
14

Distributed Authentication of Program
Integrity Verification in Wireless Sensor
Networks

KATHARINE CHANG and KANG G. SHIN
The University of Michigan

Security in wireless sensor networks has become important as they are being developed and de-
ployed for an increasing number of applications. The severe resource constraints in each sensor
make it very challenging to secure sensor networks. Moreover, sensors are usually deployed in

hostile and unattended environments and hence are susceptible to various attacks, including node
capture, physical tampering, and manipulation of the sensor program. Park and Shin [2005]
proposed a soft tamper-proofing scheme that verifies the integrity of the program in each sensor
device, called the program integrity verification (PIV), in which sensors authenticate PIV servers
(PIVSs) using centralized and trusted third-party entities, such as authentication servers (ASs).
This article presents a distributed authentication protocol of PIVSs (DAPP) without requiring the
commonly used ASs. DAPP uses the Blundo scheme [Blundo et al. 1992] for sensors and PIVSs
to establish pairwise keys and for PIVSs to authenticate one another. We also present a protocol
for PIVSs to cooperatively detect and revoke malicious PIVSs in the network. We implement and
evaluate both DAPP and PIV on Mica2 Motes and laptops, showing that DAPP reduces the sen-
sors’ communication traffic in the network by more than 90% and the energy consumption on each
sensor by up to 85%, as compared to the case of using a centralized AS for authenticating PIVSs.
We also analyze the security of DAPP under various attack models, demonstrating its capability
in dealing with diverse types of attacks.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.4 [Computer-Communication Networks]: Distributed Systems; D.4.6 [Operat-

ing Systems]: Security and Protection

General Terms: Algorithms, Design, Security

Based on “Distributed Authentication of Program Integrity Verification in Wireless Sensor Net-
works” by Katharine Chang, Kang G. Shin which appeared in Proceedings of 2nd International

Conference on Security and Privacy in Communication Networks (SecureComm), Baltimore, MD
c© 2006 IEEE.

The work reported in this paper was supported in part by the National Science Foundation under
Grants CNS-0435023 and CNS-0523932, by the Office of Naval Research under Grant No. N00014-
04-10726, and by a collaborative program between the US Air Force Office of Scientific Research
(AFOSR) and Korean Ministry of Science and Technology (MoST).
Authors’ address: The Real-Time Computing Laboratory, Computer Science & Engineering Divi-
sion, Department of Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2121, U.S.A.; email: {katchang, kgshin}@eecs.umich.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists requires prior specific permission and/or a fee. Permission
may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2008 ACM 1094-9224/2008/03-ART14 $5.00 DOI: 10.1145/1341731.1341735. http://doi.acm.org/

10.1145/1341731.1341735.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 2 · K. Chang and K. G. Shin

Additional Key Words and Phrases: Distributed authentication, program integrity verification,
node revocation, wireless sensor networks

ACM Reference Format:

Chang, K. and Shin, K. G. 2008. Distributed authentication of program integrity verification in
wireless sensor networks. ACM Trans. Inf. Syst. Secur. 11, 3, Article 14 (March 2008), 35 pages.
DOI = 10.1145/1341731.1341735. http://doi.acm.org/10.1145/1341731.1341735.

1. INTRODUCTION

In recent years, security has become a primary concern to the communications
between mobile nodes. Unlike wired networks, security in wireless networks is
difficult to achieve due to the broadcast nature of internode communications.
In sensor and ad hoc networks, it is even easier for attackers to circumvent the
underlying intrusion detection system because a malicious user can join the
network at one point, hide inside the network for a while, then mount attacks.
An attacker who was detected and blocked from joining the network may just
disconnect from the network, change his or her personal identification, and
then rejoin from a completely different location in the same network.

Wireless sensor networks are becoming important for many emerging ap-
plications such as military surveillance, alerts on terrorists and burglars,
and fire, earthquake, and volcano emergency systems. The security of sensor
networks used for such applications is of utmost importance. However, the
limitations on each sensor device’s battery energy, memory, computation, and
communication capacities make it very difficult to achieve security in sensor
networks. Moreover, sensor networks are often composed of a large number of
small low-cost devices and deployed in hostile and unattended environments,
thereby making them susceptible to physical capture and compromise, which
in turn makes it difficult to keep the integrity of the original sensor program.
Even just one compromised sensor can make the entire network insecure.
Thus, making sensor devices tamper-resistant is a must.

To protect the sensors from physical attacks, including physical tamper-
ing and manipulation of the sensor programs, Park and Shin [2005] proposed
a soft tamper-proofing scheme that verifies the integrity of the program in
each sensor device, called the program integrity verification (PIV). Seshadri
and colleagues also proposed a software-based memory attestation technique
called SWATT [Seshadri et al. 2004] and Secure Code Update by Attestation
(SCUBA) [Seshadri et al. 2006]. All of these deal with the problems of securing
sensor devices and making sensor devices tamper resistant.

Another important issue is the authentication of the communication be-
tween the sensor nodes and the servers in the network. A sensor node has
to verify that the messages had really been sent by the genuine sender and
also has to prevent itself from communicating with a malicious server that
pretends to be a legitimate one.

For the purpose of securing the network, there are usually two lines of de-
fense. The first line is intrusion prevention. Typical intrusion prevention mea-
sures, such as authentication and encryption, can be used to prevent external

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 3

nodes from disrupting or disabling the network. However, intrusion prevention
can combat only outsider attacks and cannot handle insider attacks. For exam-
ple, if a sensor node is physically captured and compromised, then the attacker
can obtain the cryptographic keys stored in the captured sensor node. Thus,
the intrusion prevention measures that often require sharing secrets between
nodes will not help defend against insider attacks.

The second line of defense is intrusion detection that can discover the in-
sider attacks mounted by compromised nodes in the network. On detection
of an intrusion, a countermeasure can be taken to minimize damages to the
network. Given the new vulnerabilities that continue to be discovered, intru-
sion detection must be effective and efficient in identifying attacks and then
successfully neutralizing them.

In the PIV protocol [Park and Shin 2005], the sensors rely on PIV servers
(PIVSs) to verify the integrity of the sensor programs. The sensors authenti-
cate PIVSs with centralized and trusted third-party entities, such as authen-
tication servers (ASs), in the network. This article mainly addresses the first
line of defense. Specifically, we focus on the authentication of PIVSs instead of
the verification of sensors.

In this article, we propose a distributed authentication protocol of PIVSs
(DAPP) for sensors to securely communicate with PIVSs without the authenti-
cation server (AS) infrastructure assumed in PIV [Park and Shin 2005]. DAPP
is a solution to the problem of authenticating PIVSs in a fully distributed man-
ner and acts as the first line of defense for the network by enabling each sen-
sor node to prove the identity of a server before communicating with it. The
sensors will then use the PIV protocol to have their program verified by the
authenticated PIVSs and will be allowed to join the network only after pass-
ing the verification successfully. By authentication, we mean that one party
ensures the valid identity of another party to communicate with. The pro-
posed DAPP is to enable sensors to validate a PIVS before using it for their
verification.

In addition to DAPP, we present a revocation mechanism for PIVSs to check
with each other to detect and evict malicious PIVSs, if any. This mechanism is
part of the second line of defense. Once a PIVS is determined to be malicious
by a majority of its neighbor PIVSs, the revocation mechanism is used to evict
it from the network and mitigate the possible damage it may cause to the
network.

The remainder of this article is organized as follows. For completeness we
first give an overview of the PIV protocol [Park and Shin 2005] in Section 2.
We then present the overview of our design, including some of sensor device
limitations and the motivation of this work as well as the system model we
use, the attack model we consider, and the overview of DAPP in Section 3.
Section 4 describes the details of DAPP, along with the PIVS revocation mech-
anism. Section 5 analyzes the security of DAPP and PIV and lists some secu-
rity issues in PIV, which is followed by our DAPP and PIV implementations in
Section 6. Section 7 evaluates the performance of DAPP. Finally, we discuss the
related work in Section 8 and conclude the article by discussing future work in
Section 9.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 4 · K. Chang and K. G. Shin

2. BACKGROUND: OVERVIEW OF PIV

The PIV protocol [Park and Shin 2005] verifies the integrity of the program
and data stored in a sensor device. It is purely software-based protection from
physical attacks in sensor networks. This protocol supports the tamper proof-
ing of sensors and makes it difficult for attackers to modify the sensor pro-
grams without changing or adding the sensor hardware. It is triggered infre-
quently, only when a sensor tries to join the network or has left the network
for a long time, and the verification of each program incurs a very small over-
head. The PIV protocol will, therefore, not degrade normal sensor functions
and services.

The network is composed of sensors and PIV servers (PIVSs). PIVSs verify
the integrity of the sensors’ programs and maintain a database of the digests
of the original sensor programs. A randomized hash function (RHF) [Park and
Shin 2005] is also employed in PIV. The RHF is used for computing hash on the
program in the sensor device when the device needs to be verified. For each
sensor verification, the PIVS creates a new RHF and sends it to the sensor
in the PIV code (PIVC). The PIVS can verify the integrity of the program of
each sensor device by comparing the hash value of the sensor program digests
maintained in its local database with the hash value returned by the sensor
after calculating it by executing the PIVC.

The security of sensors is accomplished by authenticating PIVSs before
communicating with them, to protect sensors from malicious or compromised
PIV servers. Sensors authenticate PIVSs with a conventional authentication
server (AS), to ensure that the PIVSs are authentic and safe to communicate
with and that the sensors can safely execute the codes received from the PIVSs.

The PIV protocol performs three tasks: (1) authentication of each PIVS via
the centralized AS; (2) transmission and execution of the PIV code (PIVC); and
(3) program verification by the PIVC and the PIVS. The sensor that wants to
join the network will first ask the AS for authentication of a PIVS. If authen-
tication succeeds, the sensor will then ask the authenticated PIVS for verifica-
tion of its program. To verify a sensor’s program, the PIVS will send a mobile
agent, PIVC, containing a new RHF to the sensor and then use the RHF to com-
pute a hash value from the digests of the sensor program stored in its database.

After the sensor receives the PIVC from the PIVS, it executes the PIVC on
its program to compute a hash value. The hash value will then be sent back to
the PIVS for verification. The PIVS finally checks if the two hash values match
to determine the integrity of the sensor’s program. If the sensor passes the
verification, then the PIVS registers it in its database PIV DB, which contains
all successfully verified sensor IDs. Otherwise, the sensor will be locked, with
its ID deleted from PIV DB if it had passed PIV before, thus becoming unable
to join the network. The PIV protocol offers three ways of actually locking
a sensor: (1) The PIVS can ask the sensor’s neighbor sensors not to replay
packets from the sensor; (2) the key manager refreshes a new cluster key and
excludes the sensor from the cluster; and (3) network services like routing
may look up PIV DB to ensure sensors are verified and thus genuine. Figure 1
depicts the interactions among the AS, the PIVS, and the sensor during PIV.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 5

Fig. 1. Interactions among the AS, the PIVS, and the sensor during PIV.

The main objective of PIV is to counter most of the physical attacks, that
is, to reprogram or manipulate a sensor without adding new sensor hardware,
thus making it extremely difficult for the attackers to modify the sensor pro-
gram without being caught. This protocol guarantees the integrity of the sen-
sor program by requiring the sensor node to verify the integrity of its program
before joining the network or after it has been disconnected from the network
for a long period of time. However, PIV still cannot combat the attack of adding
more memory to the sensor nodes.

3. DESIGN OVERVIEW

In this section, we first describe the architecture and limitations of a typical
sensor network. We then state the motivation of our work, the system model
we use, and the attack model we consider, and we give the overview of our
DAPP design.

3.1 Sensor Network Architecture and Limitations

Sensor networks are often used for monitoring environments and information
collection and aggregation. Most sensor networks have a base station that acts
as their gateway to an external network. The base station is usually a more
powerful node with larger computation, communication, memory, and energy
capacities.

A sensor network may typically consist of from hundreds to several thou-
sands of sensor nodes. However, sensor nodes are limited in their compu-
tation, communication, memory, and energy capacities due to their low cost
and size requirements. Because of the large number of nodes and limited re-
sources, and also due to the fact that sensor nodes are often deployed in hostile
and unattended environments, they are susceptible to physical capture and
compromise.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 6 · K. Chang and K. G. Shin

Sensor networks are also limited in other ways. Due to the limited mem-
ory, computation power, and energy capacity of each sensor device, the use of
public-key algorithms such as the Diffie-Hellman (DH) algorithm [Diffie and
Hellman 1976] is usually not practical in sensor networks. Public-key algo-
rithms often require considerable memory, complex computation and process-
ing, and large key length, which have limitations of their own and will quickly
deplete the batteries on sensor devices.

Our scheme was implemented on Mica2 Motes [Crossbow]. Mica2 Motes
feature an 8-bit 4MHz Atmel ATmega 128L microcontroller with 128K bytes
in-system reprogrammable flash memory, 4K bytes internal SRAM, 4K bytes
internal EEPROM, and 512K bytes external additional data flash memory.
The microcontroller is based on an advanced RISC architecture. Mica2 Motes
are powered by two AA batteries and communicates using a multichannel ra-
dio. The ISM band 868/916MHz radio transmitter communicates at a peak
rate of approximately 40 Kbps within a range of up to 500 feet in an outdoor
environment.

3.2 Motivation

Our main goal is to eliminate the requirement of the centralized authenti-
cation server (AS) in the PIV infrastructure to make PIV a fully distributed
protocol. As the AS is needed for sensors to authenticate PIVSs, it may eas-
ily become a bottleneck for reliability, security, and communication. Also, re-
quiring a centralized service such as AS is inconsistent with the distributed
structure of sensor networks. Moreover, sensors that are deployed near the AS
will consume more energy to route messages for other sensors and will exhaust
their batteries before others. Therefore, having a centralized AS will not scale
well to a large sensor network.

The communication traffic to/from a single AS can, of course, be reduced if
the AS is replicated in the network. However, because ASs act as trusted third
parties, they are presumed to be trusted and secure. Therefore, ASs will need
secure computing platforms to protect the servers from attacks. Also, as ASs
require more memory, more energy, and stronger computation power than sen-
sor devices, deploying more ASs in the network will increase the cost. Another
problem with having multiple ASs is that of maintaining consistency among
them. How to allow every AS in the network to maintain the same authenti-
cation information about PIVSs and be consistent with authenticating PIVSs
in the network is a difficult issue to deal with. For these reasons, we would
like to remove the need for ASs from the PIV infrastructure and distribute the
authentication function to PIVSs themselves.

3.3 System Model

To generalize our design and analysis, we define the system model as follows:

—Sensors and PIVSs are deployed randomly in their coverage area. There-
fore, we have no prior knowledge about the neighbors or the location of each
sensor and PIVS before deployment.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 7

—There is a maximum of n sensor nodes and s PIVSs in the network, each of
which has a unique node ID.

—PIVSs are equipped with more energy, larger memory, and more computa-
tion and transmission power than sensor devices.

—PIVSs maintain all of the sensor programs in their memory before deploy-
ment. The sensor programs stored at the PIVSs are used to verify the in-
tegrity of the sensors’ programs.

—Each PIVS has dual radio interfaces so that the radios for its communication
with sensors and other PIVSs will not interfere with each other. Note that
the use of multiple radios and channels at each node is becoming common-
place.

—For most of sensor network applications, sensors are required to be time
synchronized. Hence, PIVSs are assumed to be loosely time synchronized.

—Because PIVSs have a longer transmission range than sensors, each PIVS is
assumed to have at least t neighbor PIVSs after deployment.

3.4 Attack Model

Because the sensor nodes are small and resource limited and are usually de-
ployed in public or hostile locations, they are vulnerable to physical capture
and compromise by attackers. PIVSs are much more powerful servers in the
network and are more capable in defending the various attacks in the network.
The goal of the PIV protocol [Park and Shin 2005] is to defend the sensors from
physical compromise attacks. Our goal in this article is to allow the sensors
to authenticate PIVSs in a fully distributed manner. Below we list the attack
model we consider for PIVSs. We categorize the attacks into passive and active
attacks.

—Passive attacks: Eavesdropping. This is an obvious threat because wireless
communication is broadcast based. We assume the attackers can eavesdrop
on all traffic in the network and data encryption is an effective countermea-
sure.

—Active attacks:
—Replay, spoof, drop, or insert false data. An attacker might add a node to

the network that simply attempts to interrupt message transmission. A
malicious node could trick the system by simply dropping messages it is
supposed to forward or by inserting false data into the network. A ma-
licious node might also attempt to impersonate a legitimate sensor by re-
playing the messages it received or by spoofing the messages it is supposed
to send.

—Denial-of-service (DoS) attack. An attacker can maliciously insert mes-
sages or “flood” the network to cause resource consumption, such as bat-
tery depletion, thus making legitimate nodes unable to use service or
provide service.

—Sybil attack. A particularly harmful attack against sensor networks is
known as the Sybil attack [Douceur 2002], where a Sybil node illegiti-
mately fakes multiple identities in the network.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 8 · K. Chang and K. G. Shin

Fig. 2. The design overview of DAPP. PIVSs are represented by large circles and interact with
one another for mutual authentication. The solid lines represent the interactions between the
PIVSs. Small circles represent sensors in the network. The dotted lines represent the interactions
between the PIVSs and the sensor.

—Impersonation attack. An attacker has the ability to impersonate or mas-
querade as a legitimate node. Other nodes will thus send confidential
information to the attacker rather than to the real recipients. This is typ-
ically the hardest attack to mount and defend against.

3.5 Overview of DAPP

We exploit the PIV protocol [Park and Shin 2005] summarized in Section 2 to
protect the integrity of sensor programs. To remove the need for a centralized
AS from the PIV infrastructure, we use PIVSs to perform the AS functions and
authenticate one another to achieve the distributed authentication of PIVSs.
Interactions between PIVSs and sensors are depicted in Figure 2, where the
large/small circles represent PIVSs/sensors in the network. PIVSs interact
with one another to be authenticated without the need for a centralized AS in
the network. The solid lines represent the interactions between the PIVSs, and
the dotted lines represent the interactions between the PIVSs and the sensor.

PIVSs need to share some secrets with one another to authenticate one an-
other. In our proposed distributed authentication protocol of PIVSs (DAPP),
these secrets are pairwise keys shared between PIVSs that are established by
using the Blundo scheme [Blundo et al. 1992]. Before deployment, PIVSs and
sensors are loaded with different functions to establish pairwise keys. After
deployment, PIVSs and sensors can use the loaded functions to establish pair-
wise keys with any node in the network.

DAPP has two more objectives in addition to the distribution of the AS func-
tion to PIVSs: Reduce (1) the total number of sensor communication messages
exchanged in the network and (2) the energy consumed by each sensor by using
DAPP for authentication.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 9

To remove malicious PIVSs in the network, we also propose a PIVS revo-
cation mechanism. The PIVS revocation mechanism will allow normal PIVSs
to revoke a malicious PIVS after they detect its malicious behavior. Neighbor
PIVSs will monitor each other’s behavior, and once more than a certain number
of its neighbor PIVSs have determined a PIVS to behave maliciously, the PIVS
will be evicted from the network.

4. DAPP DETAILS

In the original PIV design [Park and Shin 2005], protection of a sensor from
a malicious server/code disguised as a PIVS/PIVC is achieved by using the
AS that acts as a trusted third party. The AS can help a sensor ensure that
the PIVS is authentic, and the PIVC it receives from the PIVS is thus safe to
execute. Here, we propose a distributed protocol, DAPP, for sensors to authen-
ticate PIVSs without using such a centralized AS.

DAPP is a protocol used in a sensor network that consists of a maximum
of n sensor nodes and s PIVSs, in which all sensors and PIVSs in the network
have unique node IDs. All PIVSs store all the sensor programs in the network
for sensor verification. Listed here are the notations used in the rest of the
article.

—A , B, . . . are principals, such as PIVSs or sensor nodes.

—NA is a nonce generated by A, which is a randomly generated number that
is unpredictable and used to achieve freshness.

—KA B is the shared pairwise key between A and B.

—MAC(K, M) is the message authentication code (MAC) of message M gener-
ated with a symmetric key K.

—TA is the time stamp sent by A.

— f is a symmetric bivariate k-degree polynomial for establishing pairwise
keys in the network.

—F is a one-way function for generating revocation keys for PIVSs.

We apply the Blundo scheme [Blundo et al. 1992] for setting up PIVSs’
and sensors’ pairwise keys. The Blundo scheme was originally proposed to
allow any group of m parties to compute a shared secrete key. Here we use
this scheme to establish pairwise keys between two nodes in the network. In
the Blundo scheme, a key server randomly generates a symmetric bivariate
k-degree polynomial f (x, y) that is a secret known only to the key server. Any
two nodes in the network can generate a pairwise key by substituting x and y

by their node IDs. Although we can also use the pairwise key establishment
scheme in LEAP [Zhu et al. 2003], we describe below the protocol using the
Blundo scheme for pairwise key generation.

The elements of the system model described earlier are necessary to under-
stand the protocol described below. Recall that the PIVSs are computation-
ally more powerful than sensors, and their memory, energy, and transmission
capacities are also greater than sensors’. Moreover, after the deployment of

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 10 · K. Chang and K. G. Shin

PIVSs, each PIVS has at least t neighbor PIVSs, where t depends on PIVSs’
transmission range.

4.1 Initialization and PIVS Discovery Phase

We now describe the initialization and PIVS discovery phase of DAPP. Note
that nodes can be added to the network after deployment and use the same
phase to join the network.

4.1.1 Pre-Deployment Initialization Phase. Before the deployment of sen-
sors and PIVSs, all the nodes are secured. In this phase, we establish the
identity of each PIVS/sensor and its security basis. The network consists of a
maximum of n sensor nodes and s PIVSs. Each sensor and PIVS is assigned
a node ID. Not all sensor nodes and PIVSs need to be deployed at once; some
can later join the network. All s PIVSs have the n sensors’ programs stored in
their memory.

As stated above, the Blundo scheme [Blundo et al. 1992] is used to set up
pairwise keys. A key server randomly generates a symmetric bivariate k-
degree polynomial f (x, y) =

∑k
i, j=0 aijx

iy j over a finite field Fq, where q is a
prime number that is large enough to accommodate a cryptographic key. For
each PIVS and sensor node A, the key server computes a pairwise key func-
tion, f (A , y), and loads the k + 1 coefficients as a function of y to node A. The
pairwise key function is used for nodes later to establish pairwise keys with
other nodes in the network. Note that since the Blundo scheme is proven to be
unconditionally secure and k-collusion resistant, compromising only one node
A and discovering f (A , y) does not enable the attacker to recover f (x, y). The
attacker needs to compromise more than k nodes to recover f (x, y).

For each PIVS A, the key server randomly generates a base revocation key
KA ,x for A and then generates a sequence of v revocation keys from KA ,x us-
ing a one-way function F. The remaining revocation keys are generated by
applying F successively, that is, KA , j = F(KA , j+1). KA ,0 is called PIVS A ’s re-
vocation verification key. Because revocation keys are generated by a one-way
function, they are forward computable, but not backward computable, that is,
one can compute KA ,0, . . . , KA , j given KA , j+1 but cannot compute KA , j+1 from
KA ,0, . . . , KA , j. The s PIVSs now all have a chain of v + 1 revocation keys and
will store the revocation verification keys of the other s − 1 PIVSs. These keys
are used for authenticating the PIVS revocation messages (to be described
later in this section).

We require that no two PIVSs have the same revocation key in their key
chains. This requirement can be met by having the key server first generate
a long sequence of revocation keys by applying the one-way function F succes-
sively and then assign disjoint chains of keys to each PIVS.

4.1.2 Post-Deployment PIVS Discovery Phase. The sensors and PIVSs are
then randomly deployed in the field. After deployment, they can discover
neighbor PIVSs within their communication range in this phase.

In the postdeployment PIVS discovery phase, each PIVS will periodically
broadcast a PIVS beacon message containing its ID. The neighbor PIVSs that

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 11

receive this message can establish shared pairwise keys with the PIVS using
the pairwise key function. When PIVS B wants to establish a pairwise key
with PIVS A, it computes f (B, A) by substituting y with A in f (B, y), the
pairwise key function preloaded by the key server in the predeployment ini-
tialization phase. Likewise, A can compute f (A , B). Because f (x, y) is a sym-
metric function, f (A , B) = f (B, A), so A and B can establish a pairwise key
KA B = f (A , B) between them. The two PIVSs can now verify one another’s
authenticity using the shared pairwise key KA B. Thus, the complete protocol
of the PIVS postdeployment discovery phase is:

A → ∗ : PIVS beacon message(A)

B → A : B, NB, MAC(KA B, B|NB)

A → B : A , NA, MAC(KA B, A|NA |NB)

Note that here we use MAC for message authenticity and integrity. MAC
can be viewed as a secure cryptographical checksum for the message. The
sender and the receiver must both have a secret shared pairwise key to com-
pute the MAC. The computed MAC value helps the receiver detect any change
to the message content.

We include nonces in the protocol to prevent replay attacks. The nonces
are randomly chosen and are different each time to make it difficult, if not
impossible, for the attackers to replay the messages. We further optimize the
protocol by including the nonces implicitly in the MAC computation. This way,
the PIVSs do not transmit the nonces again and save the communication traffic
while meeting the verification goal.

After receiving a message, the receiver PIVS recomputes the MAC for the
message and compares it with the MAC it received. If the two match, then the
receiver PIVS can be sure of the sender PIVS’s identity. Otherwise, it will reject
the sender PIVS’s messages. After two PIVSs verify each other’s authenticity
with their shared pairwise key, they add each other’s ID to their PIVS refer-
ence list.

Moreover, the PIVS beacon messages from a PIVS allow the newly deployed
sensors to receive the information about the PIVSs within its communication
range. If a newly deployed sensor does not receive any PIVS beacon message
for a certain period of time, it will broadcast a PIVS lookup message to search
for PIVSs in its transmission range. Any PIVS in the network that receives
the PIVS lookup message will then broadcast the PIVS beacon message again
or just unicast it directly to the sensor.

4.2 PIVS Authentication Phase

After the initialization and PIVS discovery phase, the sensors that want to
join the network need to authenticate the PIVSs before starting the PIV and
having their programs verified. In this phase, the sensors will authenticate
PIVSs, which will rely on their neighbor PIVSs to authenticate themselves for
the sensors.

Based on the strength of PIVS beacon message signals received from all
the PIVSs, a sensor node can choose the one that is closest to it to verify its

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 12 · K. Chang and K. G. Shin

program. To authenticate, the sensors will first choose PIVSs within one-hop
distance. If no such PIVSs exist, then sensors can communicate to PIVSs that
are multiple hops away via secure routing [Karlof and Wagner 2003]. The
sensor will first authenticate the PIVS; if the PIVS is trustworthy, the sensor
will start the PIV protocol with it. However, if the PIVS fails to authenticate it-
self, the sensor will choose another PIVS to verify its program with and restart
the authentication phase with the new PIVS.

For example, for sensor E to authenticate PIVS A, it will first compute the
shared pairwise key KA E = f (E, A) with A. Sensor E will then send a PIVS
authentication message to A, which includes a randomly generated nonce NE

and the MAC value of NE computed using KA E. On receiving the message,
PIVS A will generate the shared key KA E = f (A , E) and verify the PIVS au-
thentication message sent by E. If the message is authentic, then PIVS A

will send PIVS reference messages including sensor E’s ID, nonce NE, and the
MAC value computed using the shared pairwise keys to the PIVSs on its PIVS
reference list. The PIVSs that receive the PIVS reference messages will check
the authenticity of the message it received. To check the authenticity of a
PIVS reference messages, a PIVS simply recomputes the MAC value using the
shared pairwise key, and compares the MAC value included in the message. If
the two values match, then the message is actually sent from PIVS A because
it has the correct pairwise key. However, if the two values do not match, then
the message must have come from a malicious PIVS faking to be A; hence, the
message will be discarded.

After a reference PIVS authenticates A, it will grant an authentication
ticket to A, which can then provide the authentication ticket to E, proving
its authenticity. Each authentication ticket includes the reference PIVS’s ID
and the MAC value of NE computed using the reference PIVS and sensor E’s
pairwise key. One PIVS needs to show Nauth authentication tickets to the sen-
sor to pass the authentication. Note that the reason for sensor E to include a
randomly generated nonce in the PIVS authentication message is to prevent
external attackers from recording the authentication tickets in the network
and then reusing them.

The complete protocol of the PIVS authentication phase is summarized
as follows.

E → A : PIVS authentication message(NE, MAC(KA E, NE))

A → B : PIVS reference message(E, NE, MAC(KA B, E|NE))

B → A : E, Authentication ticket(B, MAC(KBE, NE)),

MAC(KA B, E|Authentication ticket(B, MAC(KBE, NE)))

...

A → E : Authentication ticket(B, MAC(KBE, NE))|Authentication ticket

(C, MAC(KCE, NE))|..., MAC(KA E, NE + 1)

Using this same example, for PIVS B to authenticate PIVS A, B needs to
hold a pairwise key with A. Therefore, if B has received a PIVS reference
message from A, it is on A ’s PIVS reference list and should share a pairwise

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 13

key with A. When B grants A the authentication ticket, it will also include
the MAC of sensor E’s ID and the authentication ticket computed using A

and B’s pairwise key KA B. If the MAC value of B’s message matches with
the MAC value of B’s message computed by A using their shared pairwise key
KA B, then A is sure that B is also trustworthy and will use the authentication
ticket issued by B. After A receives Nauth authentication tickets issued by
its reference PIVSs, it will forward the authentication tickets along with the
MAC value of NE + 1 computed using the pairwise key KA E to sensor E for
authentication.

When sensor E receives the response from PIVS A, it will check the au-
thenticity of A. E will first check if A has replied with the correct MAC value
of NE + 1. If the value is correct, then E will continue to check the Nauth au-
thentication tickets. If the value is incorrect, E will conclude that A failed the
authentication. From the Nauth authentication tickets issued by A ’s reference
PIVSs, the authentication result must mask the effects of d or fewer malicious
PIVSs. If we consider Byzantine failures in the network, then t ≥ Nauth ≥ 3d+1,
where t is the minimum number of neighbor PIVSs that each PIVS has af-
ter deployment. If we do not consider Byzantine failures, then t ≥ Nauth ≥

2d+ 1. Thus, the design parameter Nauth needs to be determined by the PIVSs’
failure model.

If we do not consider Byzantine failures in the network, then if A provides
a correct MAC value, sensor E will check the correctness of the authentication
tickets and use a simple majority rule to determine A ’s authenticity. If more
than Nauth/2 of the authentication tickets have the correct MAC value, then E

will conclude that A is trustworthy. Otherwise, E will try to verify its program
with another PIVS, if any PIVS is available, and restart the authentication
procedure with that PIVS. Figure 3 shows the interactions among PIVS A,
PIVS A ’s reference PIVS B, and sensor E during DAPP authentication phase.
Figure 4 is the pseudocode for sensor E performing DAPP to authenticate PIVS
A. The pseudocode is to be executed on sensor E, PIVS A, and PIVS B, respec-
tively. Sensor E performs the distributed protocol to authenticate PIVS A,
while PIVS B authenticates A for E and is one of the PIVSs on PIVS A ’s PIVS
reference list.

4.3 PIVS Revocation

As PIVSs may be compromised and then become malicious after their deploy-
ment, we need a way of detecting and evicting a maliciously or abnormally
behaving PIVS without using a centralized entity, that is, a distributed PIVS
revocation scheme. To meet this need, we design a PIVS revocation scheme to
work harmoniously with DAPP to better authenticate PIVSs for sensors.

All PIVSs monitor their neighbor PIVSs and are able to issue PIVS revo-
cation messages to other PIVSs when they detect abnormal/malicious behav-
iors from their neighbor PIVSs. Because each PIVS has at least t neighbor
PIVSs, there are at least t neighbors who can detect the malicious behavior
of a malicious PIVS and then cooperate to evict it. When a PIVS’s abnormal
or malicious behavior is detected, its neighbor PIVSs can send others PIVS

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 14 · K. Chang and K. G. Shin

Fig. 3. Interactions among PIVS A, PIVS A ’s reference PIVS B, and sensor E under DAPP. (1)
Sensor E sent PIVS authentication message to PIVS A, which (2) then sent PIVS reference mes-
sages to PIVSs on its PIVS reference list. (3) PIVS A ’s reference PIVSs then sent authentication
tickets back to A, which (4) collected Nauth authentication tickets from its reference PIVSs and
forwarded the tickets to E for authentication.

revocation messages on that PIVS. Examples of a PIVS’s malicious behavior
include authenticating other PIVSs when it is not expected to or continuing
to fail authentications. How to detect PIVSs’ abnormal output behaviors is
the only concern to us in this article. As long as a PIVS behaves normally in
interacting with the outside world, we treat it as normal.

Compromised PIVS are detected based on mutual monitoring among neigh-
bor PIVSs in the network. The detection rules depend on the normal behav-
ior of the PIVSs and use anomaly detection. Behavior-based anomaly detec-
tion compares the traffic being generated by a PIVS with its normal traffic-
generation profile. Note that a PIVS’s normal profile can be derived from its
traffic-generation history and/or the underlying PIV protocol. Any PIVS that
deviates from the normal behavior profile will be flagged as a potentially com-
promised PIVS. When a PIVS detects one of its neighbors, say N, to behave
abnormally more than a prespecified number of times within a time interval
of interest, then it will use µTESLA [Perrig et al. 2001] to broadcast a PIVS
revocation message about N to other neighbor PIVSs. A receiver PIVS then
uses µTESLA to authenticate the PIVS revocation messages it received. Note
that µTESLA uses digital signature for packet authentication and uses only
symmetric key encryption mechanisms. In µTESLA, time is divided into in-
tervals, and key Ki is associated with the i-th time interval. Messages sent in
interval i use Ki in MAC for authentication, and Ki will be disclosed after a
delay δ for message authentication.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 15

Fig. 4. Pseudocode to be executed on sensor E, PIVS A, and PIVS B. Sensor E performs DAPP
to authenticate PIVS A, while PIVS B authenticates A for E and is one of the PIVSs on PIVS A ’s
PIVS reference list.

To use µTESLA, all PIVSs in the network are loosely time-synchronized
[Ganeriwal et al. 2005; Sun et al. 2006], and the time is divided into intervals.
When PIVS A detects malicious behaviors from one of its neighbor PIVSs, it
will broadcast a PIVS revocation message to the network and include the MAC
of the message computed using the preloaded revocation keys in its key chain
described earlier in this section.

If PIVS A detects the malicious behavior by its neighbor PIVS B, it will
broadcast to its other neighbor PIVSs a PIVS revocation message about B that
includes a timestamp TA , the ID of the malicious PIVS B, the position of the
revocation key in the key chain that is used to compute the MAC value, and
the MAC of the message computed using the revocation key. A PIVS revocation
message broadcast by A is in the form of:

A → ∗ : TA, B, j, MAC(KA , j, TA |B| j)

The MAC value of a PIVS revocation message is generated by a PIVS using
the revocation key in its key chain. After δ time intervals, the used revocation
key will be disclosed. One PIVS can verify the authenticity of the disclosed
revocation key by applying the one-way hash function F to the key a number
of times and comparing the value with the origin PIVS’s revocation verifica-
tion key. For example, suppose the PIVS revocation message is from PIVS A,
and A is using its fourth revocation key KA ,4 to generate the MAC value of
the PIVS revocation message. Then, once the revocation key is disclosed, one

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 16 · K. Chang and K. G. Shin

can apply the one-way function F four times and compare the value with A ’s
revocation verification key KA ,0. If F4(KA ,4) = KA ,0, then one can verify that
the revocation key is really sent by A. One can then check the MAC value of
the PIVS revocation message using the disclosed revocation key to see if the
PIVS revocation message is authentic.

If A receives more than Nrevoke PIVS revocation messages against B within
a time interval of interest, A will suspect that B is compromised. A will thus
stop authenticating B or ask B to authenticate itself again. Any malicious
PIVS that cannot get authentication tickets from a majority of its neighbor
PIVSs will not pass the authentication, and no sensor will trust such a PIVS.
The malicious PIVS’s neighbor PIVSs will also stop communicating with it.
Therefore, the PIVS will be “evicted” from the network and will not be able to
access any service in the network. Nrevoke must be smaller than t, the minimum
number of neighbor PIVSs one PIVS has, and must be large enough for no PIVS
will be revoked by colluded neighbors.

5. SECURITY ANALYSIS

We first discuss the network survivability in the event of sensor and PIVS
compromises and then analyze the security of DAPP and PIV against various
attacks. We finally identify some possible attacks on the PIV protocol that we
found along with their countermeasures.

5.1 Network Survivability

After compromising a sensor or a PIVS, the attacker can discover the node’s
keying materials, such as the preloaded pairwise key functions. If a PIVS is
found to have been compromised, it can be evicted by using the PIVS revocation
scheme with the cooperation of its neighbor PIVSs. On the other hand, if the
compromise of a sensor is detected/suspected, the sensor will be required to
reverify its program using PIV. The sensor will be excluded from the network
if it fails to pass PIV.

For the case when the compromise of the sensors and PIVSs go undetected,
we need to analyze the survivability of the network or the ability of the net-
work to maintain an acceptable level of performance under node compromises.
For this, we will consider the general attacks an adversary can mount after it
compromises a node.

Because each node in the network is preloaded only with the pairwise key
function for it to establish pairwise keys with other nodes in the network, re-
vealing such a function will only allow the attacker to fake to be that node. We
employ the Blundo scheme [Blundo et al. 1992] for the pairwise key function,
which is proven to be unconditionally secure and k-collusion resistant. That is,
when no more than k nodes are compromised, the attacker will know nothing
about the pairwise key between any two uncompromised nodes in the network.
However, if more than k nodes have been compromised, then the pairwise key
function or the symmetric bivariate k-degree polynomial will be revealed, and
the attacker will know all the pairwise keys in the network. Therefore, it is im-
portant to choose a large enough k for the polynomial to generate the pairwise

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 17

keys. As mentioned by Zhu and colleagues [2004], for the current generation
of sensor nodes, k can be around 200.

Each PIVS has a revocation key chain for it to authentically broadcast PIVS
revocation messages. Once a PIVS is compromised, its revocation key chain
will be revealed to the attacker, and the attacker can fake PIVS revocation
messages to revoke benign PIVSs. However, because each PIVS needs to re-
ceive Nrevoke PIVS revocation messages before revoking a PIVS, an attacker
will need to compromise many PIVSs before it can revoke a PIVS. Or, if an
attacker simply uses one compromised PIVS to continue broadcast PIVS revo-
cation messages against other PIVSs, its abnormal behavior will be detected
and then it will be revoked by other PIVSs. We can further modify the PIVS
revocation scheme to limit a PIVS to issue only a certain number of PIVS re-
vocation messages against other PIVSs, thus making it harder for an attacker
to use compromised PIVSs to revoke benign PIVSs.

5.2 Defense Against Various Attacks in Sensor Networks

We now describe how DAPP and PIV can defend against various attacks in
sensor networks.

5.2.1 Defense Against Passive Attacks. In DAPP, each message is sent in
plain text, along with its MAC value. Even though an attacker can eavesdrop
on the messages, the only content that is revealed is the nonces that the sen-
sors and PIVSs exchange. Therefore, the attacker will not gain any insight
into the contents of messages by eavesdropping on the network.

After a sensor authenticates a PIVS, pairwise keys are used to encrypt
all the messages transmitted between sensors and PIVSs in the PIV proto-
col. Therefore, the attacker cannot get the contents of the messages by simply
eavesdropping on the messages in the network.

5.2.2 Defense Against Active Attacks. To prevent an attacker from spoofing
or inserting false data, we equip every message with its MAC value computed
using a pairwise key between two nodes to achieve authenticity and integrity.
Replay attacks are prevented by including nonces in the messages. For PIVSs
that keep dropping messages or data packets, the PIVSs compromised by the
attacker can be detected and then revoked by its neighbor PIVSs.

Service disruption and denial-of-service (DoS) attacks are caused by mali-
cious PIVSs. There is no way to prevent such nodes from launching attacks, but
these nodes can be detected and then excluded from the network. Because we
let PIVSs monitor their neighbor PIVSs, once a PIVS (with cooperation from
its neighbor PIVSs) identifies malicious PIVSs, it can use the PIVS revocation
scheme to evict the compromised PIVSs from the network.

Sybil attacks [Douceur 2002] are particularly harmful in sensor networks
where a Sybil node illegitimately fakes having multiple identities in the net-
work, but DAPP intrinsically withstands such attacks. It is not possible for the
attacker to launch Sybil attacks against DAPP because each node will need to
have a pairwise key with its communicating node to authenticate its identity.
Because each node will have a preloaded pairwise key function for establishing

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 18 · K. Chang and K. G. Shin

pairwise keys, no node can generate the pairwise keys and pretend to be an-
other node without knowing the function.

However, if any two compromised PIVSs in the network collude together,
then one compromised PIVS can issue authentication tickets for another com-
promised PIVS in the network. If one PIVS can find Nauth compromised PIVSs
to collude with, then it can pass the authentication with sensors in the net-
work. DAPP can defend against the above-mentioned attack because PIVSs
have stronger transmission power than sensors; hence, one sensor can also
receive the PIVS beacon messages sent by some of a PIVS’s neighbor PIVSs.
Therefore, even though one sensor does not know about the entire topology of
the network, it knows part of the network topology in its proximity. Thus, if
one PIVS shows authentication tickets from all other PIVSs that the sensor
does not know, then one must suspect the PIVS. Or a sensor can even send a
list of PIVSs that it wants to have authentication tickets from and force the
compromised PIVS to fail the authentication. Note that the list of PIVSs that
a sensor normally hears should contain fewer than Nauth PIVSs and should not
use much of the sensor memory.

Last, PIV is designed to combat physical attacks to sensors in the network.
However, if the sensors are captured and compromised after they passed PIV,
then the network security may be breached. Therefore, to defend sensors
against physical attacks after passing the PIV, we make them reverify their
programs with PIVSs periodically. Likewise, in DAPP, for a PIVS to pass by
a sensor’s authentication, it needs to present Nauth authentication tickets to
the sensor. If a PIVS is detected to have been compromised and then revoked
by its neighbor PIVSs, then they will not issue authentication tickets for the
compromised PIVS; therefore, it will not be able to pass authentication.

5.3 Security Issues and Possible Attacks to PIV

Listed below are some possible attacks on the PIV protocol that we found and
the possible countermeasures against them.

5.3.1 Flash Downloader Attack. When a PIVS sends the mobile agent,
PIVC, to a sensor, the received code will first be stored in the sensor’s SRAM.
We thus need to create a flash downloader to copy the received code from SRAM
to the sensor flash memory. However, the attacker may try to use the flash
downloader to write malicious code from SRAM to the flash.

We handle this attack by verifying the entire sensor flash memory, including
(1) the boot code, (2) the main application code, (3) the mobile agent PIVC, and
(4) the flash downloader. The boot code is the program to be executed before
the sensor passes the verification and is used for the sensor to communicate
with the PIVS and to execute the PIVC. Verification of the entire flash ensures
no malicious code hidden in the flash that could exploit the flash downloader.

5.3.2 Flash Free Space Compression Attack. The free space in the flash can
be used by the attacker to hide malicious code, and the original data in the free
space can be compressed for later verification. The flash free space is shown in
Figure 5, along with the flash memory layout of different program components

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 19

Fig. 5. The sensor flash memory layout in PIV.

in PIV. The attacker can use the compressed free space data for verification by
uncompressing part of the data at a time for hashing and still keep the extra
free space to hide the malicious code. Therefore, even hashing the entire flash
for verification will not be able to counter this attack.

We counter this attack by filling the flash’s free space with incompressible
bit strings before deploying the sensor. By placing incompressible bit strings in
the flash’s free space, the attacker can neither compress the flash’s free space
nor gain more flash space to exploit.

5.3.3 Malicious Mobile Agent PIVC Attack. Another possibility is to have
the attacker place malicious code in the flash and put the real code in SRAM,
EEPROM, or the additional data flash memory. The attacker can have a mali-
cious PIVC that performs verification normally, but, when validating the part
of the flash that the real code is now stored in SRAM, EEPROM, or the ad-
ditional data flash memory, use the real code instead. By using the space of
SRAM, EEPROM, or the additional data flash memory, it is possible for the
attacker to place other changes to the program in the flash.

Another attack exploiting the malicious PIVC is the application code com-
pression attack. The attacker can compress part of the original application
code and use the free space in the flash to store malicious code. When perform-
ing the verification, the attacker can then uncompress the compressed parts of
the original code (or part thereof) and use them for verification and can still
keep the extra free space to hide the malicious code.

One possible countermeasure is to set strict timing constraints on the hash-
ing algorithm used for verification, and these attacks can be prevented using
the tight upper and lower bounds for the hash-time interval. Because SRAM,
EEPROM, and the additional data flash memory are much slower than the
flash, they require more CPU clock cycles to read from. Therefore, if we set
a tight hash-time interval, then the attacker will not be able to produce the
correct hash values within the tight hash-time interval. The tight hash-time
interval can also be used to counter application-compression attacks, because

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 20 · K. Chang and K. G. Shin

uncompressing the compressed original code will take additional time, making
it highly unlikely for the attacker to get the correct hash values within the
hash-time interval.

Similar to the scheme by Shaneck and colleagues [2005], the hash-time in-
terval should be set to the expected time for the PIVS to receive the hash value
from a sensor, which is the sum of the time taken to compute the hash on the
sensor program, the network roundtrip time, and the expected response delay
that accounts for network delay. Any hash values returned from sensors that
are within the hash-time interval will be accepted or will otherwise be rejected.

5.3.4 Compromised PIVSs and Sensors Attack. After compromising a
PIVS, the attacker may use it as a back-end server to pass the verification
of compromised sensors. For example, when a sensor receives the PIVC for
verification of its program, it can then forward the PIVC to the compromised
PIVS and ask it to compute the hash value for it. The compromised sensor will
then be able to have a correct hash value to pass the verification. Another sim-
ilar attack is possible if the attacker compromises a few sensors in the network
and uses them to cooperate with each other. In this case, the attacker can store
its original code in the other compromised sensors and let them use its code to
compute the hash value and help it to pass verification.

The tight hash-time interval mentioned above can also be used to handle
this attack. Because it must take a longer time for the sensors to communicate
with the compromised PIVS/sensors and compute the hash value of its pro-
gram, it is not possible for the attacker to generate and return the hash value
to the PIVS within the hash-time interval.

6. IMPLEMENTATION OF DAPP AND PIV

This section describes our implementation of the DAPP and the PIV protocol
[Park and Shin 2005] on Mica2 Motes [Crossbow] and laptops. Mica2 sensor
nodes have 128K bytes of in-system reprogrammable flash and 4K bytes of
internal SRAM and run under TinyOS. For laptops, we used Java to write
the PIVS, and for sensors, we used nesC [Gay et al. 2003] to write the Boot
code with assembly embedded inside, C embedded with assembly to write the
mobile agent PIV code (PIVC), and assembly to write the flash downloader.

6.1 Changes to the Original PIV Design

We made some modifications to the original PIV designed by Park and Shin
[2005], which are listed with their justification.

6.1.1 Hash Functions: RHF vs. HMAC-MD5. The authors of PIV [Park
and Shin 2005] proposed a special class of cryptographic hash functions, called
randomized hash functions (RHFs). In addition to random hash computation,
RHFs provide two ways of computing the hash value, that is, one from the pro-
gram in the sensor and the other from the digest of the sensor program stored
in the PIVS. However, because the free space in the flash of a sensor can be
used by an attacker to hide malicious codes, as shown in Figure 6 and described
in Section 5.3.2 as the flash free space compression attack, we need to fill up

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 21

Fig. 6. (a) Normal sensor flash memory layout; (b) sensor flash memory layout with malicious
code hidden in the free space.

the free space in the flash with some random incompressible bit strings before
deploying the sensor. Unfortunately, the use of incompressible bit strings in
flash may remove the advantage of storing digests in the PIVS memory in-
stead of storing the entire program code of the sensor flash.

The digests of sensor programs stored in a PIVS as proposed in PIV [Park
and Shin 2005] were created as follows. B program blocks, x1, . . . , xB, were
built from the original program x, where xl = [xl,1, . . . , xl,m]T was an m × 1
vector and xl,i ∈ F.1 A digest for xl was defined as an m × m matrix Xl, which
consists of all quadratic terms, xl,i xl, j. That is, Xl = xlx

T
l =

(

xl,i xl, j

)

. One might
think that a digest Xl is actually m times larger than the original program
block xl. However, the size of the total digests will be smaller than the size
required for just storing all sensor programs because there exist common pro-
gram blocks for all sensors due to their similar purpose of service. Therefore,
multiple digests were combined into just one digest, thus requiring a smaller
memory size.

By storing incompressible and unique bit strings for each sensor, the com-
mon digests will decrease, and storing digests may require more memory than
simply storing the sensor programs. For the purpose of defending the flash free
space compression attack, we had to store incompressible strings in the flash
free space for each sensor; thus, there was little advantage of using RHFs for
hash computation. Therefore, we decided to store sensor programs instead of
digests in PIVSs, not using RHFs for hash computation.

Instead, we decided to use HMAC [Krawczyk et al. 1997], a mechanism for
message authentication using cryptographic hash functions, together with an
iterative cryptographic hash function MD5 [Rivest 1992], in combination with
a secret shared key. The reason for using HMAC for verification of sensor

1xT (AT) is the transpose of a vector x (a matrix A).

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 22 · K. Chang and K. G. Shin

programs is that HMAC can be used in combination with any iterated crypto-
graphic hash functions, such as MD5 or SHA1. Therefore, we can switch the
hash function when needed. HMAC also uses a secret key for the calculation
and verification of the message authentication values, which meets our need
for using different secret keys to verify the sensor programs for each verifica-
tion. MD5 is a widely used cryptographic hash function, and even though it
has been shown to be vulnerable to hash collisions [Wang et al. 2004], because
of the way hash functions are used in the HMAC construction, the techniques
used in the MD5 hash collision attacks do not apply to HMAC-MD5.

6.1.2 The Transmission of the PIVC. In the original PIV design, every time
a sensor asks for verification, the PIVS sends the entire PIVC to the sensor
node to initiate the verification. However, transferring the whole PIVC to the
sensor each time before verification incurs excessive network traffic. Moreover,
because the flash in Mica2 Mote can allow only 10,000 erases or writes, allow-
ing the PIVC to be written to the sensor flash before each verification is not
a good approach. Therefore, we stored the PIVC in the flash before deploy-
ment to reduce network traffic and reduce flash erases and writes. Because
the flash is the only place in memory where the PIVC can be executed, it is a
good location to place the PIVC.

A version number for the PIVC was assigned and placed at the last part of
the PIVC to avoid repeated transmissions. The PIVC version number is first
checked by the sensor with the PIVS to see if the PIVC is up-to-date before the
sensor executes the PIVC and begins computing the hash value of its program.
If the PIVC version number differs from the current PIVC version number
on the PIVS, then the PIVS will transmit the new PIVC to the sensor. This
use of the PIVC version number allows the PIVC to be updated, if necessary.
If the PIVC version number matches the current PIVC version number on
the PIVS, then the sensor will need to request only the hash key from the
PIVS and execute the PIVC already in the flash with the received hash key to
perform the hash computation, which, in our implementation, is the HMAC-
MD5 computation.

Because the PIVC will not change very often, the PIVS will transmit only
the hash key instead of the entire PIVC to the sensor. By making this modifi-
cation of keeping the PIVC in the sensor flash before deployment, we can save
energy on the sensor, reduce network traffic, and extend the sensor flash life
with less erases and writes on the flash.

6.2 Message Authenticity and Integrity

In DAPP, we used MAC to achieve message authenticity and integrity to allow
sensors to authenticate PIVSs. The security of the MAC depends on the length
of the MAC value. Conventional security protocols use 16-byte MACs. We
chose to use HMAC-MD5 [Krawczyk et al. 1997; Rivest 1992] for generating
MACs in our implementation and truncated the output of the MAC to use a
10-byte MAC.

Most well-known and widely used MAC algorithms are CBC-MAC and
HMAC [Krawczyk et al. 1997]. CBC-MAC (cipher block chaining message

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 23

Fig. 7. Overview of our implementation of DAPP and PIV.

authentication code) uses block ciphers in CBC mode to create a MAC.
HMAC is a keyed hash message authentication code and is calculated using a
cryptographic hash function in combination with a secret key. These algo-
rithms were evaluated using Crypto++ 5.2.1 benchmarks [Crypto++], which
are speed benchmarks for some of the most commonly used cryptographic
algorithms. In Crypto++ 5.2.1 benchmarks evaluation, HMAC-MD5 outper-
forms CBC-MAC-AES and is three times faster. Mills and colleagues [Burn-
side et al. 2002] analyzed the memory requirements for HMAC-MD5 on the
Atmel processor. They showed the code size for HMAC-MD5 is 4.6K bytes and
the data size is 386 bytes, which are fine for our implementation. Therefore,
we decided to implement HMAC-MD5 for the MAC computation in our DAPP
implementation.

6.3 Overview of the Implementation

Figure 7 describes our implementation of DAPP and the modified PIV. A sensor
starts DAPP with one PIVS, and other reference PIVSs authenticate the PIVS
for the sensor. The sensor determines the success or failure of the authenti-
cation of the PIVS based on the responses of the authenticating PIVS and the
authentication tickets sent from the reference PIVSs. If the PIVS passes the
authentication, then the sensor will start the PIV protocol with the PIVS to
verify its program.

We now describe implementation details for each component of DAPP
and PIV.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 24 · K. Chang and K. G. Shin

6.3.1 PIVS Development. A MICA2 Mote sensor and a laptop together are
used as a PIVS. They are connected with a serial line that forms the primary
channel for wired communication. On the laptop, a simple Java application,
SerialForwarder, provides a relay between the serial data over a TCP/IP socket
connection. The PIVS sensor that connects to the laptop is for sending and
receiving messages from the other sensors and PIVSs over the radio. The re-
ceived messages are relayed from the sensor to the laptop through the serial
cable, and the sent messages are also relayed from the laptop to the sensor for
broadcast or unicast.

The PIVS is written in Java, and we implemented HMAC-MD5 [Krawczyk
et al. 1997; Rivest 1992] to generate MAC when PIVSs run DAPP. PIVSs use
the shared pairwise key between the two PIVSs to generate and verify MACs.
The pairwise key length is 16 bytes, and the MAC length is 10 bytes. The PIVS
calls a C program to compute HMAC MD5 and hash over the stored sensor
programs to verify the integrity of the programs on sensors. All of the sensor
programs are stored on the laptop as files in binary formats and are used for
sensor verification. When sending the PIVC to a sensor for hash computation,
the PIVS reads the PIVC from a PIVC binary file and sends it over the radio
to the sensor.

The PIVS takes care of sensors’ requests for authentication, requests for
update of a mobile agent PIVC, requests for the hash key, requests for veri-
fication, and requests for checking the verified sensors in its PIV DB. The in-
teractions between PIVSs and a sensor are shown in Figure 7 as well as the
responses of PIVSs handling the sensor requests with the arrows between
PIVSs and the sensor indicating the exchanged messages. Once a PIVS sends
the verification result to the sensor, it activates the sensor’s main application
code if the sensor passes the verification or otherwise locks the sensor, thus
blocking it from joining the network.

On updating the PIVC or sending the hash key to the sensor, the sensor
performs a simple error check by acknowledging to the PIVS the previous data
it has received. If the acknowledging data is not the same as the previous
data, then there was data corruption during the previous transmission, and
the PIVS will retransmit the data to the sensor.

PIVSs randomly generate hash keys for each sensor verification during PIV.
If the previously sent hash key bytes have been corrupted, the PIVS regener-
ates the corrupted bytes of the hash key and retransmits the hash key bytes to
the sensor. This is to prevent the sensors from reporting the wrong hash key
bytes and trying to gain additional time to generate the correct hash value for
verification.

A snapshot of the PIVS interface running on a laptop is given in Figure 8.
It shows the current status of the sensors interacting with the PIVS as well as
the connectivity of the sensors to the PIVS. The PIVS can choose to broadcast
or unicast to a particular sensor and to reset sensors or to start the sensors’
main applications.

6.3.2 Boot Code Development. The Boot code is used for the sensor as a
communication module between the sensor and the PIVS. The Boot code also

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 25

Fig. 8. A snapshot of the PIVS interface. It shows that Sensor 1 is verifying its program with the
PIVS, Sensor 2 is in the middle of receiving the new version of the PIVC from the PIVS, Sensor
4 has failed the verification, Sensor 6 has just passed the verification, and Sensor 9 has already
passed the verification and starts to run its main application.

allows the program pointer to jump back and forth between the Boot code, the
PIVC, and the flash downloader. We implemented the Boot code in nesC [Gay
et al. 2003], along with inline assembly mixed in nesC code.

After the communication between the sensor and the PIVS has built up, the
Boot code jumps to the PIVC to get the version number of the PIVC and then
sends it to the PIVS to check if the version number is up-to-date. If not, then
the PIVS sends the new PIVC to the sensor, with four bytes of the PIVC per
message. The bytes of the PIVC received by the sensor will first be stored in
the sensor SRAM. After one page (128 words or 256 bytes) of the PIVC has
been received, the Boot code jumps to the flash downloader and writes the
page from the SRAM to the flash. We didn’t use network programming for
PIVC transmission and update because we are not reprogramming the entire
sensor flash but only updating part of the flash with the PIVC.

After the entire PIVC has been written to the flash, the Boot code reports its
new PIVC version number to the PIVS again. If the version numbers match,
then the PIVS sends the hash key to the sensor for computing the hash value
over its program. Finally, the Boot code jumps to the PIVC to start the hash
computation over the entire flash and then sends back the hash value for ver-
ification. On receiving the verification result from the PIVS, either the Boot

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 26 · K. Chang and K. G. Shin

code will activate the main application code on the sensor if the sensor passes
the verification, or the sensor will otherwise be locked and unable to join the
network.

Note that the Boot code is not trusted. If the Boot code does not work prop-
erly as it should, then the sensor will not be able to pass PIV. The PIV protocol
offers three ways of actually locking a sensor: (1) The PIVS can ask the sensor’s
neighbor sensors not to replay packets from the sensor; (2) the key manager
refreshes a new cluster key and excludes the sensor from the cluster; and (3)
network services like routing may look up PIV DB to ensure sensors are veri-
fied and thus genuine.

Because PIVSs and sensors communicate through the wireless network,
message losses are common between nodes. The Boot code can also handle
any message loss between PIVSs and sensors. Message losses are handled by
timeouts and retransmissions. On its transmission of a message, the sensor
starts a timer. If the timer has expired and the sensor still has not received
any response from the PIVS, then the sensor will retransmit the message to
the PIVS.

6.3.3 PIVC Development. The PIV Code (PIVC), or the mobile agent, is
written in C along with inline assembly. The size of the PIVC is about 10K
bytes, and it takes about five minutes to transmit the entire PIVC from the
PIVS to the sensor. The main function of the PIVC is to perform HMAC-MD5
on the sensor over the entire sensor flash for verification. When performing
HMAC-MD5 over the entire 128K bytes of the flash, the PIVC hashes the flash
in 64-byte blocks and uses the intermediary hash value as the key for hashing
the next 64-byte block. This way we enforced sequential hashing of the sensor
flash. The hash keys the PIVC uses for HMAC-MD5 are 16 bytes long, and so
are the hash values.

The reason for calculating the hash of the sensor flash in 64-byte blocks is
related to our implementation of PIV and DAPP. Mica2 Mote has a SRAM of
4K bytes, which is too small to hold all the computational variables when the
entire flash is hashed as a one shot. Therefore, we chose to implement the
PIVC by hashing the flash in 64-byte blocks.

The security achieved by performing HMAC-MD5 on the entire 128K bytes
of flash is not equivalent to that by sequentially performing HMAC-MD5 on
64-byte blocks. However, because MD5 operates on 64-byte blocks, if the hash
message length is over 64 bytes, then MD5 will break up the message into
blocks of 64 bytes and iterate over them with a compression function before
doing the final hashing. By sequentially performing HMAC-MD5 on 64-byte
blocks one-by-one, we perform hashing multiple times instead of just once after
iterating the data over the compression function. The cryptographic strength
of sequentially hashing in 64-byte blocks is not much worse than hashing the
entire 128K bytes at once.

Our design for the PIVC has the flexibility to change the hash function, key
length, and hash value length as needed. With the update of a new version of
the PIVC, the changes can be made. When sending the hash key or the hash
value over the network, the PIVS and the sensor will always specify the length

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 27

of the data it is transmitting; thus, the new version of the PIVC will work
correctly. While updating the new PIVC, the PIVS sends the binary file of the
new PIVC for the sensor to write the new PIVC to the flash for execution.

The version number of the PIVC is placed at the last part of the PIVC. This
is to prevent the sensor from receiving only part of the PIVC, but the sensor
still holds the up-to-date PIVC version number. If the PIVC version number
is to be updated first, then after a failure in the transmission of the PIVC, the
sensor will have the up-to-date PIVC version number but not the correct PIVC.
When the sensor tries to verify with the PIVS again, the PIVC is not updated
because the sensor has the up-to-date PIVC version number. The sensor will
then fail the verification by hashing the flash using the incorrect PIVC.

Because the PIVC needs to coexist with the Boot code, the main applica-
tion code, and the flash downloader in the flash, and their variables will all
be stored in the SRAM, we need to assign locations for the PIVC to be placed
in the flash and the PIVC variables in the SRAM without overwriting other
part of the code and their variables. We use the avr-objdump command in
TinyOS to create a dump file to analyze the Boot code memory information.
The PIVC flash location is then computed so that the PIVC is placed below the
Boot code and the main application code in the flash. The flash downloader
and the PIVC can be placed at the very end of the flash, so the main appli-
cation code can occupy the rest of the flash below the Boot code and above
the PIVC. The PIVC flash location can be set once the size of the application
code is decided, or it can be placed right above the flash downloader. The flash
location is set inside the PIVC C program and the Boot code. When compil-
ing and linking the PIVC C program, we manually assign the SRAM location
for the PIVC. The PIVC and the Boot code also use SRAM for passing vari-
able values, such as passing the PIVC version number from the PIVC to the
Boot code.

6.3.4 Flash Downloader. The flash downloader is written in assembly for
writing one page of data to the sensor flash with the one page of data in SRAM.
It is mainly used for the PIVC update, to write the new PIVC received from a
PIVS from SRAM to the sensor flash for execution.

The sensor flash is divided into two constant sections, the read-while-write
(RWW) section and the no read-while-write (NRWW) section [Atmel]. Figure 9
shows the limit between the two sections in the sensor flash.

The main difference between the two sections is that while erasing or writ-
ing a page inside the RWW section, the NRWW section can be read; how-
ever, the inverse is not true. The CPU is halted during the entire operation
of erasing or writing a page located inside the NRWW section. Therefore,
our flash downloader is placed in the NRWW section at the end of the flash
to allow reading while writing a page of the PIVC to the RWW section in
the flash.

We use self-programming on the sensor to write data from SRAM to the
flash. The program memory updates itself page-by-page. Before writing a page
to the flash with the data stored in the SRAM, the flash downloader first per-
forms a page erase on the flash. It then fills in the temporary page buffer one

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 28 · K. Chang and K. G. Shin

Fig. 9. Read-while-write section vs. no read-while-write section in the sensor flash.

word at a time with the data in the SRAM. It finally performs a page write
to write the data in the page buffer to the page in the flash and complete the
update.

7. PERFORMANCE EVALUATION

We first evaluate the performance of DAPP using simulation. Then, we eval-
uate the computation and communication cost of DAPP, and the storage re-
quirement for a sensor and PIVS to keep the pairwise keys, demonstrating
that DAPP is scalable and efficient in computation, communication, and stor-
age in sensor networks.

7.1 Evaluation with Simulation

We simulated DAPP with randomly generated networks consisting of 1,000
sensors and 250 PIVSs in a 1,000 × 1,000 unit area. We assume each sensor
has a communication range of 150 units and that a PIVS normally commu-
nicates with others within 200 units from itself. Each sensor node is initial-
ized with 0.5 J of energy. Once a sensor node exhausts its battery, it will stop
working.

We simulated and compared the number of sensors surviving and continu-
ing to work using DAPP with that using an AS in the network for authentica-
tion, to see how many sensors survive with our DAPP approach. When DAPP is
used for authentication, PIVSs monitor and cooperate to authenticate one an-
other, but the sensor needs to communicate only with the authenticating PIVS.
In our DAPP simulation, we chose Nauth = 5, i.e., a PIVS needs to present five
authentication tickets to a sensor to pass authentication. In our AS simulation,
the AS is placed at (x = 1,070, y = 1,070). When a dedicated AS is employed,
the sensors need to take multiple hops to reach the AS, making those sensors
near the AS relay others’ messages.

The simulation time is divided into rounds of actions. In each round, each
sensor has the probability ReVerify that it needs to reverify its program with

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 29

a PIVS and thus reauthenticate the PIVS. We performed simulation while
changing ReVerify and plotted the results in Figure 10, showing the numbers
of sensors surviving using (1) DAPP and (2) a dedicated AS for authentication
with ReVerify = 0.05 and 0.1, respectively. More sensors are shown to survive
or a longer life time with DAPP than for the case of using a single AS in the
network. The advantage of DAPP becomes more pronounced, especially when
the network is deployed in a highly hostile environment or sensors need to be
reverified more often.

Figure 10 also shows that when using a dedicated AS for authentication,
the curve of the number of sensors surviving in the network cuts off smoothly
but not sharply. This is because all the sensors around the AS exhaust their
batteries first, and then the sensors closer to the AS deplete theirs. Sensors
exhaust their batteries gradually depending on their distance to the AS. In
contrast, when using DAPP for authentication, the curve of the number of sen-
sors surviving in the network cuts off more sharply because all the sensors,
irrespective of their location, use almost the same amount of energy for au-
thentication and will exhaust all their batteries approximately at the same
time.

For the same network, we also compared the number of messages exchanged
and the average sensor’s energy consumption by using DAPP and a dedicated
AS for authentication. In the case of using DAPP for authentication, inter-
PIVS communications will not interfere with sensor communications because
PIVSs have dual radio interfaces, one for communication between the sensors
and one for communication between the PIVSs. For each sensor to authen-
ticate one PIVS, there are two messages exchanged between the sensor and
the PIVS. Because there are 1,000 sensors in the network, at least 2,000 mes-
sages must be exchanged in the network for each sensor to authenticate one
PIVS, assuming that no transmission error occurred. When a single AS is used
in the network for authentication, the sensors exchange an average of 22,766
messages in the network by counting the messages relayed by other sensors
as separate messages. As a result, DAPP reduces the sensor communication
traffic in the network by more than 90% as compared to the case of using a
single AS for authentication.

Using DAPP for authentication also reduces the energy consumption on
each sensor. With DAPP for authentication, one sensor dissipates, on aver-
age, 1,114 µJ to authenticate one PIVS. With a single AS for authentication,
one sensor dissipates, on average, 7,624.5 µJ to authenticate one PIVS. The
DAPP’s energy consumption on each sensor improves up to 85% over the case
of using an AS for authentication. Given an initial sensor energy of 0.5 J, a
sensor can authenticate a PIVS 449 times with DAPP but only 66 times with
a single AS.

The increase of sensor communication traffic and energy consumption un-
der a single AS for authentication comes from sensors relaying authentication
messages for other sensors. It is easy to see that the sensors deployed near
the AS will exhaust their batteries faster than others due to their relaying of
more messages for other sensors. However, sensors’ lifetimes are extended by
using DAPP because it authenticates PIVSs in a distributed manner and can

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 30 · K. Chang and K. G. Shin

Fig. 10. Numbers of sensors that survive with DAPP and with an AS for authentication, with (a)
ReVerify = 0.05 and (b) ReVerify = 0.1. Sensor life time is longer using DAPP than the case of
using a single AS in the network.

thus reduce communication traffic and energy consumption by authenticating
PIVSs locally.

7.2 Computation Cost

The computation overhead of DAPP mostly comes from the setup of pairwise
keys and the generation/verification of MAC values. We show below that both
actions are efficient and lightweight.

7.2.1 Pairwise Keys Establishment. In DAPP, two nodes (composed of two
sensors, two PIVSs, or a sensor and a PIVS) establish a pairwise key to au-
thenticate their identities to each other using the Blundo scheme [Blundo et al.
1992]. Each node needs to compute k modulo multiplications and k modulo ad-
ditions for a k-degree polynomial to generate a pairwise key. As stated by Zhu

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 31

and colleagues [2004], if we choose k to be 100, the pairwise key size to be 64
bits, and the size of node ID to be 16 bits, then the cost of computing a pairwise
key is only about 1/10,000 of that of creating an RSA signature, or of the same
order of the cost for computing an AES encryption. Also, Liu and colleagues
[2005] showed that the computational cost of pairwise key establishment using
a k-degree polynomial grows linearly with respect to k. Therefore, the compu-
tational cost of pairwise key establishment using a k-degree polynomial for
k = 200 will be twice as much as the computational cost for k = 100, still much
more efficient than the computational cost for creating an RSA signature.

Wander and colleagues [2005] compared the energy consumption of RSA
and elliptic curve digital signature algorithm (ECDSA) on the low-power mi-
crocontroller Atmel ATmega128L. They showed the energy cost of creating an
ECDSA signature is about 3/40 of that of creating an RSA signature. There-
fore, the computational cost of pairwise key establishment using the Blundo
scheme for k = 200 is about 1/375 of that of creating an ECDSA signature.

7.2.2 MAC Generation and Verification. We used HMAC [Krawczyk et al.
1997] for MAC generation and verification in DAPP. HMAC does not rely on
encryption but instead uses a cryptographic hash function in combination with
a secret key. According to Sancak and colleagues [2004], HMAC consumes
approximately 45.6 µJ if it runs on a Mote. Carman and colleagues [2000]
analyzed the impact of security algorithms on energy consumption for sensor
nodes, showing that the computation of HMAC-MD5 for a 1024-bit message is
energy-cost-effective for numerous microprocessors.

7.3 Communication Cost

The communication overhead of DAPP is associated with a PIVS’s authentica-
tion request to its neighbor PIVSs. For a PIVS to authenticate another PIVS,
two messages need to be transmitted. First, a PIVS has to authenticate it-
self with Nauth neighbor PIVSs to pass the authentication; then the neighbors
reply. Therefore, there will be 2Nauth messages transmitted to authenticate a
PIVS. However, DAPP is used only before a sensor runs PIV and wants to au-
thenticate a PIVS. Because a sensor runs the PIV protocol only infrequently,
the communication overhead is not high. Also, because PIVSs have dual radio
interfaces, the communications between PIVSs do not interfere with sensor
communications.

7.4 Storage Requirement

Here we show that the memory requirement for sensors and PIVSs to store
the pairwise keys is very small. Each sensor and PIVS needs to store a k-
degree polynomial for establishing pairwise keys, and the polynomial occupies
(k+1) log q

8 bytes. For a sensor to authenticate one PIVS, it needs to establish a
pairwise key with it. The sensor also needs to decrypt the Nauth authentica-
tion tickets issued by the authenticating PIVS’s reference PIVSs. Therefore,
in DAPP, each sensor needs to establish at least Nauth + 1 keys before it can
authenticate a PIVS. Because each key is 128 bits (or 16 bytes) long, if we

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 32 · K. Chang and K. G. Shin

choose Nauth = 5, then a sensor needs to store only six keys, and a total of 96
bytes suffices. Therefore, keys require only 2.3% of the sensor SRAM because
a Mica2 Mote has 4K bytes of SRAM. Similarly, PIVSs use the same polyno-
mial to establish pairwise keys, and because PIVSs are equipped with more
memory than sensors, they can store more keys than sensors.

Because the PIVSs are storing only a window of history instead of logging
the entire history of PIVSs’ transmissions and they are just monitoring the
neighboring PIVSs instead of all the PIVSs in the network, using the behavior-
based anomaly detection should require an insignificant amount of memory.
Also, because PIVSs are equipped with more memory than sensors, the storage
cost for using the anomaly detection on PIVSs should not be a concern.

8. RELATED WORK

In this section, we review the related work that provides possible solutions for
authentication and security mechanisms in ad hoc networks. We also discuss
the related work in admission control in ad hoc networks. Last, we include and
compare some work related to software verification in sensor networks and list
some of them in which the Blundo scheme [Blundo et al. 1992] is used as their
design basis.

Weimerskirch and Thonet [2001] presented a security model for low-value
transactions, especially focusing on authentication in ad hoc networks. They
used the recommendation protocol from the distributed trust model [Abdul-
Rahman and Hailes 1997] to build trust relationships and extend it by request-
ing for references in ad hoc networks. Each node maintains a local repository
of trustworthy nodes in the network, and a path between any two nodes can be
built by indirectly using the repositories of other nodes. They also introduced
the idea of threshold cryptography [Desmedt and Frankel 1989] in which, as
long as the number of compromised nodes is below a given threshold, the com-
promised nodes cannot harm the network operation.

Hubaux and colleagues [2001] listed the threats and possible solutions for
basic mechanisms and security mechanisms in mobile ad hoc networks. They
developed a self-organizing public-key infrastructure. In their system, certifi-
cates are stored in local certificate repositories and distributed by the users.
Bauer and Lee [2005] also proposed a distributed authentication scheme that
is efficient and robust using the well-known concepts of “secrets sharing” cryp-
tography and group “consensus.” However, this scheme still needs a central-
ized processing center (PC) that is responsible for coordinating the distribution
of secret keys to each node in the network, thus lowering the value of its dis-
tributed nature.

Saxena and colleagues [2005; Castelluccia et al. 2005] proposed secure, ef-
ficient and noninteractive admission control protocol and schemes that allow
a pair of nodes to compute a shared key without centralized support in ad hoc
networks. Without the assistance of any centralized trusted authority, they
also use secret sharing techniques based on bivariate polynomials. In con-
trast, our work focuses on authentication of servers, while their work features
admission control and pairwise key establishment.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 33

Several researchers studied software verification in sensor networks. Our
work is an extension to PIV [Park and Shin 2005], which verifies the integrity
of the program and data stored in a sensor device. SWATT [Seshadri et al.
2004] is a software-based memory attestation technique that externally at-
tests the code, static data, and the configuration settings of an embedded
device. Secure code update by attestation (SCUBA) [Seshadri et al. 2006] en-
ables secure detection and recovery from sensor node compromise. It is based
on indisputable code execution (ICE) to guarantee unhampered execution of
code even on a compromised node. Shaneck and colleagues [2005] proposed
a software-based approach to verification of the integrity of a sensor’s mem-
ory contents over the network without requiring any physical contact with
the sensor.

Recently, many researchers in the area of sensor networks also use the
Blundo scheme [Blundo et al. 1992]. Liu and colleagues [2005] used the Blundo
scheme as a basis in their proposed scheme for establishing pairwise keys in
distributed sensor networks. Zhu and colleagues [2004] presented an inter-
leaved hop-by-hop authentication scheme that guarantees the base station to
detect any injected false data packets. They used the Blundo scheme to es-
tablish multihop pairwise keys. Zhang and colleagues [2005] proposed several
efficient schemes to restrict the privilege of a mobile sink without impeding its
capability of performing any authorized operations for an assigned task. They
also used the Blundo scheme for pairwise key establishment.

9. CONCLUSIONS AND FUTURE WORK

In this article, we presented a distributed authentication protocol of PIVSs
(DAPP) for sensors to authenticate PIVSs in sensor networks, and imple-
mented DAPP and the PIV protocol [Park and Shin 2005] on Mica2 Motes.
Along with DAPP, we also developed a PIVS revocation mechanism for PIVSs
to revoke malicious PIVSs detected in the network. Numerous modifications
and improvements were also made to the original PIV design.

Our main contribution is the development of DAPP to achieve the authen-
tication of PIVSs in a distributed manner without requiring a dedicated and
trusted authentication server (AS), an important departure from PIV [Park
and Shin 2005]. DAPP maintains the distributed nature of sensor networks
and reduces the sensor communication traffic in the network by more than
90% and the energy consumption on each sensor by up to 85%, compared to
using a centralized trusted AS for authentication. We also show that DAPP is
robust and secure against various attacks in sensor networks.

However, an intrusion detection system (IDS) for sensor networks is needed
to initiate PIV on suspicious sensors after their initial admission and is needed
to detect malicious PIVSs in the network. Once the IDS identifies any mali-
cious or malfunctioning sensors, it can collaborate with the PIV protocol to
request the sensor to reverify with the PIVS. Once a malicious PIVS is de-
tected in the network, other PIVSs can collaborate to revoke it. Unfortunately,
there is not much work done on intrusion detection for sensor networks. This
is a matter for our future inquiry.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

14: 34 · K. Chang and K. G. Shin

REFERENCES

ABDUL-RAHMAN, A. AND HAILES, S. 1997. A distributed trust model. In Proceedings of the 1997

Workshop on New Security Paradigms.

ATMEL. 8-bit AVR microcontroller with 128 KBytes in-system programmable flash — ATmega128,
ATmega128L. www.atmel.com/dyn/resources/prod documents/doc2467.pdf.

BAUER, K. AND LEE, H. 2005. A distributed authentication scheme for a wireless sensing system.
In Proceedings of the 2nd International Workshop on Networked Sensing Systems (INSS05).

BLUNDO, C., SANTIS, A. D., HERZBERG, A., KUTTEN, S., VACCARO, U., AND YUNG, M. 1992.
Perfectly-secure key distribution for dynamic conferences. In Proceedings on Advances in Cryp-

tology (CRYPTO92).

BURNSIDE, M., CLARKE, D., MILLS, T., DEVADAS, S., AND RIVEST, R. 2002. Proxy-based security
protocols in networked mobile devices. In Proceedings of ACM Symposium on Applied Comput-

ing (SAC02).

CARMAN, D. W., KRUUS, P. S., AND MATT, B. J. 2000. Constraints and approaches for distributed
sensor security. Tech. rep. 00-010, NAI Labs, Network Associates, Inc.

CASTELLUCCIA, C., SAXENA, N., AND YI, J. H. 2005. Self-configurable key pre-distribution in
mobile ad hoc networks. In The 4th International IFIP-TC6 Networking Conference.

CROSSBOW. MICA2 - wireless measurement system. www.xbow.com/Products/Product pdf files/

Wireless pdf/MICA2 Datasheet.pdf.

CRYPTO++. Crypto++ 5.2.1 Benchmarks. www.eskimo.com/˜weidai/benchmarks.html.

DESMEDT, Y. G. AND FRANKEL, Y. 1989. Threshold cryptosystems. In Proceedings on Advances

in Cryptology (CRYPTO89).

DIFFIE, W. AND HELLMAN, M. E. 1976. New directions in cryptography. IEEE Trans. Inform.

Theory 22, 6, 644–654.

DOUCEUR, J. R. 2002. The sybil attack. In Proceedings of the 1st International Workshop on

Peer-to-Peer Systems (IPTPS02).

GANERIWAL, S., CAPKUN, S., HAN, C.-C., AND SRIVASTAVA, M. B. 2005. Secure time synchro-
nization service for sensor networks. In Proceedings of the 4th ACM Workshop on Wireless Secu-

rity (WiSe05).

GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. 2003. The
NESC language: A holistic approach to networked embedded systems. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation.

HUBAUX, J.-P., BUTTYÀN, L., AND CAPKUN, S. 2001. The quest for security in mobile ad hoc net-
works. In Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking

and Computing (MobiHoc01).

KARLOF, C. AND WAGNER, D. 2003. Secure routing in wireless sensor networks: Attacks and
countermeasures. In Proceedings of the 1st IEEE International Workshop on Sensor Network

Protocols and Applications.

KRAWCZYK, H., BELLARE, M., AND CANETTI, R. 1997. HMAC: Keyed-hashing for message au-
thentication. IETF Network Working Group, RFC 2104.

LIU, D., NING, P., AND LI, R. 2005. Establishing pairwise keys in distributed sensor networks.
ACM Trans. Inform. Syst. Secur. 8, 1, 41–77.

PARK, T. AND SHIN, K. G. 2005. Soft tamper-proofing via program integrity verification in wireless
sensor networks. IEEE Trans. Mobile Comput. 4, 3, 297–309.

PERRIG, A., SZEWCZYK, R., WEN, V., CULLER, D., AND TYGAR, J. D. 2001. Spins: Security proto-
cols for sensor networks. In Proceedings of the 7th International Conference on Mobile Comput-

ing and Networks (MobiCom01).

RIVEST, R. 1992. The MD5 message-digest algorithm. IETF Network Working Group, RFC 1321.

SANCAK, S., CAYIRCI, E., COSKUN, V., AND LEVI, A. 2004. Sensor wars: Detecting and defending
against spam attacks in tactical adhoc sensor networks. In 2004 IEEE International Conference

on Communications (ICC04).

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

Distributed Authentication of Program Integrity Verification · 14: 35

SAXENA, N., TSUDIK, G., AND YI, J. H. 2005. Efficient node admission for short-lived mobile ad
hoc networks. In Proceedings of the 13th IEEE International Conference on Network Protocols

(ICNP05).

SESHADRI, A., LUK, M., PERRIG, A., VAN DOORN, L., AND KHOSLA, P. 2006. Scuba: Secure code
update by attestation in sensor networks. In Proceedings of the 5th ACM Workshop on Wireless

Security (WiSe06).

SESHADRI, A., PERRIG, A., VAN DOORN, L., AND KHOSLA, P. 2004. Swatt: Software-based attes-
tation for embedded devices. In Proceedings of the IEEE Symposium on Security and Privacy.

SHANECK, M., MAHADEVAN, K., KHER, V., AND KIM, Y. 2005. Remote software-based attesta-
tion for wireless sensors. In European Workshop on Security and Privacy in Ad-hoc and Sensor

Networks (ESAS05).

SUN, K., NING, P., AND WANG, C. 2006. Secure and resilient clock synchronization in wireless
sensor networks. IEEE J. Select. Areas Comm. 24, 2, 395–408.

WANDER, A. S., GURA, N., EBERLE, H., GUPTA, V., AND SHANTZ, S. C. 2005. Energy analysis of
public-key cryptography for wireless sensor networks. In Proceedings of the 3rd IEEE Interna-

tional Conference on Pervasive Computing and Communications (PERCOM05).

WANG, X., FENG, D., LAI, X., AND YU, H. 2004. Collisions for hash functions MD4, MD5, HAVAL-
128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199.

WEIMERSKIRCH, A. AND THONET, G. 2001. A distributed light-weight authentication model for
ad hoc networks. In Proceedings of the 4th International Conference on Information Security and

Cryptology (ICISC01).

ZHANG, W., SONG, H., ZHU, S., AND CAO, G. 2005. Least privilege and privilege deprivation:
Towards tolerating mobile sink compromises in wireless sensor networks. In Proceedings of the

6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc05).

ZHU, S., SETIA, S., AND JAJODIA, S. 2003. Leap: Efficient security mechanisms for large-scale
distributed sensor networks. In Proceedings of the 10th ACM Conference on Computer and Com-

munications Security (CCS03).

ZHU, S., SETIA, S., JAJODIA, S., AND NING, P. 2004. An interleaved hop-by-hop authentication
scheme for filtering false data injection in sensor networks. In IEEE Symposium on Security

and Privacy.

Received February 2007; revised August 2007; accepted September 2007

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 14, Pub. date: March 2008.

