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Abstract—In IEEE 802.22 Wireless Regional Area Networks
(WRANs), each Base Station (BS) solves a complex resource
allocation problem of simultaneously determining the channel
to reuse, power for adaptive coverage, and Consumer Premise
Equipments (CPEs) to associate with, while maximizing the total
downstream capacity of CPEs. Although joint power and channel
allocation is a classical problem, resource allocation in WRANs
faces two unique challenges that has not yet been addressed:
(1) the presence of small-scale incumbents such as wireless
microphones (WMs), and (2) asymmetric interference patterns
between BSs using omnidirectional antennas and CPEs using
directional antennas. In this paper, we capture this asymmetry
in upstream/downstream communications to propose an accurate
and realistic WRAN-WM coexistence model that increases spatial
reuse of TV spectrum while protecting small-scale incumbents.
Based on the proposed model, we formulate the resource-
allocation problem as a mixed-integer nonlinear programming
(MINLP) which is NP-hard. To solve the problem in real-time, we
propose a suboptimal algorithm based on the Genetic Algorithm
(GA), and extend the basic GA algorithm to a fully-distributed
GA algorithm (dGA) that distributes computational cost over the
network and achieves scalability via local cooperation between
neighboring BSs. Using extensive simulation, the proposed dGA is
shown to perform as good as 99.4–99.8% of the optimal solution,
while reducing the computational cost significantly.

I. INTRODUCTION

Cognitive radio (CR) is a key technology for alleviating
the inefficient spectrum-utilization problem under the cur-
rent static spectrum-allocation policy [1]. In CR networks
(CRNs), unlicensed or secondary users (SUs) are allowed to
opportunistically reuse spectrum bands assigned to licensed or
primary users (PUs) as long as they do not cause any harmful
interference to the PUs.

Resource allocation is one of the key challenges in CRNs.
Resources in CRNs—as in traditional wireless networks—
include channel and power of each radio. However, how to
allocate such resources in CRNs is more difficult than in
traditional wireless networks, primarily because PUs’ use of
licensed channels must be protected while allowing SUs to
opportunistically use them. For this, the concept of interfer-
ence temperature has been proposed, specifying the maximum
interference PUs can tolerate. Therefore, CRs must carefully
choose their channel and transmit power so as not to interfere
with PUs more than allowed.

In this paper, we study resource allocation in IEEE 802.22
Wireless Regional Area Networks (WRANs), the first inter-

national CRN standard that reuses VHF/UHF TV bands.1 A
802.22 WRAN is a cellular network consisting of (1) a base
station (BS) that reaches up to 100 km radius and (2) CR end-
users associated with the BS within its coverage, referred to as
Consumer Premise Equipments (CPEs). The CPEs represent
households in a rural area and thus they are static nodes.

A. Motivation

Resource allocation in IEEE 802.22 introduces two unique
challenges. First, it is a three-dimensional problem of making
decisions on how to assign channel and power to a BS, and
which BS a CPE should be associated with (called BS-CPE
association). The BS-CPE association is considered because
IEEE 802.22 supports self-coexistence where multiple BSs
may co-exist in the same region with different coverage. Sec-
ond, resource allocation must account for coexistence with the
incumbents (i.e., PUs) in TV bands: analog TV (ATV), digital
TV (DTV), and wireless microphones (WMs). Therefore, a
good resource allocation algorithm should not only consider
efficiency of spectrum reuse but also ensure protection of PUs.

To address such challenges, we develop an accurate WRAN-
PU coexistence model by focusing on the asymmetry between
BS-to-PU interference and CPE-to-PU interference, rooted at
the realism that a BS and CPEs are using different types of
antenna. In 802.22, a BS is equipped with an omnidirectional
antenna for downlink communication with CPEs, generating
an isotropic BS-to-PU interference pattern. By contrast, each
CPE is equipped with a directional antenna for its uplink com-
munication with the BS, thus generating a directional CPE-to-
PU interference pattern. Nevertheless, resource allocation in
the CR literature has only considered the case where each
network entity is equipped solely with an omnidirectional
antenna. Hence, we must look at the problem from a new
angle by considering this asymmetry.

Among the three types of PUs in TV bands (i.e, ATV, DTV,
and WMs), we consider WMs as a major target to coexist
with. Although our work can be extended to address ATV and
DTV users, coexistence with WMs is the most challenging and
has the most practical value for the following reasons. First,
after the scheduled ATV-to-DTV transition in 2009, ATV users
will not be our major concern. Second, after the transition,
some TV channels will be free of TV users, thanks to the
efficient channel utilization of DTV technology [2], so such

1Note that 802.22 is still a draft.



DTV-free channels might be used in the early deployment of
IEEE 802.22 before expanding its operation to full TV bands.
In such a case, coexistence with WMs becomes a major issue.
Finally, coexistence with small-scale PUs like WMs is a more
serious issue, because spatial variation of spectrum availability
caused by them is more fine-grained: the transmission range of
a WM is only up to 100 m, whereas the keep-out radius from
a DTV transmitter is 150.3 km [3]. Therefore, in most cases
BSs will operate outside of the DTV keep-out region but they
still have to deal with WMs which can appear at any location
within their cells. In spite of the short communication range,
even a single WM can force a large 802.22 cell to vacate the
channel it resides at, which deteriorates efficiency in spatial
spectrum reuse significantly.

Despite its importance, resource allocation with small-scale
incumbents (i.e., WMs) is not yet studied thoroughly. Hence,
we will focus on the problem of three dimensional resource
allocation—channel, power, and BS-CPE association—while
accounting for the impact of asymmetric interference patterns
between a BS and CPEs. This way, we would like to establish
an important stepping stone towards better spatial reuse of TV
bands in IEEE 802.22.

B. Contributions

Our contribution in this paper is three-fold. First, we pro-
pose a realistic WRAN-WM coexistence model that captures
asymmetry in interference patterns between BS-to-WM and
CPE-to-WM cases. The proposed model is presented in Sec-
tion IV and will serve as a basis for our problem formulation.

Next, we provide a mathematical formulation for finding
an optimal solution to the joint channel & power allocation
and BS-CPE association, based on the key conditions for
WM protection. The problem turns out to be mixed-integer
nonlinear programming (MINLP), which is known to be NP-
hard. Its details are presented in Section V.

Finally, to solve the NP-hard problem, we propose a subop-
timal algorithm by applying the Genetic Algorithm (GA). The
use of GA is justified by the need to have a real-time solvable
algorithm with reasonable performance, since IEEE 802.22
requires a WRAN to vacate its channel within 2 seconds
from the appearance of an in-band incumbent – implying that
resource re-allocation should also be performed until the same
deadline. We first develop the basic GA with its key compo-
nents, and then show both centralized GA (cGA) and parallel
GA do not scale well with the network size, i.e., the number
of BSs. Therefore, we extend the standard GA to a fully
distributed GA (dGA), tailored to a large cellular networks
with hexagonal BS deployment. The proposed algorithm is
presented in Section VI.

C. Organization

We first overview the related work in Section II. After
Section III briefly reviews IEEE 802.22 and our assumptions,
Section IV presents our proposed WRAN-WM coexistence
model. In Section V, we provide an analytic basis of the
joint resource allocation problem and cast it into an MINLP.

Section VI describes formulation of the basic GA and then
presents our proposed dGA. The performance of the proposed
algorithm is evaluated and compared with the global optimum
as well as the performance of cGA in Section VII. The paper
concludes with Section VIII.

II. RELATED WORK

In recent years, joint channel and power allocation has been
studied in the context of CRNs, and we briefly review the
literature. Digham [4] studied uplink power assignment and
channel allocation to optimize uplink capacity of CPEs in a
single cell, and Che et al. [5] investigated a similar problem
with emphasis on Quality-of-Service (QoS) provisioning for
CRs. However, both work ignored BS-to-PU interference. He
et al. [6] and Li et al. [7] studied joint channel and power
allocation in an ad-hoc CRN. However, the ad-hoc scenario
does not capture the asymmetry of CR-to-PU interference
in uplink (by CPEs) and downlink (by BS) communications.
Unlike the above-mentioned related work, we deal with joint
allocation of channel, power, and BS-CPE association, and
discuss coexistence of small-scale incumbents with CPEs that
have directional transmission patterns.

Except some special cases [4] where convex optimization is
applicable, joint resource allocation is generally NP-hard. The
Genetic Algorithm (GA) is a suboptimal approach to solving
this type of problem efficiently [8], [9], and its potential for
CRNs has been shown by ElNainay et al. [9] who applied the
parallel GA to a joint channel and power allocation problem.
The parallel GA, however, still has limitations since it does
not fully scale with a network size. Therefore, we develop a
distributed GA mechanism that requires only local cooperation
between neighboring BSs for better scalability.

III. PRELIMINARIES

In this section, we briefly overview the IEEE 802.22 WRAN
and introduce the assumptions used in the paper.

A. IEEE 802.22—An Overview

An IEEE 802.22 WRAN is a cellular network where a BS
coordinates CPEs with coverage up to 100 km (typically 33
km). A CPE represents a household (thus stationary) in a rural
area. The WRAN reuses TV bands, 6 MHz each in the US, by
utilizing them based on OFDMA modulation for downstream
and upstream links [10].

Each BS employs an omnidirectional antenna for down-
stream communications, and CPEs use directional antennas
for their upstream communications. The use of directional
antennas at CPEs is crucial in IEEE 802.22: if CPEs are using
omnidirectional antenna instead, CPEs at fringe areas have to
use high power to reach the BS, say R meters away, doubling
the interference range of a WRAN from R to 2·R. Directional
antennas, however, can concentrate the power towards the BS
while minimizing the backward signal emission. For example,
802.22 limits the directional antenna’s half-power beamwidth
to 60 degrees [11] and back-to-front ratio to 16 dB [12].



B. Assumptions

When a WM emerges, CPEs nearby the WM may need to
re-associate themselves with different BSs to avoid interfer-
ence at the WM. For this, a procedure called antenna azimuth
adjustment is defined in the draft to describe how to make
a directional antenna properly oriented towards the selected
BS [13]. However, it does not specify whether the azimuth
adjustment is performed manually or automatically.

In this paper, we assume that each CPE is equipped with
a directional antenna that is automatically-adjustable in real-
time, with the following rationale. First, if azimuth adjustment
is done manually, it can be performed only once at the
installation of an antenna implying a CPE’s home BS should
be fixed.2 This introduces a huge disadvantage in resource
utilization because when a WM appears, a nearby CPE may
only have two choices: (1) to turn off its power until the
WM disappears, or (2) to make its home BS and other
CPEs in the same cell to move into another channel. Clearly,
both options are not desirable in terms of fair and efficient
spectrum reuse. Second, such flexible antennas are already
within our reach for practical usage. For example, Ruckus
Wireless introduced the BeamFlex Smart Wi-Fi antenna [14],
that is able to reconfigure its directional antenna elements
in real time. BeamFlex-equipped access points are as low as
$117, which is comparable to other off-the-shelf 802.11 APs.
Although WRANs require a longer range, we expect to have
cheaper antennas in the near future thanks to the cost reduction
of a new technology after its launching to the market driven
by the market competition.

We also assume that locations of all WMs, BSs, and CPEs
are known a priori, which is reasonable because (1) locations
of WMs are revealed by IEEE 802.22.1 beaconing via the
“Location” field in the MPDU of the beacon frame [15], and
(2) locations of BSs and CPEs can be looked up from the
geolocation database [16] which is a mandated feature in the
802.22 standard. For 802.22.1 beacons, we need to deploy
spectrum sensors with a desired density while considering the
fact that the 802.22.1 beacon ranges up to 3 km, e.g., at least
one sensor within a 3 km radius from a WM. Each sensor
reports its detection results to the BS so that the location of
the detected WM is revealed. The issues in WM detection
and sensor deployment have already been discussed in the
literature, and thus, we do not discuss them any further in this
paper. Interested readers may refer to [17] for WM detection
and [18] for sensor density.

IV. PROPOSED MODEL FOR WRAN-WM COEXISTENCE

Coexistence of CRs with PUs is essential to success of
WRANs. For this, the impact of CR-to-PU interference must
be accounted for by considering two types of PUs, large-scale
PUs (e.g., DTV transmitters) and small-scale PUs (e.g., WMs).
Protection of large-scale PUs has been studied extensively with

2In this paper, the home BS implies the BS a CPE is associated with, and
other BSs not associated with the CPE are called foreign BSs.

focus on determining whether a WRAN is within the keep-
out radius of a DTV transmitter [3]. Coexistence with small-
scale PUs, however, becomes far more complex due to their
small-scale footprints. For example, even one WM with small
transmission power may force a whole WRAN to move out
of the WM’s channel. Therefore, we focus on WRAN-WM
coexistence to achieve better spatial reuse of spectrum.

We first argue that the coexistence guideline in the current
draft is too strict and thus less efficient. When an incumbent
is operating in channel k, the draft recommends that CRs may
not use the same channel k or adjacent channels k+/-1 to
avoid CR-to-PU interference. Although this recommendation
is proper for wide-band PUs such as DTV transmitters, it is
not efficient for coexistence with narrow-band WM signals
occupying just 1/30 (= 200 KHz / 6 MHz) of a TV band.
In fact, it has been shown that CRs can still coexist with the
WMs in adjacent channels using a guard band [20]. We will
further show that CRs can also use the same channel with
WMs as long as the interference constraints in the draft are
not violated, and then we propose an accurate and realistic
model for WRAN-WM coexistence.

Before introducing the proposed model, we need to un-
derstand asymmetry in WRAN-to-WM interference in terms
of interference temperature. We first consider BS-to-WM
interference, where a BS has a coverage area of A0 of radius
R0 that is determined by the minimum field strength of
E0 = 28.8 dB(uV/m),3 as shown in Fig. 1. Since a BS is using
omnidirectional antenna, its pollution area becomes circular as
illustrated in the figure by A1 for co-channel WMs and by A3

for adjacent-channel WMs. The radius R1 of A1 is derived
by the maximum allowed interference field strength at a WM:
E1 = 32.7 dB(uV/m) [19]. For A3, out-of-band emission mask
of 33 dB is assumed, i.e., a BS’s signal is observed with 33
dB less field strength at its adjacent channels, and thus R3 is
derived by the field strength of E3 = 32.7 + 33 dB(uV/m).4

This implies that even when a co- or adjacent-channel WM
appears inside the coverage of a BS (i.e., A0), the BS may be
able to use the channel unless the WM is inside A1 or A3.

The CPE-to-WM interference is also an important factor,
which is described by the interference range of a CPE, denoted
by A2 and A4 for co- and adjacent-channel coexistence,
respectively. However, the previous model in [19], presented
in Fig. 1(a), did not capture the impact of using directional
antennas by CPEs that makes the interference pattern “direc-
tional”, not circular. That is, even though a CPE is located
outside A2 and A4 of Fig. 1(a), it can still interfere with the
WM if the WM is located on the line of sight between the
CPE and the BS. Therefore, A2 and A4 must be re-shaped
properly to protect WMs against interference from CPEs.

To correctly model CPE-to-WM interference, we propose
a new WRAN-WM coexistence model in Fig. 1(b). In this
model, A2 and A4 are now fan-shaped with widths denoted by
Θ1 and Θ2, which are chosen wide enough to ensure that the

3such that the measured field strength at R0 exceeds E0 at 50% of the
locations for 99.9% of time, i.e., F (50, 99.9).

4For R1 and R3, F (50, 10) is used for maximal protection of WMs.
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Fig. 1. CR-WM coexistence model

WM would not be interfered with by the directional antenna’s
emission pattern spreading over 60 degrees. Determination of
Θ1 and Θ2 depends on the ‘guard band’ of the scheme in [20],
which is not within the scope of this paper. In Section V, we
will use this new model to propose asymmetric joint resource
allocation with both BS and CPEs considered.

V. OPTIMAL RESOURCE ALLOCATION IN WRANS

In this section, we study how to maximize the sum rate
of all CPEs considering their downstream communications,
while satisfying the PU protection requirements by controlling
interference due to the transmissions from BSs and CPEs.
There are two reasons for focusing on downstream communi-
cations. First, the CPEs in the overlapping area of two or more
BSs may experience degraded SINR due to interference from
foreign BSs. Second, the CPE-to-‘foreign BS’ interference in
upstream communications is efficiently minimized by using
the directional antennas and thus is of less interest.

We consider the problem where each BS seeks at most one
channel to operate in, since the current draft does not include
channel bonding as an option [21]. We leave multi-channel
allocation as our future work, in case the future standard
includes the channel boding concept.

We assume there are L WMs, M BSs, and N CPEs, each
operating in one of K TV channels. In addition, we use l ∈
{1, 2, . . . , L}, m ∈ {1, 2, . . . , M}, n ∈ {1, 2, . . . , N}, and
k ∈ {1, 2, . . . , K} as indices to identify each WM, BS, CPE,
and channel, respectively. We also use wl ∈ {1, 2, . . . , K} to
denote the channel used by WM l. We further denote by DBW

ml

the Euclidean distance between BS m and WM l, by DBC
mn the

Euclidean distance between BS m and CPE n, and by DCW
nl

the Euclidean distance between CPE n and WM l.

A. Power & Channel Allocation of a BS

We denote by Pmk the power of BS m on channel k, whose
range is given as

Pmin
mk · smk ≤ Pmk ≤ Pmax

mk · smk, (1)

where Pmin
mk is the minimum power of BS m to have at least

one CPE within its coverage A0, Pmax
mk is the maximum power

BS m is allowed to use so as not to interfere with any WMs
by the BS’s transmission, and smk is an indicator for BS m’s
channel allocation such that

smk =
{

1, if channel k is assigned to BS m ,
0, otherwise , (2)

which should satisfy
∑

k

smk ≤ 1, (3)

since each BS only uses at most one channel. Here
∑

k smk =
0 implies the BS m is completely turned off. In addition, Pmk

must be zero in those channels not assigned to the BS (i.e.,
smk = 0), which is satisfied by the term smk in Eq. (1).

For a given transmitted power Pmk of BS m, R0, R1, and
R3 are calculated according to the procedures in the ITU-
R P.1546-3 propagation model [22] and the WRAN reference
model [23]. Those models utilize actual measurements on land
to provide signal attenuation plots as a function of distance
from the transmitter and conversion tables between transmitted
EIRP (or ERP) and the field strength at a given distance.
Interested readers may refer to the references for more details
on the procedure.

For ease of notation, the radii of A0, A1, and A3 will be
denoted by R0(Pmk), R1(Pmk), and R3(Pmk), provided BS
m operates in channel k with power Pmk.

1) Determination of Pmax
mk : Pmax

mk is a function of A1 and
A3 such that at any Pmk ≤ Pmax

mk , the closest WM at channel
k may not be inside A1 and at the same time, the closest WM
at channel k ± 1 may not be inside A3. Therefore, we have

Pmax
mk = max {Pmk|R1(Pmk) ≤ R̄1 and R3(Pmk) ≤ R̄3},

R̄1 =
{

min{l|wl=k}
{
DBW

ml

}
, if {l|wl = k} 6= ∅,

∞, otherwise,

R̄3 =
{

min{l|wl=k±1}
{
DBW

ml

}
, if {l|wl = k ± 1} 6= ∅,

∞, otherwise.

2) Determination of Pmin
mk : Pmin

mk is determined by the
closest CPE from BS m, since Pmk has to be large enough
to include at least one CPE within its coverage of radius R0;



otherwise, the BS would become a pure interferer. Therefore,
we have

Pmin
mk =

{
Pmk|R0(Pmk) = minn

{
DBC

mn

}}
.

Note that in case Pmin
mk > Pmax

mk , channel k should not be
used by BS m by setting smk = 0.

B. CPE-BS Association

A CPE can associate itself with at most a single BS. We
use tnm as an indicator for CPE n’s association with a BS
such that

tnm =
{

1, if CPE n is associated with BS m ,
0, otherwise , (4)

which should satisfy
∑
m

tnm ≤ 1, (5)

that is, a CPE may not associate itself with any BS (i.e., tnm =
0,∀m) if it is not in the coverage of any BS.

There are three conditions forcing tnm = 0 as follows:
C1: DBC

mn >
∑

k R0(Pmk)smk,
C2: DBW

ml ≤ DBC
mn & cos−1

(
[DBC

mn ]2+[DBW
ml ]2−[DCW

nl ]2

2·DBC
mn ·DBW

ml

)
≤ Θ1

for (k, l) such that smk = 1 and wl = k,
C3: DBW

ml ≤ DBC
mn & cos−1

(
[DBC

mn ]2+[DBW
ml ]2−[DCW

nl ]2

2·DBC
mn ·DBW

ml

)
≤ Θ2

for (k, l) such that smk = 1 and wl = k ± 1.
The above conditions imply that, for association with BS m,
(C1) CPE n must be within A0 of BS m, (C2) CPE n must
not be within A2 of BS m using channel k for any l such that
wl = k, and (C3) CPE n must not be within A4 of BS m
using channel k for any l such that wl = k ± 1. Note that in
C2 and C3, the law of cosines was applied.

C. Objective Function

We want to maximize the sum rate of CPEs by considering
SINR for each CPE-BS pair. That is,

Maximize
∑

n

∑
m

∑

k

tnmsmkB · log2(1 + SINRnmk), (6)

subject to Eqs. (1)-(5) and C1-C3

where SINRnmk is the SINR of CPE n associated with BS
m using channel k, expressed as

SINRnmk =
PmkHmn∑

m′ 6=m sm′kPm′kHm′n + N0B
,

where Hmn is the path gain between BS m and CPE n which
is derived from the ITU-R P.1546-3 propagation model, and
N0 = −163 dBm/Hz is the noise power spectral density (PSD)
[3] and B = 6 MHz. Note that since the ITU-R model is
built on actual field measurements, this approach results in
more realistic resource allocation than assuming exponential
decaying path-loss such as Hm,n = (DBC

mn )−α.
The form of Eq. (6) indicates that the problem is a mixed-

integer nonlinear programming (MINLP) which is NP-hard in
general. Although one may be able to use integer relaxation
or LP approximation techniques to derive polynomial-time

solvable suboptimal algorithms, such algorithms do not satisfy
the PU protection requirements in IEEE 802.22. The draft
indicates that a WRAN should vacate a channel within 2
seconds upon detection of an emerging incumbent in the
same channel. Since the appearance of new PUs triggers re-
allocation of spectrum resources (i.e., power and channel),
we can conclude that we need a real-time solvable algorithm
completing in 2 seconds. Therefore, in the next section, we
propose a suboptimal resource allocation algorithm using a
genetic algorithm (GA) that can control when to terminate the
algorithm, and extend it to a distributed version for scalability
with multiple WRAN cells.

VI. SUBOPTIMAL RESOURCE ALLOCATION VIA
DISTRIBUTED GENETIC ALGORITHM

Genetic Algorithms (GAs) [24], [25] are considered as
an efficient suboptimal approach to an NP-hard problem.
GAs are based on Darwin’s theory of evolution where each
possible solution of the optimization problem is modeled as an
individual of a species that is characterized by its chromosome.
A pool of such individuals is considered as a generation or
genetic pool of the species in its evolutionary chain.

The GA evolves its generation into the next generation
via the three essential steps: selection, crossover/mating, and
mutation. That is, the individuals of the next generation are
created by (1) selecting genetically superior individuals as
parents from the current genetic pool, (2) mating them to
produce their offsprings, and (3) occasionally mutating the
chromosome of the offsprings to reduce the chance of falling
into local optima. Here, the superiority of an individual is
measured by ‘fitness’, which is usually a function of the
network objective to optimize.

Via the iterative process of evolution, the GA gradually
enhances its gene pool closer to the optimal solution. Although
there is no absolute guarantee that the algorithm converges to
a global optimum, in many applications it has been shown that
the GA can achieve near-optimal performance [9]. One of the
key advantages in using the GA is that we can control when to
terminate the algorithm by stopping the evolution at any time
needed and using the best individual in the current generation.

A. The Basic GA—A Centralized Approach

We first describe formulation of a standard GA and its basic
components, and then present the proposed distributed GA in
Section VI-B.

1) Definition of Chromosome: We define chromosome as

C = {b,PL,T},
where b = {b1, b2, . . . , bM}, T = {T1, T2, . . . , TN},
and PL = {PL1, PL2, . . . , PLM}. There are three vari-
ables to optimize: BS m’s channel denoted by bm ∈
{1, 2, . . . , K}, BS m’s discretized power level denoted by
PLm ∈ {1, 2, . . . , PLmax} (PLm ∈ Z), CPE n’s home BS
index denoted by Tn ∈ {1, 2, . . . , M}.

PLm discretizes the power of BS m according to the
radius R0 of its coverage. For example, suppose R0 ∈ R =



b
1

b
2

b
M

PL
1
PL

2
PL

M

…

…

BS’s channel & power

Fig. 2. An illustration of chromosome

{0, 10, . . . , 70} (in km) such that PLm = 1 corresponds to
R0 = 0 and PLm = PLmax = 8 corresponds to R0 = 70.
Then PLm = i implies the power {Pmk|R0(Pmk) = R(i)}.
PLm should also satisfy PLm ∈ [PLmin

mk , PLmax
mk ], when

bm = k, to conform to the condition in Eq.(1). Here PLmin
mk

and PLmax
mk are determined as

PLmin
mk = min{i|R0(Pmin

mk ) ≤ R(i)},
PLmax

mk = max{i|R(i) ≤ R0(Pmax
mk )}.

This definition of chromosome, however, is inefficient in
the sense that the number of possible combinations of bm,
PLm, and Tn is very large. Each BS would choose one of
K channels and PLmax power levels, resulting in the total
of KM · (PLmax)M combinations. Moreover, each CPE can
choose one of M BSs as its home BS, giving MN possibilities.
As a result, the size of the overall search space becomes O((K·
PLmax)M ·MN ).

Therefore, we simplify the definition as in Fig. 2 by choos-
ing Tn’s deterministically based on the following observation:
if bm’s and PLm’s are given, the best home BS for CPE n
is clearly the one giving the highest SINR among the BSs
that do not violate C1–C3 in Section V. In this case, each
CPE requires to check at most M BSs, and hence, the total
computational cost is O(M ·N), which significantly reduces
complexity of O(MN ) in the previous definition.

2) Fitness Function: The fitness of an individual with chro-
mosome C is denoted by f(C) and defined as the normalized
sum-rate by dividing Eq. (6) by B.

3) Algorithm Description: Initially, the GA forms its first
generation consisting of Q individuals by randomly generating
their chromosomes. When generating PL, the random value of
PLm should be chosen in [PLmin

mk , PLmax
mk ] (assuming bm =

k). The thus-formed generation G is then described as

G = {C1,C2, . . . ,CQ}.
Then, the algorithm proceeds by iteratively producing the next
generation via the following two stages:

Stage 1 (Cloning): Some superior individuals (in terms of
their fitness) are copied to the next generation, to make the
maximum fitness of a generation a non-decreasing function.
The ratio of the population to be cloned is denoted by
KEEP RATE ∈ (0, 1).

Stage 2 (Breeding): After cloning, there are Q · (1 −
KEEP RATE) individuals to fill up in the next generation.
These individuals will be produced by the breeding process
with the three steps: selection, crossover, and mutation. Each
run of the breeding process will create two offsprings, and it
will run until the size of the new population reaches Q. The
description of the three steps is given as follows.
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Fig. 3. An example crossover process

• Selection: Selection chooses two parents for mating. To
entice superior individuals, proportional selection is em-
ployed where an individual j is selected with probability
pj , which is proportional to its fitness such as

pj = f(Cj)/
∑

1≤j≤Q

f(Cj).

• Crossover: The chosen individuals are mated to produce
two offsprings via 1-point crossover, as shown in Fig. 3.
The crossover point is determined randomly between 1
and (M − 1).

• Mutation: A new-born offspring is mutated with prob-
ability MUTATION RATE, where a single column of its
chromosome is chosen for mutation. It then randomly
decides whether to mutate PLm only or (bm, PLm) to-
gether, and replaces them by randomly generated values.

The algorithm completes when the runtime reaches a pre-
defined threshold, i.e., 2 seconds.

B. Distributed Genetic Algorithm (dGA)

In reality, the centralized GA is not practical, since (1)
it is a centralized algorithm where each BS should perform
its GA individually without cooperation with others, and (2)
its computational overhead does not scale with the network
size M . Despite the enhancement made in the definition of
chromosome, the size of the search space is still O((K ·
PLmax)M ·M ·N) that may grow exponentially as M increases
linearly.

Although parallel GAs may be used to distribute the com-
putational cost over the network [9], it still does not scale well
with M . The parallel GAs divide the whole population into M
sub-populations so that each sub-population can be searched
for a local optimum by a single BS. With this approach,
however, the overall search space reduces only by a factor
of M resulting in O((K · PLmax)M · N). As a result, both
basic and parallel GAs cannot be used for real-time resource
allocation in the 802.22 WRAN.

Therefore, we propose a fully distributed GA (dGA), tai-
lored to a large cellular network with many cells like in 802.22.
Our idea is to upper-bound the computational cost of each BS
by making it consider only neighboring BSs and nearby CPEs
in its local area.

Assuming hexagonal BS deployment as in Fig. 4, a BS
would have at most six neighbor BSs. Then we re-define
chromosome as a sub-chromosome that only includes seven
pairs of (bm, PLm) for itself (called center BS) and six
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neighbor BSs. An example of sub-chromosome is illustrated
in Fig. 5 for BS 7 in Fig. 4. In addition, the fitness of an
individual is calculated by considering the center BS, its six
neighbor BSs, and the CPEs within the localized area, which
is a circle with radius of LOCAL RADIUS centered at the
center BS. This new fitness function is called local fitness.
For example, in Fig. 4, inter-BS distance is 33 km and the
localized area has radius of LOCAL RADIUS = 40 km.

The dGA proceeds as follows. A BS performs a local
evolution process where the individuals in the population are
defined by the sub-chromosome and their superiority is mea-
sured by the local fitness. Once every EXCHANGE PERIOD
iterations, the BS picks its best Q/7 individuals (assuming
Q is a multiple of 7) and broadcasts their sub-chromosomes
to the six neighboring BSs. Then, a BS would transmit one
broadcast message and listen to six broadcast messages from
its neighbors. Using the six sets of Q/7 individuals received
from the neighbors, the BS reconstructs its current generation
such that the new generation will have top Q/7 individuals of
its own and 6 · (Q/7) individuals from the neighbors. Since
the imported sub-chromosome from a neighbor BS has at
most four common columns, a receiving BS should replace
the uncommon columns with its own necessary indexes by
randomly generating their channels and power levels. This
process is illustrated in Fig. 6.

The dGA completes when the runtime reaches 2 seconds,
similarly to cGA. When it stops, each BS makes the final
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Fig. 7. An illustration of four scenarios: 2×2 to 5×5 zones

decision on its channel and power level by choosing the locally
best sub-chromosome with maximum ‘local’ fitness, and by
setting the channel and power as directed.

C. Implementation Issues on dGA

The communication cost for sub-chromosome exchange is
assumed negligible, because the round-trip time of a broadcast
packet is just 186 us up to 100 km in 802.22 [26], thus giving
93 µs for one-way communication. Then, it takes only 651 µs
for a series of seven broadcast messages.

We propose to use the Coexistence Beacon Protocol (CBP)
in 802.22 for broadcast and exchange of the sub-chromosomes
between BSs. The CBP is defined in the draft to support self
coexistence of WRANs, that generates coexistence beacons
to perform neighboring network discovery and time synchro-
nization between BSs. Hence, the sub-chromosomes may be
piggybacked on CBP packets, by extending the current beacon
structure to embed such information.

Resource (re)allocation may occur when network conditions
change such as (dis)appearance of a WM/CPE and mobility
of a WM. In such cases, up/down-stream communications are
temporarily suspended to run the dGA mechanism (for at most
2 seconds), after which BSs may resume their operations by
updating the power and channel allocation accordingly.

VII. PERFORMANCE EVALUATION

In this section, our proposed distributed GA (dGA) is
evaluated in terms of the achieved fitness at its termination,
and compared to the centralized GA (cGA) and the global
optimum found by a Brute-Force (BF) search.

A. Simulation Setup

Based on the hexagonal BS deployment model, we consider
five scenarios of multi-BS WRANs, as shown in Fig. 7. Each
scenario is described by the number of zones, each of which is
a 33.3 km × 33.3 km rectangular region. For the test scenarios
2×2, 3×2, 3×3, 4×4, and 5×5 zones, the number of BSs (M )
is 5, 7, 10, 18, and 27, respectively.

In each zone, LZ WMs and NZ CPEs are deployed at
random locations. Therefore, L = LZ · Z and N = NZ · Z
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where Z denotes the number of zones. We also assume
there are K channels and each WM randomly chooses its
channel among them. A test scenario is thus described with
(Z, K, NZ , LZ), and for the given test we create 10 instances
of random WM and CPE deployment. For each deployment,
we run cGA and dGA 10 times to study the average behavior.

All simulations are done by using MATLAB running on
2.67 GHz Intel(R) Xeon(R) CPU and 6 Gbytes RAM. Con-
sidering that a BS usually has higher computing power than
CPEs, the runtime results of dGA presented in this section
may become a guideline for the necessary computing power
of BSs.

Other simulation parameters are given as follows. For both
GA schemes, we use KEEP RATE = 0.5, MUTATION RATE
= 0.05, and Q = 70 as the size of a generation. For dGA,
we have EXCHANGE PERIOD= 5 and LOCAL RADIUS=
40 km. For power allocation, we consider R0 ∈ R =
{0, 10, 20, . . . , 70} (in km) thus having PLmax = 8. For the
fan-shaped WM protection regions, i.e., A2 and A4, we use
Θ1 = π/3 and Θ2 = π/6 in radian. For the ITU-R model, we
assume the frequency of 617 MHz (and its adjacent channels),
the antenna height of 75 m, and the antenna gain of 12 dBi,
as used in [23].

B. Optimal vs. Suboptimal Performance

We compare the performance of dGA measured at 2 seconds
of its runtime with the optimal performance found via the
brute-force (BF) search, in terms of the maximal fitness
achieved. For the comparison, we tested three scenarios, 2×2,
3×2, and 3×3 zones, and used K = 3, NZ = 3, and LZ = 2.
Note that the computational cost of BF is prohibitive for
networks larger than 3×3,5 limiting the possible test cases.
In Fig. 8, dGA is shown to achieve 99.4%, 99.8%, and
99.7% of the optimal fitness for the three scenarios tested,
respectively. That is, the dGA efficiently achieved near-optimal
performance.

C. Centralized vs. Distributed GA

We now compare the performance of cGA with dGA, both
stopping at 2 seconds of runtime. For this comparison, we
tested the four scenarios, 2×2, 3×3, 4×4, and 5×5 zones,
and used K = 3, NZ = 3, and LZ = 2. As shown in Fig. 9,

5The runtimes for the three tested cases are 6, 231, and 9,282 seconds,
which grows as fast as KM .
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Fig. 9. Performance comparison of dGA with cGA (both stop at 2 seconds)

cGA performs comparable to dGA for small networks such
as 2×2 and 3×3. As the network size grows, however, dGA
significantly outperforms cGA as seen from 4×4 and 5×5.
This is because cGA has to deal with a larger chromosome
involving channel and power allocation of all BSs, resulting
in a slower evolution.

The speed of fitness evolution is clearly shown in Fig. 10,
where we let cGA and dGA run for more than 2 seconds and
plot the instantaneous maximal fitness of the two schemes
as a function of runtime. For better readability, dGA plots
the fitness once every EXCHANGE PERIOD iterations (EX-
CHANGE PERIOD= 5), and cGA plots its fitness for each
iteration. cGA is found to take longer to converge as the
network size grows while dGA can converge within 2 seconds
for all cases. The performance gap between two at 2 seconds
becomes more pronounced as the network size M grows, es-
pecially for 4×4 and 5×5, making 3×3 a triggering condition
beyond which dGA is favored. In addition, as M increases,
dGA shows only a moderate increase in the completion time
of 5 iterations, whereas cGA shows a dramatic increase in its
inter-iteration time. Note that one marker in dGA corresponds
to five markers in cGA, and thus dGA completes each iteration
much faster than cGA.

D. Distributed GA for Various Scenarios

We also measured dGA’s performance at 2 seconds under
various test conditions and compared it with the optimal fitness
by BF. For this, we considered 3×3 zones and varied one of
K, NZ , and LZ while fixing others, resulting in the following
three scenarios: (1) K = 1, 2, 3, NZ = 6, LZ = 2, (2) K = 2,
NZ = 6, 9, 12, LZ = 2, and (3) K = 2, NZ = 6, LZ =
1, 2, 3. Considering the fact that IEEE 802.22 allows a total of
12 simultaneous CPEs per channel [10], the chosen scenarios
represent the reality of the problem very well.

Fig. 11(a) shows that the achieved fitness gradually in-
creases as K grows due to the channel diversity, where each
BS has more freedom in deciding its channel while avoiding
conflicts with existing WMs and other WRANs. As a result,
BSs can use higher power providing higher SNR at CPEs.
Next, the achieved fitness increases almost linearly as NZ

grows, because the fitness function is the sum-rate of all CPEs
with N = NZ · Z. Finally, the achieved fitness decreases as
LZ grows, since the blackout regions by A2 and A4 increases
and thus BSs should reduce their power and CPEs get harder
to find a BS to associate with.
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Fig. 11(b) illustrates the ratio (in %) of the achieved fitness
by dGA compared to the BF’s optimal fitness. The ratio gives
more than 99.85% for tests (2) and (3), while it gradually
decreases as K grows at test (1) from 100% to 99.6%. It
shows that for a given M , the major overhead of dGA comes
from the number of channels (K), not from N or L.

VIII. CONCLUSION

In this paper, we formulated the problem of joint allocation
of channel, power, and CPEs in IEEE 802.22 as a MINLP.
To solve this NP-hard problem in real time to conform to
the FCC regulations, i.e., at most 2 seconds for spectrum
re-allocation, we proposed and applied a distributed Genetic
Algorithm (dGA) that is computationally efficient and provides
reasonably good performance as compared to both the optimal
solution and the centralized GA. In future, we would like
to extend this approach to combine small- and large-scale
PUs in the same framework to investigate its impact on
the performance of joint resource allocation. We are also
interested in exploring the performance of other meta-heuristic
algorithms, such as tabu search, simulated annealing, ant
colony optimization, and particle swarm optimization.
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