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ABSTRACT

Checkpoint replication is a prevalent way of maintaining vir-
tual machine availability in the presence of host failures.
Since checkpoint replication can impose heavy load on net-
work resources, checkpoint compression has been suggested
to reduce network usage. This paper presents the first de-
tailed evaluation and characterization of the effectiveness
and overheads of checkpoint compression methods for var-
ious workloads frequently seen in high-availability systems.
We propose a lightweight compression method that exploits
similarities in checkpoints to eliminate redundant network
traffic, and compare it with two well-known methods, gzip
and delta compression. Our results show that gzip and delta
compression reduce network traffic significantly for various
workloads, but incur high CPU and memory overheads, re-
spectively. The proposed similarity compression is most
effective for VM clusters running homogeneous workloads,
while using both CPU and memory efficiently. Based on our
extensive evaluation, we suggest guidelines for selecting and
using these compression methods.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems
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1. INTRODUCTION
Physical host failures are common in large, virtualized

data centers built with commodity hardware [29]. To main-
tain highly available virtual machines (VM) despite the oc-
currences of host failures, continuous checkpoint replication
has been proposed [13, 28, 8]. It periodically captures the
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state of a VM in checkpoints, and replicates the checkpoints
to a backup host. If the physical host of the VM fails, the
VM can be restored from the most recent checkpoint avail-
able in the backup.

Checkpoint replication is more widely applicable to dif-
ferent hardware/software configurations in virtualized data
centers, comparing to the other type of high-availability
(HA) approach based on logging and replaying VM instruc-
tions [12, 6]; log-and-replay is limited to specific architec-
tures and single-processor VMs, due to the complexity of
deterministically replaying low-level VM events. However,
checkpoint replication protects VMs at the expense of signif-
icant network traffic. Large amounts of checkpoint data are
replicated over the network, especially when frequent check-
pointing is used by client-facing, latency-sensitive applica-
tions to checkpoint network packets before sending them
out. For example, if a checkpoint is taken every 25 ms,
replication can consume more than 3 Gb/s of network band-
width for a single VM. If multiple VMs must be protected
at the same time, even dedicated GbE links cannot pro-
vide the aggregate bandwidth required for checkpoint repli-
cation. Reducing replication traffic is therefore crucial to
using checkpoint replication in real-world systems for HA.

One way of reducing replication traffic is to “compress”
checkpoints before sending them over the network. Check-
point compression requires no modifications to the VM, and
can be applied regardless of the workloads running in the
VM. It can be done by a general-purpose tool, such as gzip.
Alternatively, for each dirty memory page in a checkpoint,
the bits that are actually changed (called the page delta) may
be identified, and only the delta is replicated [21, 24, 27, 31].
These compression methods are available, but they have not
been compared systematically. There are few guidelines for
selecting and using them under different workloads and op-
erating conditions in a HA system.

The primary goal of this paper is to quantify the tradeoffs
between the effectiveness and overheads of various check-
point compression methods, and provide insights that could
guide selection decisions. We compare three compression
methods, including gzip, delta compression, and a new method
we propose, called similarity compression. Similarity com-
pression exploits the inherent content redundancy in VM
memory [30, 16]. It finds and eliminates redundant contents
particularly in the changed set of VM pages, i.e., the VM
checkpoints, to reduce replication traffic.

We evaluated the three methods using workloads chosen
from types frequently seen in HA systems, including server
workloads that constantly interact with external clients and
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long-running computation jobs. Our results show that no
single compression method is best suited for all types of
workloads and operating conditions. gzip reduces check-
point traffic substantially, but at a prohibitive CPU cost.
It also incurs the longest checkpoint transfer times, which
lowers the achievable checkpointing frequency and makes
it unsuitable for interactive, latency-sensitive applications.
Delta compression incurs a low CPU overhead. However, it
requires a cache larger than the average checkpoint size of
the protected VM to achieve reasonable traffic reductions.
For workloads that touches large areas of memory rapidly,
hundreds of MBs of RAM must be provisioned for the delta
cache, creating a significant memory overhead.

Similarity compression eliminates redundant contents within
checkpoints of the same VM (intra-VM similarity), and be-
tween checkpoints of different VMs on a host (inter-VM sim-
ilarity). Our evaluation shows that non-trivial VM similar-
ity exists in VM clusters running homogeneous workloads,
such as HPC clusters, especially when the VMs in a cluster
collaborate with one another. In such cases, similarity com-
pression achieves effective traffic reduction using both CPU
and memory efficiently. However, limited similarity is found
between VMs running heterogeneous workloads, for which
gzip and delta compression are better suited.

The contribution of this work is threefold: First, it pro-
poses similarity compression, a resource-efficient alternative,
especially for use in homogeneous workload scenarios. Sec-
ond, to our best knowledge, it presents the first detailed
evaluation and characterization of checkpoint compression
methods, considering gzip, delta and similarity compres-
sions. Third, based on the evaluation results, it suggests
guidelines for selecting and using these compression meth-
ods for different workload types and resource constraints.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background on checkpoint replication. We
describe our evaluation framework and metrics in Section 3,
and the three compression methods we evaluate in Section 4.
In Section 5 we present the experimental results and discuss
the insights from the results. Section 6 discusses related
work, and the paper concludes with Section 7.

2. CHECKPOINT REPLICATION

2.1 Background
Checkpoint replication protects a VM from the failure of

its physical host by sending checkpoints of the VM to a
backup host continuously [13, 28, 8]; the backup is chosen
so that it is immune to the failure of the protected host.
When protection begins, a full checkpoint containing every
memory page and the CPU state of the protected VM is
replicated to the backup. It is stored in the backup’s RAM,
and becomes the fail-over image of the protected VM. 1

As the VM executes, incremental checkpoints are taken
and replicated to the backup, usually at fixed time intervals
(a pre-configured checkpointing frequency.) An (incremen-
tal) checkpoint mainly consists of the VM pages dirtied dur-
ing the last checkpointing interval. After all dirty pages in a
checkpoint are replicated to the backup, their contents are
stored in proper locations in the fail-over image according to

1VM disks are usually hosted in a shared storage accessible
to all VM hosts. A disk state consistent with the memory
and CPU state in the fail-over image may be maintained by
the storage system using copy-on-write techniques [3, 20].
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Figure 1: The bandwidth requirements and total
traffic of checkpoint replication for two minutes.

the page indexes. The fail-over image is not updated as each
dirty page is received, since if the protected host fails in the
middle of sending a checkpoint, the image becomes inconsis-
tent and unusable for recovery. If a checkpoint takes longer
than the configured checkpointing interval to replicate, the
subsequent checkpoint is not taken when the next interval
begins, but delayed until the on-going replication finishes.
This way, checkpoints are not sent faster than they can be
stored and made useful.

Once a failure of the VM host is detected, the HA sys-
tem initiates a fail-over. The failed VM is restored based
on its fail-over image (in the backup’s RAM) and a consis-
tent disk state (in a shared storage), and resumes operation
from the most recent checkpointed state in the backup host.
In order to make this fail-over transparent to the VM’s ex-
ternal clients, the HA system ensures that the clients never
see “unprotected”VM state—the state yet to be backed up.
Specifically, during normal operation of the VM, outgoing
network packets are withheld until the checkpoint captur-
ing the state from which the packets are generated is fully
replicated to the backup. It is therefore common that HA
systems use checkpointing intervals of tens of milliseconds or
even shorter, to checkpoint and release network packets very
frequently and achieve reasonable application performances.

2.2 The Need of Compression
We ran different workloads in VMs, and replicated VM

checkpoints for two minutes of workload executions. Fig-
ure 1 shows the network bandwidth required and the to-
tal traffic generated by checkpoint replication (see Table 1
for workload details.) When checkpoints are replicated ev-
ery 25 ms, protection of a transcoding (ffmpeg) server and
a database (voltdb) server uses more than 1700 Mb/s and
3000 Mb/s of network bandwidth, respectively. Even a ded-
icated GbE link cannot meet such bandwidth requirements
for protection of a single VM. When 4 VMs are protected
concurrently, replicating checkpoints every 25 ms create al-
most 100 GB of traffic in the network in only two minutes.
To replicate these checkpoints at the configured checkpoint-
ing frequency, over 6500 Mb/s of network bandwidth is re-
quired. Even if a 10GbE link is available, it soon becomes
saturated with just a few more VMs to protect.

The prohibitive network requirements of checkpoint repli-
cation can use up all available resources and interfere with
normal VM traffic, degrading application performance and
users’ experiences of the VMs. It is therefore crucial to com-
press and reduce replication traffic when providing VM pro-
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tection. This paper proposes compressing checkpoints by
VM similarities, and evaluates it with two other compres-
sion methods systematically, to provide guidelines for their
selections. Next, we describe how each method is evaluated.

3. EVALUATION METHODOLOGY

3.1 Framework
To facilitate systematic comparison of multiple compres-

sion methods, we took an emulation approach in our evalua-
tion. We built a framework consisting of a checkpoint sender
(emulhacp) and a checkpoint receiver (emulharcv), which
emulate the replication and storage of VM checkpoints in a
real HA system, as described in Section 2.1. Different com-
pression methods are implemented as modules inserted into
the framework for evaluation.

To use this framework, we capture VM checkpoints a pri-
ori in a real HA system [17], and store them as individual
files. emulhacp runs in a protected host. It reads a com-
plete checkpoint from file into a memory buffer, and from
then operates on the buffer. It processes each dirty page us-
ing the compression method to be evaluated, and then sends
the page to emulharcv, which runs in the backup. Once all
dirty pages are received, emulharcv sends an ACK to emul-

hacp, and begins to decompress each page and store the page
content to the fail-over image kept in RAM.

After emulhacp receives the ACK, it waits until the cur-
rent checkpointing interval ends, and replicates the subse-
quent checkpoint when the next interval begins. If an ACK
is not received by the beginning of the next interval, emul-
hacp waits until the on-going replication finishes, and then
replicates the subsequent checkpoint immediately. In that
case, emulharcv is receiving a new checkpoint while storing
the one just received at the same time.

3.2 Metrics
We evaluate the average traffic reduction achieved in

each checkpointing interval, and the memory and CPU used
to achieve such reduction. If compression uses excessive re-
sources in the protected host, it can greatly interfere with
the normal operation of the protected VMs. The resource
usage in the backup is also considered, since other active
VMs may be running in the host (and backed up elsewhere)
and their performances can be affected.

A compression method’s memory cost is evaluated by
the average memory usage of its key data structures which
enable page compression/decompression. CPU cost is eval-
uated by a per-page metric. We measure the total CPU
time emulhacp takes to compress and send checkpoints for
all concurrently protected VMs. We then divide this time
by the number of dirty pages processed, and obtain the aver-
age CPU time spent for each page. Likewise, we obtain the
average CPU time emulharcv takes to receive, decompress
and store each page in the backup. These per-page metrics
facilitate fair comparison of different compression methods.

Compression also affects the transfer time of each check-
point, which starts when emulhacp begins to send the check-
point, and ends when an ACK for the checkpoint is received.
Checkpoint transfer time consists of two components: the
time to process/compress the dirty pages (processing time),
and the time to send them over the network (sending time).
Replicating compressed checkpoints reduces sending time,
but performing compression lengthens processing time. The

overall effect of compression on checkpoint transfer time
needs to be quantified experimentally.

Checkpoint transfer time is an important metric because
it has a direct impact on feasible checkpointing frequen-
cies, which in turn affects the performance and HA prop-
erties of a protected VM. Since a subsequent checkpoint
may be replicated only after the on-going replication fin-
ishes, the actual (elapsed, not configured) checkpointing in-
terval must be longer than the transfer time of a checkpoint.
If a compression method incurs long transfer times, consec-
utive checkpoints must be separated by large intervals, thus
lowering the checkpointing frequency achieved. This can
degrade the performance of latency-sensitive, server applica-
tions severely during normal operations, since network pack-
ets are checkpointed and released infrequently. For compu-
tation jobs without external observers, lowering checkpoint-
ing frequency results in a greater loss of completed work
upon a fail-over, since the VM has to resume execution from
an earlier point in time.

4. CHECKPOINT COMPRESSION
We evaluated the following three compression methods by

the framework and metrics discussed in Section 3.

4.1 Existing Techniques
gzip is a commonly-used, general-purpose compression al-
gorithm. Its application on checkpoint traffic was briefly
discussed in [13] without a thorough evaluation.
Delta compression identifies the parts in a dirty page that
are changed when the page is written to, i.e., the page delta,
and replicates the delta to the backup instead of the entire
page. It has been used in a few HA systems [21, 24].

Before sending a checkpoint, each dirty page is XOR’ed
with its content in the last checkpointing interval. The out-
come is compressed by RLE (Run-Length Encoding), and
the compression result is sent to the backup. To restore the
page content in the backup, the RLE result is decoded, and
the outcome is XOR’ed with the content of the page in the
fail-over image; no extra memory copying is needed. Since
keeping the prior content of every page incurs a 100% mem-
ory overhead, like previous work, we maintain a fixed-size
cache of transmitted dirty pages. If a dirty page finds its
prior content in the cache (i.e., a cache hit), delta compres-
sion is performed. Otherwise, the entire page is replicated
without compression. We implemented a LRU cache using
a double linked list for efficient replacement and a lookup
array to speed up queries.

4.2 Exploiting VM Similarity
Since VMs in a virtualized data center are often created

from template images consisting of the same or similar op-
erating systems and applications, they can load nearly iden-
tical kernel images and software binaries into memory, and
read duplicate data from common files. Many systems use
these content redundancies to enable page sharing [30, 16,
22]; they detect redundancies in the entire memory of co-
located VMs, and coalesce identical pages in the same phys-
ical frame to save host memory.

We argue that not only may VMs be created from simi-
lar sources, even as they execute, various activities can keep
changing their memory state in similar ways. For exam-
ple, during maintenance, a group of VMs is updated with
the same set of security patches at the same time. Also, in
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HPC-C [2]
A suite of 7 calculation-intensive benchmarks essential to long-running scientific jobs. We run it in a single VM, and also
multiple concurrently checkpointed VMs collaborating via MPI. Each VM uses 512 MB RAM.

RUBiS [4]
An auction site benchmark modeled after ebay.com. We use a three-tier setup: a back-end database, a RUBiS server
(Apache/PHP) and a client emulator. Each tier runs in a separate VM on a separate host. Our experiments use
checkpoints of the RUBiS server (a 512 MB VM).

FFmpeg [1]
An open-source tool to “transcode” video/audio files, i.e., to convert their codecs and formats; the transcoded media are
usually fed to a real-time streaming service to meet external clients’ various requests. We run FFmpeg in 512 MB VMs.

VoltDB [7]
An in-memory database. We run it in a 1.75 GB VM to support a TPC-C-like workload generated from a client VM
running in a separate host. This OLTP workload simulates an order-entry environment for a business with multiple
warehouses [5]. Our experiments use checkpoints of the VoltDB server.

Table 1: The workloads used in our evaluation and their setup.

computing clusters, multiple VMs (and multiple processes in
each VM) collaborate to finish computation-intensive tasks,
each running the same application and working on a com-
mon set of data. These VMs are often checkpointed at the
same time intervals to gain a comparable level of protection,
and the similar changes made to their memory generate sim-
ilar dirty pages in their checkpoints. We therefore propose
similarity compression, to find content redundancy par-
ticularly in the changed set of memory pages, i.e., the VM
checkpoints, and send only one copy of the duplicate con-
tents to reduce replication traffic.

To detect content redundancy at a finer granularity, we
divide each dirty page into multiple chunks, and process
checkpoints by chunks. Unique chunks are separated from
duplicate chunks. A unique chunk contains a content differ-
ent from any other chunks that have been processed. This
content must be replicated to the backup in full. A dupli-
cate chunk contains a content that is identical to at least
one other chunk. Since the duplicate content can be found
in another chunk that is already replicated (called a refer-
ence chunk), instead of sending the content again, for each
duplicate chunk, we send a pointer to locate its reference
chunk in the backup.

For similarity compression to be practically useful, two
important requirements must be met: (1) unique and dupli-
cate chunks must be separated quickly, and (2) the pointers
sent for duplicate chunks must be small, yet contain enough
information to restore the duplicate contents in the backup.
To meet these requirements, we build a hash table in the pro-
tected host. The hash table maps a chunk content to a chunk
location that has the content. Chunk location is described
by the VM to which the chunk belongs and the chunk’s offset
in the checkpoint containing the chunk. We use MD5 digests
to compactly represent and efficiently compare chunk con-
tents. We have also explored detecting content redundancy
in checkpoints using Rabin fingerprints over a sliding win-
dow, and found that to be much slower. For efficiency, we
choose to detect duplicate fixed-size chunks by hashes.

In each checkpointing interval, the hash table is initially
empty, and the checkpoints taken for concurrently protected
VMs are processed together. For each chunk in the check-
points, we compute its MD5 digest, and query the hash table
by the digest. If the digest is not found in the hash table, the
chunk content is sent to the backup, since this is a unique
content that is not seen before. A new entry is inserted into
the hash table to record the chunk’s content and location.

If the hash table lookup finds the chunk digest, we have
a duplicate chunk, and the matching hash entry records the
location of a replicated chunk with the same content, i.e.,
the reference chunk. The location of the reference chunk

Checkpoint Checkpointing Intervals (ms)
Sizes (MB) 5000 2000 1000 100 50 25

HPC-C 19.3 18.2 13.1 3.1 2.1 1.7
RUBiS 13.0 11.4 8.2 4.4 4.1 3.7

FFmpeg 19.0 12.9 10.8 8.0 6.8 5.4
VoltDB 396.7 207.5 114.4 20.0 13.2 9.6

Table 2: The average checkpoint sizes of each work-
load.

(encoded in 4 bytes in our implementation) is sent to the
backup as a pointer. When incorporating the checkpoint
into the fail-over image, the duplicate content is retrieved
following the pointer and stored to the image. The refer-
ence chunk may belong to the same, or a different VM than
the duplicate chunk, upon detection of intra- and inter-VM
similarity, respectively.

5. EXPERIMENTAL RESULTS
This section presents and analyzes our evaluation results

of the three compression methods. We first describe the
workloads and testbed used in our evaluation in Section 5.1.
Section 5.2 evaluates the traffic reductions achieved by each
compression method. Section 5.3 and Section 5.4 evaluate
the associated resource and time overheads, respectively.

5.1 Workloads and Testbed
The computation tasks needing HA most are the ones that

are not repeatable or prohibitively expensive to repeat after
a failure occurs. These tasks include server workloads that
constantly interact with external clients, and long-running
computing jobs such as scientific computations. Our evalu-
ation uses four different workloads of these types. Table 1
summarizes the workloads we use and their setup.

We run the workloads in VMs, take checkpoints for two
minutes of workload execution, and store the checkpoints
taken for repeated use in our various experiments. 2For each
workload we capture multiple series of checkpoints, and in
each series we use a different checkpointing frequency. We
use sub-second (25, 50 and 100 ms) and one-second check-
pointing intervals to reflect those used in current HA sys-
tems [13], and also multi-second (2 and 5 secs) intervals to
explore a wider parameter space. For two minutes of work-
load execution, checkpointing every 5 seconds to every 25
ms generates 24 to 4800 checkpoints in each series. Ta-
ble 2 summarizes the average checkpoint sizes of the differ-

2Checkpoints are taken on the prototype of our prior work,
a disk-based HA system for VMs [17].
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Figure 2: The average traffic reductions achieved for a single checkpointed VM running different workloads.
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Figure 3: The traffic reductions achieved by pro-
cessing a HPC-C VM’s checkpoints alone and with
other VMs’ checkpoints in a cluster.

ent workloads. While in some cases individual checkpoints
seem small, especially when taken at short intervals, sending
these checkpoints frequently creates excessive network traffic
in only two minutes, as discussed earlier in Section 2.2.

All checkpoints are taken on HP Proliant BL465c blades,
each with two dual-core AMD Opteron 2.2GHz CPUs, 4–
8GB RAM, one GbE interface and two SAS 10K rpm disks.
All our experiments are run on the same testbed. The blades
in our testbed are in the same LAN, resembling a typical
setup in data centers where protected and backup hosts
are connected by an internal LAN for management oper-
ations. We run emulhacp and emulharcv on top of Xen in
the Domain-0 of two separate blades. In each experimental
run, the programs process complete series of checkpoints,
and report average results over the checkpoints processed.

5.2 Traffic Reduction
We first evaluate how each compression method reduces

checkpoint traffic for a single protected VM. Figure 2 shows
the traffic reductions achieved when different workloads are
running in the VM. gzip is generally effective for various
workloads and checkpointing frequencies. It reduces traffic
by more than 70% in most cases. However, it compresses
less effectively for FFmpeg and HPC-C at checkpointing in-
tervals of one second and larger. These FFmpeg checkpoints
consist of many media contents that are already encoded by
video/audio codecs, and hence are not compressed much fur-
ther by gzip. HPC-C checkpoints contain many numerical
values from the workload’s computation matrices. The ran-
domness of these values is not particularly friendly to the
compression algorithm of gzip.

The effectiveness of delta compression varies widely for
different workloads and checkpointing frequencies, and is mainly
impacted by how the delta cache is sized in relation to the size
of the checkpoints. We start our experiments with a 32MB

cache, which is large enough to store at least one complete
checkpoint for most of the workloads and checkpointing fre-
quencies we use. To test the sensitivity of traffic reduction
to cache size, we also evaluate a smaller (16MB) cache.

The results show that a 16MB cache is already effective
for RUBiS, especially when checkpointed at sub-second in-
tervals. In these cases, delta compression outperforms gzip
and achieves up to 92% traffic reduction, since the cache
can hold at least 5 consecutive checkpoints. Keeping a good
history of the workload’s dirty page contents, the cache pro-
duces over 98% hit rates, letting almost all checkpointed
pages be compressed before transmission. On the other
hand, a 32MB cache is still far from enough for VoltDB.
At one-second and longer intervals, the checkpoint traffic of
VoltDB is hardly reduced, since each of these checkpoints is
much larger than the cache; almost all cached dirty pages
are replaced before enabling any compression.

In these experiments, similarity compression uses only
intra-VM similarities—traffic is reduced by removing the re-
dundant checkpoint contents within each VM, since only one
VM’s checkpoint traffic is processed at a time. We evaluate
three chunk sizes for similarity compression: 256, 1K and
4K bytes. 256-byte chunks always reduce traffic more ef-
fectively than 1K chunks, which are, in turn, more effective
than 4K chunks.

While similarity compression achieves lower traffic reduc-
tions than the other two methods, it performs particularly
well for HPC-C. Using 256-byte chunks, traffic is reduced
by 46–62% at one-second and longer intervals.We initially
suspected that much of the reduction comes from the elim-
ination of zero pages, generated upon memory allocations
by the workload. An off-line analysis showed that less than
2.5% of these checkpointed pages contain all zeros. Thus,
most of the redundant contents are non-zero workload data,
which are likely duplicated in the multiple processes that
HPC-C spawns in the VM to collaborate on the workload’s
computation problems. These results suggest that similarity
compression is particularly effective for workloads that have
multiple components collaborating on a shared set of data.

5.2.1 Multiple Concurrently Protected VMs

We then apply the compression methods to the checkpoint
traffic of four VMs simultaneously, and evaluate the traffic
reductions achieved in the following two scenarios: (S1) a
HPC cluster, representative of a homogeneous workload en-
vironment; and (S2) A heterogeneous mixture of workloads.
In S1, each of the four VMs runs an instance of HPC-C.
VM1 and VM2 work independently on separate problem
sets. VM3 and VM4 collaborate on a larger set of prob-
lems. For S2, we use the combination of the HPC-C, RUBiS,
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Figure 4: The resource costs of replicating checkpoints of the single checkpointed VMs (showing the CPU
costs of 100ms checkpointing intervals; results of the other intervals show consistent trends.)
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Figure 5: The average checkpoint transfer times of the single checkpointed VMs.

FFmpeg and VoltDB checkpoint series which have been indi-
vidually analyzed in the previous discussion of single check-
pointed VMs. In both scenarios, the VMs are co-located in
a single protected host, and their checkpoints are captured
at the same frequency.

In the three methods evaluated, similarity compression is
the only one that may achieve additional traffic reductions
when processing checkpoints of multiple VMs concurrently,
since dirty page contents duplicated across VM boundaries
are also eliminated. To understand the effect of exploiting
inter-VM similarity, we choose an individual VM, and com-
pare the reductions achieved for the VM when its check-
points are processed alone versus with other VMs’ check-
points in a cluster. This is more reasonable than simply
comparing the overall reductions achieved in a single- and
a 4-VM scenario, since the overall reduction observed in a
multi-VM cluster is biased by the individual VMs’ check-
point sizes. We ask the following questions: How much
benefit does inter-VM similarity provide in a homogeneous
workload environment for improving traffic reductions? In
such an environment, is there any difference if the VMs col-
laborate on the same tasks? On the other hand, is there any
inter-VM similarity in a heterogeneous environment?

Figure 3(a) shows the traffic reductions achieved by simi-
larity compression for VM1 in scenario S1, which works on
a HPC problem set independently. When the VM’s check-
points are processed with the other three VMs’, an addi-
tional 2–11% reduction is achieved. Figure 3(b) shows the
reductions achieved for VM3 in scenario S1, which collabo-
rates with another VM on the same HPC problem set. Pro-
cessing this VM’s checkpoints in a cluster yields a greater
additional traffic reduction of 11–20% more. Even at sub-
second intervals, a meaningful degree of inter-VM similarity
is observed between collaborating VMs.

Non-trivial inter-VM similarity exists and enables greater
traffic reductions in a homogeneous workload environment,
especially when VMs collaborate on a common task set. How-

ever, limited similarity is found between VMs running het-
erogeneous workloads. We found in the workload mixture of
scenario S2 that each VM’s checkpoint traffic is hardly fur-
ther reduced when their checkpoints are processed together
versus separately; the greatest improvement of traffic reduc-
tion in the cluster is observed with RUBiS at only 6% more.

5.3 CPU and Memory Costs
Figure 4 shows the resource requirements of each compres-

sion method. While reducing traffic effectively, gzip incurs
the largest CPU overhead for compression. This prohibitive
CPU cost can greatly interfere with the normal VM opera-
tions in the protected host, especially when checkpoints of
multiple VMs are processed by gzip concurrently.

Delta compression consumes excessive RAM in the pro-
tected host to cache transmitted dirty pages. From our eval-
uation, in order to achieve reasonable traffic reductions, the
delta cache must be large enough to store at least one com-
plete checkpoint taken for the protected VM. Although our
experiments evaluate fixed size caches of tens of MBs, in
practical use, for workloads that touch large areas of mem-
ory rapidly (like VoltDB), a cache of hundreds of MBs of
RAM or even larger must be provisioned. As more VMs be-
come protected, the total memory cost quickly grows, cre-
ating memory pressure in the protected host.

Similarity compression uses both CPU and memory effi-
ciently. Even using 256-byte chunks (computing 16 digests
per page), its CPU cost is the lowest of the three meth-
ods evaluated. Low memory overheads are incurred, rang-
ing from 95KB to 1.3MB with 256-byte chunks and less
(8–350KB) when 1KB and 4KB chunks are used, except
for VoltDB, which has exceptionally large checkpoints and
many unique chunks in each checkpoint. Similarity com-
pression uses less memory in the presence of greater VM
similarity, since fewer unique chunks need to be stored in
the hash table. In our 4-VM HPC cluster (scenario S1 in
Section 5.2.1), significant intra- and inter-VM similarity ex-
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ist, and the hash table uses less than 2MB of memory at all
times to process checkpoints of all four VMs concurrently.

5.4 Checkpoint Transfer Time
Figures 5(a)–5(d) show the checkpoint transfer time of the

single checkpointed VMs. For all workloads, transfer time is
the shortest when compression is not used (baseline). gzip
incurs the longest transfer time.Even though gzip sends only
30% of the original checkpoint data in most cases, transfer
time becomes up to 14x longer than the configured interval,
due to performing compression. As a result, checkpointing
frequencies of every 100ms and higher are no longer feasible.
For VoltDB, none of the evaluated checkpointing frequencies
can be achieved when gzip is used.

Such long transfer time lowers the checkpointing frequen-
cies achievable with gzip, and limits its use for server applica-
tions that are very sensitive to network latencies. Delta and
similarity compressions are better suited for these applica-
tions. In most cases, similarity compression takes about 1.5x
less time than delta compression to replicate a checkpoint
using 256-byte chunks. We observed that similarity com-
pression requires even shorter transfer time when process-
ing checkpoints by larger (1K and 4K) chunks. For VoltDB,
delta compression incurs the shortest transfer time, since
few compressions are performed with a 32MB cache; espe-
cially at one-second and longer intervals, the behavior of
delta compression is almost like that of the baseline.

5.5 Discussions
From our evaluation, there is hardly a single best com-

pression solution. gzip and delta compression reduce check-
point traffic substantially, but incur a prohibitive CPU and
memory cost, respectively. Similarity compression usually
achieves smaller traffic reductions. However, it reduces traf-
fic very effectively for VMs collaborating on a shared task
set, using both CPU and memory efficiently.

Compression methods should be selected based on the
workload types and resource constraints in the target envi-
ronment. Our results suggest that for VM clusters running
homogeneous workloads, similarity compression is particu-
larly suitable. Since non-trivial intra- and inter-VM sim-
ilarity exist, significant traffic reductions can be achieved
at low overheads. For other workload scenarios, especially
a heterogeneous mixture of workloads, gzip and delta com-
pression are better candidates. They are effective for a wider
range of workload types, although heavier-weight comparing
to similarity compression. The resource availability in the
target environment is an important factor to consider when
selecting these methods.

To use gzip, the protected host must have sufficient CPU
to support checkpoint compression in addition to normal
VM operations. Since gzip is bottlenecked on compres-
sion rather than transmission of checkpoints, its usefulness
greatly degrades if processing checkpoints of multiple VMs
creates severe CPU contention. This not only affects nor-
mal VM operations, but further lengthens the time taken to
replicate each checkpoint. The protected VMs thus must be
checkpointed at even lower frequencies, making gzip almost
unusable for server applications.

For delta compression to be effective, sufficient memory
must be available in the protected host. Our results suggest
that an effective delta cache is usually larger than the aver-
age checkpoint size of the protected VM. A proper cache size

may be determined by profiling the target workloads a pri-
ori. Alternatively, the cache may first be over-provisioned,
and dynamically adjusted as the workloads execute.

6. RELATED WORK
Two types of approaches have been proposed to reduce

checkpoint replication traffic in HA systems. One reduces
the amount of VM state to protect/checkpoint. RemusDB [21],
a highly available database system in VM, does not check-
point clean disk buffers, and“de-protects”certain data struc-
tures in the database system that can be regenerated after
a failure. This creates smaller checkpoints and thus less
replication traffic in the network. However, it requires in-
depth understanding of the applications running in the pro-
tected VMs to identify data structures that can be safely
de-protected. The VM and applications must also be instru-
mented to recover un-checkpointed state after a fail-over.

The other type of approaches reduces the amount of data
sent for each checkpoint taken. Checkpoint compression is
generally applicable regardless of the applications in the
VMs, and requires less system instrumentation; hence it
is the focus of our study. The authors of [13] briefly dis-
cussed compressing checkpoints by gzip and delta compres-
sion, although a thorough evaluation was not included. Re-
musDB [21] and SecondSite [24], designed for database HA
and datacenter disaster recovery, respectively, use delta com-
pression in their systems. They both find page delta by
XOR, and compress the delta by RLE, like evaluated in this
paper. Lu et al. propose fine-grained dirty region track-
ing (FDRT) [19], which shares the same concept of delta
compression. FDRT divides each dirty page into fixed-size
regions, and replicates only the regions that are modified to
the backup. Delta compression has also been used to reduce
VM live migration traffic [27, 31].

Similarity compression exploits memory content redun-
dancy to reduce checkpoint replication traffic. Different
from memory sharing systems which find and coalesce re-
dundant pages in the entire memory of co-located VMs [30,
16, 22], similarity compression finds redundant data in dirt-
ied memory pages particularly. It also detects redundancy
continuously and at much higher frequencies comparing to
redundancy elimination during VM live migration [26, 31].
Note that similarity compression examines the similarity in
the memory of live, executing VMs continuously, different
from VMFlock [9], which utilizes the similarity in VM disks
during migration of static VM images. Instead of finding
“identical” data in dirty pages, Gerofi et al. find memory ar-
eas that are “similar” to the dirty pages, and send only the
differences between the dirty pages and these memory areas
to reduce checkpoint replication traffic [15]; their approach
is currently applied to each VM independently. The same
idea has also been used to reduce VM migration traffic [32,
14]. In a broader context, content redundancy is widely used
for storage deduplication to improve I/O performance [23,
25, 18], and in network infrastructures to improve network
capacity and end-to-end application performance [10, 11].

7. CONCLUSIONS AND FUTURE WORK
Reducing checkpoint traffic is crucial to using checkpoint

replication for maintaining VM availability. In this paper,
we propose similarity compression to reduce traffic by elim-
inating redundant checkpoint contents, and evaluate it with
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gzip and delta compression, characterizing the compression
methods based on their effectiveness and overheads. We find
no single best solution that suits all workloads and operat-
ing conditions, and our characterization suggests that com-
pression methods can complement one another in a hybrid
approach. We are exploring hybrid compression approaches
that combine a lightweight technique, like similarity com-
pression, with another heavier-weight one, such as gzip. For
example, coarse-grained similarity compression can achieve
a meaningful reduction of checkpoint sizes at a low com-
puting overhead. The remaining checkpoint data can then
be compressed greater and faster by gzip. We are also ex-
tending similarity compression to detect content redundancy
across checkpointing intervals, by increasing hash table life-
time, and to exploit VM similarity beyond host boundaries,
by building a distributed hash table.
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