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Abstract—The family of IEEE 802.11 Wireless Local Area
Network (WLAN) standards supports multiple transmission rates
in the physical layer (PHY). This multi-rate capability offers
a viable means of coping with dynamically-fluctuating wireless
channel conditions. We propose a cross-layer approach for the
optimal PHY mode control to maximize the system goodput. Our
key idea is to exploit the underlying channel fading character-
istics and the history of PHY mode control and observations to
infer the current channel condition, so that the optimal PHY
mode may be selected. Assuming Rayleigh fading, we describe
the receiver-side signal-to-noise ratio (SNR) fluctuations as a
finite-state Markov channel (FSMC) model. Since the channel
condition (i.e., fading level) is not directly observable by the
transmitter, we formulate the PHY rate adaptation problem as a
partially-observable Markov decision process (POMDP) to find
the optimal transmission policy. We use the belief state vector
to represent the channel state probabilistically. The belief state
is updated solely based on the channel state-transition matrix
and acknowledgement (ACK) information. Our evaluation results
show that the POMDP-based rate adaptation outperforms two
most well-known rate adaptation schemes, Auto Rate Fallback
(ARF) and Adaptive ARF (AARF), in terms of average goodput
under various fading conditions, and achieves up to 92% of the
ideal performance.

I. INTRODUCTION

The IEEE 802.11 WLAN [1] is one of the most popular and
widely-deployed wireless systems. The current family of IEEE
802.11 standards provides multiple data-transmission rates by
adopting different modulation and channel-coding schemes at
the physical layer (PHY). For example, the IEEE 802.11a
supports eight PHY rates ranging from 6Mbps to 54Mbps in
the 5GHz band; the IEEE 802.11b supports four PHY rates
from 1Mbps to 11Mbps in the 2.4GHz band; and the IEEE
802.11g is an extension of IEEE 802.11b and supports twelve
PHY rates delivering up to 54Mbps in the 2.4GHz band.
Currently, the IEEE 802.11 Working Group (WG) is driving
the standardization of MIMO-based IEEE 802.11n, which is
expected to support multiple PHY rates up to 600Mbps (raw
rate) by introducing higher-order modulation schemes, such as
128-QAM or 256-QAM, combined with channel bonding.

In 802.11 WLAN environments, the signal-to-noise ratio
(SNR) fluctuates due to various unpredictable phenomena in-
cluding multi-path fading, path loss, shadowing, interferences,
noise, etc. These channel dynamics are generally perceived
as harmful to the network performance due to their unpre-
dictability. However, the multi-rate capability of the IEEE
802.11 PHY provides a viable means of coping with time-
varying wireless channel conditions. The basic idea of using
the multi-rate capability is to make a trade-off between data
rate and error probability, the higher the data rate, the higher
the error probability. Therefore, it is natural to dynamically

change the modulation scheme (i.e., PHY modes) according
to time-varying channel conditions. This adaptive PHY mode
selection mechanism is called rate adaptation.

The fundamental design goal of a rate adaptation scheme is
to devise a PHY mode control mechanism that automatically
selects the best PHY mode under a given channel condition. In
general, however, the channel condition is not known a priori
to the transmitter, thus needing an efficient way of estimating
the channel condition. For this, various approaches have been
employed by existing rate adaptation schemes. For example,
RBAR [2] and OAR [3] are the PHY-layer approaches that
control the PHY mode via direct channel SNR measurement at
the receiver using RTS/CTS (Request-To-Send/Clear-To-Send)
control messages. On the other hand, ARF [4] and AARF [5]
are MAC-layer heuristics adapting the PHY mode by counting
consecutive transmission successes/failures. Finally, SampleR-
ate [6] and RRAA [7] use statistics over long- and short-term
sampling intervals to maximize the average throughput.

None of the above rate-adaptation schemes, however, ac-
curately estimates the channel condition due to the inherent
limitations in their protocol design [5], [7]. For example,
the SNR-measurement-based schemes (i.e., RBAR and OAR)
suffer from the inaccuracy in channel condition estimation [6]–
[8]. Heuristic approaches (i.e., ARF and AARF) cannot be
optimized due to the limited adaptability of the counting
method [7]. Finally, statistics-based approaches (i.e., SampleR-
ate and RRAA) do not react quickly to dynamically-changing
channel conditions due to their dependence on the sampling
interval [7]. The non-optimality of existing schemes, in fact,
stems from the lack of understanding of the physical-layer
aspects of a wireless channel. For example, the time-correlated
nature (i.e., memory) of a wireless channel fading process [9],
which clearly benefits the channel estimation, is not considered
in any of previous studies.

To overcome the above limitations of existing rate-
adaptation schemes, we propose a novel cross-layer
transmission-control scheme in IEEE 802.11 WLANs
that exploits the underlying channel fading process to derive
an optimal transmission-control (i.e., PHY mode adaptation)
policy. We assume a Rayleigh fading channel and model
time-varying channel conditions as a finite-state Markov
channel (FSMC). While the channel condition is not directly
observable by the transmitter, the PHY mode use for packet
transmission and the corresponding acknowledgement (ACK)
packet can provide hints to estimate the current channel
condition. Thus, we formulate the rate-adaptation problem as
a partially-observable Markov decision process (POMDP).
In POMDP, the condition of a wireless channel is estimated



through a belief state vector, each element of which represents
the likelihood of the channel being in a certain state at a given
time. The belief state is updated at each packet transmission
attempt by exploiting previous PHY mode control and
corresponding observations (i.e., ACK) history. Based on the
belief state, the transmitter selects the best PHY mode to
maximize the system goodput.

The main contributions of this paper are three-fold. First,
we provide an analytical framework for cross-layer design
of optimal transmission control for IEEE 802.11 WLANs.
Second, our scheme does not require direct SNR measure-
ments in estimating the channel condition, which is known
to be inaccurate and also incurs overhead (e.g., RTS/CTS)
[6]–[8]. Third, our scheme accurately predicts the channel
condition (even when there is no packet to transmit) instead of
reacting to it after observing consecutive transmission failures
or successes.

The rest of this paper is organized as follows. Section
II presents the wireless channel model used in our scheme.
Section III introduces the IEEE 802.11a MAC protocol and
analyzes the probability of successful frame transmission
for a given channel condition and PHY mode. Section IV
describes the POMDP formulation for the transmission-control
problem and also introduces the heuristic methods that we use.
Section V presents our simulation results. Section VI makes
conclusions and mentions future directions.

II. WIRELESS CHANNEL MODEL

To incorporate the physical channel characteristics in the de-
sign of a rate adaptation scheme, we need a channel model that
describes the underlying physical-layer channel behaviors. The
first-order Markov model has been recognized as a simple and
accurate means of modeling Rayleigh fading channels [10]–
[12]. While the original Markov model proposed in [10] is
described in symbol-level time periods, it can be applied to
packet-level IEEE 802.11 WLAN channels in a slow fading
environment.
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Fig. 1. Finite-state Markov channel (FSMC) model for a Rayleigh fading
channel in IEEE 802.11 WLANs

Therefore, we model a Rayleigh fading channel as a
finite-state Markov channel (FSMC) with state space S =
{s1, s2, . . . , sM} as shown in Fig. 1. The number of FSMC
states (i.e., M ) is a design parameter. In this paper, we adapt
the method used in [10] to model a Rayleigh-fading channel as
a FSMC. The FSMC is constructed by partitioning the range
of the received SNR into a finite number of non-overlapping
intervals. It is assumed that state transitions can occur only
between adjacent states. This is a reasonable assumption for
a slow-fading channel because channel state transitions are
continuous and not abrupt.

We define the ith fading region as Di={γ : Ci−1 ≤ γ < Ci}
where 0=C0<C1<. . .<CM−1<CM =∞ represent the thresh-
olds of the received SNR γ. Then, the channel is said to
be in state i, i ∈ {1, . . . , M}, if the received SNR γ is in
the fading region Di. Note that we set the SNR thresholds
Ci so that the steady-state probabilities are equiprobable (i.e.,
π1 = π2 = · · · = πM ).

The expected downward transition rate NCi
of received

SNR γ across the threshold Ci can be expressed as:

NCi
=

√
2πCi

γ̄
fD exp

{
− Ci

γ̄

}
, (1)

where fD is the maximum Doppler shift and γ̄ is the average
SNR.

Let rB denotes the block rate (per second) of the system.1

Then, the average block rate per second in state i can be
written as:

Ri = πi × rB ∀i, (2)

where πi is the steady-state probability, which can be evaluated
using the Rayleigh distribution as follows:

πi = P(γ ∈ Di) =
∫ Ci

Ci−1

1
γ̄

e−
x
γ̄ dx

= exp
{
− Ci−1

γ̄

}
− exp

{
− Ci

γ̄

}
. (3)

Then, based on Eqs. (1), (2), and (3), the state-transition
probabilities can be approximated by the expected ratio of
the number of level-crossings at Ci to the average number of
blocks per second in state i. That is,

pi,i+1 ≈ NCi

Ri
i = 1, . . . , M − 1

and

pi,i−1 ≈ NCi−1

Ri
i = 2, . . . ,M. (4)

The values of p1,1, pM,M , and pi,i are given as:

p1,1 = 1 − p1,2, pM,M = 1 − pM,M−1

and

pi,i = 1 − pi,i+1 − pi,i−1 i = 2, . . . ,M − 1. (5)

The thus-obtained probabilities can be used by the transmitter
to estimate the channel state. This will be detailed in Section
IV.

Note that our FSMC model can be easily extended for the
general Nakagami-m model which encompasses a large class
of fading channels (e.g., Rayleigh and Rician) [13]. Moreover,
the FSMC model can be used to model the SNR fluctuations in
802.11 WLAN channels via SNR measurements even without
the Rayleigh or Rician fading assumption [14]–[16].

III. IEEE 802.11A WLANS

In this section, we briefly describe the multi-rate capability
and frame formats of IEEE 802.11a PHY. We then derive the
average successful transmission probability for each combina-
tion of PHY mode and channel state of the FSMC model.

1In this paper, a single block corresponds to the average time interval of
back-to-back frame transmission.



A. IEEE 802.11a Physical Layer

The IEEE 802.11a PHY offers eight PHY modes: BPSK,
QPSK, 16-QAM, and 64-QAM, combined with various rate
convolutional coding for forward error correction (FEC), as
shown in Table I. We denote by M a set of the eight PHY
modes of the IEEE 802.11a throughout the paper.

TABLE I
EIGHT PHY MODES OF THE IEEE 802.11A

Mode Modulation Coding Rate Data Rate BpS

1 BPSK 1/2 6 Mbps 3

2 BPSK 3/4 9 Mbps 4.5

3 QPSK 1/2 12 Mbps 6

4 QPSK 3/4 18 Mbps 9

5 16-QAM 1/2 24 Mbps 12

6 16-QAM 3/4 36 Mbps 18

7 64-QAM 2/3 48 Mbps 24

8 64-QAM 3/4 54 Mbps 27

The format of the IEEE 802.11a data frame is shown in
Fig. 2. In the MAC layer, the higher layer data (i.e., frame
body) is encapsulated by adding the MAC header and frame
check sequence (FCS). This is called the MAC Protocol Data
Unit (MPDU). Then the MPDU is passed down to the PHY
layer where the PLCP preamble and PLCP header are added
to construct the PLCP Protocol Data Unit (PPDU) when the
frame is transmitted to the wireless medium. Note that, the
PLCP preamble and PLCP header except the SERVICE field
are always transmitted at the lowest PHY rate (i.e., 6Mbps),
while any PHY mode can be used for the following part
including the MPDU. The format of the ACK frame is shown
in Fig. 3. Note that these frame format information will
be used in approximating the successful frame transmission
probabilities in the next subsection.

RATE
4 bits

Reserved
1 bit

LENGTH
12 bits

Parity
1 bit

Tail
6 bits

SERVICE
16 bits MPDU Tail

6 bits Pad Bits

Data
Variable Number of OFDM symbols

SIGNAL
One OFDM Symbol

PLCP Preamble
12 Symbols

Coded/OFDM
(BPSK,r=1/2)

Coded/OFDM
(RATE is indicated in SIGNAL)

PLCP Header

MAC
Header Frame Body

≤ 2304

FCS

4octets:  24

Fig. 2. PPDU frame format of the IEEE 802.11a PHY

Frame
Control Duration Receiver

Address FCS

MAC Header

octets:  2 2 6 4

Fig. 3. ACK frame format of the IEEE 802.11a PHY

B. BER Upper Bounds for IEEE 802.11a PHY modes

Here we derive the bit-error-rate (BER) upper bounds of the
IEEE 802.11a PHY modes. For channel coding scheme, we
assume a binary convolutional code with hard-decision Viterbi
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Fig. 4. BER upper bounds of the IEEE 802.11a PHY modes

decoding. Then, given the average symbol SNR γ, the symbol
error rates of BPSK and M-QAM modulation can be calculated
as follows [9]: 2

pm
s (γ) = Q(

√
2 γ) (6)

and

pm
s (γ) = 1 −

(
1 − 2(

√
M − 1)√
M

Q

(√
3 γ

M − 1

))2

, (7)

where m ∈ M is the adopted PHY mode.
By applying the union bound, an upper bound of the bit

error probability pm
b can be computed as [9]:

pm
b (γ) ≤

∞∑
d=dfree

ad f(d)Pm
2 (d, γ), (8)

where dfree is the free distance of the convolutional code, ad

is the total number of error events of weight d, and f(d) is
the number of bit errors associated with a path of distance d
from the all-zero path. P2(d, γ) is called the pairwise error
probability which is the probability of an incorrect sequence
of distance d away from the correct sequence being chosen by
the Viterbi decoder. Instead of direct calculation of Pm

2 (d, γ),
we can use the Chernoff upper bound to obtain [9]:

Pm
2 (d, γ) < [4pm(γ)(1 − pm(γ))]d/2. (9)

Then, by substituting Eq. (9) into Eq. (8), the upper bound
on bit error probability (BER) can be expressed as follows [9]:

pm
b (γ) < pm

ub(γ) =
dT (D,N)

dN

∣∣∣∣
N=1,D=

√
4p(γ)(1−p(γ))

. (10)

Therefore, the BER upper bound can be computed by using
the transfer function T (D,N) or the values ad and f(d).
Fig. 4 shows the BER upper bounds of the IEEE 802.11a PHY
modes. Based on the BER upper bound for each modulation
scheme, the probability of successful data frame transmission
can be approximated as discussed in the following subsection.

2The Q-function is defined as Q(x) =
∫ ∞

x
1√
2π

e−y2/2 dy.



C. Probability of Successful Transmission

We consider a data frame transmission as successful if the
frame is decoded at the receiver without an error and the
corresponding acknowledgement (ACK) packet is correctly
received at the transmitter. Therefore, the successful frame
transmission probability, denoted by pm

succ(γ), can be approx-
imated as:

pm
succ(γ) ≈ (1 − pcol) (1 − pm

data(γ)) (1 − pack(γ)), (11)

where pcol is the collision probability, and pm
data(γ) and

pack(γ) are the data frame and the acknowledgement (ACK)
frame transmission error probabilities given SNR γ and PHY
mode m, respectively.

Let L denote the data payload length (in bytes). Then the
data frame error probability can be computed as follows:

pm
data(γ) = 1− (1−p1

ub(γ))24 (1−pm
ub(γ))(28+L)·8+22. (12)

For the sake of simplicity, we assume that the ACK packet
is always transmitted at the lowest PHY rate (i.e., 6Mbps).3

Then, the pack(γ) can be computed as follows:

pack(γ) = 1 − (1 − p1
ub(γ))14·8+46. (13)

Since the optimal PHY mode would be determined based
on the discrete set of channel states, an average successful
frame transmission probability on each channel state should be
calculated. Assuming the channel is in state i and PHY mode
m is used, the average successful transmission probability can
be found by integrating the pm

succ(γ) given by Eq. (11) over
the Rayleigh fading distribution fR(γ) in the ith fading region
Di. Then, it can be further approximated by using the average
SNR γ̄i. That is,

pm
succ,i =

∫ Ci

Ci−1
pm

succ(γ) fR(γ) dγ∫ Ci

Ci−1
fR(γ) dγ

≈ pm
succ(γ̄i) ∀i (14)

where

γ̄i =

∫ Ci

Ci−1
γ fR(γ) dγ∫ Ci

Ci−1
fR(γ) dγ

=
Ci e

Ci
γ̄ − Ci−1 e

Ci−1
γ̄

e
Ci
γ̄ − e

Ci−1
γ̄

− γ̄. (15)

Note that since the average successful transmission proba-
bility in Eq. (14) is approximated from the BER upper bounds,
it may significantly different from the empirical values, espe-
cially for large data frames. In practice, an empirical BER-
SNR curve provided by chip manufacturers (e.g., [17]) can be
used to have more accurate PHY mode control.

IV. DECISION-THEORETIC FRAMEWORK FOR
TRANSMISSION CONTROL

In this section, we develop a POMDP-based decision-
theoretic approach for PHY mode adaptation for IEEE 802.11a
WLANs. Since it is computationally too expensive to solve
POMDP directly, we introduce heuristics to find a near-optimal
PHY mode adaptation policy with reduced computational
overhead.

3According to the IEEE 802.11a MAC specification, the ACK frame is
transmitted at the highest PHY rate among the basic service set (BSS) basic
rate that is less than or equal to the rate of the data frame. BSS basic rate set
of IEEE 802.11a is {6Mbps, 12Mbps, 18Mbps}.

A. POMDP Formulation

Since the true channel state is not completely observable by
the transmitter, the PHY mode control problem is inherently a
POMDP problem as depicted in Fig. 5. The main advantages
of using POMDP for rate adaptation is two-fold. First, the be-
lief state vector, which represents the estimated channel state,
enables more sophisticated PHY mode control than existing
probing-based rate adaptation schemes (e.g., ARF, AARF, and
SampleRate). Second, various performance metrics, such as
goodput, error rate, delay, and power consumption, can be
incorporated in the PHY mode control via the reward function.
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Fig. 5. A graphical model of the POMDP for PHY mode adaptation

POMDP is described formally as: (i) a set of time slots
T = {1, 2, . . . , t} over which PHY mode decisions to be
made; (ii) a set of states S; (iii) a set of controls U ; (iv) a
set of state-transition probabilities P; (v) a set of observations
Θ; (vi) a set of observation probabilities Ω; and (vii) a set of
rewards R. We assume a discrete-time POMDP model since
PHY mode selections are made for each frame transmission.
However, a frame transmission interval is not fixed in the
802.11a MAC protocol (e.g., random backoff). Thus, we
consider an average frame transmission time, which is denoted
as E[tTx Duration], as a duration of each time slot in T .
The derivation of the average frame transmission time will be
shown later in this section. The S and P corresponds to the
set of FSMC model states and its state-transition probability
matrix, respectively, as defined in Section II. The set of
controls U consists of the eight PHY modes in the IEEE
802.11a PHY (i.e., U � M). At each time slot t, the true
channel state st ∈ S is hidden from the transmitter, while
an observation θt ∈ Θ = {0 (failure), 1 (success)} can be
seen. The observation θt is equal to 1 if the ACK frame is
correctly received, and 0 otherwise. The stochastic process
{θt : t ∈ Z+} is called the observation process and the
observation probability ω(st,mt, θt) ∈ Ω can be expressed
as:

ω(st,mt, θt) = P(θt|st,mt) st ∈ S, θt ∈ Θ,mt ∈ M,
(16)

which is the conditional probability of observation θt given
channel state st and PHY mode mt. Therefore, it can be
approximated as:

ω(st,mt, θt) ≈
{

pmt
succ,st

if θt = 1
1 − pmt

succ,st
if θt = 0,

(17)

where pm
succ,i is the average transmission success probability

derived in Section III.



B. Channel State Estimation

If we let λi(t) � P(st = i|Λ(1),m1:t, θ1:t), then the belief
state vector Λ(t) � [λ1(t), λ2(t), . . . , λM (t)] represents the
estimated probability distribution of channel states at time slot
t. Each element λi(t) denotes the conditional probability that
the channel is in state i at time slot t prior to the state transi-
tion, given all the PHY mode decision and the corresponding
observation (i.e., ACK) history. Note that λi(t) ≥ 0 ∀i ∈ M
and

∑M
i=1 λi(t) = 1 ∀t ∈ T since the channel must reside

in one of the M states at any given time slot. Each element
of the belief state vector can be updated recursively for every
time slot using the Bayes rule:

λj(t + 1) � Ψj(Λ(t)|θt,mt)

=
∑M

i=1 λi(t) pij ω(j,mt, θt)∑M
i=1

∑M
j=1 λi(t) pij ω(j,mt, θt)

∀j ∈ S,

(18)

where pij is the state-transition probability derived in Section
II. We denote λi(t + 1) � λi(t + 1|θ1:t,m1:t) for brevity.
Clearly, the belief state vector Λ(t) summarizes all the nec-
essary information for making PHY mode decision at time
slot t. Note that even if there is no observation (e.g., no
packet to transmit or contention) in any time slot, the belief
vector can be still updated based on the channel state-transition
probabilities, thus allowing the transmitter to keep track of the
actual channel conditions. The computational complexity in
updating the belief state vector is O(M2). The sequence of
operations in each time slot is depicted in Fig. 6.

C. Definition of Reward

In order to design the optimal transmission policy, we need
to specify a criterion for optimality. We define a real-valued
reward function R : S ×M → R which indicates the reward
earned in a time slot when the process is in state i ∈ S and
PHY mode control m ∈ M is applied in that time slot. For
our PHY mode control problem, we use the expected average
reward per unit time over an infinite horizon (i.e., long-term
average goodput) as the optimality criterion.

Since our objective is to maximize system goodput, we want
to define the reward function so as to accurately represent the
expected goodput corresponding to the adopted PHY mode
and belief state at each time slot. Therefore, the expectation
of reward function should be represented as:

E[R(i,m)] � avg. # bits transmitted
avg. transmission time duration

.

First, the number of data bits transmitted in a time slot can
be written as:

nTx Bits =

{
L × 8 w.p. pm

succ,i

0 w.p. 1 − pm
succ,i,

(19)

where L is data payload length in bytes. Recall that pm
succ,i

is the probability of successful frame transmission associated
with the channel state i and PHY mode m.

For each successful frame transmission, the transmitter
sends a data frame, and then the receiver responds with
an ACK frame after waiting for SIFS. Once the transmitter
receives the ACK frame correctly, after waiting for DIFS, it

Λ(t)

State 
Transition

pij

PHY mode 
Selection

mt

Observation

θt

Reward

Rt

Update
Belief State

Λ(t+1)
timeTime slot t

Initial
Belief State

Fig. 6. The sequence of operations of POMDP in a time slot

TABLE II
IEEE 802.11A PHY PARAMETERS

Parameter Value Comments

tSlotTime 9µs Slot time

tSIFSTime 16µs SIFS time

tDIFSTime 34µs DIFS = SIFS + 2 × Slot

aCWmin 15 min contention window size

aCWmax 1023 max contention window size

tPLCPPreamble 16µs PLCP preamble duration

tPLCP SIG 4µs PLCP SIGNAL field duration

tSymbol 4µs OFDM symbol interval

performs a random backoff before transmitting the next frame.
However, if the data frame transmission fails, the transmitter
waits for an ACK timeout period, then waits for DIFS, and then
performs a random backoff. Therefore, the total transmission
time for a single data frame can be expressed as:

tTx Duration

=




Tm
data + tSIFSTime + tDIFSTime

T back(0) + Tack w.p. pm
succ,i

Tm
data + tSIFSTime + tSlotTime

tDIFSTime + T
m

back,i + Tack w.p. 1 − pm
succ,i,

(20)

where the PHY layer parameters of the IEEE 802.11a are listed
in Table II. Tm

data and Tack represent the time durations re-
quired for transmitting the data and ACK frames, respectively.
They can be computed based on Figs. 2 and 3 as follows [18]:

Tm
data = tPLCPPreamble + tPLCP SIG

+
⌈

28 + (16 + 6)/8 + L

BpS(m)

⌉
· tSymbol (21)

and

Tack = tPLCPPreamble + tPLCP SIG

+
⌈

14 + (16 + 6)/8
BpS(1)

⌉
· tSymbol

= 40µs, (22)

where BpS(m) is the Bytes-per-Symbol for PHY mode m
in IEEE 802.11a (see Table I in Section III). T

m

back,i in
Eq. (20) represents the average random backoff interval of
all re-transmission attempts in state i with PHY mode m.
Note that the average random backoff period for the ith re-
transmission attempt is given as follows [18]:

T back(i) =
min[2i · (aCWmin + 1) − 1, aCWmax]

2
×tSlotTime.

(23)



E[R(i, m)] =
E[ nTx Bits ]

E[ tTx Duration ]

=
L × 8 × pm

succ,i

pm
succ,i × (T m

data + tSIFSTime + Tack + tDIFSTime + T back(0)) + (1 − pm
succ,i) × (T m

data + Tack + tSIFSTime + tSlotTime + tDIFSTime + T
m
back,i)

=
L × 8 × pm

succ,i

pm
succ,i × T back(0) + (1 − pm

succ,i) × (tSlotTime + T
m
back,i) + T m

data + tSIFSTime + Tack + tDIFSTime
. (25)

Then, the average backoff period of all transmission attempts
can be computed as:

T
m

back,i =
n̂∑

k=0

(1 − pm
succ,i)

kpm
succ,i × T back(k), (24)

where n̂ is the maximum number of re-transmission attempts.
Finally, the expected reward which represents the effective

goodput given channel state i and PHY mode m can be
obtained as shown in Eq. (25).

D. Optimal PHY Mode Control Policy

Our objective is to maximize the goodput by employing an
optimal policy π∗ = {µ1, µ2, · · · }, which specifies the optimal
PHY mode decision rule for every time slot t ∈ T (i.e., every
frame transmission). The policy is said to be stationary if it
has a form π = {µ, µ, · · · }. For brevity, we use µ to denote
a stationary policy. Then the policy µ is said to be optimal if
it satisfies:

Jµ(i) = J∗(i) = max
π

Jπ(i) ∀i ∈ S, (26)

where Jπ(i) denotes the long-term average reward associated
with an initial state i and a policy π.

Note that the policy is a mapping from belief state vector
Λ(t) to the PHY mode m as:

µ : Λ(t) ∈ [0, 1]M → m ∈ M ∀t ∈ T . (27)

This indicates that, in our POMDP problem, we need to
consider the entire space of belief states to find the optimal
solution. In other words, we need to apply MDP for an
uncountable infinite state space. For this reason, the solution
of an infinite horizon stochastic POMDP is undecidable for
general but bounded rewards [19]. On the other hand, for
general MDP problems, an optimal policy can be found by
assuming that states are completely observable.

Therefore, we first consider a Markov decision process
(MDP) by assuming that the channel state is perfectly known
for every time slot. Our objective is then to find an optimal
stationary transmission policy of MDP which maximizes the
expected long-term average reward. That is,

µ∗
MDP = arg max

π
lim

t→∞
1
t
Eπ

[ ∞∑
t=1

R(i,m)|Λ(1)
]
, (28)

where Eπ represents the conditional expectation given that
policy π is employed and Λ(1) is the initial belief state vector,
which can be an arbitrary distribution.

The maximum average reward ξ∗ with some vector h∗ =
{h∗(1), . . . h∗(M)} satisfies the following Bellman’s equa-
tion [20]:

ξ∗ + h∗(i) = max
m∈M

[
R(i,m) +

M∑
j=1

pij h∗(j)
]
, (29)

where h∗ may have multiple solutions for this equation.
The optimal stationary policy µ∗ can be found by using

the policy-iteration algorithm. In the algorithm, we repeatedly
execute policy-evaluation step and policy-improvement step
until no further improvement is made [20].

E. Suboptimal Heuristics

Since solving the POMDP is computationally prohibitive,
we adopt well-known heuristics based on the optimal policy of
MDP. The simplest approach is to treat the most probable state
(i.e., state with the highest belief value) as a true channel state.
This is called the maximum-likelihood (ML) heuristic [21] and
the corresponding suboptimal control policy can be stated as:

µ∗
ML = µMDP (arg max

i∈S
λi(t)). (30)

Although the ML heuristic is simple, it does not fully
exploit the given belief state information. For example, the
PHY mode chosen by the ML heuristic may not be optimal
if we consider the entire belief state space. Therefore, as an
alternative, we can use the voting heuristic [22] where each
state elects the best PHY mode based on the optimal policy
of MDP. Then, each voted PHY mode is weighted by the
belief state value corresponding to the given state and PHY
mode under consideration. The voting heuristic policy can be
expressed as:

µ∗
voting = arg max

m

∑
i∈S

λi(t) δ(µMDP (i) − m). (31)

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed scheme using
MATLAB-based simulation. To demonstrate the effectiveness
and utility, we compare the performance of our scheme with
existing well-known rate adaptation schemes, under various
fading conditions. We also study the performance impact of
the number of FSMC states and average channel conditions.

A. Simulation Setup

We consider a simple communication scenario with a
transmitter-receiver pair in IEEE 802.11a WLANs. We assume
that the large-scale signal propagation effects (e.g., path loss,
shadowing) are handled in an average sense, and Rayleigh fad-
ing dominates the time-varying channel condition. We consider
the FSMC with various numbers of states (i.e., M=5,7,10,15);
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Fig. 7. Example dynamics of the belief state vector

and the SNR thresholds of the FSMC are determined so that
all states have an identical steady-state probability.

Throughout the simulation, the data payload size L is fixed,
so the PPDU size is also fixed at PPDU length = 900
bytes. No data frame fragmentation is assumed in packet
transmission. The transmitter supports the 8 PHY modes (see
Section III). It transmits each packet with the same fixed
power level. Since we use a slotted time model for the
fading process in the POMDP formulation, we need to set
the duration of each time slot close to the average frame-
transmission interval. We set slot duration = 1 ms since the
average transmission time for a 900-byte packet with PHY
mode 1 (i.e., BPSK with rate-1/2 convolutional code) is 1.0215
ms. We assume that the frame errors due to collisions are
always correctly differentiated from the errors due to channel
conditions [23], [24].4 We also assume that pack ≈ 0, which is
reasonable in practice, because of its small frame size and the
associated PHY mode (i.e., BPSK), which is robust to error.
Each simulation is run for 50 seconds.

To demonstrate the benefits of our scheme, we evaluate the
performance of the following rate adaptation schemes: (i) the
proposed scheme; (ii) ARF-3; (iii) ARF-10; (iv) adaptive ARF
(AARF); and (v) an IDEAL scheme. The proposed scheme
uses the voting heuristic described in Section IV. In ARF-
3(ARF-10), the transmitter increases the PHY rate after 3(10)
consecutive successful transmissions, and it decreases the PHY
rate after 2 consecutive transmission failures in both schemes.
AARF is an enhanced version of ARF in which the transmitter
adaptively changes the probing interval so as to work well
in both slow- and fast-fading environments. In AARF, the
transmitter immediately falls back to the previous PHY rate,
and doubles the probing interval upon failure of the probing
attempt. Like ARF, the transmitter sets the probing interval
to the default value, 10, and decreases the PHY rate after
observing two consecutive transmission failures. The probing
interval upper bound is set to max probing interval = 50. In
the IDEAL scheme, we assume that the channel condition
(i.e., SNR) is perfectly known to the transmitter. In this case,

4If there is no such differentiation, our scheme may suffer significantly
since the prediction error in the belief states will propagate to the following
states.
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Fig. 8. Comparison of goodput among various rate adaptation schemes

the stationary policy of MDP (i.e., µMDP ) is used to direct
the PHY mode for each transmission attempt. Therefore, the
achieved goodput of the IDEAL scheme can be seen as a
performance upper bound of the POMDP optimal policy.
Therefore, this will be used as a reference in our simulation
study. We use the average achieved goodput (in Mbps) as the
main performance metric.

B. Channel State Estimation Accuracy

Before discussing the simulation results, we first show the
accuracy of the belief state vector by giving an example as
shown in Fig. 7, which illustrates the dynamics of the belief
state in time period [1900, 2000] (ms) of our simulation.
During this time period, the actual channel SNR monotonically
(but not linearly) increases from 12.54 dB to 13.02 dB, which
belongs to the state 6 in the 15-state FSMC model, and there
is no transmission failure during this time period. Fig. 7
shows that the highest value component of the belief vector
migrates from state 6 to state 7 as the transmitter continuously
observes successful frame transmissions, thus demonstrates the
accuracy of the belief states. Later in this section, we will show
how the belief state vector directs the selection of an optimal
PHY mode, thus improving system performance.

C. Effect of Fading Conditions

Fig. 8 shows the average achieved goodput of the testing
schemes under various fading conditions (i.e., Doppler spread
values). As expected, the proposed POMDP-based rate adap-
tation scheme significantly outperforms the others for all sim-
ulated scenarios because of its ability to exploit the underlying
channel fading characteristics. Our scheme achieves up to 92
% of the performance upper bound (i.e., the achieved goodput
by the IDEAL scheme) with a small Doppler spread (i.e.,
slow-fading), and the performance degrades as the Doppler
spread value increases (i.e., fast-fading). This is because the
accuracy of the FSMC-based channel state prediction degrades
rapidly as the channel fading process becomes faster, due to
the increase in state transition probabilities. Note the FSMC
model is not valid any more if the Doppler spread value is
beyond a certain threshold (e.g., fD > 30 (Hz)).

The simulation results show that ARF-10 works well for
slow-fading channels, however, the performance degrades as
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the Doppler spread increases. This is because the transmitter
cannot adapt quickly to fast-varying channel conditions due
to the fixed probing interval of 10. On the other hand, ARF-
3 performs poorly in case of slow-fading channels since it
attempts rate increase too frequently, incurring a large number
of transmission failures. It should be noted that ARF-10
outperforms ARF-3 since we simulated only slowly-varying
fading channels. Similar to ARF-10, AARF shows good
performance for slow-fading channels and the performance
degrades as the Doppler spread increases. However, AARF
performs slightly better than ARF-10, mainly because it is
flexible in adjusting the probing interval to some extent.

D. Effect of the Number of FSMC States

We study the effect of the number of FSMC states by
comparing the goodput of the proposed scheme under various
FSMC models of different numbers of states. We consider
four FSMC models with different numbers of states, i.e.,
M = 5, 7, 10, 15. In addition, we consider two average channel
conditions, i.e., normal with γ̄ = 16 (dB), and good with
γ̄ = 22 (dB), to see how the FSMC model with different
numbers of states performs under different average channel
conditions. Note that, under a bad channel condition (e.g.,
γ̄ < 10 (dB)), there will be no substantial benefit of using
a large number of states since in such a case, only low PHY
rates (i.e., BPSK or QPSK) will be used for most of the time.

Fig. 9 shows the effect of the number of states on goodput
performance with the corresponding optimal MDP policies as
shown in Fig. 10, under the normal channel condition (i.e.,
γ̄ = 16 (dB)). As shown in Fig. 9, significant performance
improvements result as the number of state increases from 5
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Fig. 12. The optimal PHY control policies for MDP with various numbers
of FSMC states under the good channel condition

to 10. This is because a large number of states provides finer-
grained SNR intervals, and thus enables better PHY mode
selection decisions. However, there is virtually no performance
improvement as the number of states increases further from 10
to 15 because there is no substantial difference in PHY mode
decision policies as shown in Fig. 10. In other words, the
impact of the number of states on performance would become
negligible if it increases beyond a certain threshold.

Fig. 11 shows that there is no significant difference in
goodput performance under the good channel condition (i.e.,
γ̄ = 22 (dB)). Interestingly, even the FSMC model with a
smaller number of states (i.e., M = 7) performs better than
those with a larger number of states (i.e., M = 10, 15). This
is because, under a good channel condition, the number of
state does not have any significant impact on the goodput
since the high PHY rates would be used for most of the
time regardless of the number of states, as shown in Fig. 12.
The SNR thresholds of FSMC, in fact, affects the quality of
PHY mode control policy which is the main reason why the
achieved goodput does not increase monotonically with model
complexity (i.e., the number of states). The issue of finding
the optimal number of states is part of our future study.

E. Comparison of the PHY mode control

Fig. 13 clearly demonstrates the effectiveness of the pro-
posed scheme by comparing the PHY mode adaptation of the
five rate adaptation schemes under consideration. Fig. 13(a)
shows the observed channel SNR variation with Doppler
spread fD = 10 (Hz) during the time period [1500,1700] (ms)
in the simulation. Figs. 13(b) and (c) show the behavior of
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Fig. 13. Comparison of PHY mode adaptation of the schemes under
consideration

IDEAL and proposed schemes, respectively. Since the IDEAL
scheme operates using the optimal MDP policy based on
completely observable channel states, it perfectly adapts the
PHY mode to the fluctuating channel conditions. The proposed
scheme also directs the PHY mode in close accordance with
the channel condition. However, it is slow in up-shifting the
PHY mode as one can observe, for instance, in time duration
[5,20] (ms). This is because the transmission failure due to the
degraded channel condition changes the belief state drastically,
while consecutive transmission successes slightly change the
belief state. Figs. 13(d),(e) and (f) show the behaviors of ARF-
3, ARF-10 and AARF, respectively. ARF-3 is error-prone due
mainly to its frequent probing attempts, while ARF-10 and
AARF show lack of agility in rate adaptation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed cross-layer transmission control
that maximizes the expected goodput by exploiting the un-
derlying channel fading characteristics. We assume channels
to experience Rayleigh fading, which is modeled as a finite-
state Markov channel (FSMC). We formulate the transmission
control (i.e., PHY mode adaptation) problem as a POMDP
where the PHY mode is selected based on the belief state,
which is updated for each frame transmission using a simple
Bayes rule. We compare the performance of the proposed
scheme against four different rate-adaptation schemes: ARF-
3, ARF-10, AARF, and IDEAL. Our simulation results show
that the proposed scheme outperforms the two well-known rate
adaptation schemes (i.e., ARF and AARF) thanks to its ability
to closely track the actual channel condition by exploiting the
underlying channel fading process.

Our future work includes finding an efficient mechanism
for Markov channel modeling, which is one of the main chal-

lenges of the proposed scheme, and finding the optimal SNR
thresholds of the FSMC model. It also includes investigating
the PHY mode control strategies with various performance
metrics (e.g., delay and power consumption).
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