, a hit occurs in ghost write area W2’
thus the size of W2 is increased, and if necessary, the
sizes of other areas including ghost areas are adjusted.
Third, if the page history does not exist in any of ghost
write areas, it is inserted to the tail position of W1.

Now, we describe the reclamation procedure used to
obtain a free page frame. The reclaim() function first
selects the area from which to evict a page. Since CRAW
maintains and adjusts the desired size for each area
according to the hits from ghost areas, it basically selects
an area containing more pages than its desired size as the
victim area.

In practice, however, there may be more than one area
that satisfies this condition, because CRAW allows a
page to be shared by multiple areas. In this case, CRAW
selects the area that has the largest ratio of current size to
the desired size as the victim area. For example, let us
assume that the desired sizes of R, W1, and W2 are 3, 4,
and 5, and the current sizes of them are 4, 5, and 5,
respectively. In this example, both R and W1 have more
pages than their desired sizes. Since R has a larger ratio
of current to desired size, R is selected as the victim area
in this case.

As explained earlier, when reclaim() chooses to
evict a page from the read area, it first checks the read bit
of the page to which the clock-hand points as CLOCK
does. If the read bit is 1, reclaim() clears the bit and
moves to the next page. Otherwise, reclaim() deletes
the page from the area and returns. In this process, if a
page is found with its write bit set in the read area,
CRAW clears the write bit and links that page to the tail
of write area W1, if the page is not already in the write
area. If reclaim() selects W1 or W2 to evict a page, the
write bit is checked in the same way. In this process, if a
page is found with its read bit set to 1, CRAW clears the
read bit, and links that page to the tail of read area R, if
the page is not in R. This process is simple and fast
because it only requires a bit and a list pointer to be
checked, and some list manipulations are performed only
when needed. Fig. 10 depicts the conceptual flow of the
CRAW algorithm.

V. PERFORMANCE EVALUATION

We now present the performance evaluation results to
assess the effectiveness of the CRAW algorithm. A trace-
driven simulation is performed to manage the replace-
ment algorithm of a virtual memory system with accurate

Hyejeong Lee et al.

Administrator
Highlight
(저자확인사항)
Fig. 8의 본문인용이 누락되었습니다. 확인부탁드립니다.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

S is memory size and c is the cost ratio of a write to a read;
Sk» Swi, Swa are desired sizes of R, W1, W2, respectively;
Initially Sg = S/c, Swi = (S-Sr)/2, Sw2= (S-Sr)/2;

procedure CRAW (page p, operation op)
if (p is in memory) then
if(op isread) then read bit(p) =1;
else write_bit(p) = 1;
end if
else /* page fault */
while (no free page in memory) do
RECLAIM ();
end while
MEMORY_ADD (p, op);
ADJUST_GHOST_SIZE ();
end if
end procedure

procedure MEMORY ADD (page p, operation op)
if (op is read) then
if(pER’) then
remove p from R’;
if(pages in R" has accessed c times) then
Sk =min(Sg + 1, S); /* increase Sk */
Swi = max(Sw;—0.5, 0); /* decrease Sw; */
Swz = max(Sw,—0.5, 0); /* decrease Sw, */

end if
end if
insert p at the tail of R;
read_bit(p) = 0;

else /* op should be write */
if(pEW1’) then
remove p from W1’ and insert p at the tail of W2;
Swi = min(Sw; + 1, S); /* increase Sw; */
Sk = max(Sg—1, 0); /* decrease Sk */
else if (& W2') then
remove p from W2'and insert p at the tail of W2;
Swz = min(Sw, + 1, S); /* increase Sw, */
Sk = max(Sg — 1, 0); /* decrease Sg */
else insert p at the tail of W1;
end if
write_bit(p) = 0;
end if
end procedure

procedure ADJUST GHOST_SIZE ()
while(|[R[+|R'|>S and [R'|>0)do
remove the LRU page from R’;
end while
while((W1HW1'[+HW2|+W2'|>S and |W1'|+{W2'|>0) do
remove the LRU page from W1'or W2 in turns;
end while
end procedure

procedure RECLAIM()

r=[R[/Sx; wl=|W1//Swi; w2 =|W2|/Swy;

/* ratio of current size to desired size */

if(r>wl and r>w2)then /* reclaim from R */

while(1) do
p = clock-hand of R;
clock-hand of R points to the next page;
if(write_bit(p)is1 and pgWI1U W2) then
insert p at the tail of W1; write bit(p) = 0;

end if
if(read_bit(p) is 1) then
read bit(p) =0; move p to the tail of R;

else /* read_bit(p) should be 0 */
reclaim p from R and insert p at MRU position in R’
if(p¢ W1 U W2) then return(p); /* found free page */
else return(NULL);
end if
end if
end while
elseif(wl>r and wl>w2) then /*reclaim from W1 */
while(1) do
p = clock-hand of W1;
clock-hand of W1 points to the next page;
if(read bit(p)is1 and pgR) then
insert p at the tail of R; read bit(p) = 0;
end if
if(write_bit(p) is 1) then
write_bit(p) =0; move p to the tail of W2;
else /* write bit(p) should be 0 */
reclaim p from W1 and insert to MRU position in W1’
if(p¢R) then return(p); /* found free page */
else return(NULL);
end if
end if
end while
else if(w2 > r and w2 > wl) then /* reclaim from W2 */
while(1) do
p = clock-hand of W2;
clock-hand of W2 points to the next page;
if(read_bit(p) is 1 and p¢R) then
insert p at the tail of R; read bit(p) = 0;
end if
if(write_bit(p) is 1) then
write_bit(p) =0; move p to the tail of W2;
else /* write bit(p) should be 0 */
reclaim p from W2 and insert to MRU position of W2
if(p£R) then return(p); /* found free page */
else return(NULL);
end if
end if
end while
end if
end procedure

Fig. 9. Pseudocode of Clock for read and write (CRAW).

Hyejeong Lee et al.

9 http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 00-00

Page references

4 Evaluating gain of each area A

2 A7

_ ghostread area

(1) Evaluate the gain of read
and write areas based on the
hits of their ghostareas

ghostwrite area

]

Space allocator

readarea | i ite area

L N

Reclamation manager Reclamation manager
for read area for write area

@vwrite area
g w1
., @) et/ @_writearea

Physical memory
reclamation manager

(2) Allocate memory space
based on the gain of area

(3) Evaluate pages in
each areabased on
read and write bits

read area R

(4) When free page is
needed, upcallan area
reclamationmanagerthat
has pages more thanits
desired size

Apage is reclaimed from physical memory only
when itis evicted from both read and write areas

Fig. 10. A conceptual flow of Clock for read and write (CRAW).

I/O timing of NAND flash memory, and software over-
heads of replacement algorithms. The size of a virtual
memory page is set to 4 kB, which is common to most
operating systems including Linux. Secondary storage is
assumed to consist of a large block SLC NAND flash
memory, where a block contains 64 pages, and a page has
2 kB of data. The I/O time of a read and a write operation
for each flash page is set to 25 pus and 200 ps, respec-
tively, as listed in Table 1.

A. Experimental Setup

The traces are acquired by a modified version of the
Cachegrind tool from the Valgrind 3.2.3 toolset [27, 28].
Fig. 11 shows the form of each request in the trace. Mem-
ory accesses in the traces can be classified into instruc-
tion reads, data reads, and data writes.

We capture the virtual memory access traces from six
different applications used on Linux X Windows, namely,
the xmms mp3 player, the gqview image viewer, the gedit
word processor, the freecell game, the kghostview PDF

Table 2. Memory usage and reference count for each workload

Reference type Virtual address Access size (byte)
readi 0x04000BEO 2
write O0xBEFFFACC 4
readi 0x04000C30 1
write O0xBEFFFABC 4
readd 0x0401582C 4

Fig. 11. Form of each request in the trace.

file viewer, and the tar gzip archiving and compression
utilities. We filter out memory references that are accessed
directly from the CPU cache memory, and also reflect the
write-back property of the cache memory. The character-
istics of these traces are described in Table 2.

The xmms trace shows a lot of write operations even
though it is a multimedia playing program. Multimedia
players seldom make write 1/O requests upon the data
file, but in the virtual memory, it decodes the data to a
playable data stream and writes the decoded data, which
is usually much larger than the encoded data to another
page frame.

We compare the performance of CRAW with CLOCK,
CAR (Clock with adaptive replacement) [22], and
CFCLOCK [10]. CFCLOCK is a modified version of
CFLRU to work efficiently in virtual memory environ-
ments. On hit to a page, CFCLOCK just sets the reference
bit or modified bit and does not perform any list manipu-
lations. Similar to CFLRU, CFCLOCK has a window
size parameter that specifies how many pages it should
first search for clean pages starting from the current
clock-hand position. If it succeeds in finding a clean page
with a reference bit set to 0 in the window, CFCLOCK
replaces it. Otherwise, it scans through the pages in the
window again and replaces a dirty page whose reference
bit is not set. If there is no such page, then CFCLOCK
searches for a page with a reference bit set to 0 starting
from the next position. Whenever a free page frame is
needed, CFCLOCK first scans through the window size
of pages. In our experiments, the window size is set to

Workload Memory footprint (kB) Ratio of operations (read : write) Total access count
xmms 8,050 1:5.13 1,168,939
gqview 7,430 1:1.30 610,685
gedit 14,460 12.05:1 1,733,763
freecell 10,080 7.16 :1 490,175
kghostview 17,390 13.93:1 1,546,135
tar_gzip 752 523:1 4,535

http://dx.doi.org/10.5626/JCSE.2014.8.3.00

10

Hyejeong Lee et al.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

one third of the total number of page frames according to
the window size of the swap system used in the original
CFLRU simulations [10].

B. Experimental Results

The performance of page replacement algorithms is
measured by the total I/O time for a given workload.
Fig. 12 shows the total I/O time of the four algorithms as
a function of the memory size ranging from 1% to 100%
of maximum memory usage of the traces. The 100%
memory size means the unrealistic condition that a com-
plete memory footprint can be loaded at the same time,
and thus page replacement is not needed. In this environ-
ment, all algorithms perform the same. For each work-
load, the graphs show the total I/O time of each algorithm
normalized to the CLOCK algorithm.

CRAW outperforms the other algorithms for a wide range
of memory size and a variety of workloads. In compari-

120 120
1o A 110 o A
AN \ 2/ N\
100 B e 100 e oA Y
%0 VA Y| < 9 Y
g) g
[, 80 %
g - g - «
£ x = 70 -
o —_— s
g ® 3
& 50 N 50
]]
Ew —+—CLOCK E 4 cLock
2. e cAR 2 4 —oCAR
------- CFCLOCK
2 x-- CFCLOCK 2
—s—CRAW —s—CRAW
10 10
o 0
0 2000 4000 6000 3000 0 1500 3000 4500 6000 7500
Memory size (kB) Memory size (kB)
(a)xmms (b) gqview
150 130
x
140 w20 b
130 ik Mo tr X
I B 100 e
& 100 |2 S N P 2 o
£ w0 "\V e £ w0
Q & X Q 70
g 7 3 60
‘s 60 5 50
E s ——CLOCK £
s 5 40
Z —5—CAR 2 —+—CLOCK
30 »-- CFCLOCK 30 5 CAR
20 —s—CRAW 20 -+ CFCLOCK
10 10 —s—CRAW
0
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000
Memory size (kB) Memory size (kB)
(c) gedit (d) freecell

120
110
100

Normalized 1/0 time (%)
Normalized 1/0 time (%)

40 ——cLock w0 clock
30 S OAR 30 o CAR
20 x croLocK 20 %+~ CFCLOCK
—e— CRAW
10 10| —e—CRAW
0 0
0 3000 6000 9000 12000 15000 1800C 0 200 400 600 800
Memory size (kB) Memory size (kB)
(e) kghostview (f) tar_gzip

Fig. 12. Total I/0 time for CLOCK, CAR, CFCLOCK, and CRAW as a
function of the memory size. (a) xmms, (b) gqview, (c) gedit, (d)
freecell, (e) kghostview, and (f) tar_gzip. CAR: Clock with adaptive
replacement, CFCLOCK: , CRAW: Clock for read and write.

Hyejeong Lee et al.

son with CLOCK, CRAW reduced the total I/O time by
an average of 23.9% and up to 66.5%. The performance
improvements of CRAW over CAR and CFCLOCK are
in the range of 25%—66% and 16%—58%, respectively.

Although CFCLOCK reduces the number of expensive
write I/O operations by preserving dirty pages as much as
possible, it falls behind CLOCK and CAR in dealing with
some read-intensive workloads, such as freecell and
gedit, for small memory sizes. Note that these two traces
are read-intensive and their locality is also strong. Since
CFCLOCK provides too much memory space to dirty
pages, it fails to preserve a large amount of clean pages
that only incur read operations. This shows that
CFCLOCK is unable to adapt to workload changes in
some read-intensive jobs. On the other hand, CRAW
dynamically adapts to the changes of workload pattern
and memory capacity resulting in consistently good per-
formances.

Figs. 13 and 14 show the number of read and write 1/
Os performed on flash memory for each workload. This
figure shows how CRAW could reduce total I/O time by
compromising the cost of read and write operations for
given workload and memory space.

In the case of xmms and gqview traces, there are more
write references than read references. In these environ-
ments, CRAW preserves dirty pages in the memory as
much as possible by enlarging write areas, which eventu-
ally reduces the number of write 1/Os and total I/O time.
In the case of gedit and freecell traces, however, read ref-

Normalized number of read 1/0s (%)
Normalized number of read 1/0s (%)

—+—CLOCK 60 —+—CLOCK
40 - CAR 50 —=—CAR
~x-- CFCLOCK 40 x--- CFCLOCK
20 CRAW 22 —e—CRAW
10
0 0 .
0 2000 4000 6000 8000 0 1500 3000 4500 6000 7500
Memory size (kB) Memory size (kB)
(a) (b)
250 180
x 100 | Koy B
x S = S X
&) ;X 2 ; X- %
€ 200 . 140 b
e i g *
3 ; X 3 120
2150 - X 2
5 5 100 5~
3 X 3
2
H ; £ 80
2 100 2
= ==
B B 60
= —+—cLock g —+—CLock
E o 5 CAR E 40 —=—CAR
= x--- CFCLOCK 2 _ | e CFCLOCK
—e—CRAW 2 —e—CRAW
0 0 .
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000
Memory size (kB) Memory size (kB)
(©) (d)

Fig. 13. Number of read 1/0s made by CLOCK, CAR, CFCLOCK,
and CRAW as a function of the memory size. (a) xmms, (b)
gqview, (c) gedit, and (d) freecell. CAR: Clock with adaptive
replacement, CFCLOCK: , CRAW: Clock for read and write.

http://jcse.kiise.org

Administrator
Highlight
(저자확인사항)
약어풀이를 기재부탁드립니다.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 00-00

—+—CLOCK
—=—CAR

: -~ CFCLOCK
—e—CRAW

Normalized number of write I/Os (%)

6000

3000

0 2000

4000 6000

1500

4500 7500

Memory size (kB)

(@)

Memory size (kB)

(b)

—+—CLOCK
—a—CAR

x:-- CFCLOCK
—e—CRAW

Nomalized number of write 1/Os (%)
£y
3

x -~ CFCLOCK
, —e—CRAW
0 X

0 2000 4000 6000 8000 10000 12000 14000 0

6000

2000 4000 8000 10000

Memory size (kB) Memory size (kB)

© (d

Fig. 14. Number of write I/0s made by CLOCK, CAR, CFCLOCK,
and CRAW as a function of the memory size. (a) xmms, (b)
gqview, (c) gedit, and (d) freecell. CAR: Clock with adaptive
replacement, CFCLOCK: , CRAW: Clock for read and write.

Write area W2

Write area W1

Read area R

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Virtual time (page fault #)

Fig. 15. The size of each area as time progresses.

erences are dominant. As shown in Figs. 13(c)—(d) and
14(c)—(d), CRAW focuses on reducing the number of
expensive write I/Os, but it also keeps the number of read
I/Os to a certain limited range. This leads to improved
performance in terms of the total I/O time. CFCLOCK
dramatically reduces write I/Os, but it performs even
worse than CLOCK and CAR, when the memory size is
relatively small. Observe the amount of read I/Os of
CFCLOCK in Fig. 13(c) that is almost 200% of CLOCK.

Fig. 15 shows how CRAW changes the size of each
area, as time progresses. The figure plots the desired sizes
of the read area and the two write areas at each time a
page fault occurs when the xmms trace is used. As shown
in the figure, we can notice that the memory space is
dynamically allocated according to the change of refer-
ence patterns.

http://dx.doi.org/10.5626/JCSE.2014.8.3.00

12

C. Overhead of CRAW

Traditional real-time embedded systems simulta-
neously load the whole address space of a process into
physical memory, instead of using virtual memory,
thereby providing deadline-guaranteed services. How-
ever, as contemporary embedded systems provide multi-
tasking, virtual memory is being supported and page
faults inevitably occur. This paper focuses on such sys-
tems, and thus its goal is not pursuing the deadline-guar-
anteed service but reducing the overhead of page faults.
Compared with the page fault handling process that
accompanies slow storage accesses, the additional soft-
ware overhead of CRAW is quite small. Actually, the
additional software overhead of CRAW is already
reflected in our experimental results shown in Fig. 12,
which confirms that the reduced storage I/O overhead by
CRAW has greatly influenced the overall performances.

The time complexity of CRAW is identical to that of
the original CLOCK algorithm, in which the only non-
constant part is involved in the clock-hand scanning pro-
cess to find the replacement victim. In this process, the
worst case time complexity is O(n), where n is the num-
ber of page frames. However, in practical situations, the
scanning requires only a few movements of the clock-
hand, implying that in practical terms, it has constant
time complexity. Actually, worst case analysis like time
complexity analysis does not consider the practical situa-
tions of real system environments, but just uses unrealis-
tic conditions for worst cases to the algorithm. For
example, LRU has the time complexity of O(1), even
though its overhead is much larger than that of CLOCK
in real systems. We believe that our experimental results
cover a wide variety of cases, including the worst cases,
as well as the common cases of real system environ-
ments, which show that the overhead of CRAW is suffi-
ciently small.

VI. REALIZATION IN REAL SYSTEM ARCHI-
TECTURES

In this section, we describe how the CRAW algorithm
can easily be deployed in existing system architectures.
The CRAW algorithm can be realized when the read and
write bits are supported in the paging unit hardware. This
is done by simple modification of bit settings in the exist-
ing architectures. Specifically, current paging unit hard-
ware sets the reference bit to 1 when a read or a write
reference occurs, and the modified bit to 1 when a write
reference occurs. Instead of this setting, a new version of
the paging unit hardware should set the reference bit only
for a read reference. This simple modification allows the
implementation of the original CRAW algorithm in real
systems. However, we show in this section that CRAW
can also be used in the existing system architectures with-

Hyejeong Lee et al.

Administrator
Highlight

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

out hardware modifications by some approximated
implementation or software support.

A. Implementation with Reference and Modified
Bits

In the system architectures that support reference and
modified bits, it may not be feasible to manipulate the
read and write bits. Since the reference bit is set by either
a read or a write operation extracting read information
alone from the reference bit is a challenging problem. In
such a case, we need to consider an approximated imple-
mentation of the read area of CRAW by using the refer-
ence bit.

We tried to use the total reference area (including both
read and write references) and the write area instead of
the read area and the write area. In this case, if a page is
written, it is included into both the total reference area
and the write area. To manage the two areas, reference
and modified bits can be used instead of read and write
bits. Since the original CRAW also allows duplication of
a page in both areas, this modified version can work rea-
sonably well. This is also consistent with the analysis
shown in Section III, in which the temporal locality of
read references is very similar to that of the total refer-
ences. Fig. 16 depicts this approximated implementation
of the CRAW algorithm, called CRAW-A.

To quantify the effect of CRAW-A on the performance
of virtual memory systems, we compare the previous
results in Fig. 12 with CRAW-A. From these experi-
ments, we found that the performance of CRAW-A is
almost identical to the original CRAW implementation.
As shown in Fig. 17, for most cases, the performances of
CRAW and CRAW-A are so similar that they are almost
impossible to distinguish. Furthermore, in some cases,
CRAW-A performs better than the original CRAW. From
this result, we can conclude that CRAW can be effectively
implemented as CRAW-A in existing system architectures
without any modification of the paging unit hardware.

B. Implementation without Additional Bits

Some embedded system architectures do not provide

Write area W

Total reference area (R+W)

Reference %
bit is used

;-----for eviction

IMRUIAS NN

e head

SO

Modified
bitis used
for eviction

Ghost total area (R+W)" Ghost write area W’

Fig. 16. CRAW-A: an approximated implementation of CLOCK
for read and write (CRAW). LRU: least recently used, MRU: most
recently used.

Hyejeong Lee et al.

13

reference and/or modified bits for the paging unit hard-
ware. Even though such bits are not provided by hard-
ware, the system still needs to keep track of the reference
and modified bits to determine the replacement victim
and flushing target. Thus, in this architecture, setting the
reference and modified bits is usually handled not by
hardware but by kernel in the way of intentional page
faults.

In the case of the ARM architecture, when a page is
first created, it is marked as read-only [29]. The first
write to such a page (a clean page) will cause a permis-
sion fault, and the kernel data abort handler will be
called. The memory management code will mark the
page as dirty, if the page should indeed be writable. The
page table entry is modified to make it allow both reads
and writes, and the abort handler then returns to retry the
faulting access in the application. A similar technique is
used to emulate the reference bit, which shows when a
page has been accessed. Read and write accesses to the
page generate an abort. The reference bit is then set

/\
100 %5 - /;\ PN
LN gy = ¥ 100 gt~ N VAR g LR
o ¥ ~ "l P
g x S B o
b 8 % o ¥ £ g \f)\x-.x .
[, L *
b3 5 3 X
x
3 e /'\ X o e r e, PR
3 ¥ =
% 50 £ s
E 40 \/‘ J —+—ctock £ a0 —+—CLock
s
Z 30 —a—CAR 2 5—CAR

x: - CFCLOCK
—e—CRAW

2 x-++ CFCLOCK
—e—CRAW

CRAW-A CARW-A

0 2000 4000 6000 8000 0 1500 3000 4500

Memory size (kB)

6000 7500

Memory size (kB)

(2)

—+—CLOCK
5 CAR

—+—CLOCK

—a—CAR
30 x:-- GFCLOCK

2 --x:+- CFCLOCK
10 s—oRAw —e—CRAW
CRAW-A
0 CRAW-A

0 2000 4000 6000 8000 10000 12000 14000

liz
3
8
»
n
Normalized 1/O time (%)
NQAIINQ
8888838
»
x

o 3
o

2000 4000 6000

Memory size (kB)

(d)

8000 10000

Memory size (kB)

(©

120
110

. .
100 Mm%n—n
g

%

90\ A 1%
80 x> ;
360X /
70 X, e
6 P R T

50

40 —+—CLOCK

Normalized 1/0 time (%)
3
Normalized /0 time (%)

40 —+—cLock
—acmR
20 2 —=—CmR
2 - GFCLOcK % X+ GFCLOCK
o—CRAW —e—CRAW
10 CRAW-A 10

CRAW-A

0
0 3000 6000 9000 12000 15000 18000 0 200 400 600 800

Memory size (kB)
(e)

Memory size (kB)

Fig. 17. Performance comparison of original Clock for read and
write (CRAW) and its approximated algorithm CRAW-A. (a)
xmms, (b) gqview, (c) gedit, (d) freecell, (e) kghostview, and (f)
tar_gzip. CAR: Clock with adaptive replacement, CFCLOCK: .

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 00-00

within the handler, and the access permissions are
changed. This is all done transparently to the application
that actually accesses the memory. The kernel makes use
of these bits when swapping pages in and out of memory;
it is preferred to swap out pages that have not been
recently used, and it is also ensured that pages that have
been written to have their new contents copied to the
backing store.

CRAW can be efficiently implemented in this environ-
ment as a software module by setting the read and the
write bits through the simple modification of kernel simi-
lar to the way of abort mechanisms performed by the
ARM architecture. This implies that CRAW can also be
applied to the virtual memory of mobile embedded sys-
tems that does not support reference and modified bits for
the paging unit hardware.

VII. CONCLUSIONS

Recently, NAND flash memory has been used as the
swap space of virtual memory as well as the file system
of embedded devices. Since temporal locality is domi-
nant in page references of virtual memory, recency-based
algorithms have been widely used. However, we showed
that this is not the case for write references. We sepa-
rately analyzed the characteristics of read and write refer-
ences in virtual memory and found that the temporal
locality of write references is weak and irregular. This
implies that in the case of write operations, temporal
locality alone is not sufficient to predict future references.

Based on this observation, we proposed and evaluated
a new page replacement algorithm, called CRAW, that
considers write frequency as well as temporal locality to
predict the re-reference likelihood of write operations.
CRAW separately analyzes the reference patterns of read
and write operations depending on the characteristics of
each operation, and more accurately predicts the re-refer-
ence likelihood of pages. To do this, CRAW partitions the
memory space into a read area and a write area, and then
dynamically adjusts their size according to the change of
access patterns and the different 1/O costs of read and
write operations. Trace-driven simulations with various
virtual memory access traces have shown that the pro-
posed algorithm significantly improves the 1/0O perfor-
mance of virtual memory systems. Specifically, it reduces
I/0 time by 20%—66% compared to widely known algo-
rithms, such as CLOCK, CAR, and CFLRU.

In this paper, we focused on the temporal locality of
read and write references. In future, we will analyze the
inter-reference recency (IRR) property of read and write
references [30]. We expect this to yield more interesting
results. Various cost-aware algorithms will also be uti-
lized. In this paper, we only considered the different I/O
costs of read and write operations in terms of time among
the various characteristics of NAND flash memory. We

http://dx.doi.org/10.5626/JCSE.2014.8.3.00

plan in the future to consider more specific characteristics
of NAND flash memory.

AKNOWLEDGMENTS

This work was supported by a National Research
Foundation of Korea (NRF) grant funded by the Korea
government (No. 2011-0028825) and by the IT R&D pro-
gram MKE/KEIT (No. 10041608, Embedded System
Software for New-memory based Smart Devices).
Hyokyung Bahn is the corresponding author of this

paper.

REFERENCES

1. J. W. Hsieh, C. H. Wu, and G. M. Chiu, “MFTL: a design
and implementation for MLC flash memory storage sys-
tems,” ACM Transactions on Storage, vol. 8, no. 2, article
no. 7, 2012.

2. Intel Corporation, Understanding the Flash Translation
Layer (FTL) Specification, Denver: Intel Corporation, 1998.

3. W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “DFS:
a file system for virtualized flash storage,” ACM Transac-
tions on Storage, vol. 6, no. 3, article no. 14, 2010.

4. A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-mem-
ory based file system,” in Proceedings of USENIX Techni-
cal Conference, New Orleans, LA, 1995.

5. J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A
space-efficient flash translation layer for CompactFlash sys-
tems,” IEEE Transaction on Consumer Electronics, vol. 48,
no. 2, pp. 366-375, 2002.

6. O. Kwon, K. Koh, J. Lee, and H. Bahn, “FeGC: an efficient
garbage collection scheme for flash memory based storage
systems,” Journal of Systems and Software, vol. 84, no. 9,
pp. 1507-1523, 2011.

7. D. Woodhouse, “JFFS: the journaling flash file system,” in
Proceedings of Ottawa Linux Symposium, Ottawa, Canada,
2001.

8. YAFFS: Yet Another Flash File System, http:/www.elephl.
co.uk/.

9. C. Park, J. U. Kang, S. Y. Park, and J. S. Kim, “Energy-
aware demand paging on NAND flash-based embedded stor-
ages,” in Proceedings of International Symposium on Low
Power Electronics and Design, New Port, CA, 2004, pp.
338-343.

10. S. Y. Park, D. Jung, J. U. Kang, J. S. Kim, and J. Lee,
“CFLRU: replacement algorithm for flash memory,” in Pro-
ceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, Seoul,
Korea, 2006, pp. 234-241.

11. L. Shi, C. J. Xue, and X. Zhou, “Cooperating write buffer
cache and virtual memory management for flash memory
based systems,” in Proceedings of the 17th IEEE Real-Time
and Embedded Technology and Applications Symposium,
Chicago, IL, 2011, pp. 147-156.

12. J. Park, H. Bahn, and K. Koh, “Buffer cache management

Hyejeong Lee et al.

Administrator
Highlight
(저자확인사항)
반효경 선생님은 이 논문의 제2저자로 들어가 있습니다. 여기서는 생략하는 것이 좋겠습니다.

Administrator
Highlight
유효하지 않은 웹사이트입니다.

아래 사이트와 비교부탁드립니다.
http://www.yaffs.net/

13.

15.

16.

17.

19.

20.

21

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

for combined MLC and SLC flash memories using both vol-
atile and nonvolatile RAMSs,” in Proceedings of the IEEE
International Conference on Embedded and Real-Time Com-
puting Systems and Applications, Beijing, China, 2009, pp.
228-235.

Intel Corporation, “Intel X-18M/X-25M SATA Solid State
Drive (product manual),” http://download.intel.com/design/
flash/nand/mainstream/mainstream-sata-ssd-datasheet.pdf.

. E. G Coftfman and P. J. Denning, Operating Systems The-
ory, Englewood Cliffs: Prentice-Hall, 1973.

F. J. Corbato, A Paging Experiment with the Multics System
(MAC-M-384), Cambridge: MIT Press, 1969.

R. W. Carr and J. L. Hennessy, “WSCLOCK—a simple and
effective algorithm for virtual memory management,” in
Proceedings of the 8th ACM Symposium on Operating Sys-
tems Principles, Pacific Grove, CA, 1981, pp. 87-95.

H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, “LRU-
WSR: integration of LRU and writes sequence reordering
for flash memory,” [EEE Transactions on Consumer Elec-
tromics, vol. 54, no. 3, pp. 1215-1223, 2008.

. H. Jo, J. U. Kang, S. Y. Park, J. S. Kim, and J. Lee, “FAB:
flash-aware buffer management policy for portable media
players,” IEEE Transactions on Consumer Electronics, vol.
52, no. 2, pp. 485-493, 2006.

S. W. Lee, D. J. Park, T. S. Chung, D. H. Lee, S. Park, and
H. J. Song, “A log buffer-based flash translation layer using
fully-associative sector translation,” ACM Transactions on
Embedded Computing Systems, vol. 6, no. 3, article no. 18,
2007.

H. Kim and S. Ahn, “BPLRU: a buffer management scheme
for improving random writes in flash storage,” in Proceed-
ings of the 6th USENLX Conference on File and Storage
Technologies, San Jose, CA, 2008, pp. 239-252.

. S. Kang, S. Park, H. Jung, H. Shim, and J. Cha, “Perfor-

Hyejeong Lee

22.

23.

24.

25.

26.

27.

28.
29.

30.

mance trade-offs in using NVRAM write buffer for flash
memory-based storage devices,” IEEE Transactions on Com-
puters, vol. 58, no. 6, pp. 744-758, 2009.

S. Bansal and D. S. Modha, “CAR: clock with adaptive
replacement,” in Proceedings of the 3rd USENIX Confer-
ence on File and Storage Technologies, San Francisco, CA,
2004, pp. 187-200.

T. Johnson and D. Shasha, “2Q: A low overhead high per-
formance buffer management replacement algorithm,” in
Proceedings of the 20th International Conference on Very
Large Data Bases, Santiago de Chile, Chile, 1994, pp. 439-
450.

Y. Zhou, J. F. Philbin, and K. Li, “The multi-queue replace-
ment algorithm for second level buffer caches,” in Proceed-
ings of the USENIX Annual Technical Conference, Boston,
MA, 2001, pp. 91-404.

N. Megiddo, and D. S. Modha, “ARC: a self-tuning, low
overhead replacement cache,” in Proceedings of the 2nd
USENIX Conference on File and Storage Technologies, San
Francisco, CA, 2003, pp. 115-130.

E. J. O'Neil, P. E. O’Neil, and G Weikum, “The LRU-K
page replacement algorithm for database disk buffering,” in
Proceedings of ACM SIGMOD International Conference on
Management of Data, Washington, DC, 1993, pp. 297-306.
N. Nethercote and J. Seward, “Valgrind: a program supervi-
sion framework,” Electronic Notes in Theoretical Computer
Science, vol. 89, no. 2, pp. 44-66, 2003.

Valgrind, http://valgrind.org/.

ARM, “Cortex-A series: programmer’s guide,” http://info-
center.arm.com/help/index.jsp?topic=/com.arm.doc.den0013b.
S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: an effective
improvement of the CLOCK replacement,” in Proceedings
of the USENIX Annual Technical Conference, Anaheim, CA,
2005, pp. 323-336.

Hyejeong Lee et al.

Hyejeong Lee received the B.S. degree in computer science and engineering from Ewha Womans University,
Seoul, Republic of Korea, in 2006. She is currently an M.S. candidate in computer science and engineering,
Ewha Womans University, Seoul, Republic of Korea. Her research interests include system security, operating
systems, distributed systems, low power systems, intelligent storage systems, system optimization,
ubiquitous computing, and embedded systems.

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 00-00

Hyokyung Bahn

Hyokyung Bahn received the B.S., M.S., and Ph.D. degrees in computer science and engineering from Seoul
National University, in 1997, 1999, and 2002, respectively. He is currently a professor of computer science and
engineering at Ewha Womans University, Seoul, Republic of Korea. His research interests include operating
systems, caching algorithms, storage systems, embedded systems, system optimizations, and real-time
systems. He received the Best Paper Awards at the USENIX Conference on File and Storage Technologies in
2013. Prof. Bahn is a member of the IEEE Computer Society, the IEICE, and the KIISE.

Kang G. Shin

Kang G. Shin is the Kevin & Nancy O'Connor Professor of Computer Science in the Department of Electrical
Engineering and Computer Science, The University of Michigan, Ann Arbor. His current research focuses on
QoS-sensitive computing and networking as well as on embedded real-time and cyber-physical systems. He
has supervised the completion of 74 PhDs, and authored/coauthored more than 800 technical articles (more
than 300 of these are in archival journals), one textbook and more than 20 patents or invention disclosures,
and received numerous best paper awards, including the Best Paper Awards from the 2011 ACM
International Conference on Mobile Computing and Networking, the 2011 IEEE International Conference on
Autonomic Computing, the 2010 and 2000 USENIX Annual Technical Conferences, as well as the 2003 IEEE
Communications Society William R. Bennett Prize Paper Award and the 1987 Outstanding |IEEE Transactions
of Automatic Control Paper Award. He has also received several institutional awards, including the Research
Excellence Award in 1989, Outstanding Achievement Award in 1999, Distinguished Faculty Achievement
Award in 2001, and Stephen Attwood Award in 2004 from The University of Michigan (the highest honor
bestowed to Michigan Engineering faculty); a Distinguished Alumni Award of the College of Engineering,
Seoul National University in 2002; 2003 IEEE RTC Technical Achievement Award; and 2006 Ho-Am Prize in
Engineering (the highest honor bestowed to Korean-origin engineers). He has chaired several major
conferences, including 2009 ACM MobiCom, 2008 IEEE SECON, 2005 ACM/USENIX MobiSys, 2000 IEEE RTAS,
and 1987 IEEE RTSS. He is the fellow of both IEEE and ACM, and served on editorial boards, including IEEE
TPDS and ACM TECS. He has also served or is serving on numerous government committees, such as the US
NSF Cyber-Physical Systems Executive Committee and the Korean Government R&D Strategy Advisory
Committee. He has also co-founded a couple of startups.

http://dx.doi.org/10.5626/JCSE.2014.8.3.00 16 Hyejeong Lee et al.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

