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Abstract—In cognitive radio networks (CRNs), detecting small-
scale primary devices, such as wireless microphones, is a
challenging, but very important, problem that has not yet
been addressed well. Recently, cooperative sensing and sensing
scheduling have been advocated as an effective MAC (medium
access control) layer approach to detecting large-scale primary
signals. However, it is unclear whether and how they can improve
the detection of a small-scale primary signal because of (i) its
small signal footprint due to the use of weak transmit-power,
and (ii) the unpredictability of its spatial and temporal spectrum-
usage patterns. Based on extensive analysis and simulation, we
identify the data-fusion range as a key factor that enables
effective cooperative sensing for detection of small-scale primary
signals. In particular, we derive a closed-form expression for the
optimal data-fusion range that minimizes the average detection
delay. We also observe that the sensing performance is sensitive to
the accuracy in estimating the primary’s location and transmit-
power. Based on these observations, we propose an efficient
sensing framework that jointly performs Detection, LOCation
estimation, and transmit-power estimation (DeLOC) for small-
scale primary users. Our extensive evaluation results in a real-
istic CRN environment show that DeLOC achieves near-optimal
detection performance, while meeting the detection requirements
specified in the IEEE 802.22 standard draft. These findings
provide useful insights and guidelines in designing a sensing
scheme for detection of small-scale primaries in CRNs.

Index Terms—Cognitive radios, cooperative sensing, location
and transmit-power estimation, small-scale primary users

I. INTRODUCTION

COGNITIVE radio networks (CRNs) have recently been
recognized as an attractive means to mitigate the spec-

trum scarcity problem that is expected to occur due to the
rapidly growing wireless services and user population. In
CRNs, unlicensed (secondary) devices can opportunistically
access temporarily available licensed spectrum bands or white
spaces, i.e., spectrum bands unoccupied by the primary users.
As a first step towards realizing this new concept of oppor-
tunistic spectrum access, the FCC has recently approved the
operation of unlicensed cognitive radio (CR) devices in UHF
bands (a.k.a. TV white space) [1]. The first standardization
effort based on this CR technology (i.e., the IEEE 802.22
wireless regional area networks (WRANs)) is also in its final
stage [2]. Among the numerous challenges that CR technology
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faces for its successful realization, spectrum sensing has been
studied extensively as the key enabling technology.

Most of the previous research on spectrum sensing has
focused on the various aspects of detecting large-scale primary
signals (e.g., TV signals), including sensor cooperation [3],
sensing scheduling [4], sensor mobility [5], and secure sensing
[6], to name a few. The detection of a TV signal is relatively
easy compared to that of a small-scale primary’s signal. The
predictable schedule, fixed location and high transmission
power (e.g., 100 kW) [7] of TV signals make a geo-location
database a promising solution for TV signal detection [8].
Moreover, the digital TV (DTV) transition completed in June
2009 [9] leaves most of the UHF bands available to secondary
users without the need for sensing TV signals.

On the other hand, detection of small-scale primary devices,
such as wireless microphones (WMs), is very difficult and
still remains to be an open problem for the following reasons.
First, while a TV signal has a large transmission range (up
to 150 km), the WM signal has a small spatial footprint due
to its weak transmission power (typically 10-50mW) [10].
This indicates that the 802.22 needs a separate dense sensor
network for WM detection [7], or more preferably, an efficient
cooperative sensing mechanism tailored to WM detection,
which is the main focus of this paper. Second, the ON-OFF
patterns of WMs have high spatial and temporal variations
[11]. WMs can be turned on at any location and at any
time without prior notification to secondary users. They are
usually mobile and used at each location for a short period
of time. Therefore, it is practically infeasible to maintain a
database for WMs [8] or profile all the possible locations and
schedules of WM usage in real time. More importantly, this
unpredictability makes it hard for the base station (BS) to
select proper sensors for cooperative sensing. Third, despite its
small footprint, a WM must be detected according to the strict
sensitivity requirement imposed by the FCC. For example,
the 802.22 standard draft specifies that sensors must be able
to detect as weak WM signals as −114 dBm over a 200KHz
band within 2 seconds with both false-alarm and mis-detection
probabilities less than 0.1. However, a recent measurement
study [12] indicates that sensors suffer from a high false-
alarm rate when detecting WM signals due to their weak signal
strengths [13].

The detection of WMs is important for efficient spectrum
utilization, especially in the space domain. For example,
when a WM signal is detected by the sensors without know-
ing/estimating the transmitter’s location, all the secondary
users located within the cell of typical radius 33 km (up to
100 km) may need to vacate the channel. Considering the small
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transmission range of a WM signal, i.e., 100-150m, this can
cause significant under-utilization of spectrum in the space
domain. Therefore, secondary users in 802.22 must be able
to accurately detect the presence of a WM signal, and also
estimate the WM transmitter’s location.
Despite its practical importance, however, little has been

done for the detection of small-scale primary signals. To the
best of our knowledge, the disabling beacon protocol, recently
proposed by the 802.22 Task Group 1 (TG 1) [14], [15], is the
only known solution. The disabling beacon protocol aims to
enhance WM detection by transmitting a specially-designed
signal before starting the WM devices. It is suitable for carry-
ing additional information, such as the signature/authentication
and geo-location of WMs, which helps improve spectrum
efficiency via better spatial [7], [16], [17] and frequency reuse
[18]. However, the disabling beacon protocol still has the
following limitations. First, we do not expect that all WM
users will be equipped with a separate beacon device in the
near future in view of the fact that most users have not
even registered their WMs. Second, the transmit power of the
beacon message is limited to the same level as the WM’s
(i.e., 250mW in a UHF band), and thus, beacons cannot
compensate for the low sensor density in 802.22 [14]. Finally,
the disabling beacon protocol incurs a significant sensing-
time overhead (i.e., 5-100ms) [14] compared to simple energy
detection, which may take only 1ms.
Motivated by these practical needs and problems, we pro-

pose an efficient sensing framework for detection of small-
scale primaries using cooperative sensing. To cooperatively
detect small-scale primary signals, the BS must carefully
select a set of sensors by estimating the primary transmitter’s
characteristics, such as its location and transmit-power. We
first assume this information is available to the secondary
users, and derive the optimal fusion-range within which the
sensors cooperate to minimize the detection delay, i.e., the
number of sensing rounds needed for detecting a primary
signal. Based on our analytical findings, we then design—
without assuming the availability of information on the
primary transmitter’s characteristics—a practical framework,
called DeLOC, which performs joint cooperative sensing and
location/transmit-power estimation, in order to meet the de-
tectability requirements, while minimizing the detection delay.
This paper makes the following main contributions.
• Introduction of a novel spatio-temporal data-fusion
scheme with the following salient features: it (i) exploits
the physical-layer signal propagation characteristics in
the space domain by finding an optimal fusion range
for cooperative sensing, and (ii) makes statistics-based
decisions in the time domain by identifying an optimal
time to stop scheduling sensing. This spatio-temporal
fusion provides useful and practical insights and can
be used as a general framework for designing sensing
schemes.

• Identification and characterization of the impacts of data-
fusion range and sensor density on the performance of
small-scale primary detection in CRNs. We derive a
closed-form expression for the optimal fusion range that
minimizes the average detection delay. Moreover, we
show that the optimal fusion range does not depend on

sensor density and the minimum required sensor density
for given detectability constraints decreases inversely
proportional to the average detection delay.

• Development of a framework for joint small-scale pri-
mary detection and location/transmit-power estimation,
called DeLOC. DeLOC iteratively performs cooperative
sensing and location/transmit-power estimation until the
fusion center (i.e., the BS) collects a sufficient amount
of information to make a final decision. This approach
allows the sensing and the estimation to refine each other
over multiple scheduled periods.

• Design of a new data-fusion rule tailored to small-scale
primary detection. Specifically, we propose a sequential
probability ratio test with ascending weight (SPRT-AW)
for DeLOC that intentionally delays the decision-making
at the BS by assigning small weights to the decision
statistics in early detection stages when location and
transmit-power estimates are inaccurate. Our simula-
tion results show that DeLOC combined with SPRT-AW
achieves high detection accuracy, while minimizing the
detection delay in a realistic 802.22 WRAN environment.

The remainder of this paper is organized as follows. Section
II reviews the related work in detecting small-scale pri-
mary users/devices. Section III describes the network, signal-
propagation and spectrum sensing models, and briefly intro-
duces our approach to WM signal detection. Section IV studies
the impact of data-fusion range on the performance of WM
detection and location/transmit-power estimation. Section V
formulates the sequential hypothesis testing problem for WM
detection and derives an optimal fusion range that minimizes
the average detection delay. Section VI details our proposed it-
erative sensing framework DeLOC which incorporates location
and power estimation, and presents the SPRT-AW based data-
fusion rule. Section VII evaluates the performance of DeLOC,
and Section VIII concludes the paper.

II. RELATED WORK

Despite its practical importance, there has only been limited
research into MAC-layer solutions to WM detection. Most
existing work focuses on PHY-layer signal detection tech-
niques [19], [20], which have short sensing range and require a
separate dense sensor network for WMs. Mishra et al. [7] stud-
ied the minimum sensor density required for detecting WM
signals based on energy detection. They showed that when the
path-loss exponent is 4 or higher, the average sensor density in
rural areas (i.e., 1.25/km2) is not sufficient for detecting WMs.
Recently, the 802.22 Working Group established Task Group 1
to develop a standard for the disabling beacon protocol [21].
Although the disabling beacon can protect WM signals better,
it has several practical limitations as discussed in Section I.
Moreover, the disabling beacon is restricted to WMs because
the sensing relies on specialized signal features. In contrast,
our DeLOC algorithm is a generic MAC-layer sensing scheme
for small-scale primary detection, which can be incorporated
into the beacon protocol while overcoming its limitations.
Chouinard [17] proposed a coexistence model between WMs
and 802.22 WRANs by exploiting the WM signal’s small
footprint and its narrow bandwidth, i.e., 200KHz. However,
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they do not account for the location estimation, which greatly
affects the spatial reuse of spectrum.
Sequential detection of primary users has been studied

by others [22]–[24]. Chen et al. [24] proposed a weighted
sequential probability ratio test (WSPRT) that assigns different
weights to sensor reports based on the sensors’ reputation
in order to minimize the impact of the manipulated (or
erroneous) sensor reports in making the final decision on the
presence/absence of a primary signal. By contrast, SPRT-AW
introduced in DeLOC is designed to intentionally defer the
final decision at the BS, so as to reduce the effects of any
wrong decision made in early stages when localization and
power estimation are relatively inaccurate.
Chen et al. [25] proposed a scheme for verifying a primary

user’s location, called LocDef. Its main idea is that if the
estimated location of the signal source differs significantly
from the known location of the primary transmitter, i.e.,
a TV transmitter, then the BS assumes that the signal is
transmitted from a fake primary user. By contrast, the location
and transmit-power estimation introduced in DeLOC aim to
improve the detection performance of small-scale primary
signals, e.g., WMs, by helping the BS select an optimal set
of cooperating sensors. In addition, when there is a WM
signal, DeLOC returns the estimated location and transmit-
power of the detected WM, so that the BS may use this
information for admission control and transmit-power control
of the secondary users to achieve better spectrum reuse in the
space domain. Another key difference is that DeLOC makes
use of a sparse sensor network, whereas LocDef requires a
dense sensor network for location verification.
The work presented in this paper is also related to the

existing body of research on the coverage of sensor networks.
Using a theoretical analysis, Xing et al. [26] showed that
data fusion via sensor cooperation can improve the coverage
of sensor networks over the conventional detection schemes
based on a disc model. While our approach also emphasizes
the importance of data fusion, we adopt sensing scheduling to
improve the detection performance of small-scale primaries.
We characterize the impact of various factors on WM detec-
tion, and establish a practical framework that accounts for the
unpredictability of each WM’s transmit-power and location.

III. PRELIMINARIES

In this section, we introduce the network model, the wireless
signal-propagation model, the WM sensing model, and the
data-fusion model.

A. Network Model

We consider a CRN consisting of primary and secondary
users in the same geographical area. In general, there are two
types of primary users: large-scale (e.g., TV transmitters) and
small-scale (e.g., WMs). Here we focus on detecting small-
scale primary users. While the techniques that we propose
can be applied to other small-scale primary transmitters, we
will focus on WM detection in IEEE 802.22 WRANs. WMs
use a weak transmit power around 10-50mW, or below [10],
[17], and its transmission range is only 150-200m, which is
much smaller than the typical 802.22 cell radius of 33 km.

We assume that WMs can use any UHF band and are turned
on at random locations and at any time for relatively short
periods of time. In 802.22, the secondary spectrum users are
called consumer premise equipments (CPEs), which represent
households in rural areas. Such CPEs are stationary and their
locations are known to the BS. CPEs transmit/receive data
to/from the BS, and function as spectrum sensors during the
quiet periods reserved for primary detection. All the CPEs
within the cell must be silent during quiet periods, and employ
the spectrum sensors to measure the received signal strengths
(RSSs) and report them to the BS for data-fusion. We assume
secondary users have been deployed in an area A, i.e., an IEEE
802.22 WRAN cell, following a point Poisson process with
density ρ, i.e., nA ∼ Poi(n; ρ|A|). We assume a low sensor
density ρ as the typical density of CPEs (i.e., households) in
rural areas is very low (around 1.25/km2) [27].

B. Signal-Propagation and WM Sensing Models

We assume that sensor n’s received primary signal strength
can be characterized by the following propagation model:

Pn = Po

“ do

dn

”α

eXneYn (Watt), (1)

where do is the reference distance (e.g., 1m), Po the re-
ceived primary signal strength at the reference distance, α
the path-loss exponent, and dn the distance from the primary
transmitter to sensor n. Shadow fading and multi-path fad-
ing are accounted for in eXn and eYn , respectively, where
Xn ∼ N (0, σ2) ∀n. The log-normal shadow fading is often
characterized by its dB-spread, σdB , which has the relationship
σ=0.1 ln(10)σdB .
We make the following assumptions regarding the WM

signal detection: Sensors

A1) use the energy detection for sensing, and
A2) sense an entire 6MHz-wide TV channel.
Regarding A1, the feature detection cannot be applied for

WM detection because, unlike the TV signals, there is no
standard modulation specified by the FCC for WM signals [1].
The test statistic at sensor n can be approximated as Gaussian
using the Central Limit Theorem (CLT) as in [28]:

Tn ∼
(
N `No,

N2
o

Ms

´ H0 (no primary signal)

N `Pn+No,
(Pn+No)2

Ms

´ H1 (primary signal exists),
(2)

where Pn is the power of a received primary signal at sensor
n, No the noise power, i.e., −95.2 dBm for a TV channel with
6MHz bandwidth [29], and Ms the number of signal samples,
e.g., 6×103/ms for 6MHz TV band at the Nyquist rate.
Regarding A2, WMs use a relatively narrow frequency

band, i.e., 200KHz, compared to a 6MHz TV band. There-
fore, sensing the entire TV channel simplifies the sensing
design at the cost of decreased measured signal-to-noise ratio
(SNR) due to the increased noise level over a 6MHz-wide
channel.
At each sensing round (i.e., quiet periods), the BS directs a

set of sensors to perform sensing for sensing duration of TS

(e.g., 1ms), and the sensors report their readings to the BS
for data fusion at the end of each sensing round.
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Fig. 1. The DeLOC framework: When a sensor reports a test statistic above
a predefined threshold (ξ), DeLOC for a small-scale primary, i.e., WM, is
triggered by the BS that initiates and repeats the iteration between cooperative
sensing and location/transmit-power estimation until the BS collects enough
information for making a final decision.

C. Data-Fusion Model

For data fusion rule at the BS, we assume Equal Gain
Combining (EGC) for a single-round sensing. EGC is known
to have near-optimal performance without requiring the es-
timation of channel gains [30], and has the following deci-
sion statistic TΣ �

∑ns

n=1 Tn, where Tn is the test statistic
(i.e., measured RSS) of the energy detector at sensor n,
and ns is the number of cooperative sensors. EGC will be
used to characterize the impact of fusion range on detection
performance (in Section IV). In DeLOC, the BS performs a
sequential hypothesis testing for primary detection, and the test
statistic of EGC, i.e., sum of the RSSs measured at cooperating
sensors, will be used in updating the decision statistic for
hypothesis testing (in Section V).

D. The Proposed Approach

Fig. 1 illustrates our proposed spectrum-sensing framework,
DeLOC, which is tailored to the detection of small-scale
primary signals such as WMs. When a large-scale primary
signal exists, all the sensors within the network (e.g., an 802.22
cell) must vacate the channel regardless of the presence of
small-scale primary signals. Thus, when a large-scale primary
signal exists, DeLOC will not be triggered.1 To minimize the
energy consumption and communication overhead, DeLOC for
WM sensing is triggered only when a sensor reports a test
statistic above a predefined threshold (ξ) during the normal
sensing mode for detection of large-scale primaries (i.e., TV
signals). In our simulation study, we set ξ=No+3.5 σo where
No and σo = No√

Ms
are the mean and standard deviation of the

test statistics under H0. Note that the BS can run multiple
instances of DeLOC in parallel corresponding to different
triggering events at different geographical locations.
Upon triggering the detection process, the BS iteratively

performs the location/transmit-power estimation and coopera-
tive sensing until it collects a sufficient amount of information,
i.e., measured test statistics, to make a final decision on the
presence of a WM. In each sensing stage, the BS first estimates
the location and transmit power of a WM, and based on this

1Note that large-scale primary signals can be reliably detected using
either existing sensing schemes (e.g., [23]) or geo-location database [8]. The
detection of large-scale primary signals is not within the scope of this paper.

estimation, it computes an optimal fusion range (R∗
f ) for coop-

erative sensing. Then, based on the test statistics reported from
the sensors, the BS updates the decision statistic, and compares
it with predefined lower (A) and upper (B) thresholds, to make
a final decision. The thresholds are designed to guarantee the
desired false-alarm and mis-detection probabilities (see Eq. (7)
in Section V). If the test statistic is below the lower threshold,
then the BS assumes the absence of a primary transmitter, e.g.,
the event was falsely triggered by the measurement error. If the
test statistic exceeds the upper threshold, the BS assumes the
presence of a primary transmitter at the estimated location, and
then takes an appropriate action, e.g., vacating the channel or
disabling nearby secondary users. Otherwise, the BS schedules
another sensing event with the sensors within the optimal
sensing range, thus accumulating the detection confidence in
the temporal domain.

IV. COOPERATIVE SENSING FOR SMALL-SCALE PRIMARY
DETECTION

In this section, we first study the impact of sensor co-
operation on the detection of small-scale primary users. In
particular, we investigate the impact of data-fusion range and
localization error on the performance of signal detection.

A. To Cooperate or Not?

Although cooperative sensing is shown to help improve the
sensing performance of large-scale primary users [5], [23], its
relevance for small-scale primary detection is less obvious.
On one hand, a large number of sensors may be needed
for cooperation, because WM signals usually have a small
footprint, and their spatial-temporal ON-OFF patterns are
highly unpredictable. On the other hand, those sensors located
far from the WM will report only the noise power. Thus,
employing a large number of noisy reports may adversely
affect the detection performance, since the energy detector
cannot extract the primary signal from the noise. The set of
sensors chosen for cooperative sensing may also affect the
accuracy of location and transmit-power estimation, which
play an important role in detecting WMs. In what follows,
we thus investigate the impact of fusion range and location
uncertainty on detection performance.

B. Impact of Data-Fusion Range

Fig. 2 shows the impact of data-fusion range on the detec-
tion probability QD subject to a given false-alarm probability
QFA = 0.01 using MATLAB-based simulation. Intuitively,
when the range is small, enlarging the range increases sensor
diversity, thus improving the sensing performance. However,
as the range increases further, the test statistics measured from
the sensors become closer to the noise level, adversely affect-
ing the detection performance. This implies the existence of an
optimal fusion range that maximizes the sensing performance.
Fig. 2 also indicates that the optimal range depends on the
transmit power of the primary transmitter. (Also, see Fig. 5(a)
in Section VII for more detail.)



MIN et al.: DETECTION OF SMALL-SCALE PRIMARY USERS IN COGNITIVE RADIO NETWORKS 353

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fusion range (km)

Q
D

P
o
=1 mW

P
o
=2 mW

P
o
=5 mW

P
o
=10 mW

P
o
=25 mW

Fig. 2. Impact of data-fusion range: The figures show the existence of an
optimal fusion range Rf in terms of maximizing the detection probability
QD . Sensor density, sensing duration, shadow fading dB-spread, path-loss
exponent, and the required false-alarm probability are set to ρ = 1.25 ×
10−6/m2, TS =1ms, σdB =5.5 dB, α=4, and QF A =0.01, respectively.

C. Impact of Location-Estimation Error

Ideally, the BS performs data fusion with a set of sensors
located within the data-fusion range centered around the
primary transmitter. In practice, however, the unpredictability
of a primary’s location can significantly degrade the quality
of incumbent detection because it makes it difficult to select
a proper set of sensors for data fusion.
Fig. 3 plots the WM detection probability (QD) with one-

time sensing for various location estimation errors. The figure
shows that the detection performance degrades drastically
as the localization error increases beyond a certain level,
e.g., 1 km. Even a small difference in one-time detection
performance can greatly affect the average number of sensing
rounds to achieve the desired false-alarm and mis-detection
probabilities. Moreover, accurate location estimation is neces-
sary for efficient co-existence between a WM and secondary
users once DeLOC detects the presence of the WM signal.
Therefore, reasonably accurate localization is necessary in our
design of small-scale primary detection.

V. DETECTION OF SMALL-SCALE PRIMARY VIA

SPATIO-TEMPORAL DATA-FUSION

In this section, we first formulate the small-scale primary
detection problem as a sequential hypothesis testing problem.
We then derive the optimal data-fusion range that minimizes
the average detection delay. We finally show that the re-
quired sensor density to meet a certain detectability constraint
decreases inversely proportional to the average number of
sensing rounds scheduled for detection.

A. Hypothesis Testing

Let θt =[T1, . . . , T|St|]
T denote the vector of test statistics

(i.e., RSSs) measured at the sensing stage t by a set St of
cooperating sensors. A sensor is selected by the BS if it is
within the fusion rangeRf from the WM transmitter. Note that
the fusion range, and hence the set of cooperating sensors, can
differ in each sensing stage according to the WM’s estimated
location and transmit-power level. Let θ = [θT

1 , . . . ,θT
N ]T

denote the M × 1 vector of test statistics measured at sensors
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Fig. 3. Impact of localization error: The detection performance degrades as
the location estimation becomes less accurate. The simulation parameters are
set to ρ=1.25× 10−6/m2, TS =1ms, σdB =5.5 dB, α=4, QF A =0.01,
and Rf =2 km, respectively.

over N sensing stages, where M =
∑N

t=1|St|. As shown in
Eq. (2), the test statistics can be estimated to be Gaussian
regardless of the existence of a primary signal [28].
Our detection problem is thus a binary Gaussian classifi-

cation problem where the observed test statistic θ belongs to
one of two classes, H0 or H1, where:

H0 : θ ∼ N (μ0,Σ0) (no primary signal)

H1 : θ ∼ N (μ1,Σ1) (primary signal exists),

where μk and Σk are the mean vector and covariance matrix
of the test statistics under Hk, k ∈ {0, 1}. The average test
statistics under each hypothesis are μ0 = No×1 and μ1 =
(PR +No)×1, where No and PR are the average noise power
and received primary signal power at sensors, respectively.2

The covariance matrix Σ0 can be expressed as Σ0 = σ2
o I

where I is an M×M identity matrix and σ2
o = N2

o

Ms
. Note that

the correlation among sensor reports is negligible under the
assumption that the locations of the sensors and WM trans-
mitter are fixed during the detection process [23]. Moreover,
in a very low SNR environment, it is reasonable to assume
Pn + No ≈No ∀n, and hence the covariance matrix Σ1 can
be approximated as Σo≈Σ1 =σ2

o I.

B. Sensing Scheduling via Sequential Probability Ratio Test

In DeLOC, the BS schedules the sensing periods (stages)
until it obtains a sufficient amount of information for making
a final decision. Via sensing scheduling, the BS receives
a sequence of test statistics {θt}N

t=1 from the sensors. We
adopt Wald’s Sequential Probability Ratio Test (SPRT) [31]
to process the statistics and determine when to stop sensing.
SPRT is optimal in the sense of minimizing the average
number of observations, given bounded false-alarm probability
QFA and mis-detection probability QMD . It enables the BS
to reduce erroneous triggering of WM detection by optimizing
its decision thresholds.
The decision statistic ΛN is the log-likelihood ratio derived

from a sequence of test statistics θ1, . . . ,θN as follows:

2Since the BS does not have the exact distribution of the received primary
signal strengths, the BS can set PR to −107 dBm, which is the detectability
requirement in 802.22 [14].
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ΛN � λ(θ1, . . . , θN ) = ln
f1(θ1, . . . , θN )

f0(θ1, . . . , θN )
, (3)

where fk(θ1, . . . ,θN ) is the joint p.d.f. of the sequence of
test statistics under the hypothesis Hk k∈{0, 1}.
With SPRT, a decision is made based on the observed

sequence of test statistics, {θt}N
t=1, using the following rules:

ΛN ≥ B ⇒ accept H1 (primary signal exists)

ΛN < A ⇒ accept H0 (no primary signal)

A ≤ ΛN < B ⇒ take another observation,

where A and B (0<A< B <∞) are the detection thresholds
that depend on the desired values of QFA and QMD.
Let λt be the log-likelihood ratio at sensing stage t, i.e.,

λt = ln f1(θt)
f0(θt)

. Recall that {θt}N
t=1 are Gaussian, and assume

they are independent and identically distributed (i.i.d.). Then,
Eq. (3) becomes:

ΛN =

NX
t=1

λt =

NX
t=1

ln
f1(θt)

f0(θt)
=

NX
t=1

|St|X
n=1

ln
f1(eTn)

f0(eTn)
, (4)

where the test statistic can be approximated as Gaussian using
the Central Limit Theorem (CLT) as T̃n ∼N (μk, σ2

o) under
Hk, as shown in Eq. (2).
We now consider the normalized test statistics (i.e., RSSs)

to simplify the derivation of the average number of sensing
rounds. Let T̃n �Tn ·σ−1

o denote the normalized test statistic,
i.e., tn|Hk

∼N (φk, 1) where φk = μk

σo
, ∀k. Then, we have:

λt =

|St|X
n=1

ln
h1( eTn)

h0( eTn)
= (φ1 − φ0)

|St|X
n=1

eTn +
1

2

|St|X
n=1

(φ2
0 − φ2

1), (5)

where hk(·) is the p.d.f. of T̃n|Hk
.

Based on Eqs. (4) and (5), the decision statistic ΛN can be
expressed as:

ΛN = (φ1 − φ0)

NX
t=1

|St|X
n=1

eTn +
1

2

NX
t=1

|St|X
n=1

(φ2
0 − φ2

1)

= (φ1 − φ0)

MX
n=1

eTn +
M

2
(φ2

0 − φ2
1), (6)

where M =
∑N

t=1|St| is the total number of test statistics
collected by the BS through N sensing stages.
SPRT can meet the desired detectability requirements by

carefully setting the detection thresholds A and B. Let a∗ and
b∗ denote the desired values of QFA and QMD , respectively.
Then, the decision boundaries are given by [31]:

A = ln
b∗

1− a∗ and B = ln
1− b∗
a∗

, (7)

and the actual achievable error probabilities can only be
slightly larger than the desired values a∗ and b∗.

C. Minimization of the Average Detection Delay

Recall that our goal is to minimize the number of sensing
rounds that the BS has to schedule to meet the desired
detection performance requirements, e.g., QFA, QMD ≤0.01.
Thus, we first derive a closed-form expression for the average
number of sensing rounds required until a decision is made
(i.e., either boundary A or B is reached).

The average number of sensing rounds required for making
a decision (denoted by E[N ]) can be computed as [31]:

E[N ] = E[λ |Hk]−1 × E[ΛN ]. (8)

First, using Eq. (5), the average value of the log-likelihood
ratio λ under hypothesis Hk can be derived as:

E[λ | Hk] = (φ1 − φ0) E

» |St|X
n=1

eTn|Hk

–
+

1

2
E

» |St|X
n=1

(φ2
0 − φ2

1)

–
. (9)

Next, the expectation of ΛN in Eq. (8) can be found as
follows. Suppose H1 holds, then ΛN will reach the decision
boundary A with the desired mis-detection probability b∗;
otherwise, it will reach B. Thus, using Eq. (7), we have:

E[ΛN |H1] = b∗ ln
b∗

1− a∗ + (1− b∗) ln
1− b∗
a∗

. (10)

Based on Eqs. (8), (9) and (10), we can derive the average
number of sensing rounds needed for decision-making as:

E[N |H1] =
b∗ ln b∗

1−a∗ + (1− b∗) ln 1−b∗
a∗

(φ1 − φ0)E
ˆP|St|

n=1
eTn|H1

˜
+ 1

2
(φ2

0 − φ2
1)E
ˆ|St|

˜ .
(11)

Similarly, the average number of sensing rounds under H0,
i.e., E[N |H0], can be derived.
Eqs. (9), (10), and (11) indicate that the average number of

sensing rounds E[N ] depends on: (i) the average number of
sensors within the fusion range, which can be easily calculated
as E[|St|]=ρπR2

f , under the assumption of the point Poisson
distribution of sensors, i.e., |St|∼Poi(n; ρπR2

f), and (ii) the
sum of their reported test statistics, i.e., E[

∑|St|
n=1 T̃n|Hk

].
As will be shown below, the sum of test statistics is

affected mainly by three parameters: (i) sensor density (ρ),
(ii) transmit-power level of the primary device (Po), and (iii)
data-fusion range (Rf ), assuming other parameters remain
constant. In general, sensor density is known at the BS at
the time of system deployment, and the transmit power can
be estimated based on measurements (which will be detailed
in Section VI-A). Therefore, we opt to derive an optimal
fusion range R∗

f that minimizes the average number of sensing
rounds, thus minimizing the detection delay.

D. Approximation of the Sum of Test Statistics

Unfortunately, it is infeasible to derive a closed-form ex-
pression for the exact distribution of the sum of test statistics.
This is because it depends on various random factors including
the number of sensors within the fusion range, their locations
relative to the primary transmitter, channel gains between the
primary transmitter and the sensors, and the measurement error
of the energy detector. Therefore, as a first step to derive an
optimal fusion range, we approximate the sum of test statistics
in Eq. (11) as a shifted log-normal random variable.
Let TΣ(ρ,Rf ) denote the sum of the test statistics measured

at the sensors within the fusion radius Rf from the WM
transmitter, in the network with sensor density ρ. Then, under
H1, it can be approximated as:
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E
ˆ
TΣ(ρ,Rf )

˜
= E

h X
n∈St

Tn|H1

i
= E

h X
n∈St

N (Pn +No, σ
2
o)
i

≈ E

h X
n∈St

Pn

i
+ E

h X
n∈St

No

i
, (12)

where Pn is the received primary signal strength at sensor
n and St ≡ S(ρ, Rf ) for brevity. The approximation in
Eq. (12) is made based on the observation that, assuming the
sensing duration of 1ms, the measurement errors of the energy
detector is relatively smaller than the average received primary
signal strength, i.e., σ2

o 	 (Pn + No).
Based on Eq. (12), we now focus on approximation of the

sum of received primary signal strengths, which can be rewrit-
ten as E[

∑
n∈St

Pn]=Po E[
∑

n∈St
g(dn)eXneYn ] where Po is

the primary’s transmit power, g(dn) is the sensor n’s channel
gain due to path-loss, i.e., g(dn) = (do/dn)α, and eXn and
eYn are the channel gains from shadowing and multi-path
fading, respectively. We approximate the sum of channel gains
due to path-loss, denoted by GΣ(ρ, Rf )=

∑
n∈St

g(dn), as a
log-normal random variable. Previous numerical studies have
shown that the aggregate interference of Poisson-distributed
transmitters to a single receiver can be accurately approxi-
mated as a log-normal distribution [32]. Conversely, assuming
the reciprocity of the RF path, we can also approximate the
sum of received primary signal strengths at sensors as a log-
normal random variable. It has been shown that the impacts
of fading on received signal strengths is not a critical factor
in such an approximation [33]. The effects of log-normal
shadowing and multi-path fading in an average sense will be
incorporated later (see Eq. (17)).
Denote GΣ(ρ, Rf ) ∼ Log-N (μG, σ2

G). Then, the p.d.f. of
GΣ(ρ, Rf ) is given as:

pG(ρ,Rf )(x) =
1

xσG

√
2π

exp

„
− (lnx− μG)2

2σ2
G

«
, (13)

where the μG and σ2
G have the following relationships [32]:

m1(ρ,Rf ) = eμG+ 1
2 σ2

G and m2(ρ,Rf ) = e2μG+σ2
G(eσ2

G − 1).
(14)

Here mk(ρ, Rf ) is the kth cumulant of G(ρ,Rf ), given as:

mk(ρ,Rf ) = ρπ(R2
f − ε2)

Z Rf

ε

2r

(R2
f − ε2)

g(r)kdr

=
2ρπ dkα

o

(kα− 2)

„
1

εkα−2
− 1

Rkα−2
f

«
, (15)

where do is the reference distance and ε is the minimum
separation between the primary transmitter and the sensors,
which is set to ε=75m in our simulation.3

From Eqs. (14) and (15), the log-normal random variable
GΣ(ρ, Rf ) ∼ Log-N (μG, σ2

G) can be approximated as:

μG =
1

2
ln

„
m4

1

m2
1 +m2

«
and σ2

G = ln

„
1 +

m2

m2
1

«
. (16)

3This is reasonable because the probability that there exists at least one
sensor within ε=75m from the WM transmitter is 1−Poi(0; ρπε2)≈0.02
given sensor density of ρ=1.25 × 10−6/m2.

Therefore, from Eqs. (12) and (16), and by incorporating
the effects of shadowing and multi-path fading assuming the
fading is i.i.d. for each sensor, the sum of received primary
power at the cooperating sensors St can be expressed as:

E

h X
n∈St

Pn

i
= Po · E[eX ] · E[eY ] · E[GΣ(ρ,Rf )], (17)

where E[eX ]= e
1
2 σ2
, σ =0.1 ln(10)σdB, and E[GΣ(ρ, Rf )]=

eμG+ 1
2 σ2

G . For multi-path fading, we assume Rayleigh fading
with zero mean, and thus, E[eY ]=1.
Then, from Eqs. (12) and (17), the average of the sum of

normalized test statistics can be expressed as:

E

h |St|X
n=1

eTn|H1

i
= E

h
TΣ(ρ,Rf ) σ

−1
o

i
=
“
Po e

1
2 σ2

E[GΣ(ρ,Rf )] +NoρπR
2
f

”
σ−1

o . (18)

Finally, based on Eqs. (9) and (18), the first term in
Eq. (8) for calculating the average number of sensing rounds
E[N |H1] can be derived as:

E[λ |H1] =
1

2
(φ2

0 − φ2
1) ρπR

2
f + (φ1 − φ0)

× `Po e
1
2 σ2

E[GΣ(ρ,Rf )] +NoρπR
2
f

´
σ−1

o , (19)

where φ0 = No

σo
and φ1 = No+PR

σo
are the average normalized

test statistics under both hypotheses.
The average number of sensing rounds E[N |H1] can be

derived by substituting Eqs. (10) and (19) into Eq. (8).

E. Optimal Data-Fusion Range

Based on the analyses above, we now derive an optimal
data-fusion range that minimizes the average detection delay,
i.e., the number of sensing rounds needed to meet the detection
performance requirements.

Proposition 1 Let J (Rf ) � E[λ |H1] in Eq. (19). Then, the
optimal fusion range that minimizes the average number of
sensing rounds E[N ] is given as:

R∗
f = arg max

Rf

J (Rf ) = Rf

˛̨̨
∂J(Rf )

∂Rf
=0

=

„
a1(α− 2)

2a2

« 1
α

, (20)

where

a1 =
2(φ1 − φ0)Po e

1
2 σ2

ρπdα
o

σo(2− α)
, (20a)

a2 =
1

2
(φ2

0 − φ2
1)ρπ +

(φ1 − φ0)Noρπ

σo
. (20b)

Proof. See Appendix A. �
Proposition 1 indicates that the optimal fusion range that

minimizes the detection delay depends on various system
parameters, such as transmission power (Po), noise power
(No), shadow fading (σ), and path-loss exponent (α).
Based on Proposition 1, we have the following counter-

intuitive observation:

Corollary 1 The optimal fusion range (R∗
f ) is independent of

the sensor density ρ.

One might think that the optimal fusion range should de-
crease as the sensor density increases, since more sensors (near
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the WM transmitter) with high RSSs become available for data
fusion. However, this is not the case because the performance
of EGC depends on how far a cooperating sensor’s report
(i.e., the measured RSS) is from the noise power level, which
is independent of the sensor density (see Fig. 6 for details).

F. Impact of Sensing Scheduling

We now show that sensing scheduling can reduce the min-
imum sensor density required for given detection constraints.
While the achievable performance gain via cooperative sensing
has been studied extensively [5], [23], [34], the impact of
sensing scheduling on sensor density requirement has not been
studied before.

Proposition 2 The minimum sensor density required to meet
certain detectability requirements is inversely proportional to
the average number of times to sense.

Proof. Based on Eqs. (8), (10), (15) and (19), the required
sensor density for a given average number of sensing rounds
E[N ] can be expressed as:

ρ =
σ2

o

E[N ]
× b∗ ln b∗

1−a∗ + (1− b∗) ln 1−b∗
a∗

PR

ˆ
Poe

1
2 σ2` 1

ε2
− 1

R2
f

´− 1
2
πR2

fPR

˜ , (21)

where a∗ and b∗ are the desired false-alarm and mis-detection
probability values. Eq. (21) indicates that the sensor density
ρ is inversely proportional to the average number of sensing
rounds. Therefore, the proposition follows. �

Proposition 1 and 2 are derived based on the assumption
that the WM’s location and transmit-power level are known
a priori to the secondary users. However, such information
may not available in practice, and thus the benefits of our
analytical findings cannot be realized without an efficient way
of estimating the WM’s location and transmit power. This
motivates our approach of integrating sensing with location
and transmit-power estimation, which we discuss next.

VI. DeLOC: THE ITERATIVE APPROACH

We now introduce DeLOC, an iterative algorithm that ex-
pedites the detection of small-scale primary signals via joint
data-fusion and location/transmit-power estimation. We first
describe the estimation techniques, and then the proposed data-
fusion rule and the iteration method employed by DeLOC.

A. Estimation Techniques

1) Estimation of WM Location: As we observed in Fig. 3,
a reasonable approximation, if not accurate, of the WM’s
location is sufficient for improving the detection performance.
In DeLOC, the BS estimates and updates the WM’s location
based on the RSSs reported by the sensors. In particular,
the BS employs a weighted centroid method proposed in
[35], which estimates the WM’s location via a weighted
average of the sensors’ locations, where the weight equals
the corresponding sensor’s report. The BS further refines the
estimation via an exponential moving average over multiple
sensing stages.
More specifically, let ϑ̂t =(x̂t, ŷt)∈R

2 denote the estimated
location of the primary at sensing stage t. Then, the WM’s
location is estimated as [35], [36]:

Algorithm 1 DeLOC: ALGORITHM FOR JOINT DETECTION
AND ESTIMATION OF SMALL-SCALE PRIMARY USERS
At the end of a sensing period, the BS does the following
1: for Each triggering event do
2: t← 1 // Initialization
3: while t ≤ MaxNumIter do
4: t← t+ 1
5: θt ← Receive sensing results from cooperating sensors St

6: Λt ← Λt−1 + λ
f(t)
t // Update the decision statistic

7: if Λt ≥ B then
8: A primary exists and hence returns the estimated loca-

tion and transmit-power level
9: else if Λt < A then
10: A primary does not exist (i.e., the event is triggered by

a ghost primary) and hence terminates the iteration
11: else
12: (bϑt+1, bPo,t+1) ← Estimate the location and transmit

power of the primary transmitter
13: R∗

f,t+1 ← Calculate the optimal fusion range
14: St+1 ← Select a set of sensors located within R∗

f,t+1

from the estimated primary transmitter location
15: Schedule another sensing round and wait for the obser-

vation
16: end if
17: end while
18: return No primary signal exists
19: end for

bϑt = (1− β) bϑt−1 + β

 X
n∈St

PnP
m∈St

Pm
ψn

!
,

where Pn is the received primary signal power at sensor n,
ψn = (xn, yn) the location of sensor n, and β ∈ (0, 1) the
smoothing factor.
Note that DeLOC uses a simple existing localization method

to estimate the PU’s location in each round, but it is not
restricted to any specific localization algorithm, so other
localization methods such as the semi range-based method
proposed by Ma et al. [37], can also be used.
2) Estimation of Transmit Power: In DeLOC, the BS esti-

mates the WM’s transmit-power based on the WM’s estimated
location and the reported RSSs using the method proposed in
[38] as:bPo,t(dB) = 10 log10

“ 1

k

”
+

10

|St|
X

n∈St

“
log10(Pn)+α log10(dn)

”
,

where k = po dα
o P−1

o . po is the measured signal power at
reference distance do, Pn the received primary signal strength
at sensor n, and dn the distance between the WM transmitter
and sensor n, i.e., dn =

√
(x̂t−xn)2 + (ŷt−yn)2. Note that

the test statistics of the energy detector include noise power, so
the received primary signal strength Pn needs to be estimated
from the test statistics by subtracting the average noise power
No from the measurements.
While DeLOC employs simple location and power esti-

mation techniques, the estimation accuracy can be further
improved by using more sophisticated techniques at the cost
of more computation.

B. The Proposed Data-Fusion Rule

While DeLOC improves the small-scale primary detection
performance via iterative cooperative sensing and estimation,
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we observed that it often terminates in early stages mis-
detecting the WM. This is because, initially, the BS’s loca-
tion and transmit-power estimates are inaccurate, resulting in
many noisy sensor reports during data fusion. This prevents
DeLOC from fully exploiting its unique feature—an iterative
refinement of the estimation and fusion.
To overcome this problem, we propose a new data-fusion

rule for DeLOC, a sequential probability ratio test with as-
cending weight (SPRT-AW), to prevent the BS from mak-
ing biased decisions in early stages. The idea is to assign
smaller weights to the decision statistics in early stages, and
gradually increase the weights as the location and transmit-
power estimates become more accurate. Specifically, we use
the following rule to update the decision statistic:

Λt = Λt−1 + λ
f(t)
t where f(t)=

1

1 + e1−t
t ∈ N, (22)

where we use the sigmoid function f(t) such that the exponent
of test statistics increases from 0.5 to 1 as t increases.
Consequently, the test statistics in later stages count more in
decision-making. The resulting decision statistics will be used
in updating the Λt in Eq. (4), and compared with the upper
(B) and lower (A) thresholds to make a decision.

C. Description of DeLOC Protocol

As described in Fig. 1, DeLOC is triggered only when a
sensor’s report is above a certain predefined threshold ξ, which
is suspected as a WM signal. The triggering threshold must
be chosen carefully by the BS to balance the false- and mis-
triggering of DeLOC. Upon triggering, the BS assumes the
triggering sensor’s location as the WM’s location, and employs
additional sensors within the fusion range for WM detection
in the next scheduled sensing round. If there are multiple
triggering sensors in close proximity, the BS considers the
sensor with highest RSS. In each sensing round, the BS iterates
the following two steps: (i) location and transmit-power esti-
mation and (ii) data-fusion, until the decision statistic for data
fusion Λ reaches one of the thresholds. The BS also terminates
the iteration after scheduling sensing rounds for MaxNumIter.
Algorithm 1 details DeLOC.

VII. PERFORMANCE EVALUATION

In this section, we evaluate DeLOC using MATLAB-based
simulation. We first describe the simulation setup and then
present the impact of fusion range on detection performance
and its dependency on the transmit-power. We also show the
relationship between the detection delay and sensor density.
Finally, we demonstrate the performance of DeLOC in com-
parison with other testing schemes.

A. Simulation Setup

In the simulation, we consider a realistic 802.22 en-
vironment where sensors are randomly distributed over a
30 km× 30 km area. The average sensor density is set to
1.25/km2, as typically used in 802.22 WRANs [7], unless
specified otherwise. We assume a WM randomly located in the
area with effective transmit-power below 25mW, as indicated
by the measurement study in [14]. The maximum number

of sensing rounds scheduled within the 2-second channel
detection period (CDT) is limited to MaxNumIter=100.4 The
duration of a single sensing period is assumed to be 1ms. The
path-loss exponent is α=4, and the shadow fading dB-spread
is σdB = 5.5 dB, which is typically assumed for rural areas.
We also assume the signal-propagation parameters are known
a priori to the secondary system. The triggering threshold in
DeLOC is configured as ξ = No + 3.5 σo, which gives the
false-triggering rate of 2.3×10−4. The simulation results are
obtained from 5×103 randomly-generated topologies.
To evaluate the efficacy of DeLOC, we compare the per-

formance of the following four sensing schemes: (i) Oracle
(the ideal case), (ii) DeLOC with SPRT-AW, (iii) DeLOC, (iv)
DeLOC without localization, and (v) DeLOC without transmit-
power estimation. In Oracle, the location and transmit-power
information is available to the BS, so the BS always uses the
optimal fusion range for sensing without the need for estima-
tion. Thus, Oracle will be used as a performance reference.
In DeLOC without localization, the location of the triggering
sensor is regarded as the primary’s location. In DeLOC without
power estimation, the power level is assumed to be randomly
chosen in [0, 25]mW.

B. Impact of Fusion Range

Fig. 4 shows the impact of data fusion range on the detection
performance in terms of detection delay and accuracy. The
figures indicate that too small a fusion range suffers from
the lack of cooperating sensors, which makes it difficult
for the BS to collect enough information, i.e., measured
RSSs, to make a decision within MaxNumIter, resulting in
a low detection probability. On the other hand, too large a
fusion range, i.e., beyond 1 km, suffers from having many
noisy reports, misleading the BS to promptly conclude that
there is no primary signal, increasing the chance of mis-
detection. Fig. 4(b) shows that the detection probability QD

is maximized when the fusion range is 1 km, which closely
match the analytical result, i.e., 1.03 km.
An additional observation from our simulation results is

that false-alarms occur only 16 times over 5×103 iterations,
i.e., QFA =16/5000=0.0032, thus achieving the false-alarm
requirement of QFA≤0.01.

C. Optimal Fusion Range

Fig. 5(a) plots the optimal fusion range for various transmit-
power levels, and indicates that our analytical results (Propo-
sition 1 in Section V-E) closely match the simulation results.
The figure also shows that to detect a high transmit-power
WM, it is better (in the sense of reducing the sensing delay)
to extend the fusion range, thus increasing the number of
cooperating sensors. On the other hand, to detect a WM
with very weak transmit-power, it is better to have a small
number of sensors, thus reducing the number of noisy reports.
Fig. 5(b) indicates that the optimal fusion range (in the sense
of maximizing the detection probabilityQD) remains the same
over different sensor densities, thus confirming Corollary 1 in
Section V-E.

4This is reasonable since the BS can schedule sensing as frequently as once
every 10ms, i.e., one MAC frame size in 802.22.
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f that maximizes the
detection performance (QD) does not depend on sensor density.

D. Impact of Sensor Density

Although sensor density does not affect the optimal fusion
range, a higher sensor density (hence more sensors within
fusion range) can still improve the sensing performance by
exploiting diversity of measurement. Fig. 6(a) shows the
average number of sensing rounds (i.e., detection delay) re-
quired to meet the detection performance QFA, QMD ≤0.01,
which obviously decreases with sensor density. The figure also
indicates that the average number of sensing rounds is almost
inversely proportional to the sensor density, thus confirming
Proposition 2 in Section V. Fig. 6(b) further shows that the
detection probability QD increases with increasing sensor
density.

E. Performance of DeLOC

To demonstrate the efficacy of DeLOC, we compare its
performance with the other four testing schemes under the
detection constraints QFA, QMD ≤0.01. As shown in Fig. 7,
when the WM’s transmit-power increases, the detection per-
formance (with respect to delay and detection probability)
increases for all testing schemes. We make three additional
observations.

First, Fig. 7(a) shows that the average number of sensing
rounds for decision-making is below 10, which may take only
100ms as the BS can schedule sensing periods as frequently as
every 10ms, i.e., one MAC frame size in 802.22. In addition,
the detection probability of DeLOC with SPRT-AW meets the
detection requirement of 802.22, i.e., QMD ≤0.1, even for a
very weak transmit-power of 1mW, as indicated in Fig. 7(b).
Second, Fig. 7(b) shows that DeLOC with SPRT-AW per-

forms close to Oracle in terms of detection rate, and outper-
forms all other schemes that use regular SPRT. As mentioned
earlier, the SPRT in DeLOC often makes a wrong decision
(mis-detection of a WM) in early detection stages based on
many noisy reports due to the inaccurate location and power
estimates. DeLOC with SPRT-AW mitigates this problem by
discounting the decision statistics in early stages.
Third, Fig. 7(b) shows that DeLOC without localization

outperforms the one without transmit-power estimation. This
is because the power estimation plays an important role in
finding the optimal fusion range, and thus, the error in power
estimation results in significant performance degradation. On
the other hand, the location-estimation error is small compared
with the typical fusion range, and thus it does not cause sig-
nificant performance degradation, as already shown in Fig. 3.
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Fig. 6. Impact of sensor density on detection performance: (a) the detection delay decreases rapidly as the sensor density increases, and (b) the detection
accuracy increases as the sensor density increases. In the simulation, the transmit power is set as Po =2mW.
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Fig. 7. Performance of DeLOC: DeLOC (a) requires only a small number of sensing rounds for WM detection, and (b) achieves a high detection rate even
for a very weak signal power, e.g., Po =1mW.

These simulation results clearly demonstrate that the joint
design of data-fusion and location & transmit-power estima-
tion maximizes the benefits of spatial-temporal sensing for
detecting small-scale primaries, such as WMs in 802.22.

VIII. CONCLUSION

The detection of small-scale primary signals is a critical,
but challenging problem in realizing opportunistic spectrum
access in CRNs. To address this problem, we proposed a novel
spatio-temporal fusion scheme that exploits (i) spatial diversity
by cooperative sensing with an optimal fusion range, and (ii)
temporal diversity by scheduling a series of sensing stages
with an optimal stopping time. We modeled the detection
problem as a hypothesis test, approximated the sum of sensor
readings as a log-normal random variable, and then solved
a convex optimization problem, to obtain the optimal fusion
range that minimizes the average detection delay. We also
proposed a new sensing algorithm called DeLOC that iterates
between cooperative sensing and location/transmit-power es-
timation to further improve the sensing performance under
realistic settings. Our evaluation results show that DeLOC
reduces the detection delay significantly while achieving high
detection performance.

APPENDIX

A. Proof of Proposition 1

To minimize the average number of sensing rounds N in
Eq. (8), we need to find the data-fusion range that maximizes
the expected test statistic, i.e., E[λ |Hk]. Note that E[ΛN ] is a
function of desired false-alarm and mis-detection probability,
and does not depend on the fusion range, as indicated in
Eq. (10). Let J (Rf )�E[λ |H1] in Eq. (19). Then, we have:

J (Rf ) � E[λ |H1]

=
1

2
(φ2

0 − φ2
1)ρπR

2
f +

φ1 − φ0

σn
(Po e

1
2 σ2

m1 +NoρπR
2
f )

= a1R
2−α
f + a2R

2
f + a3, (23)

where

a1 =
2 (φ1 − φ0)Po e

1
2 σ2

ρπdα
o

σn(2− α)
, (23a)

a2 =
1

2
(φ2

0 − φ2
1)ρπ +

(φ1 − φ0)Noρπ

σn
, (23b)

a3 =
2 (φ1 − φo)Po e

1
2 σ2

ρπdα
o

σn(α− 2)εα−2
. (23c)

To find an optimal value of Rf , we need to show the
concavity of J (Rf ) w.r.t. Rf . The first order derivative of
J (Rf ) is given as:
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∂J (Rf )

∂Rf
= a1(2− α)R1−α

f + 2a2Rf . (24)

Then, the second order derivative is given as:

∂2J (Rf )

∂R2
f

= a1(2− α)(1− α)R−α
f + 2a2

=
4(φ1 − φ0)ρπ

σn

“
(1− α)Po e

1
2 σ2
“ do

Rf

”α

+No − (φ1 + φ0)σn

2

”
≈ 2ρπ

`
1− 2α

´“PR

σn

”2

. (25)

In practice, α > 1
2 , so it is easy to show that ∂2J (Rf )

∂R2
f

< 0
and hence J (Rf ) is concave. Therefore, the optimal fusion
range Rf can be derived from Eq. (24) as:

R∗
f = arg max

Rf

J (Rf ) = Rf

˛̨̨
∂J (Rf )

∂Rf
=0

=

„
a1(α− 2)

2a2

« 1
α

. (26)

Thus, the proposition holds. �
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