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Abstract—Cognitive radio allows unlicensed users to access
the licensed spectrum opportunistically to enhance the spectrum
utilization efficiency. In this paper, the problem of allocating re-
sources (channels and transmission power) in multi-hop cognitive
radio networks (CRNs) is modeled as a multi-commodity flow
problem with the dynamic link capacity resulting from dynamic
resource allocation, which is in sharp contrast with existing
flow control approaches that assume fixed link capacity. Based
on queue-balancing network flow control that is suitable for
handling dynamically changing spectrum availability in CRNs,
we propose a distributed scheme (installed and operational in
each node) for optimal resource allocation without exchanging
spectrum dynamics information between nodes. Considering the
power masks, each node makes resource-allocation decisions
based on current or past information from neighboring nodes to
satisfy the throughput requirement of each flow. Parameters of
these proposed schemes are configured to maintain the network
stability. The performance of the proposed scheme for asyn-
chronous and synchronous scenarios is analyzed comparatively.
We considered both cases of sufficient and insufficient network
capacity.

I. INTRODUCTION

Cognitive radio (CR) [1]-[4] is an emerging technology for
future wireless communication and networking. CR makes
it possible for unlicensed/cognitive users to opportunistically
utilize the licensed spectrum when it is not occupied by
licensed/primary users. It can overcome the drawback of the
current static spectrum allocation policy and improve the
spectrum utilization.

For multi-hop wireless networks, cross-layer resource allo-
cation [5][6] is a challenging problem; especially, distributed
resource allocation is a very hard problem. Joint channel
allocation, power control, route selection and congestion con-
trol, which affect one another, make the problem even more
difficult. In this paper, flow control [7] (instead of routing)
is adopted for transmission of data from a source to the
corresponding destination.

For CR networks, each node has the power mask on every
channel to protect primary users, and the spectrum status
of channels in a licensed spectrum may change because of
the primary users’ activities, which is known as spectrum
dynamics. These characteristics of CR networks introduce new

challenges for resource allocation. There have been a number
of publications on spectrum allocation [8][9], power control
[10][11], and routing [12][13] for CR networks. However,
most of them focus on one of the various aspects of resources
allocation, and almost all of existing research on distributed
resource allocation requires spread the spectrum dynamics
information to the nodes all over the CR network.

In this paper, we propose a distributed resource allocation
scheme that meets end-to-end (E2E) throughput demands for
multiple sessions in multi-hop CR networks. The proposed
scheme considers the power masks for each channel, and
can adjust itself adaptively to accommodate the spectrum
dynamics according to the spectrum status and the current link
transmission requirement. The proposed distributed scheme
is also suitable for asynchronous scenarios, in which all the
nodes do not have to execute the scheme at the same time. The
main contributions of this paper are summarized as follows: it

• Extends the queue-balancing flow control from wired
networks with fixed link capacity to wireless networks in
which link capacities are dictated by dynamic resource
allocation. Especially, for CR networks this scheme is
suitable for handling spectrum dynamics in a distributed
manner.

• Proposes a node-level resource-allocation scheme de-
ployed in each node based only on local information
available to the node. The data rate, power level and
channel allocation are determined by the current queue
size and adjusted to accommodate the status of channels
and the throughput requirement on each link.

• Investigate the network-level performance. The resultant
parameter configurations guarantee the network stability
if the network has large enough capacity to satisfy the
throughput requirements of all sessions. The performance
of the proposed scheme in asynchronous scenarios is
analyzed and compared with that when all the nodes
can execute the algorithm at the same time (i.e., syn-
chronously). The case of insufficient network capacity is
also considered.

The rest of this paper is organized as follows. Section II



describes the system model. Section III applies the queue-
balancing flow control to CR networks. Section IV analyzes
the distributed resource allocation problem by joint rate con-
trol, power and channel allocation. Section V investigates the
network performance of the proposed scheme with appropriate
parameters. The practical issues are discussed further in Sec-
tion VI. The related work and the conclusions are presented
in Section VII and Section VIII, respectively.

II. SYSTEM MODEL

The multi-hop CR network under consideration is assumed
to consist of a set of nodes V and a set of links L . Let
T (l) and R(l) denote the transmitter and receiver of link l,
respectively.

Each node is equipped with two radio interfaces, one for
transmitting data and the other for receiving data. OFDM is
assumed to have been deployed in the network, so that multiple
channels can be used in each interface. In order to reduce
the complexity of resource allocation, several subcarriers are
combined to be a “channel.” The authors of [5] provided
a method for estimating the minimum number of channels
required for wireless networks. Due to the different properties
of channels in CR networks, the spectrum can be divided into
more channels than that in [5] for flexibility. We will not focus
on how to divide the channels, but assume that a set K of
available channels are given.1

Note that the resource allocation and flow control in this
paper are only for data transmission, not for control informa-
tion. We assume that there are some other dedicated channels
deployed for control information.

A. Interference-aware Transmission Model

Because of equipment’s limited capability, each node has
a power constraint Pi, so the total power on all the channels
should not exceed Pi.∑

T (l)=i

∑

k∈K

ωlkPlk < Pi (1)

where Plk is the transmit power at link l on channel k, ωlk

is a binary indicator for channel allocation. ωlk = 1(0) means
that channel k is (not) allocated to link l.

Let I (l) be the set of links that interfere with link l. To
avoid the interference between links, ∀j ∈ I (l), ωlk +ωjk ≤
1. The set of interfering links can be constructed by either the
protocol model based on distance, or the signal to interference
and noise ratio (SINR) threshold model based on the required
SINR [14].

Based on the Shannon capacity formula, the capacity of link
l can be written as

Cl =
∑

k∈K

Wklog(1 +
ωlkPlkGl

IR(l)k
) (2)

where Wk is the bandwidth of channel k, Gl is the path gain
for link l, IR(l)k includes the thermal noise and the interference
from the primary users and other systems.

1The subcarriers within a channel are considered homogeneous.

To protect the communication of the primary nodes, the
transmit power of cognitive radio nodes should be restricted.

∑

T (l)=i

ωlkPlk < Qik (3)

where Qik is the maximum transmit power of node i on
channel k.

Qik =
{

QH
ik if no primary user

QL
ik if primary user (4)

If there is no primary node nearby, the CR nodes can transmit
with as much power as they can. QH

ik is the maximum allowed
power for node i on channel k because of the equipment’s
limited capability. If some primary users are discovered via
spectrum sensing, the CR nodes should transmit with the
power less than a certain threshold QL

ik to avoid an unaccept-
able level of interference to the primary receivers. Most of
previous work [8][12] considered the binary model of channel
availability for cognitive radios, which is a special case of our
model if QL

ik is set to 0.
Besides the power mask for protecting the primary

users/nodes, another characteristic of CR networks is the
spectrum dynamics. The activities of primary nodes affect the
channel capacities greatly for CR nodes.

B. Traffic Flows with Required Throughput

We would like to allocate resources (channels and transmit
power) to meet the required throughput for each session. There
are a set of traffic sessions F in the network. Each session f
is defined by a source node S(f), a destination node D(f),
and the E2E throughput demand rf . The total throughput over
link l must satisfy ∑

f∈F

xlf ≤ Cl (5)

where xlf is the data rate of session f on link l and Cl is as
defined in Eq. (2).

¿From the network flow’s perspective, the flow conservation
constraints need to be satisfied:

∑

T (l)=S(f)

xlf = rf (6)

∑

T (l)=D(f)

xlf = 0 (7)

∑

T (l)=i

xlf =
∑

R(l)=i

xlf (i 6= S(f), D(f)). (8)

Note, however, that our problem doesn’t satisfy the flow
conservation constraints in a strict sense. Each node has a
buffer to store the data to be forwarded, so it doesn’t have to
satisfy the conservation constraints over a short time duration,
but must satisfy them in a long-time average sense.



III. QUEUE-BALANCING FOR NETWORK FLOW CONTROL

According to the problem formulation, the problem can
be modeled as a multi-commodity flow problem. The multi-
commodity flow problem is commonly solved by price-
directive decomposition and the resource-directive decompo-
sition [7]. These methods divide the multi-commodity flow
problem into single-commodity flow problems and find the
paths for each commodity. However, they require a centralized
control. Because link capacities are not fixed in our problem
setting, but determined by the resource allocation in wireless
networks, the nodes should be synchronized to adjust the flow
and link capacity. The authors of [15] and [16] proposed
another method, called queue-balancing flow control, for the
multi-commodity flow problem. It does not choose paths for
each commodity, but pushes the data from sources to the
corresponding destinations by using “queue potential.” Fig. 1
shows a simple example of queue-balancing flow control.

In order to meet the throughput demands of every ses-
sion/flow in the network, a dynamic (instead of static) queue-
balancing algorithm is used for the multi-commodity flow
problem. There is a queue for each session at both the
transmitter and the receiver of each link, as shown in the
right-below subfigure of Fig. 1. The traffic of the sessions
enters the network from the sources and exits the network
from the destinations. The objective of resource allocation is
to maximize the total potential decrease for transmitting the
data.

Because data queuing lets some data remain in the network,
to meet the data-rate (throughput) requirement, data needs to
be pumped into the network at a rate higher than the required
rate. Therefore, the data enters the network at the rate {(1 +
ε)rf}.

The potential function of a queue which belongs to session
f of size q is set to the same as that in [16].

φf (q) = eαf q. (9)

If the queue of some source S(f) is beyond qmax
f , the overtop

data is stored at another special overflow buffer. The potential
function of an overflow queue of session f of size bf is bf ·
φ′f (qmax

f ).
This type of parameter configuration guarantees the stability

of a distributed scheme as long as the network capacity is large
enough to meet the throughput demands of all sessions, which
will be detailed in Section V.

The queue-balancing flow control in this paper is similar to
that in [16], but the latter cannot be applied to multi-hop CR
networks directly. Some nontrivial changes are necessary for
the following reasons. First, the link capacities change with
dynamic resource allocations. Second, in multi-hop wireless
networks, it is difficult to synchronously execute a distributed
algorithm at different nodes. The parameters should be con-
figured appropriately to guarantee the network stability while
considering asynchronous scenarios. Third, additional coordi-
nation of nodes is needed because of the complex wireless
environment, especially caused by primary users moving in
and out of channels.

D(1)

D(2)

S(2)

S(1)
(1+ )r1

(1+ )r2

link 1

link 2

q11,T
q12,T

q21,R
q22,R

q11,R
q12,R

q21,T
q22,T

Fig. 1. An illustration for queue-balancing flow control

IV. NODE-LEVEL RESOURCE ALLOCATION

By adopting the queue-balance flow control, the problem
can be transformed to a resource-allocation problem for each
link. Specifically, we need to allocate the channel and power
resource for each link so as to maximize the decrease of
potential functions in each time slot.2 The potential decrease
is expressed as

δlf = φf (qlf,T )− φf (qlf,T − xlf )
+φf (qlf,R)− φf (qlf,R + xlf ) (10)

where qlf,T and qlf,R are the queue size of link l and
session f at the transmitter and the receiver, respectively. This
objective function balances the size of queues. Because of the
exponential potential function, the network provides higher
priority to those sessions with large queue sizes and larger size
differences between queues of the transmitter and the receiver
of a link.

For allocating resources to maximize the potential decrease,
we consider three types of resource allocation, ranging from
small-scale to larger-scale adjustments.
• Adjust the data rate over a link for each session according

to the queue sizes for each session at transmitters and
receivers.

• Allocate the power of the links transmitting from the
same nodes. The power adjustment changes the link
capacities, but doesnot affect other links because of
interference-free channel allocation.

2Consider the time interval of a time slot as a unit of time, so it is omitted
in the rest of this paper for simplicity of expression.



• Change the channel allocation to achieve better perfor-
mance. To avoid the interference between links, nearby
nodes need to be coordinated for channel allocation.

A. Rate Control over a Wireless Link

For a link with fixed capacity, the problem is how to allocate
the total capacity to the sessions that go through this link, such
that the total decrease of potential is maximized. The total
potential decrease over link l is

δLl
=

∑

f∈F(l)

δlf (11)

where F (l) is the set of sessions that go through link l.
The problem is to maximize the total potential decrease

δLl
subject to the link-capacity constraint Eq. (5). The link-

capacity constraint is a complicating bundle constraint for all
the sessions over this link. We decompose this multiple session
rate-control problem into multiple single-session rate-control
problems by placing cost on the constraint with a Lagrangian
multiplier.

∆l =
∑

f∈F(l)

δlf − λl(
∑

f∈F(l)

xlf − Cl) (12)

where λl is the Lagrangian multiplier for link l.
By decomposition, for each session f , the objective of flow

control is to maximize the decomposed Lagrangian function.

∆lf = δlf − λlxlf (13)

where the optimal value of λl is the one that satisfies∑
f∈F(l) xlf = Cl.
The maximum potential decrease is achieved when the first-

order partial derivative of ∆lf with respect to xlf is set to 0.

∂∆lf

∂xlf
= αfeαf (qlf,T−xlf )−αfeαf (qlf,R+xlf )−λl = 0. (14)

The data rate of each session on link l can be calculated as

x∗lf =
1
αf

ln

√
( λl

αf
)2 + 4eαf (qlf,R+qlf,T ) − λl

αf

2eαf qlf,R
. (15)

Especially, for the problem with large enough link capacity,
the capacity constraint is not tight. For each session f , the
optimal data rate is

x∗lf =
qlf,T − qlf,R

2
(16)

B. Power Allocation to Nodes

The total potential decrease of the links that are used to
transmit data from node i is

δNi
=

∑

T (l)=i

δLl
=

∑

T (l)=i

∑

f∈F(l)

δlf . (17)

Considering the effect of power allocation for each link l
and each channel k on the total potential decrease for node i,
the partial derivative is

∂δNi

∂Plk
=

∂δLl

∂Cl

∂Cl

∂Plk
. (18)

Obviously, a larger potential decrease on channel k over link l
can be achieved with a larger power Plk. However, the transmit
power is limited by the equipment’s capability. How to allocate
the limited power Pi of node i to every channel of every link
transporting data from this node is the problem we want to
solve.

The power allocation can be divided into two levels. First,
we consider the power allocation to the channels K (l) with a
given link power Pl. Then, based on the analysis considering
a given link power, we allocate the node power to the links to
maximize the total potential decrease δNi

.
The water-filling allocation between the channels within a

link can achieve the optimal capacity, even if there are power
masks for the channels in cognitive radio networks.

Theorem 1: For a given set K (l) of channels and allocated
power Pl on link l, the water-filling power allocation can
achieve the optimal performance. Let Ψl be the water-filling
level of link l, then the power should be allocated as

Plk = min{[WkΨl − IR(l)k/Gl]+, QT (l)k} (19)

where [a]+ = max{0, a}, and the water-filling level Ψl is set
to satisfy ∑

k∈K (l)

Plk = Pl. (20)

Proof: Considering only the total power constraint for this
link

∑
k∈K (l) Plk ≤ Pl, the optimal solution can be obtained

by the Lagrange multiplier method, which is similar to the
proof in [18].

Plk = [WkΨl − IR(l)k/Gl]+. (21)

The partial derivative of Cl with respect to Plk can be
calculated from Eq. (2).

∂Cl

∂Plk
=

WkGl

PlkGl + IR(l)k
. (22)

It is obvious from Eq. (22) that the derivative is non-negative,
meaning that Cl will not decrease with the increase of Plk. For
the total link-power constraint and the power mask constraints
for each channel, it is necessary for the optimal solution that at
least one of the constraints is tight for each channel. Therefore,
the optimal solution is to allocate the maximum power subject
to two constraints, and Eq. (19) follows.

Based on the water-filling power allocation between the
channels within a link, each channel belongs to one of three
types of states, as shown in Fig. 2.
• State 1: No power is allocated because of large IR(l)k/Gl,

WkΨl − IR(l)k/Gl ≤ 0

• State 2: Power is allocated according to the water-filling
level but not the power mask,

0 < WkΨl − IR(l)k/Gl < QT (l)k

• State 3: Power is allocated according to the power mask.

WkΨl − IR(l)k/Gl ≥ QT (l)k
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Fig. 2. Three states for power allocation between the channels within a link

Let K act
l be the set of channels in State 2 whose power is

determined by the water-filling level for link l. The capacities
of the channels in K act

l change when the link power Pl

changes. According to Theorem 1, the partial derivative of
Cl with respect to the allocated power Pl for link l is

∂Cl

∂Pl
=

1
Ψl

∑
k∈K act

l
Wk

. (23)

For the link power allocation, Eq. (18) can be transformed
as

∂δNi

∂Pl
=

∂δLl

∂Pl
=

∂δLl

∂Cl

∂Cl

∂Pl
(24)

∂δLl
/∂Cl is just the Lagrangian multiplier λl in the last

subsection, and ∂Cl/∂Pl is given by Eq. (23). ∂δLl
/∂Pl is

non-negative and decreases with the increase of Pl. To achieve
the maximum potential decrease δNi

, the optimal method for
power allocation between links is to allocate the node power
to the links such that the derivative ∂δLl

/∂Pl is equal for all
the links transmitting data from the same node.

C. Interference-free Channel Allocation

1) Effect of Changing Channel Occupation: In order to
allocate channels efficiently, we first estimate the potential
change as a result of adding or subtracting a channel for
each link. Let Cl,k be the capacity of link l when the set
of channels on link l is K (l)\k if k ∈ K (l), or K (l)

⋃
k

if k /∈ K (l). Using the water-filling power allocation, we can
obtain Cl,k. Let δ∗Ll

(C) denote the optimal potential decrease
over link l achieved by calculating xlf as Eq. (15) when
the link capacity is C. Finding an optimal λl,k, which is
the Lagrangian multiplier for the case when ωlk changes, we
can calculate δ∗Ll

(Cl,k). This way, the change of the potential
decrease is |δ∗Ll

(Cl,k)− δ∗Ll
(Cl)|.

However, δ∗l (Cl,k) indicates the potential change, only con-
sidering the allocated power for link l fixed at Pl. By having
the transmitter nodes adjust the power allocation adaptively,
the potential decrease can be improved. It is difficult to
calculate the exact improvement of the potential decrease,
because the channel allocation on other links of this node may
also change. Let N in

i be the number of incoming links and

Nout
i the number of outgoing links of node i. We can then

estimate the change of the potential decrease as
∣∣∣∣
∂δ∗Ll

(Cl)
∂pl

− ∂δ∗Ll
(Cl,k)

∂pl

∣∣∣∣
Nout

T (l)

Nout
T (l) + 1

. (25)

The above expression represents the effect of adaptive power
allocation between the links that have the same transmitter
node as link l. Based on the analysis in the last subsection,
∂δ∗Ll

(Cl)/∂pl is the same for all the links of a node. If
the channel allocation causes a larger difference between
∂δ∗Ll

(Cl,k)/∂pl and ∂δ∗Ll
(Cl)/∂pl, the adaptive link power

allocation can make a larger improvement. On the other hand,
the improvement is larger if the node has more outgoing links,
because the power allocation between links has more degrees
of freedom.

It is defined in the system model that a set of links I (l)
have conflict with link l. We also define N (Ll) as the nodes
that are the transmitters of the links in I (l), and N (Ni) as
the set of nodes within the interfering range of node i. The
number of the interfering links I (l) of link l is

N I
l = N in

T (l) + Nout
R(l) +

∑

i∈N (T (l))

N in
i +

∑

i∈N (R(l))

Nout
i − 1.

(26)
The first two terms are to guarantee that the channel is used
for at most one of the node’s links. For this purpose, besides
the two terms, there are also the links transmitting from T (l)
and the links receiving at R(l), which are included in the third
and fourth terms.

Because the allocation of a channel for link l means that
other N I

l −1 links can’t use this channel. Although this channel
may achieve different performance on all the interfering links
because of different power masks, the utility divided by N I

l

can give an estimation of potential change in terms of the
average of all the interfering links.

Let Ulk denote the achieved utility on the potential if link l
is assigned channel k. Considering both the change of the
potential decrease with fixed link power and the effect of
adaptive link power allocation, if k /∈ K (l),

Ulk =
Nout

T (l)

(
δ∗Ll

(Cl,k)− δ∗Ll
(Cl)

) ∣∣∣∂δ∗Ll
(Cl)

∂pl
− ∂δ∗Ll

(Cl,k)

∂pl

∣∣∣
N I

l (Nout
T (l) + 1)

.

(27)
If k ∈ K (l),

Ulk =
(Nout

T (l) + 1) (δ∗l (Cl)− δ∗l (Cl,k))

Nout
T (l)N

I
l

∣∣∣∂δ∗Ll
(Cl)

∂pl
− ∂δ∗Ll

(Cl,k)

∂pl

∣∣∣ .
(28)

2) Coordination Between Links: When channel allocation
to links is optimal for each channel, so is the channel allocation
in the network. We can thus consider channels individually by
restricting at most one channel change on a link at a time.

Allocation of a single channel can be modeled as a weighted
independent set problem, which is NP Complete [19]. So,
we propose a greedy channel-allocation protocol, achieving
suboptimality.



We define three types of messages, INFO, REQ, OCCUPY,
which contain the information of channel index, link index,
and the corresponding channel-allocation utility. Note that for
a given link l, messages are sent to the transmitters N (Ll)
of all the links that interfere with link l. For simplicity, the
messages can be sent to the nodes within two times of the
interfering range from node T (l), such that all the nodes in
N (Ll) can receive the messages. The following part describes
the information exchange process at link l0 for allocating
channel k0.

Algorithm 1 Distributed Channel Allocation
1: (time period 1)
2: if k(l0) = k0 then
3: send INFO message
4: else if didnot receive INFO then
5: send INFO message
6: else if Ul0k0 > Ulk0 for all Ulk0 from received INFO then
7: send REQ message
8: end if
9: if Ul0k0 > Ulk0 for all Ulk0 from received INFO and REQ

then
10: use channel k0 and send OCCUPY message
11: else
12: stop using channel k0

13: end if

Theorem 2: The proposed distributed coordination of chan-
nel allocation yields interference-free channel allocations.

Proof: Consider only one channel k in this proof. Suppose
there exist two links l and m which interfere with each other.
Without loss of generality, Ulk > Umk. If link l sends INFO
or REQ messages, then the channel will not be allocated to
link m. If channel k is allocated to link m, link l should
send neither INFO nor REQ messages. As the proposed
coordination scheme, link l does not transmit INFO messages
only if link l interferes with another link j, and link l does
not transmit REQ messages only if Ulk < Ujk or link l has
requested the allocation of another channel. In such cases, the
channel will not be allocated to link l.

Therefore, at most one of the interfering links can house
the channel, so the channel allocation is interference-free.

By repeating the proposed distributed coordination of chan-
nel allocation until all the nodes either transmit or receive
INFO messages during the first step, the resultant channel
allocation is not optimal, but is a maximum set in the sense
that the transmitting link set is not contained by any other
transmitting set for each channel.

V. NETWORK-LEVEL RESOURCE ALLOCATION

A. Node-based Distributed Algorithm

Based on the above analysis, we propose a node-based
distributed algorithm for joint flow control, channel allocation
and power control.

Step 1:Adjust the queue sizes for each node.

Step 2:Broadcast the control information needed for re-
source allocation.

Step 3:Pre-determine the resource allocation and broadcast
the INFO and REQ messages, if necessary.

Step 4:Determine the channel allocation strategy and the
corresponding power and data rate for each session.
Exchange OCCUPY messages.

In Step 1, add (1 + ε)rf to the queue size at the source
nodes. At the destinations, decrease the size of the queues
of the corresponding sessions to 0. Balance the queue sizes
within each node for all of its sessions.

In Step 2, nodes transmit the control information to the
nodes which transmit data to it. The information includes
the noise and the inference from other systems Iik for each
channel, the queue size for each session qlf,R for receiver
links and the number of the transmitting links and the channel-
quality feedback Gl. In addition, the nodes need to transmit
the link number N in

i and Nout
i to the nodes N (i).

In Step 3, we restrict at most one REQ message transmitted
for each link, because the channel occupation utilities are
calculated by considering only one channel allocation change
based on the current status, although channels are allocated
individually as described in the last section. Channel k is
chosen if the difference between Ulk and the maximum utility
of the received messages is the largest for all channels.

In Step 4, the channel allocation is determined according to
the INFO and REQ messages. Based on the allocated channels
for each link, the optimal power allocation for the links and the
rate control scheme within each link are deployed as described
in Section IV.A and IV.B.

B. Performance

In order to evaluate the performance of the proposed algo-
rithms, an ad-hoc secondary network is employed for dynamic
simulation in multi-hop CR networks. 20 secondary users are
distributed randomly in a 30km× 30km area, and 4 sessions
in this network have the data rate 2Mbps, 5Mbps, 8Mbps
and 10Mbps, respectively. The parameter ε in queue balancing
scheme is set to 0.2. 10 channels are considered, each of which
has a bandwidth of 5MHz.

The path loss is calculated based on the distance using a
free space propagation model as PL = PL0 · d/d0, where
PL0 = 70dB and d0 = 1km. The maximum transmit
power is 10dBm and the thermal noise power is −100dBm.
Each primary user occupies a channel randomly. To protect
the primary users, the power masks are set to guarantee the
interference at the primary users to be less than −100dBm.

Figs. 3 and 4 show the stability of queue size and E2E
throughput, respectively, when there is sufficient network
capacity. When a new session begins, a period of time is
needed to spread packets to the nodes all over the network to
build the queue system. After this period, the size of queues
would not always increase and the required throughput can
be achieved if the network capacity is large enough. The
condition for network stability is provided in [16]. It can also
be observed that the curves converge after 1500 time slots
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Fig. 3. Stability of the queue sizes of source nodes

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16
 

 

E
2E

 th
ro

ug
hp

ut
 (M

bp
s)

Time

 session 1
 session 2
 session 3
 session 4

Fig. 4. Stability of E2E throughput

in this configuration. Therefore, we use the performance after
1500 time slots as steady-state performance. Note that we use
the average value within a 100 time slot window rather than
the value just at this time slot.

Fig. 5 presents the total E2E throughput performance of
the proposed scheme. The random spectrum allocation and
average power & rate allocation are considered as the baselines
for the comparison. The result shows the improvement of the
proposed scheme.

Fig. 6 shows the E2E throughput with a different number
of primary users. With more primary users, the transmit
powers of secondary users are limited more strictly, and less
network capacity is achieved. When there are 10 channels,
the proposed scheme can guarantee the required throughput
of all sessions even if there are 10 primary users. With larger
number of primary users, the proposed scheme can achieve
more improvement, because it can allocate the channels to
the secondary links which is far away from the primary users
occupying them.
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C. Asynchronous Scenarios

So far, the proposed distributed scheme has been based on
an assumption that all the nodes execute this procedure at
the same time. We need to consider the case when execution
of the resource allocation procedure is not synchronized (i.e.,
asynchronous scenarios). In such a case, our algorithm in
each node is similar to that in the synchronous case, but uses
the information about other nodes last time when they made
resource-allocation decisions. This use of “old” information
has the following effects.
• The queue size information is not accurate, which may

cause some error in allocating resources to maximize the
potential decrease.

• Nodes have to wait for one period when they want to use
a new channel such that all the other interfering nodes
stop using this channel.

1) Inaccurate Queue Size Information: If we use the queue-
size information received during the last period, the actual
potential decrease may not be the same as the estimated value.
For the obsolete queue-size information of receivers, if the
queue size received last time is larger than the current actual



queue size, the estimated potential decrease is larger than that
of using current information. In the worst case, no data is
transmitted out of R(l) and the queues at the transmitters of
all the links whose receiver is R(l) have the largest queue size
qmax
f . The maximum possible queue size of receiving links at

R(l) is
qmax

f +qlf,R

2 because of Eq. (16). The numbers of the
queues for transmission and reception links in a node are the
same. So, the actual queue size is at most

qmax
f +qlf,R

2 + qlf,R

2
. (29)

The upper-bound error of the receiver’s queue size is
qmax

f −qlf,R

4 .
If the queues in this network can grow unboundedly, the

network becomes unstable. Let L be the length of the longest
flow path in the network and |F | be the number of sessions.
Considering the error in queue-size information, an appropriate
parameter configuration is needed to guarantee the network
stability if the network transmission capacity is large enough.

Theorem 3: The network is stable using the proposed asyn-
chronous scheme with

αf =
ε

16Lrf ln 4L
3ε

(30)

qmax
f =

1
αf

ln(
2|F |(1 + 2ε)

ε(1− 2ε)
) (31)

if the network has the capacity to transmit (1+2ε)rf for each
flow f .

Proof: See Appendix A.
¿From Theorem 3, we can see that αf is smaller and qmax

f

is larger than those in the synchronous case in [16]. Without
synchronization, larger buffers are needed in network nodes,
and more data may be queued up in the network.

2) Overhead of Channel Re-allocation: The other effect of
asynchrony is the waiting for a channel re-allocation. If a link
wants a new channel to be allocated, it has to wait for one time
slot and then “grab” the channel in order to guarantee that all
the interfering links have stopped using the channel, as shown
in Fig. 7. Let twl1l2

be the waiting time when link l2 grabs the
channel on link l1. Considering the channel-switch overhead,
if link l2 wants to grab a new channel away from link l1,
the link l2’s channel accommodation utility Ul2k should be
divided by (1 + twl1l2

) for normalization, and then compares it
with Ul1k.

During the waiting time, the channel switch will succeed
if it gains a larger normalized utility from the messages
received from others. However, it is possible that some larger
accommodation utilities may appear during the waiting, such
that the channel can’t be used for a long time. To avoid this
situation, if any of the links which are holding the channel
stops using the channel, meaning that the channel is in the
switching mode, the link stops transmitting REQ messages for
this channel in one time slot even if it has a larger normalized
channel holding utility. If an OCCUPY message from link l
was received in the last time slot but is not received in the

Link 1

Link 2

Link 3

channel occupation

Total

occupation request

waste time

Fig. 7. An example asynchronous channel switch

current time slot, the node can know that link l stopped using
the channel.

Consider a link conflict graph, in which links are the
vertexes and there are edges between the interfering links. The
following theorem gives an upper bound of resource waste
because of waiting for a channel switch.

Theorem 4: Let N be the vertex number of the maximum
clique in the link conflict graph, the portion of time wasted
by the proposed scheme for the asynchronous case is at most
N−1
2N−1 .

Proof: Any two vertices in a clique have an edge to
connect with each other. The links in a clique interfere with
each other and only one of them can transmit at a time.

Consider the smallest period from the time the channel is
held by a link to the time that the channel returns to this link.
No link uses the channel more than once, so this period is the
smallest. The total waiting time in this period is

tw = twl1l2 + twl2l3 + twl3l4 + . . . + twl(n−1)ln
. (32)

Because twlilj + twlj li
= T ,

tw = nT − (twl2l1 + twl3l2 + twl4l3 + . . . + twlnl(n−1)
). (33)

The second term of the right side of the above equation is just
the waiting time the links hold the channel as the opposite
sequence from ln to l1, which is at least T seconds, so tw ≤
(n− 1)T and the portion of waiting time is at most n−1

n+(n−1) .
For the clique with N vertices, the waiting time portion is at
most N−1

N+(N−1) .
In a graph containing a maximum clique of N vertices, for

the same period as the above analysis, the wasted time is also
(n − 1)T , but it is possible that more than one link hold the
channel at the same time. Therefore, the waiting time is less
than N−1

2N−1 .
Considering the link capacity at each time slot, the capacity

loss during the waiting is less than that at the next time slot
which has the largest channel holding utility in that slot.

Corollary 1: The average capacity in the asynchronous case
is more than 1/2 of that in the synchronous case.
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Fig. 8. Change of queue sizes for spectrum dynamics

D. Spectrum Dynamics

One of the advantages of the proposed scheme is the adapta-
tion to spectrum dynamics. In multi-hop CR networks, because
of the presence of primary users, the channel condition varies
within the licensed spectrum. On the channels the primary
users occupy, the nearby CR users cannot use the power
beyond QL

ik to protect the primary users’ communication.
Using the queue-balancing flow control, the algorithm need
not control the data flow to the links with better channel
situation when making a resource allocation, but only consider
the queue sizes that are affected by the spectrum dynamics
and represent the channel situation. The proposed scheme is
more adaptive to spectrum dynamics and requires only local
information, which is essential for distributed control.

The following theorem gives the requirement of the trans-
mission capability of the network. In spite of the varying
channel situation, as long as the average E2E throughput can
meet the requirement, the network stability can be guaranteed.

Theorem 5: If the network can transmit more than 2+2ε
2−ε rf

for each session f , then the network stability can be guaranteed
by adjusting the configurable maximum queue size.

Proof: See Appendix B.
Fig. 8 gives an example for the change of queue size if the

capacity of one of the links changes. Our simulation scenario
is a simple 5-link chain, and the session flow goes from node
1 to node 6. Each link has 10Mbps capacity, and the capacity
of link 4 changes from 10Mbps to 5Mbps at time slot 300. If
the capacity of a link decreases, the queue sizes of the nearby
nodes increase. This way, the resource allocation schemes at
the nodes which are far away from the changed link can
be adapted using the spectrum dynamics information without
exchanging messages.

E. Insufficient Network Capacity

The analysis in this paper is based on the assumption
that the network capacity is large enough for handling ses-
sions’requirements. In case the throughput requirements of
sessions are higher than the network capacity, admission
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Fig. 9. E2E throughput in case of insufficient network capacity without any
drop mechanism
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Fig. 10. E2E throughput in case of insufficient network capacity with a drop
mechanism

control is necessary. Estimating the network capacity is in
general a difficult problem [22][23][24], but we can estimate
the network congestion according to the queue sizes in the
network, especially the sizes of the overflow queues in the
source nodes. For example, if the size of an overflow queue
increases with a speed larger than 1

2rf for consecutive 20 time
slots, the flow’s requirement is not met, so this flow should be
dropped to return its network resources.

If the network capacity is not large enough to transmit
all traffic, some adjustment at the sources of each session is
necessary. The adjustment method depends on the properties
of the sessions’ services. When the overflow queue is too large
at the traffic sources, the source nodes should decrease the data
rate into the network, if possible, or reject some sessions if
the throughput requirements are strict.

Figs. 9 and 10 show the performance comparison of the
cases with or without session drop process. The simulation
configuration is the same as in Section V.B, except the band-
width of each channel is 0.1Mbps. Without any drop mech-
anism, only session 1 can achieve the required throughput.



When a drop mechanism is deployed, the required throughputs
of both session 1 and session 2 are provided by dropping
session 3 and 4.

VI. PRACTICAL ISSUES

We now discuss some practical issues associated with the
proposed scheme.
Data remaining in the network: The queue-balancing method
allows a certain portion, ε, of the data to stay in the network for
a long time or forever. Therefore, this method is suitable only
for long-lived sessions. Channel coding is a way to correct the
lost information. Interleaving can avoid bursty continuous er-
rors to ensure the performance of data-correctness approaches
[20].
Estimation of power masks: CR nodes can obtain the threshold
QL

ik in several ways. If the primary receiver is a transmitter
as well, QL

ik can be obtained based on the received signal
strength of primary users. For a dummy primary receiver, the
power mask can be estimated by restricting the interference
at the edge of the service range of the primary transmitter.
For example, the IEEE 802.22 Working Group [21] proposed
a power-masking scheme by considering the distance from a
CR node to the TV transmitter.
Estimation of L: In order to prevent the data of a session
from spreading to all the nodes of the network, the maximum
number of hops from the sources to the destinations should be
restricted. The author of [16] provided a method for finding
L heuristically by trying different values.
Limited buffer size: The required maximum queue size to guar-
antee the network stability is given for the proposed scheme.
If the buffer size of each node is limited and not enough for
the required value, the required capacity for network stability
would be larger than that in our analysis. Not only the potential
decrease but also the queue sizes in the limited buffers should
be considered when making resource allocations.

VII. RELATED WORK

In [14] and [24], the multi-commodity flow problem was in-
vestigated for wireless networks from an information-theoretic
perspective. They adopt a combinational interference model
to avoid interference between links, making the power control
unaffect the performance of other nodes. Some bounds of the
network capacity are derived.

Based on the multi-commodity flow model, several publica-
tions focus on the cross-layer resource-allocation problem in
wireless networks. The authors of [6] investigated the routing
and resource allocation in wireless networks. It is assumed that
the link capacity is only a function of local resource allocation,
but they did not consider the spectrum reuse at different links
that are far apart from each other. In [5], routing, spectrum and
power are controlled jointly for wireless networks. However,
they control the spectrum allocation to find a conflict-free
combination a priori. When the spectrum situation changes at
any node in the network, this scheme must work again for the
whole network, and the following routing and power control

have to iterate from the initial state, which cannot work well
for CR networks with spectrum dynamics.

For CR networks, there are only a few existing schemes for
cross-layer joint resource allocation. In [25] and [26], central-
ized and distributed schemes are proposed for CR networks,
respectively. Both of them only considered different available
channels at each node for CR. By contrast, we considered more
characteristics of CR. The power mask model is considered
as a general case of the channel availability model. Spectrum
dynamics, which are seldom analyzed in the previous research
on resource allocation, are considered in this paper. With the
queue-balancing flow control method, the proposed distributed
resource-allocation scheme can deal with spectrum dynamics
well by using local queue information only.

VIII. CONCLUSIONS

In this paper, the resource-allocation problem in multi-
hop CR networks is modeled as a multi-commodity flow
problem. To solve this problem, the queue-balancing flow
control method is proposed. Considering the characteristics of
CR, we extend the queue-balancing to multi-hop CR networks
with varying link capacity and dynamic spectrum conditions.

Using the queue-balancing framework, we analyzed dis-
tributed resource allocation. The data rate, power and channel
allocation are determined by the local queue size and adjusted
to reflect the status of channels and the throughput requirement
on each link. The optimal rate control for each session on
a link is derived first. Power allocation at nodes is divided
into two levels, which are the power allocation between links
and the water-filling power allocation for the channels within
a link. Coordination between links for channel allocation is
achieved via some control messages according to the estimated
channel holding utilities for each channel on each link. Based
on the analysis on resource allocation, a node-based distributed
algorithm is proposed for joint flow control and resource allo-
cation. The parameters in the proposed scheme are configured
to achieve the network stability in the asynchronous case. The
performance degradation caused by the waiting for a channel
switch is evaluated and compared with the synchronous case.
Based on the queue-balancing scheme, the resource allocation
for spectrum dynamics can be adjusted only by using local
queue information. The adaptation to the spectrum dynamics
is also investigated. In the insufficient network capacity cases,
the drop mechanism can reject some of the session to satisfy
the throughput requirement of the remaining sessions. For the
implementation of the proposed scheme, we consider several
practical issues as well.
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APPENDIX A
PROOF OF THEOREM 3

To prove the network stability, meaning that the queue sizes
for each session at all nodes are finite, the basic idea is the
total potential function decreases if the queue size is large
enough. When the potential function is finite, the queue size
must be finite.

In the resource-allocation process at every time slot, there
are three parts that change the potential of the network.

1) Add (1 + ε)rf data into the network from the sources.
2) Balance the queues for each session at each node.
3) Transmit data through links to decrease the potential and

remove the data out of the network from the corresponding
queues at the destinations.

For the first part, because the potential function is a
monotonous increasing convex function, the increase of the
potential of session f is at most (1 + ε)rfφ′f (si), where si is
the source queue size after adding the traffic.

For the second part, balancing the queues for each session
will never increase the potential because of the exponential
potential function.

For the third part, when the data rate of session f over link
l is xlf , considering the error of the queue size at the receiver
elf , the potential decrease δlf is

δlf = φf (qlf,T )− φf (qlf,T − xlf )
+φf (qlf,R + elf )− φf (qlf,R + elf + xlf ) (34)

Using Taylor series to decompose φf (qlf,T ) and φf (qlf,R +
elf + xlf ), the above expression can be bounded further as

δlf ≥ xlfφ′f (qlf,T )− x2
lfφ′′f (qlf,T )

−xlfφ′f (qlf,R + elf )− x2
lfφ′′f (qlf,R + elf + xlf )

≥ xlfφ′f (qlf,T )− x2
lfφ′′f (qlf,T )

−xlfφ′f (qlf,R)− xlfelfφ′′f (qlf,R + elf )

−x2
lfφ′′f (qlf,R + elf + xlf ) (35)

Consider the potential decrease along a path, the size of
the queue at the receiver of one link is equal to that at the
transmitter of the next hop link, because the queue sizes are
balanced for each session at each node. This way, xlfφ′f (qlf,R)
can cancel xlfφ′f (qlf,T ) of the next hop link. Define qmax

fj as
the maximum value of the sizes of the queues along path j,
and L (j) as the link set of path j. The total potential decrease
along the path is at least

xlfφ′f (qmax
fj )− xlfφ′f (0)−

∑

l∈L (j)

x2
lfφ′′f (qlf,T )

−
∑

l∈L (j)

xlfelfφ′′f (qlf,R + elf )

−
∑

l∈L (j)

x2
lfφ′′f (qlf,R + elf + xlf ) (36)

The path j has the maximum length L. Only considering
the path from the node with the largest queue size to the



destination, Eq. (36) can be bounded by

xlfφ′f (qmax
fj )− xlfφ′f (0)− 2Lx2

lfφ′′f (qmax
fj + xlf )

−
∑

l∈L (j)

xlfelfφ′′f (qlf,R + elf ) (37)

The upper bound of the error of queue size is
qmax

f −qlf,R

4 as
Eq. (29).

xlfelfφ′′f (qlf,R + elf )

= xlf

qmax
f − qlf,R

4
α2

fe
3
4 αf qlf,Re

1
4 αf qmax

f (38)

In order to obtain the performance in the worst case, the first-
order derivative of Eq. (38) with respect to qlf,R is

xlfe( 1
4 qmax

f + 3
4 qlf,R)αf (−1

4
+

3
4
αf

qmax
f − qlf,R

4
) (39)

The performance is worst when the derivative is equal to 0.
Solving this equation, we can obtain the solution as

qlf,R = qmax
f − 4

3αf
(40)

Substituting Eq. (40) into Eq. (38), we get

xlfelfφ′′f (qlf,R + elf ) ≤ xlf
1

3αf
φ′′f (qmax

f − 1
αf

) (41)

Suppose the network can transmit (1 + 2ε)rf data for each
session f . Partition the flow for each session f into several
paths, which has the E2E throughput xf,j for path j of session
f . Let qmax

f,j be the maximum queue size for session f along
path j. The total potential decrease in the network is

∑

f

∑

l

xlf (φ′f (qlf,T )− φ′f (qlf,R))

−x2
lf (φ′′f (qlf,T )− φ′′f (qlf,R + elf + xlf ))

−xlfelfφ′′f (qlf,R + elf )

≤
∑

f

∑

j

∑

l

xf,j(φ′f (qlf,T )− φ′f (qlf,R))

−2xf,j(1 + 2ε)rfφ′′f (qmax
f,j + xf,j)

−xf,j
1

3αf
φ′′f

(
qmax
f,j − 1

αf

)

≤
∑

f

∑

j

xf,j(φ′f (qmax
fj )− φ′f (0))

−2xf,jL(1 + 2ε)rfφ′′f (qmax
fj + (1 + 2ε)rf ))

−xf,jL
1

3αf
φ′′f

(
qmax
fj − 1

αf

)
(42)

When αf = ε
16Lrf ln 4L

3ε

,

2L(1 + 2ε)rfφ′′f (qmax
fj + (1 + 2ε)rf ))

= 2L(1 + 2ε)rfαfeαf (1+2ε)rf φ′f (qmax
fj )

≤ ε

4
φ′f (qmax

fj ) (43)

L
1

3αf
φ′′f

(
qmax
fj − 1

αf

)

=
L

3
1

e
1

αf

φ′f (qmax
fj )

≤ ε

4
φ′f (qmax

fj ) (44)

The configuration of αf lets Eq. (43) and Eq. (44) be only a
small fraction of φ′f (qmax

fj ).
The lower bound of the potential decrease in the network,

Eq. (42), can be rewritten as
∑

f

∑

j

xf,j

(
(1− ε

2
)φ′f (qmax

fj )− φ′f (0)
)

≥
∑

f

(1 + 2ε)rf

(
(1− ε

2
)φ′f (sf )− αf

)

≥ (1 +
3
2
ε− ε2)

∑

f

rfφ′f (sf )− (1 + 2ε)|F |rfαf(45)

Subtracting the potential increase caused by the entering
data from Eq. (45), we can obtain the total potential decrease
as

(
1
2
ε− ε2)

∑

f

rfφ′f (sf )− (1 + 2ε)|F |rfαf (46)

If session f need to use the overflow at its source node,
sf = qmax

f , the potential decrease is at least

(
1
2
ε− ε2)rfφ′f (qmax

f )− (1 + 2ε)|F |rfαf (47)

Let Eq. (47) be equal to 0 and then solve the equation. We can
obtain the value of qmax

f as Eq. (31). With these qmax
f , as long

as the overflow queue of one session has data, the potential
decrease is nonnegative. The total potential of the network will
not grow infinitely. Therefore, the parameter configuration in
Theorem 3 can guarantee the network stability.

APPENDIX B
PROOF OF THEOREM 5

Based on the proof of Theorem 3, from Eq. (45), if the
provided E2E throughput is ξ, then the potential decrease is

(1− 1
2
ε)ξ

∑

f

rfφ′f (sf )− (1 + 2ε)|F |rfαf (48)

Considering the potential increase at the sources of sessions,
to let Eq. (48) be positive, it must satisfy

(1− 1
2
ε)ξ > (1 + ε) (49)

So, we can obtain that

ξ >
2 + 2ε

2− ε
rf (50)

On the other hand, if ξ < (1 + 2ε)rf , the maximum queue
size in Theorem 3 is not large enough. Using a method similar
to the proof of Theorem 3, qmax

f should be increased to

qmax
f =

1
αf

ln(
|F |(1 + 2ε)

(1− 1
2ε)ξ − (1 + ε)

) (51)


