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ABSTRACT

A major challenge of the anti-virus (AV) industry is how to ef-
fectively process the huge influx of malware samples they receive
every day. One possible solution to this problem is to quickly de-
termine if a new malware sample is similar to any previously-seen
malware program. In this paper, we design, implement and evaluate
a malware database management system called SMIT (Symantec
Malware Indexing Tree) that can efficiently make such determina-
tion based on malware’s function-call graphs, which is a structural
representation known to be less susceptible to instruction-level ob-
fuscations commonly employed by malware writers to evade detec-
tion of AV software. Because each malware program is represented
as a graph, the problem of searching for the most similar malware
program in a database to a given malware sample is cast into a
nearest-neighbor search problem in a graph database. To speed
up this search, we have developed an efficient method to compute
graph similarity that exploits structural and instruction-level infor-
mation in the underlying malware programs, and a multi-resolution
indexing scheme that uses a computationally economical feature
vector for early pruning and resorts to a more accurate but com-
putationally more expensive graph similarity function only when it
needs to pinpoint the most similar neighbors. Results of a compre-
hensive performance study of the SMIT prototype using a database
of more than 100,000 malware demonstrate the effective pruning
power and scalability of its nearest neighbor search mechanisms.
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1. INTRODUCTION

With the advent of automated malware development toolkits,
creating new variants of existing malware programs to evade the
detection of anti-virus (AV) software has become relatively easy
even for un-skilled aggressors. This has led to a huge surge in
the number of new malware threats in recent years. According
to Symantec’s latest Internet Threat Report [30], the company re-
ceived 499,811 new malware samples in the second half of 2007
alone. The first step to process any received malware sample is to
determine if the sample is indeed malicious. Currently, this step
is largely done manually and thus is a major bottleneck of the
malware processing workflow. Because most new malware sam-
ples are variants of previously-known samples through mutation of
their source or binary code, one way to ascertain the maliciousness
of a sample is to check if the sample is sufficiently similar to any
previously-seen malware program. We describe the design, imple-
mentation and evaluation of a graph-based malware database man-
agement system, called SMIT (Symantec Malware Indexing Tree)
that is developed specifically to perform such checks efficiently.

Most existing malware-detection methods treat malware programs
as sequences of bytes, and ignore their high-level internal struc-
tures, such as basic blocks and function calls. These methods are
generally ineffective against recent malware threats for the follow-
ing reasons. First, since most modern malware programs are writ-
ten in high-level programming languages, a minor modification in
source codes can lead to a significant change in binary codes. Sec-
ond, the availability of automated obfuscation tools that implement
techniques such as instruction reordering, equivalent instruction se-
quence substitution, and branch inversion, allows malware writers
to easily generate new malware versions that are syntactically dif-
ferent from, but semantically equivalent to, the original version.

One way to overcome the difficulties of recognizing syntactically
different and semantically identical variants of a malware program
is to base the recognition algorithm on a high-level structure that
is less susceptible to minor or local modifications. One example of
such high-level structure is a program’s function-call graph, which
abstracts away byte- or instruction-level details and is thus more
resillient to byte- or instruction-level obfuscations commonly em-
ployed by malware writers or malware development tools. More-
over, because a program’s functionality is mostly determined by
the library or system calls it invokes, its function-call graph pro-
vides a reasonable approximation to the program’s run-time behav-
ior. Therefore, the function-call graphs of the malware variants that
are derived from the same source or binary code are often similar to
one another. By representing each malware program in terms of its
function-call graph, we translate the problem of finding a malware
sample’s closest kin in a malware database into one that searches
for a graph’s nearest neighbor in a graph database.

Our work is unique and different from the previous work on
graph database query processing for the following three reasons.
First, most previous graph database research focused on exact graph



or subgraph matching, which requires a solution to the graph or
subgraph isomorphism problems (both are well-known NP prob-
lems). However, since malware variants are rarely subgraphs of
one another, exact graph or subgraph matching is too restricted
to be useful for identifying malware variants. Instead, SMIT sup-
ports graph-similarity search, which, given a query graph, pinpoints
graphs in a database that are most similar to the query graph. Sec-
ond, because the cost of computing a graph-similarity score, for
example, the graph-edit distance, is exponential in the number of
nodes/edges, most existing graph-similarity query methods assume
that the number of nodes in the graphs is on the order of 10s. They
are not directly applicable to SMIT because the number of nodes
in a malware’s function-call graph ranges from 100s to 1000s. For
example, a variant of the Agobot family has 2,759 nodes and 5,851

edges in its function-call graph. Third, many existing graph-similarity

query processing methods cannot scale to a large graph database;
their applicable size are mostly on the order of 1000s. Consider-
ing the enormous number of malware samples that the AV industry
receives every year, the main goal of SMIT is to support efficient
similarity queries for databases of the size that is at least 100,000
and up to a million.

SMIT features a unique combination of techniques to address the
scalability challenge associated with graph-similarity search. First,
SMIT incorporates a polynomial-time graph-similarity computa-
tion algorithm whose result closely approximates the inter-graph
edit distance. This algorithm exploits the structural and instruction-
level information associated with the malware programs underlying
the input graphs. Second, SMIT applies an optimistic vantage point
tree [9] to index a graph database to speed up nearest-neighbor
graph-similarity search. Third, SMIT employs multi-resolution in-
dexing that uses a computationally economical feature vector for
early pruning and resorts to a more accurate but computationally
more expensive graph similarity function only when it needs to
pinpoint the most similar neighbors. We have successfully built a
SMIT prototype and tested its performance using a test database
containing more than 100,000 distinct malware programs. Our
evaluation results demonstrate that SMIT exhibits effective pruning
power and scales to large graph databases in that the query service
time grows slowly with the number of graphs in the database.

The remainder of this paper is organized as follows. Section 2
reviews previous related work. Section 3 and Section 4 present
SMIT’s graph-similarity algorithms. Section 5 describes the multi-
resolution indexing scheme used in SMIT. Evaluation results for
the current SMIT prototype are presented in Section 6. Section 7
discusses SMIT’s limitations and Section 8 concludes this paper.

2. RELATED WORK

Most existing work detects or classifies malware based on either
byte-level signature or malware run-time behavior. For example,
Kolter and Maloof used n-gram of byte codes as features to train the
classifier [19]. Rieck et al. [27] monitored the malware behavior
(e.g., changes to file system and registry) in a sandbox and used su-
pervised learning to predict malware families. Lee and Mody [32]
collected sequences of system-call events and applied clustering
algorithms to group malware families. Bailey et al. [4] defined
malware behavior as non-transient state changes on the system and
applied hierarchical clustering algorithms for malware grouping.
More recently, Bayer et al. [S] applied Locality Sensitive Hashing
on the behavior profiles to achieve efficient and scalable malware
clustering. Both signature- and behavior-based approaches have
their own limitations. The former is vulnerable to obfuscation and
ineffective in identifying new malware samples. The latter, on the
other hand, incurs expensive runtime overhead and tends to gener-
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ate many false positives. SMIT differs from both in that it builds
a large malware database based on their function-call graphs and
supports efficient indexing techniques that allow malware analysts
to quickly determine whether a new binary file is malicious or not,
based on a nearest-neighbor search through the database.

Use of graphs is becoming prevalent in depicting structural in-
formation. There exist several methods in the database field for
indexing and querying graph databases. Most of them focused on
exact graph or subgraph matching, i.e., graph or subgraph isomor-
phism. However, because both graph and subgraph isomorphism
are NP problems [11], existing algorithms are prohibitively expen-
sive to use for querying a large graph database. To reduce the search
space, several indexing techniques have been proposed, including
GraphGrep [29], Tree+A [39] and TALE [31], which use paths,
trees and important nodes, respectively, as the main frequent fea-
ture to remove graphs that do not match the query. Subgraph iso-
morphism is then used to prune false positives from the answer set.
Several disadvantages of these approaches make them unsuitable
for a malware database that contains hundreds of thousands large
graphs. First, some of them rely on expensive isomorphism algo-
rithms and thus are only applicable to small graphs. Second, these
approaches require all the indexing features to be matched exactly
with the query and thus, cannot effectively capture the similarity
among malware variants. For example, malware writers often cre-
ate malware variants by adding new features (e.g., logging) or some
cosmetic changes without affecting the essence of the original mal-
ware. However, a new variant created this way will not be isomor-
phic to the original one even though they are similar.

In this paper, we take an approximate graph-matching approach
and index the malware graph database using graph similarity. Re-
cently, several indexing methods for similarity queries have also
been proposed [14, 34]. Most of them are still built upon ex-
act subgraph isomorphism and therefore, only apply to relatively
small graphs, allowing limited approximation. Another widely-
used graph similarity metric is the graph-edit distance, which has
shown to be suitable for many error-tolerant graph-matching appli-
cations [24]. However, because computing graph-edit distance is
NP-hard [38], using exact graph-edit distance is feasible only for
small graphs. To reduce the computational cost, several methods
have been proposed to calculate approximate edit distance [18, 23,
28]. Riesen et al. [28] developed a polynomial-time algorithm
to compute approximate graph-edit distance using Bipartite Graph
Matching. SMIT adopts this approach and tailors it to measure dis-
tances between malware call graphs. To support similarity queries
(e.g., K Nearest Neighbor query), several techniques for metric
space search have also been developed. Yianilos [35] proposed the
original Vantage Point Tree (VPT) structure for multi-dimensional
nearest-neighbor search. Later, several extensions to VPT have
been made to improve its efficiency, such as Multi-way VPT [6],
Optimistic VPT [9], and M-tree [37]. They have been success-
fully applied to various applications, for example, content-based
retrieval on multimedia data repositories.

Function-call and control-flow graphs have also been used fre-
quently for malware analysis. Carrera and Erdélyi [8] applied graph
theory to function-call graphs for clustering existing malware files.
Kruegel et al. [20] constructed control-flow graphs from network
streams and detected polymorphic worms by identifying structural
similarities. Briones and Gomez [7] combined function-call graphs,
control-flow graphs and entropy of data blocks to automatically
classify malware samples. SMIT differs from others in that it pro-
poses a function-call graph indexing approach towards the impor-
tant problem of malware classification. It focuses on developing
an efficient indexing structure to organize and query large mal-
ware databases. In addition, SMIT utilizes a graph similarity metric



based on an optimal bipartite matching algorithm which can better
capture the internal structure of the call graphs.

3. FUNCTION-CALL GRAPH EXTRACTION

A binary program’s function-call graph is a directed graph con-
sisting of a set of vertices (corresponding to functions), a set of
directed edges (corresponding to caller—callee relationships) and a
set of labels, one for each vertex (containing the attributes of the
associated function). To facilitate matching between two function-
call graphs, we classify a program’s functions into three categories:
(1) Local functions are functions written by malware writers and
usually shared only by malware variants within the same family;
(2) Statically-linked library functions are library functions that
are statically linked into the final distributed binary, such as Libc,
MEFC, etc.; (3) Dynamically-imported functions are DLL func-
tions that are linked at run- or load-time, e.g., functions in Ker-
nel32.dll, User32.dll, etc. Since these functions are dynamically
linked, their bodies do not appear in malware binaries. Both library
and imported functions tend to be shared across malware families.

Given an incoming malware sample, SMIT extracts its function-
call graph as follows. First, SMIT uses PEiD [2] and TrID [3] to
check if the malware file is packed. If so, SMIT applies SymPack
(an unpacker developed inside Symantec) to unpack or decrypt the
malware file. To handle multi-layer packing, SMIT applies this step
recursively until the file is completely unpacked. Then, SMIT uses
the popular disassembler IDA Pro [15] to disassemble the malware
and identify the function boundaries. It then labels each identified
function with a symbolic name. For dynamically-imported func-
tions, their names can be found by parsing the IAT (Import Address
Table) in the PE header [25] of the malware file. For statically-
linked library functions, e.g., strcmp and iota, SMIT utilizes IDA
Pro’s FLIRT (Fast Library Identification and Recognition Technol-
ogy) [17] to recognize their original names. Because the import and
library functions are standard routines, their names are consistent
throughout all the programs. However, for local functions, since
most malware samples do not come with their symbol tables, their
names are in general unavailable. As a result, we assign all local
functions with the same name (sub_) whenever their true sym-
bolic names are unavailable in the input binary. These local func-
tions will later be matched based on their mnemonic sequences or
call-graph structures.

To facilitate matching of local functions, SMIT extracts from
each local function the sequence of call instructions it contains,
and a mnemonic or opcode sequence from instructions in its body.
For example, “mov" is the mnemonic for the instruction “mov eax,
[0x403FBB]". Such mnemonic sequences are more robust than in-
struction sequences because they ignore offsets that may change
due to code relocation. They are used in the graph-similarity com-
putation as a coarse-grained filter to identify functions from two
programs that are likely to be matched. That is, if two functions
have similar mnemonic sequences, they are likely to be the same
function. SMIT also computes the CRC of mnemonic sequences
to speed up the exact matching between sequences. More formally,
SMIT defines a program’s function-call graph as follows.

Definition (Function-Call Graph): A function-call graph g is a di-
rected graph defined by 4 tuples g = (V,, Eg4, Lg, Ly), where
V, is the finite set of vertices, each corresponding to a function;
E, C Vy x Vg is the set of directed edges where an edge from
f1 to f2 implies that f contains a function call to f2, but not vice
versa; Lq is the set of labels each of which is comprised of 3 el-
ements: symbolic function name, mnemonic sequence and CRC
value of the mnemonic sequence; Ly : Vy; — L is the labeling
function that assigns labels to vertices.
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4. GRAPH-SIMILARITY METRIC

The central component of SMIT is a graph database engine that
finds the nearest neighbors of a given query graph in a graph database.
For this, SMIT uses a graph-similarity metric that aims to capture
the similarity among variants within the same malware family, and
that can be computed at low cost. Here we give details of this met-
ric: an approximate graph edit distance.

4.1 Graph Edit Distance

The edit distance between two graphs measures their similarity
in terms of the number of edit operations required to transform one
graph to the other. For the purpose of identifying malware vari-
ants, the graph-edit distance effectively captures the amount of ef-
fort needed to convert one program to another at the function-call
graph level, and thus forms an intuitively appealing metric. Given
any two graphs, we define the following two elementary operations
to transform one graph to another. Vertex-edit operations includ-
ing: or, relabel a vertex; oy, insert an isolated vertex; and orv,
remove an isolated vertex. Edge-edit operations including: ok,
insert an edge and o rE, remove an edge.

An edit path P, ;, between graphs g and h is defined as a se-
quence (01,02, ...,0,) of elementary operations such that h =
on(on-1(...01(g)...)). To quantify this similarity, a cost is as-
signed to each edit operation: ¢ : or,0r1v,0RV,01E,0RE — R.
Then, the cost of an edit path is the sum of the costs of all the
constituent edit operations, i.e., P = (01,02,...,0n) as ¢(P) =
3itic(oi). The edit distance between two graphs is defined as
the minimum cost of all edit paths between them, i.e., ed(g, h)
min c(Py,x). In SMIT, we assign a unit cost to each edit operation.

4.2 Approximating Graph-Edit Distance Us-
ing Graph Matching

The main drawback of graph-edit distance is its computational
complexity, which is exponential in the number of nodes of the
graphs. Thus, application of graph-edit distance is feasible only for
relatively small graphs, say those with fewer than 50 nodes. Be-
cause the number of nodes in malware graphs is significantly larger,
we develop heuristic algorithms that can closely approximate the
ideal graph-edit distance using graph matching techniques.

To match two unequal-size graphs g and h, we extend the vertex
set of each graph as: V, = V| ey and V' = Vi, |J e, where ¢,
and €, are sets of dummy nodes created to account for insertions
and deletions. In other words, a match from v € V, to a dummy
node implies the deletion of u from graph g and vice versa. We
set |eg] = |Vi| and |en| = |Vy| so that the extended graph has
the same number of nodes. We denote the extended graph for g as
9" =V, Eg, Ly, Ly U{ey}) and define the graph matching as:

Definition (Graph Matching) A matching between two graphs g
and h is a bijective function ¢() between two vertex sets, ¢ : V" —
hy such that Vv € V", ¢(v) € Vj'.

Given a graph matching ¢ between two graphs g and h, the dis-
tance (edit cost) between them can be computed by considering
mismatched nodes and edges with the following algorithm.

1. Let Cg represent the number of edges that are mapped from
one graph to the other. Specifically, for any edge (¢, j) € Eg,
if (¢(i),#(j)) € Ep, then the matching preserves the edge
(4, ) and the counter C'g is incremented by 1.

2. EdgeC’ost = (|Eg| — CE) X C(O’RE) + (|Eh| — CE) X
c(ore). Since we assign unit cost to each edit operation,
EdgeCost = |Ey4| + |Ep| — 2 x Cg.

3. For any node in graph g that is matched to a dummy node in
h, we add c(orv) to the NodeCost to penalize for deleting



the node. Similarly, when a node in graph h is matched with
a dummy node in g, we add c(orv) to the NodeCost.

4. For any two matched nodes, we add ¢(or) to the NodeCost
if they have different labels, i.e., the relabeling cost.

5. Editdistance under ¢ is: edy(g, h) = NodeCost+EdgeCost.

Because graph-edit distance is defined as the minimum edit cost
between two graphs, the above algorithm casts the problem of com-
puting graph-edit distance into finding a function ¢ that minimizes
the total matching cost, i.e., a minimum-cost bipartite matching
problem, where each of the two sides of the bipartite graph cor-
responds to nodes from one of the two input graphs. An opti-
mal (minimum-cost) bipartite matching can be found in polynomial
time (O(n®)) by using the well-known Hungarian algorithm [21].
To further reduce the performance overhead of the Hungarian algo-
rithm, SMIT employs various optimizations that exploit properties
of the malware programs underlying their function-call graphs.

4.3 Optimizations

4.3.1 Exploiting Instruction-Level Information

Since the complexity of the Hungarian algorithm depends on
the number of nodes in the input graphs, the first optimization
aims to reduce the number of nodes in the two input graphs that
need to be matched by removing those nodes that can be matched
through other cheaper means. Specifically, SMIT uses each func-
tion’s mnemonic sequence, CRC value of its mnemonic sequence
and symbolic name to quickly determine if a function in one input
graph matches another function in the other input graph, and com-
pute a common function set C' = {v : v € V,; (| V}, } containing:

e Static library functions or dynamically-imported functions
and that share the same symbolic names in two input graphs;

e Functions that have the same mnemonic sequence and thus
the same CRC value of their mnemonic sequence; and

e Functions that have similar mnemonic sequences. We com-
pute the edit distance between the mnemonic sequences of
two functions, and consider them a match when the distance
is below 15% of the length of the shorter mnemonic sequence
of the two, where the threshold 15% is chosen empirically.

To further decrease the number of nodes to which the Hungar-
ian algorithm needs to be applied, we apply a neighborhood-driven
algorithm [8] that exploits the matched neighbor information as-
sociated with functions. Let’s call the functions in C' = {v : v €
Vg N Vi} atomic functions andlet V' = V,—Cand V] =V, —C
denote the sets of the remaining functions in g and A that are not yet
matched. A call-sequence signature for each remaining function is
a sequence of calls to atomic functions in this function. If the call-
sequence signatures of two functions f1 € V; and fo € V} are
identical, we generate a match between f; and f> because they are
likely very similar or the same. Whenever a new match between
two local functions is found, we move them from V" and V};" to the
common function set C, and repeat the algorithm until it yields no
additional matches. At the end of the process we apply the Hungar-
ian algorithm to the remaining V" and V};". For malware variants
from the same family, this optimization can match over 90% of
functions. On the other hand, the number of matched functions for
malware from different families is often below 20, most of which
are shared library functions.

4.3.2 Bipartite Graph Matching

The problem of finding a min-cost bipartite graph matching can
be solved in polynomial-time using the Hungarian algorithm [21].
Once the lowest-cost match is found, it can be used to create an

614

edit path and compute an estimate of the true edit distance (Section
4.2). Note that, although the Hungarian algorithm is optimal, the
edit-distance result returned by the match function ¢ that the algo-
rithm finds is only suboptimal [21], because the cost matrix used to
search for the optimal node assignment is computed without global
knowledge (to be elaborated). To mitigate this problem, we develop
an optimized Hungarian algorithm that biases the matching process
towards the neighboring functions of already-matched functions.

The algorithm first constructs a complete bipartite graph with
vertex classes X = V; (Jeg and Y = V; | J en, where €4 and €,
are sets of dummy nodes with |eg| = |V;/| and |ex] = |V;|. In
this bipartite graph, each edge is assigned a weight corresponding
to an estimate of the cost of mapping a vertex x € X to a vertex
y € Y. The choice of weights for the edges of the bipartite graph is
a vital component of the algorithm, as well-assigned weights that
are closer to the real cost will result in a near-optimal edit path,
and thus, the Hungarian estimate will more closely approximate
the true edit distance. Assume the first graph g, has size n, and
the second graph h.. has size m, we form an (m +n) X (m +n)
cost matrix. In the top left we have an n X m sub-matrix giving
the costs of matching a real node in g to a real node in h. In the
bottom right is an m X n zero sub-matrix, representing the costs
of associating a dummy node with another dummy node. Finally,
the off-diagonal square sub-matrices give the cost of pairing a real
node from a graph to a dummy node from the other graph (thereby
deleting it). On the diagonal, these matrices store the cost of delet-
ing a node and all its incident edges (both In and Out). We set
all non-diagonal components of these matrices to co to ensure that
each real node is associated with a unique dummy node.

In [28], the cost of matching any two real nodes was taken simply
as the relabeling cost. To find a better estimate of the true edit
cost, we improve the algorithm by considering the edges as well.
Specifically, the cost estimate, C; ;, of matching node ¢ to node j,
is the sum of the Relabeling Cost and the Neighborhood Cost,
where the latter is calculated from the difference between ¢ and j’s
adjacent nodes. This introduces structural information by giving a
lower-bound for the edit cost of matching the neighbors of ¢ and j.

1. Relabeling Cost: If the label of node ¢ is not the same as the
label of node j, we set C; ; to be the relabeling cost (o r).

2. Outgoing Neighborhood Cost: For any graph g and node ¢ €
Vg, N&.,..(0) = {Lg(k)|(i,k)} € Eq4. Then, the outgoing
neighborhood cost of matching node 7 to node j € V is
ING ()] + NGt (7)) = 2 % [NG (i) N NGt ()] to Ci .

3. Incoming Neighborhood Cost is similarly defined with the

incoming edges.

The cost computed from the above algorithm is a lower-bound of
the true edit cost for the following reasons. As mentioned in Sec-
tion 3, due to lack of symbolic information for all local functions
written by malware writers, we assign the same label to those func-
tions. As a result, when computing the estimated matching cost
between ¢ and j, any local functions in ¢’s and j’s neighborhood
are conservatively considered matched (i.e., incurring no matching
cost). However, in the final matching function ¢ (found by apply-
ing the Hungarian algorithm on the cost matrix), these two neighbor
nodes can be unrelated, in which case, the true edit cost between ¢
and j is higher than the estimate. In other words, because the cost
matrix is predetermined, the algorithm will only be able to consider
the local structure of the nodes without any information about the
matching. This lack of global knowledge when computing the cost
matrix leads to the sub-optimality of the resulting edit distance as
calculated by the algorithm in Section 4.2, even though the Hun-
garian algorithm by itself is optimal in the sense that it finds the
min-cost matching according to the pre-determined cost matrix. To



alleviate this problem, in the next subsection, we present our im-
proved Hungarian algorithm that actively exploits the structural in-
formation of already-matched nodes as the algorithm progresses.

4.3.3 Neighbor-Biased Hungarian Algorithm

One drawback of the standard bipartite matching approach to
computing the graph-edit distance is that it assumes a fixed cost of
matching two function nodes. However, as observed in [14], when
two nodes are matched, their neighbors are also likely matched,
because if more neighbors of a node are matched with those of an-
other node, the edge-edit cost of matching these two nodes will de-
crease (thus reducing the real edit cost). Based on this intuition, we
develop a modified Hungarian algorithm that adaptively biases the
order of matching towards those pairs of nodes whose neighboring
nodes have already been matched.

Given two malware call graphs g and h, we first find the initial
set of matched functions (Section 4.3.1). For each matched func-
tion f, we decrease the cost (in the cost matrix) of matching all the
unmatched neighbors of function f in g with their counterparts in
h by a predefined percentage. Then, the Hungarian algorithm is
applied to the remaining graphs g, and h, with the updated cost
matrix. In each iteration of the algorithm, whenever two functions,
for instance (u, v), are chosen to be matched, the costs of matching
their unmatched neighbors in the cost matrix are similarly lowered,
thus increasing their chances of being matched later by the algo-
rithm. The procedure repeats itself until a complete match is found
in the bipartite graph. As an additional optimization, whenever
(u, v) is selected to be matched, the amount of cost reduction for
their unmatched neighboring functions is positively proportional to
the matching quality of (u, v), defined as the percentage difference
between the mnemonic sequences of (u,v). Intuitively, the extent
to which the Hungarian algorithm is biased toward the neighbors
of a matched node pair is proportional to the degree to which they
are considered matched. Due to space limitation, we refer inter-
ested readers to our extended technical report [16] for the detailed
pseudocode of the algorithm.

The above algorithm generates the cost-minimizing matching
between function nodes ¢ : Vy U eg — Vi, U €p, from which the
edit-path cost (denoted as edy(g,h) under ¢) can be calculated,
which is a close approximation to the true edit distance. Note that
edy (g, h) gives the cost of a particular edit path from g to h. The
minimality of edit distance across all edit paths ensures that the dis-
tance from the Hungarian method is an upper bound on the edit dis-
tance. That is, for any two graphs g and h, ed(g, h) < edy(g, h).

S. MULTI-RESOLUTION INDEXING

5.1 Overview

For the purpose of identifying malware variants, it is not neces-
sary to pinpoint the exact nearest neighbor for a new malware file.
As long as one can identify a neighbor that is close enough to the
new file, one can “convict” it. For scalability to a large database,
SMIT exploits this latitude and incorporates a multi-resolution in-
dexing technique that makes a good balance between pruning effi-
ciency and search effectiveness.

Conventional indexing methods decompose a database into parti-
tions and organize them hierarchically, so that a search can focus on
a subset of these partitions at each level of the hierarchy, thus reduc-
ing the total number of database items that it needs to touch. These
indexing methods are inadequate for SMIT for two reasons. First,
SMIT requires an indexing scheme that supports nearest-neighbor
search, rather than exact search that conventional methods are de-
signed for. Second, since computation of graph similarity is ex-
pensive, SMIT must minimize the number of such computations.
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Figure 1: Multi-resolution indexing structure.

For instance, our evaluation shows that a modern desktop PC can
perform an average of 20 graph-similarity computations per second
for our malware set. At this performance level, even if an indexing
scheme could reduce the number of graphs that a search needs to
touch, to less than 10% of the database, it will still take hours to
answer a single query for a database of 1,000,000 malware graphs.

To address the first problem, SMIT organizes the input malware
graph database using the optimistic Vantage Point Tree (VPT), which
is designed for nearest-neighbor search and can exploit the fact that
sufficiently near neighbors are usually good enough. To solve the
second problem, SMIT uses a two-level indexing scheme, where
the first level is a standard B+-tree index based on coarse-grained
malware features that can be computed inexpensively and that can
effectively prune irrelevant parts of the malware database. Graphs
associated within each leaf node of the B+-tree index are organized
with a second-level index, i.e., the VPT Tree, which uses a more ac-
curate but computationally more expensive graph-similarity func-
tion to pinpoint the most similar neighbors. The two-level index-
ing (Figure 1) in SMIT is an instance of multi-resolution indexing
because similarity functions with different accuracy and computa-
tional requirements are used in the different levels.

5.2 B+-tree Index Based on Malware Features

The feature vector used in SMIT’s first-level index must satisfy
two requirements. First, its computation cost must be low. Second,
it must be able to identify parts of the malware database that are
not relevant to a given malware query. That is, the feature vector
needs to be able to pinpoint the obviously irrelevant, but not nec-
essarily the most relevant. Specifically, SMIT uses the following
feature vector v = (N;, Ny, Ny, Ny, ) derived from the assembly
code of each malware program, where INV; is the total number of
instructions; Ny the total number of functions; NN, the total num-
ber of control transfer instructions (e.g., jumps and calls), which is
a good approximation of a program’s complexity because it indi-
cates the degree to which a program deviates from a straight-line
code; and N, the median number of instructions per function. The
feature vector has the following property: if two malware programs
are similar to each other, so are their feature vectors. However, if
two malware are dissimilar, their feature vectors may or may not
be similar. Therefore, it is only useful when the feature vectors of
two malware are drastically different, meaning that the underlying
programs are definitely different, but not when their feature vectors
are somewhat different or similar.

Because leaf nodes in a B+tree need to be ordered by their keys
(feature vectors), we impose a total ordering among feature vectors
by giving priority to more useful features (N; > Ny > N, >
Np,). We also augment the B+ tree structure by adding a backward
sibling pointer to each leaf node, which points to the previous leaf
node. Together with the forward sibling pointer in the B+-tree, it
facilitates navigation across leaf nodes and indexed search.



Given a malware query, SMIT first extracts its feature vector and
uses it as a key to search the B+-tree index. Suppose the probing
ends in a lead node X. SMIT then follows X’s forward and back-
ward sibling pointers to locate N leaf nodes before and after X,
and further explores the second-level index trees (VPT) associated
with these 2NV 41 leaf nodes. Here N is an empirically-determined
parameter that is designed to reduce the probability of the feature
vector pruning away sufficiently close neighbors. Because these
2N + 1 VPTs are independent of one another, they can be queried
in parallel to reduce the query response time. Finally, the K near-
est neighbors returned from the exploration of each of the 2V + 1
VPTs are combined to determine the final K nearest neighbors.

5.3 Optimistic Vantage Point Tree

The Vantage Point Tree (VPT) is designed for database items
whose similarity to each other must be explicitly computed (e.g.,
graphs), and exploits the triangular inequality to prune irrelevant
database items. To construct a VPT for a graph database, we first
select a graph as the root pivot V', compute the distance between V'
and all the remaining graphs, and then divide these graphs into M
approximately equal-sized partitions (P;,7 = 1,2, ..., m) based on
their distance to V. In addition, at the pivot V', we record the dis-
tance range associated with each partition P;, which is represented
by lowli] and highli]. This same procedure is repeated for each
partition recursively, until all partitions fall below a certain size.

Given a query graph g, the K-nearest-neighbor (KNN) search
of a VPT with a root pivot p starts with computation of the edit
distance d(p, q) between p and ¢, and then decide which partitions
to explore further by exploiting the triangular inequality of the dis-
tance metric. More specifically, let d,0., be a parameter indicat-
ing to the search algorithm that it should ignore any database item
whose distance to the query g is larger than d,0.w. Given 9,04, the
search only needs to explore those partitions whose distance range
overlaps with the range of interest, [d(p, ¢) — dnow, d(P, @) +Fnow)s
as shown in Figure 2. That is, partition P; is pruned if and only if

highli] < d(p,q) — ¢h)

This search procedure is applied recursively at each visited node
until all nodes are either pruned or visited.

Eq. (1) shows that at each node, the pruning power of the VPT
search algorithm is dependent on the value assigned to dpow. If
Onow 18 small, only a few partitions need to be traversed. How-
ever, too small a §,0., may lead to pruning of the partitions that
actually contain the nearest neighbors. One way to keep dnow as
small as possible is to update it during the search. At any point
in a KNN search, the algorithm remembers the K closest neigh-
bors that it has encountered so far together with their distance to
the query graph g in a priority queue, and sets dpoq to the largest
of these distance values after accumulating K closest neighbors.
Every time the search encounters a database item p whose d(p, q)
is smaller than d,,0., it adds p together with d(p, q) to the prior-
ity queue and updates 0. accordingly. Another way to reduce
the value of 0,01 is to traverse the partitions that are closer to the
query graph earlier than those that are farther away. For example,
in Figure 2, partition 3 is traversed before partition 2 or 4, because
closer partitions are more likely to contain closer neighbors.

To make an optimal balance between accuracy and efficiency
when initializing .., We take an optimistic approach (OVPT) [9]
by starting with a small initial 0., value, and exponentially in-
creasing it at subsequent iterations if previous iterations fail to iden-
tify K nearest neighbors. Specifically, for a VPT rooted at node p,
the initial 65,0 i chosen to be dnow = max;. ! M +
1 where low[i] and highl[i] are the lower and upper ends of the
i-th partition’s distance range. This choice of the initial 6 value

Onow or lowli] > d(p,q) + dnow.
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Figure 2: Pruning on a VPT based on the triangular inequality

Feature | Min Max | Average | Median STD
N; 1 [ 1807413 | 24233.0 7319 | 55390.9

Ny 1 37130 480.6 85 1077.6
Ny 1 9998 39.1 18 181.4
N 0 | 731350 49323 1090 | 10519.7

Table 1: Statistics of different features in the feature vector

guarantees that for any query graph g, at least one partition will
be traversed, because d(q, p) will fall within at least one partition’s
extended distance range, [low[i] — Onow, high[i] + dnow]-

When the initialized value of dy,0. is too small, the search may
not find all K nearest neighbors. In such a case, SMIT increases
the initialized value dnow USING Snow,M = Onow,m—1 + « oOr
Snow M = Onow,0 * S Lwhere a and 3 are additive and mul-
tiplicative constants and M is the number of iterations that have
been attempted to find the K nearest neighbors. To reduce the per-
formance overhead of OVPT, all the distance-computation results
in previous iterations are cached so that no distance computation
may ever be done more than once in an OVPT search.

The performance gain of OVPT comes from two sources. First,
we notice empirically that there is a big difference between the time
needed to locate the K nearest neighbors and the time needed to
verify that they are indeed nearest neighbors. Using a smaller ini-
tial dn0w value significantly reduces the verification cost because
it cuts down the number of candidates considered, especially when
the query graph is indeed close to its nearest neighbors. Second, the
optimistic approach carries almost no additional performance over-
head because all distance-computation results in previous iterations
are cached and can thus be readily reused. More concretely, any
partitions that are not pruned in the (M — 1)-th iteration will never
be pruned in the M-th iteration because dnow,m—1 < Onow,M-
This means that all the distance computations in previously itera-
tions are necessary, and their caching guarantees that no distance
computation will be done more than once.

6. EVALUATION

In this section, we apply SMIT to a large collection of real-world
malware files and evaluate its performance in terms of effectiveness
(whether the results produced by SMIT are meaningful and similar
to those produced by human analysts), efficiency, and scalability.
We focus on the K-NN search, because, given the polymorphic na-
ture of modern malware, finding the most similar samples in the
database to a given malware file is more useful than pinpointing its
exact match.

6.1 Experiment Setup

The dataset used in the evaluation contains 102,391 unique mal-
ware programs recently submitted to Symantec Corporation. These
malware samples range from simple trojan/virus (less than 100 in-
structions) to considerably larger malware (more than hundreds of
thousand instructions). All the malware files had been analyzed by
human experts and classified into families. Each file is labeled with
a VID (Virus ID) representing the malware family to which it be-



longs. As a result, we can determine that a binary file used in a
query is a variant of an existing malware file if both share the same
VID. In total, these malware programs come from 1747 families.
We first create a function-call graph representation for each mal-
ware file. The graphs have an average number of 504 nodes and
1074 edges, and a maximum number of 37809 nodes and 83737
edges. We implement SMIT in C++ and conduct all experiments
on a Dell R905 Server with 1.90 G Quad-Core CPU running Win-
dows Server 2003. SMIT is a CPU-bound application and has a
moderate memory requirement (less than 100MB).

To evaluate the performance of SMIT, we use the following three
metrics: 1) the percentage of index entries that are accessed to lo-
cate the K nearest neighbors of the query file; 2) the percentage
of the returned K -NN malware files that are in the same family as
the query file; and 3) the average runtime of K-NN search. The
first metric measures the average portion of the SMIT index tree
that needs to be examined to service a query. The second reflects
the accuracy and effectiveness of the SMIT index tree in correctly
identifying a new malware. The last one represents the total compu-
tation cost for each query. Because SMIT comprises two indexing
structures (B+tree and OVPT), we first evaluate them separately
and then their aggregate performance when they are combined.

6.2 Effectiveness of B+-tree Index
The first-level B+-tree index in the SMIT index tree uses a com-

putationally economical feature vector representation to attain pruning-

efficiency. The statistics of different features are summarized in
Table 1, showing that the value distribution of different features
varies significantly across malware samples.! This wide variation
gives the feature vector considerable pruning power and enables
SMIT to search only a small number of most relevant VPT trees.
SMIT’s B+ tree index takes the following two parameters: 1)
the fan-out of each B+ tree node (the maximum number of data
entries in each node); 2) the number of adjacent leaf nodes (de-
noted as /N) whose associated second-level VPT trees are further
searched. As the fan-out parameter increases, more keys and point-
ers can be packed into a B+ tree node, fewer nodes are required
to hold the index, and fewer tree nodes need to be accessed during
a query search. However, larger fan-out parameters also require
bigger second-level VPT trees to be explored to achieve better ac-
curacy. This is a typical trade-off between query result accuracy
and computation overhead. According to our experience, setting
the fan-out parameter to between 300 to 400 achieves a good bal-
ance. By default, SMIT sets the fan-out of its B+ tree index to 400,
which results in a three-level B+ tree with 209 leaf nodes. On aver-
age, each leaf node contains 273 keys (the occupancy ratio 68.3%)
and 398 malware programs (some are mapped to the same key).
65% of time, malware programs that are mapped to the same key
also have the same VID, i.e., belong to the same malware family.
To evaluate the effectiveness of SMIT’s B+ tree index, we ran-
domly select 426 unique malware files and use them as queries
against the SMIT’s malware database. For 90.8% of these queries,
the returned B+tree leaf node contains at least one malware sample
that belongs to the same family as the query, and for 96.2% of them,
the returned leaf node or its immediate two neighboring leaf nodes
contain at least one malware sample that belongs to the same fam-
ily as the query. Although the end-to-end accuracy in pinpointing a
query file’s nearest neighbor also depends on SMIT’s second-level
indexing, i.e., OVPT, and is thus smaller, the high success rate of
finding samples of the same malware family as the query file in the

!There are very low feature values such as O or 1, because some
malware employ various packing or anti-disassemble techniques
and cannot be successfully disassembled.

617

1400 T T
—e— MSDV
Greedy .
Original Hungarian Algorithm (OHA) i
—a— Neighbor Biased Matching (NBM) o
—&— Neighbor Biased Hungarian Algorithm (NBHA)

12007

1000

€

Graph Distanci
[--]
[=]
e

100 200 300 400 500 600 700 800 900 1000 1100 1200
Graph Pairs

Figure 3: Quantitative comparison among graph distance met-
rics The X-axis corresponds to a sequence of graph pairs.

same or close-by leaf nodes, demonstrates the efficacy of SMIT’s
choice of feature vector as used in its B+ tree index.

6.3 Quality of Graph-Similarity Metric

Accurate graph-distance metric is crucial for SMIT’s VPT to cor-
rectly prune away irrelevant parts of its malware graph database.
Therefore, we first evaluate the quality of the proposed graph dis-
tance metric—Neighbor Biased Hungarian Algorithm (NBHA). We
compare NBHA with the original Hungarian Algorithm (OHA) [28],
the Neighbor Biased Matching (NBM) algorithm [14] and a Greedy
algorithm, which computes the distance between two graphs from
an edit path formed by repeatedly matching the most similar node
pairs according to the cost matrix. The results of all these algo-
rithms, including NBHA, have been shown to be an upper bound
for the Exact Graph-Edit Distance (EGED). Because EGED com-
putation incurs an exponential cost, we cannot directly compare
NBHA with EGED. Instead, we qualitatively evaluate the closeness
of NBHA to EGED by computing a graph distance metric called
the multi-set degree-vector distance (MSDV), which compares the
vertices’ label and in/out degree between two graphs without con-
sidering their connectivity structure. It has been shown that the
MSDYV distance is a lower bound for the exact edit distance [10].

We randomly select 66 malware graphs, and compute their pair-
wise distance using the graph-distance metrics, NBHA, OHA, NBM,
Greedy and MSDV. We order the pair-wise distance values obtained
from the NBHA algorithm, and present the distance values from
other algorithms according to this order. The results are shown in
Figure 3, where each point on the X-axis corresponds to a partic-
ular pair of graphs. By definition, true edit distance (EGED) lies
between its upper-bound metrics (NBHA, OHA, NBM, Greedy)
and lower-bound metric (MSDV). Because in many cases the upper
bounds and lower bound shown in Figure 3 are close to each other,
these bounds empirically approximate EGED effectively. More-
over, NBHA outperforms other upper-bound metrics (OHA, NBM
and Greedy algorithm) in terms of accuracy, because in most cases
NBHA'’s results are smaller than other algorithms’. For upper-
bound metrics, smaller metric values imply more accurate approx-
imation to EGED. Specifically, NBHA results are smaller than or
equal to those of OHA and NBM, about 95% and 70% of all graph-
distance computations in this experiment, respectively.

Next, we evaluate the accuracy and effectiveness of NBHA in
terms of the similarity of NBHA results to those produced by hu-
man analysts. Specifically, if the distance between two malware
files is considered sufficiently small according to NHBA, would
the human analysts classify them into the same malware family? To
answer this question, we randomly selected from the test database
991 malware samples that belong to 122 malware families. In each
experimental run, we first select one malware sample as a query and



K=1 K=3 K=5
Success | Success | Average | Success | Average
Rate Rate Hit Rate Hit
71.30% | 78.20% 2.36 80.10% 3.11

K=7 K=9
Success | Average | Success | Average
Rate Hit Rate Hit
81.80% 3.64 82.50% 4.14

Table 2: Accuracy and effectiveness of the NBHA in terms of
K -NN search results
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build up a VP Tree for the remaining 990 malware samples. Then,
we perform a K-NN search for the query to find the K malware
samples that are closest to the query. We repeat the above process
for each of the 991 malware samples while varying K, and sum-
marize the results in Table 2. In this table, a K-NN query result
is a Success if at least one out of K nearest neighbors belongs to
the same malware family as the query malware file. Average Hit is
defined as the average number of the returned K nearest neighbors
that are in the same family as the query malware. Results in this
table suggest that NBHA is effective in classifying unknown mal-
ware samples, because it not only achieves high success rate (over
80% for K >= 5) but also produces correct labeling in many cases
because the most prevalent malware family among the K nearest
neighbors is indeed the query malware’s family. This result shows
that SMIT can indeed facilitate, and even automate, the process of
convicting incoming malware samples.

6.4 Efficiency of Optimistic VPT

We now evaluate the efficiency of Optimistic Vantage-Point Tree
(OVPT) using the percentage of index entries (PIE) that need to be
accessed to locate the K nearest neighbors of a query file. Because
accessing each index entry involves one graph-distance computa-
tion, PIE is a proper metric that captures OVPT’s computation cost.

We first explore the performance impact of the fan-out factor of
SMIT’s OVPT (i.e., the number of children each tree node has)
and the results are plotted in Figure 4. Although a larger fan-out
factor reduces the number of levels in the tree, it also increases the
number of child nodes that need to be explored at each tree level,
because the coverage of each child node is smaller and more of
them intersect with the current query range. As a result of these
two conflicting influences, Figure 4 shows that the fan-out factor
does not have a significant impact on PIE. However, the larger fan-
out factor increases slightly the overall computation overhead.

Intuitively, as K decreases, less graph-distance computation is
required to service each query, because smaller K allows dpoq to
decrease faster so that fewer partitions of each intermediate OVPT
visited need to be traversed. However, in practice, a K value of
between 5 and 10 is required for human analysts to determine if an
incoming binary file is malicious or not. Specifically, if a dominant
number of returned K neighbors belong to the same family, there
is a very good chance that the query binary file indeed belongs to
that family. As shown in Figure 5, although PIE increases with K,
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K=5

n | Success Rate | Dominant Family Rate | Average Hit

0 76.7% 66.7% 3.24

1 83.3% 70.0% 3.20

2 83.3% 66.7% 3.12

3 86.7% 66.7% 3.13

4 86.7% 66.7% 3.13
K=10

n | Success Rate | Dominant Family Rate | Average Hit

0 78.3% 65.2% 6.29

1 87.0% 69.6% 6.30

2 87.0% 69.6% 5.99

3 91.3% 69.9% 5.91

4 91.3% 69.9% 5.98

Table 3: Impact of N on the accuracy of identifying the mal-
ware family of a query binary file

SMIT’s OVPT can still prune away an average of about 70% of the
database even when K = 10, i.e., for 10-NN search queries. This
result demonstrates the effectiveness of SMIT’s OVPT index.
Finally, we evaluate the scalability of SMIT’s OVPT with re-
spect to the number of graphs being indexed. Because each leaf
node in SMIT’s first-level B+ tree corresponds to a second-level
OVPT tree, this evaluation also helps shed light on the impact of
the fan-out factor of the first-level B+ tree. We construct OVPT
trees that contain a different number of malware samples, from 100
to 1000 in increments of 50, and for each resulting OVPT, we query
it with 100 randomly-selected malware samples and measure the
average number of graph distance computations required for differ-
ent values of K. Figure 6 summarizes the results and suggests that
the number of graph distance computations approximately increase
logarithmically with the size of the OVPT tree (the time complexity
of searching VP tree is O(logn) [36]), demonstrating its scalability.

6.5 Evaluation of Multi-Resolution Indexing

Despite the great pruning power of the OVPT tree, it cannot
be directly applied to organize the entire malware graph database,
which we envision will grow to millions. For example, even if an
OVPT tree can achieve an excellent PIE of 10%, pinpointing the
nearest neighbors of a query in a 100,0000-malware database ne-
cessitates over 10,000 graph-distance computations, which is un-
acceptable for practical use. To ensure reasonable response time
while maintaining good query accuracy, SMIT uses a multi-resolution
indexing structure that removes irrelevant parts of the database with
a B+ tree and queries multiple relevant OVPT trees in parallel.
Next, we evaluate the accuracy and performance of SMIT’s com-
bined indexing structure using 102,391 unique malware programs.

6.5.1 Impact of N on Query Accuracy

The parameter N for SMIT’s B+ tree determines the number of
sibling leaf nodes (2N + 1) in the first-level index that need to be
searched in the second-level index search. A larger N improves the
probability of locating the true K nearest neighbors in the database
of the query file, and of correctly identifying the true malware fam-
ily it belongs to, if any. However, increasing /N inevitably increases
computational overhead because more second-level OVPT trees are
searched. To evaluate the impact of N on SMIT’s accuracy, we ran-
domly select 50 malware programs and perform K-NN searches
for them with different K (5 and 10) and N (0, 1, 2, 3 and 4). Table
3 summarizes the experimental results. Success Rate and Average
Hit are defined as in Section 6.3 and Dominant Family Rate is de-
fined as the percentage of 50 experiments where the most prevalent
family among K returned nearest neighbors is also the family to
which the query malware belongs. As expected, Success Rate in-
creases with the increase in N. However, the difference in Success
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Rate among N = 2, 3 and 4 does not appear significant enough to
warrant the extra performance cost. This is because leaf nodes that
are far away from the current leaf node usually contain malware
files whose feature vectors are quite different from the query mal-
ware, indicating that they are likely not in the same family as the
query malware. Hence, exploring more leaf nodes (i.e., larger V)
does not significantly improve the accuracy. In our current SMIT
prototype, we choose N = 2 as the default setting. In addition,
the high values of Dominant Family Rate and Average Hit in Ta-
ble 3 also demonstrate the effectiveness of SMIT in helping human
analysts identify the malware family of incoming samples.

6.5.2 Query Response Time of SMIT

Finally, we measure the response time of SMIT for K -NN queries
against the entire test database, where N is set to 2 and K is set to 5.
We randomly select over 500 malware files and use them to query
SMIT. The response times of these queries and their cumulative
distribution function are shown in Figure 7. The X-axis of the left
figure is the number of graph-distance computations required for a
query and the corresponding Y-axis is the response time in seconds
for that query. From the right figure, for over 95% of all queries,
the response time is less than 100 seconds, although several queries
(mostly for very large malware files) incur a significantly longer de-
lay and thus skew the overall average response time. More specif-
ically, each 5-NN query requires, on average, 112 graph-distance
computations (median is 78 and maximum is 918). The query re-
sponse time ranges from 0.015 second to 872 seconds with average
21 seconds and median 0.5 second. This result demonstrates that
SMIT’s performance is adequate for day-to-day use even for rela-
tively large malware databases.

7. LIMITATIONS AND IMPROVEMENTS

We now discuss several limitations of the current SMIT proto-
type that may limit its classification effectiveness, and possible im-
provements to remove or alleviate them.

One way for malware authors to evade SMIT’s classification is
to prevent SMIT from extracting useful features by applying pack-
ers/protectors to their malware files. SMIT’s classification accuracy
will degrade significantly if it cannot successfully unpack packed
malware files. To counter the packing problem, the current SMIT
prototype employs several packer detection (PEiD, TrID) and un-
pack tools (SymPack), but they are by no means complete. For ex-
ample, PEiD can be misled by a simple modification to a PE file’s
entry point. Most existing unpack tools fail to handle sophisticated
packers, such as Armadillo [1] and VMProtect [33]. To improve
SMIT’s unpacking capabilities, we plan to incorporate generic un-
packers, such as OmniUnpack [22] and Justin [12], which execute
malware samples, detect the end of unpacking and then dump the
process image at that instant. The extra performance overhead
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associated with these techniques is generally acceptable, because
SMIT is mainly positioned as a back-end malware classification
and analysis tool.

Second, because SMIT analyzes malware samples at the level
of individual instructions and function calls, it may be susceptible
to advanced obfuscation techniques. For instance, attackers may
circumvent SMIT’s function matching by obfuscation, such as in-
struction reordering, equivalent instruction substitution, import ta-
ble modification (to hide the symbolic names of imported func-
tions), etc. Alternatively, they could also modify the function-call
graph by, for example, inserting useless functions into the graph,
breaking existing functions into several smaller functions, inlin-
ing certain functions, etc. Although SMIT cannot completely han-
dle all types of obfuscation, it makes these attacks more difficult.
For instance, SMIT uses the edit distance between mnemonic se-
quences to evaluate inter-function similarity, which enables SMIT
to be relatively resilient to simple code obfuscation and relocation.
To defeat more sophisticated obfuscation, SMIT could pre-process
malware files with advanced deobfuscation techniques [26]. More
importantly, because SMIT relies on structural similarity to match
function-call graphs, changes to a few nodes in the graphs are un-
likely to significantly influence the matching results.

Third, SMIT extracts function-call graphs using IDA Pro, which
may occasionally fail to identify all the functions in a malware bi-
nary. IDA Pro finds function-start addresses by traversing direct
function call or recognizing function prologues. As a result, if the
functions are indirectly referenced or have non-standard prologues,
IDA Pro may fail to identify their starting points. A more thorough
approach [13] that uses a new function model based on a multi-
entry control flow graph could mitigate this problem.

Finally, the dominant family metric used in SMIT may lead to
false positives. Because SMIT is mainly used to help malware
analysts quickly determine the maliciousness and the identity of
incoming malware, it assumes that the query malware sample be-
longs to the same family as the majority of its nearest neighbors in
the database. However, this assumption is not always valid and a
false positive may occur if the distance between an input malware
sample and its dominant family neighbors is too large. One way to
address this problem is to apply a distance threshold in the classifi-
cation process so that an input sample is classified into a malware
family if and only if it is sufficiently close to the returned nearest
neighbors. The optimal threshold could be chosen based on the av-
erage inter-member distance within a malware family as well as the
inter-family distance between the centroids of adjacent families.

In summary, although there are ways malware writers could use
to detract SMIT’s overall effectiveness, SMIT is still very effective
in practice against modern malware samples, as demonstrated in
Section 6, and thus represents a very efficient tool available for mal-
ware analysts to handle the exponentially-growing influx of mal-
ware samples as seen in recent years.



8. CONCLUSION

In recent years, the number of malware samples seen in the field
has increased exponentially, and automating the malware process-
ing workflow is crucial to commercial anti-virus companies such as
Symantec. A critical step in malware processing workflow is to de-
termine if an incoming sample is indeed malicious or not. A com-
mon approach taken today is to apply multiple commercial Anti-
Virus scanners to a sample and convict the sample as malware if
a sufficient number of Anti-Virus scanners consider it malicious.
Although this approach is useful, it does not completely solve the
problem, because at any point in time a significant percentage of
new samples are unknown to existing Anti-Virus scanners.

This paper describes the design, implementation and evaluation
of a malware database management system called SMIT that imple-
ments a malware conviction approach which casts the problem of
determining if a new binary sample is malicious into one of locat-
ing the sample’s nearest neighbors in the malware database. SMIT
converts each malware program into its function-call graph repre-
sentation, and performs nearest neighbor search based on this graph
representation.To efficiently capture the similarity among malware
variants, SMIT supports an approximate graph-edit distance metric
rather than isomorphic graph match. To efficiently support accu-
rate and scalable nearest neighbor search, SMIT features a multi-
resolution indexing scheme that combines a B+ tree based on high-
level summary features and a vantage-point tree based on the graph-
distance metric. With these techniques, SMIT is able to detect mal-
ware samples at a speed and accuracy level that can keep up with
the current malware sample submission rate. The main contribu-
tions of this work include: (1) an efficient graph-distance computa-
tion algorithm whose result closely approximates the ideal graph-
edit distance metric; (2) a multi-resolution indexing scheme that
supports efficient pruning through a combination of exact indexing
based on summary features and nearest-neighbor indexing based on
graph-edit distance; and (3) A fully working SMIT prototype and
a comprehensive performance study of this prototype that demon-
strates its efficacy and scalability with a 100,000-malware database.
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