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server Server consolidation has become an integral part of IT planning to reduce cost

consolidation, and improve efficiency in today’s enterprise data centers. The advent of

virtualization, virtualization allows consolidation of multiple applications into virtual

multi-tier containers hosted on a single or multiple physical servers. However, this poses

aoplicati new challenges, including choosing the right virtualization technology and

pplication, o . : i o X
performance consolidation conflguratlt_)n for_ a pa_rtlcglar set of app_llcatlons. In this paper, we
’ evaluate two representative virtualization technologies, Xen and OpenVZ, in

overhead various configurations. We consolidate one or more multi-tiered systems onto
one or two nodes and drive the system with an auction workload called RUBIS.
We compare both technologies with a base system in terms of application
performance, resource consumption, scalability, low-level system metrics like
cache misses and virtualization-specific metrics like Domain-0 consumption in
Xen. Our experiments indicate that the average response time can increase by
over 400% in Xen and only a modest 100% in OpenVZ as the number of
application instances grows from one to four. This large discrepancy is caused
by the higher virtualization overhead in Xen, which is likely due to higher L2
cache misses and misses per instruction. A similar trend is observed in CPU
consumptions of virtual containers. We present an overhead analysis with
kernel-symbol-specific information generated by Oprofile.
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Abstract reducing the number of servers necessary for the appli-
o , cations. This strategy is supported by the fact that many
Server consolidation has become an integral part of ITgeners in enterprise data centers are under-utilized most
planning to reduce cost and improve efficiency in t0- tyhe time, with a typical average utilization below 30%.
day’s enterprise data centers. The advent of wrtuahzaOn the other hand, some servers in a data center may

tion allows consolidation of multiple applications into 554 hecome overloaded under peak demands, resulting
virtual containers hosted on a single or multiple physical,, |qver application throughput and longer latency.

servers. However, this poses new challenges, including o .
. . , N Server consolidation has become a common practice
choosing the right virtualization technology and consol-. ;
in enterprise data centers because of the need to cut

idation configuration for a particular set of applications. . .
. - . .__cost and increase return on IT investment. Many en-
In this paper, we evaluate two representative virtualiza- . LT o .
tion technologies, Xen and OpenVz, in various Conﬁgu_terprlse applications that traditionally ran on dedicated
. T ' S servers are consolidated onto a smaller and shared pool
rations. We consolidate one or more multi-tiered systems L
onto one or two nodes and drive the svstem with an auch servers. Although server consolidation offers great
tion workload called RUBIS. We compzre both teChnolo_potential to increase resource utilization and improve ap-
gies with a base system in terms of application perfor—phca!t'o.n perform'ance, It may "’F'SO introduce new com-
mance, resource consumption, scalability, low-level SyS_pIeX|ty in managing the consolidated servers. This has

o . : A ... given rise to a re-surging interest in virtualization tech-
tem metrics like cache misses and virtualization-specifi . : .
L . L nology. There are two main types of virtualization tech-
metrics like Domain-0 consumption in Xen. Our exper-

iments indicate that the average response time can inrJOIOgles today —hypervisor-based technologyclud-

crease by over 400% in Xen and only a modest 100% ng_ VMware [1].’ Microsoft Virtuall Serl\/er [2],I'and”Xen
in OpenVZ as the number of application instances grow 3], and operating system (OS) level virtualizatiam:

f : : . cluding OpenVZ [4], Linux VServer [5], and Solaris
rom one to four. This large discrepancy is caused by theZones [6]. These technologies allow a single physi-
higher virtualization overhead in Xen, which is likely due ’

. . ) ; . al server to be partitioned into multiple isolated virtual
to higher L2 cache misses and misses per instruction. : . . S
- . . . . containers for running multiple applications at the same
similar trend is observed in CPU consumptions of virtual ; . : ; S
X o ime. This enables easier centralized server administra-
containers. We present an overhead analysis with kernel[-

symbol-specific information generated by Oprofile. lon and higher ope_raﬂonal efficiency. )
However, capacity management for the virtual con-

tainers is not a trivial task for system administrators. One
1 Introduction reason is that enterprise applications often have resource

demands that vary over time and may shift from one tier
There has been a rapid growth in servers within datao another in a multi-tiered system. Figures 1(a) and 1(b)
centers driven by growth of enterprises since the lateshow the CPU consumptions of two servers in an enter-
nineties. The servers are commonly used for runningprise data center for a week. Both have a high peak-to-
business-critical applications such as enterprise regour mean ratio in their resource usage, and their peaks are
planning, database, customer relationship managemenipt synchronized. This means if the two servers were
and e-commerce applications. Because these servers atalbe consolidated into two virtual containers on a shared
applications involve high labor cost in maintenance, up-server, the resources may be dynamically allocated to the
grades, and operation, there is a significant interest iriwo containers such that both of the hosted applications
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Figure 1: An example of data center server consumptions The remainder of the paper is organized as follows.

Section 2 discusses related work. Section 3 introduces
could meet their qua”ty-of-service (QOS) goals while the architecture of our testbed and the various tools used.
ut|||z|ng server resources more efﬁcien“y_ An adaptive The details of the eXperimentS are described in Section 4,

CPU resource controller was described in [7] to achieveand the results along with our analysis are presented in
this goal. Similar algorithms were developed for dy- Section 5 and 6. Finally, we summarize our key findings
namic memory managementin VMware ESX server [8].@nd discuss future work in Section 7.

There is another important issue that is worth con-
sidering in terms of capacity management. Figure 1(c)

shows the total CPU consumption from the two nodes.2 Related Work

As we can see, the peak consumption is at about 3.% ; luati £ x ided in th
CPUs. However, it does not necessarily imply that a to- performance evaluation of 2en was provided in the

- : first SOSP paper on Xen [3] that measured its per-
tal of 3.8 CPUs are sufficient to run the two virtual con- X
tainers after consolidation due to potential virtualieati formance using SPEC CPU2000, OSDB, dbench and

overhead. Such overhead may vary from one virtualiza—SPECW'ab benchmarks. The performance was compared

tion technology to another. In general, hypervisor—based0 VMWare, Base Linux and User-mode Linux. The re-

virtualization incurs higher performance overhead thansur[S have been re-produced by a separate group of re-

OS-level virtualization does, with the benefit of provid- _searchers [10]. In this paper, we extend this evaluation to

ing better isolation between the containers. To the bes}(pcltul()jeﬂ?);zenvzc?sbanot\r;r w:jtualclff?tlon tp Iatform, aqd
of our knowledge, there is little published work quanti- est bo €n and Ypenv.z under difierent scenarios in-

fying how big this difference is between various virtu- cluding multiple VMs and multi-tiered systems. We also

alization technologies, especially for multi-tiered appl take a deeper look into some of these scenarios using

cations. In this paper, we focus on two representativeOPrOf'le [11] to provide some insight into the possible

virtualization technologies, Xen from hypervisor-basedCauses of the performance overheqd Qbserved.
virtualization, and OpenVZ from OS-level virtualization.  Menonet al. [12] conducted a similar performance

Both are open-source, widely available, and based on thgvaluation of the Xen environment and found various

Linux operating system. We use RUBIS [9] as an examoverheads in the networking stack. The work provides

ple of a multi-tiered application and evaluate its perfor-2" invaluable performance analysis tool Xenoprof that

mance in the context of server consolidation using thes@/l0WS detailed analysis of a Xen system. The authors
two virtualization technologies. identified the specific kernel subsystems that were caus-

In particular, we present the results of our experimentd"d the overheads. We perform a similar analysis at

that answer the following questions, and compare the and Mmacro level and apply it to different configurations

swers to each question between OpenVZ and Xen. specifically in the context of server consolidation. We
also investigate the differences between OpenVZ and

e How is application-level performance, including Xen specifically related to performance overheads.



Menonet al. [13] use the information gathered in the 3.1 System configurations
above work and investigate causes of the network over-

head in Xen. They propose three techniques for Optimiz_We conduct our experiments on three different systems

ing network virtualization in Xen. We believe that our as e.xpllleuned beloy\glAII s_t);]s:f‘ms are carefull;t/ S?t upto be
work can help develop similar optimizations that helpaS similar as possibie wi € Same amount of resources

server consolidation in both OpenVZ and Xen (memory and CPU) allocated to a particular virtual con-
' tainer.
Solteszet al. [14] have developed Linux VServer,

which is another implementation of container-based vir-
tualization technology on Linux. They have done a com-
parison study between VServer and Xen in terms of per\we use a plain vanilla 2.6 Linux kernel that comes with
formance and isolation capabilities. In this paper, wethe Fedora Core 5 standard distribution as our base sys-
conduct performance evaluation comparing OpenVZ andem. Standard packages available from Fedora repository
Xen when used for consolidating multi-tiered applica- are used to set up various applications.

tions, and provide detailed analysis of possible over-

heads.

3.1.1 Base system

3.1.2 Xen system
Guptaet al. [15] have studied the performance isola- ) ) o

tion provided by Xen. In their work, they develop a set of X€N is aparavirtualization[17] technology that allows
primitives to address the problem of proper accountingMultiple guest operating systems to be run in virtual con-
of work done in device drivers by a particular domain. {&iners (calledlomaing. The Xen hypervisor provides a
Similar to our work, they use XenMon [16] to detect per- thin software virtualization layer between the guest OS
formance anomalies. Our work is orthogonal to theirs by@nd the underlying hardware. Each guest OS is a mod-
providing insight into using Xen vs. OpenVZ and differ- ified version of the base Linux (XenLinux) because the
ent consolidation techniques. hardware abstraction presented by the hypervisor is sim-

he b ¢ K led he vi lizati h ilar but not identical to the raw hardware. The hyper-
To the best of our knowledge, the virtualization tech-, s, contains a CPU scheduler that implements vari-

nologies have not been evaluated in the context of Servey o scheduling policies including proportional fair-shar

co.nsollda.tlon. Server consolidation using virtual C‘?n'along with other modules such as the memory manage-
tainers brings new challenges and, we comprehensively &'\ it

evaluate two representative virtualization technologies

) o X We use the Xen 3.0.3 unstable branch [18] for our ex-
a number of different server consolidation scenarios.

periments as it provides a credit-based CPU scheduler (in
short, credit scheduler), which, in our experiments, pro-
vides better performance than the earlier SEDF sched-
uler. The credit scheduler allows each domain to be as-
3 Testbed Architecture signed acapand aweight A non-zero cap implements
a non-work-conserving policy for the CPU by specifying
the maximum share of CPU time a domain can consume,
"Lven if there exist idle CPU cycles. When the cap is
ero, the scheduler switches to a work-conserving mode,
here weights for multiple domains determine their rel-

Figure 2(a) shows the architecture of our testbed. We ru
experiments in three systems with identical setup. W
compare the performance of Xen- and OpenVZ-base

systems with that of a vanilla Linux system (referred to ative shares of CPU time when the CPU is under con-

asbﬁsehsygter;rler((ejafter). IE a:nrtuallzed conflgl:ratllon, tention. At the same time, a domain can use extra CPU
€ach physical node may nost one or more virtual cong; beyond its share if other domains do not need it.
tainers supported by Xen or OpenVZ as shown in Fig-

: : . In all our experiments, we use tm®n-cappednode of
ure 2(b). Because we are interested in multi-tiered ap- P PP

o he credit scheduler, and the system is compiled using
plications, two sepa_rate nodes may b? used_ for the We e uni-processor architecture. In this case, DomO and
and the datapase uers. Each node is equped W'.th &l the guest domains share the full capacity of a single
sensor collecting various performance metrics includin [0CEesSOr
CPU consumption, memory consumption and other per- '
formance events collected by Oprofile [11]. This data is
collected on a separate machine and analyzed later.  3:1.3 OpenVZ system

We use HP Proliant DL385 G1 for all our servers and OpenVZ [4] is a Linux-based OS-level server virtualiza-
client machines. Every server has two 2.6 GHz procestion technology. It allows creation of secure, isolated vir
sors, each with 1IMB of L2 cache, 8 GB of RAM, and tual environments (VES) on a single node enabling server
two Gigabit network interfaces. consolidation. Each VE performs and behaves exactly
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Figure 2: System architecture

like a stand-alone server. They can be rebooted indepen- We concentrate on two aspects when analyzing the
dently and a different distribution with separate root di- data generated by Oprofile:

rectory can be set up. One distinction between OpenVZ .

and Xen is that the former uses a single kernel shared by ® Comparing hardware performance counters for var-
all VEs. Therefore, it does not provide the same level of ~ 10US configurations;

fault isolation as in the case of Xen.

In our experiments, we use the uni-processor version
of OpenVZ stable 2.6 kernel that provides a FSS sched-
uler, which also allows the CPU share of each VE to be
either capped or not capped. Similar to the Xen system,
the non-capped option is used in the OpenVZ system. We monitor three hardware counters for our analysis:

In the remainder of this paper, we use the tetintual _ )
containerto refer to either a domain in Xen or a VE in  ® CPU_CLK_UNHALT: The number of cycles outside

OpenVzZ. of halt state. It provides a rough estimate of the CPU
time used by a particular binary or a symbol.

e Understanding differences in overheads experi-
enced within specific kernels. We want to iden-
tify particular kernel sub-systems where most of the
overhead occurs and quantify it.

3.2 Instrumentation e RETI RED_| NSTRUCTI ONS: The number of in-
structions that are retired. It is a rough estimate of

To measure the CPU consumption accurately, we wrote  the number of instructions executed by a binary or

scripts that use existing tools to gather data. In the base 3 symbol.

system, the output from commanap - b is gathered

and then analyzed later. Similarlyent op - b is used e L2 CACHE_M SS: The number of L2 cache

in the Xen case, which provides information on the CPU misses. It measures the number of times the mem-

consumptions of individual domains. For OpenVZ, there ory references in an instruction miss the L2 cache

is no existing tool to directly measure the CPU consump- ~ and access main memory.

tion by a particular container. We use the data provided

from / proc/vz/ vest at to measure the amount of

CPU time spent by a particular VE.

We thoroughly analyze differences in these counter
values in various configurations, and infer sources of
overhead in respective virtualization technologies.

3.2.1 Oprofile . .
4 Design of Experiments

Oprofile [11] is a tool for measuring certain hardware

events using hardware performance counters. For exanFhe experiments are designed with the goal of quantita-
ple, one can measure the number of cache misses thtvely evaluating the impact of virtualization on server
happen in a particular application. The profiles generatedonsolidation. Specifically, we are not interested in
by Oprofile are very detailed and can provide a wealth ofperforming micro benchmarks that compare the perfor-
information. Menoret al. [12] have modified Oprofileto mance of system calls, page miss penalties, etc. Instead,
support Xen. The resulting tookenoprof allows oneto  we focus more on how application-level performance, in-
profile multiple domains in a Xen system. For each set ofcluding throughput and response time, are affected when
experiments, we analyze the data generated by Oprofilasing different virtualization technologies as well as dif
and provide our insights on the performance overheadsferent configurations for consolidation.
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Figure 3: Various configurations for consolidation

Today’s enterprise applications typically employ a example, the single-node configuration may be chosen
multi-tiered architecture, where the Web and the applicasince it reduces network traffic by hosting multiple tiers
tion tiers serve static files and implement business logicof the same application on a single server, whereas the
and the database (DB) tier executes data queries and itwo-node option may be preferable in a case where it can
teracts with the storage devices. During server consolidareduce software licensing cost. In this work, we only
tion, the various tiers of an application that are tradition focus on application performance differences in the two
ally hosted on dedicated servers are moved onto sharetbnfigurations and how performance scales as the work-
servers. Moreover, when virtualization is involved, eachload increases.
of these tiers is hosted in a virtual container, which can In addition, we are also interested in scalability of
have performance implications for the application. the virtualized systems when the number of applications

We have chosen RUBIS [9], an online auction sitehosted increases in the two-node case. Each node may
benchmark, as an example of a multi-tiered applicationhost multiples of the Web or the DB tier as shown in Fig-
We use a version of the application that has a two-tietures 3(c) and 3(d). In our experiments, we increase the
structure: the Web tier contains an Apache Web servenumber of RUBIS instances from one to two and then to
with PHP, and the DB tier uses a MySQL database servefour, and compare OpenVZ with Xen in application-level
RUBIS clients connect to the Web tier and perform var-performance and system resource consumption. For each
ious operations simulating auctions. Each client starts &cenario, we provide a detailed analysis of the corre-
session in which the client browses through items, lookssponding Oprofile statistics and point to plausible causes
at prices, and buys or sells items. In each session, thfor the observed virtualization overheads.
client waits for a request to complete before sending out
the nextrequest. If the request fails due to timed-outs, the
session is aborted and a new session is started. This givés Experimental Results
rise to a closed-loop behavior where the clients wait for
the server when it is overloaded. Although RUBIS pro- This section reports the results of our experimental eval-
vides different workload mixes, we use thewsing mix  uation using the RUBIS benchmark. In particular, we
in our experiments, which introduces higher load on thecompare two different configuration optiorsingle-node
Web tier than on the DB tier. vs. two-node for placing the two tiers of a single RU-

We consider running RUBIS on consolidated serversBiS application on physical servers. All experiments
In addition to the comparison between OpenVZ and Xenare done on the base, OpenVZ, and Xen systems, and
we also need to understand how application performance three-way comparison of the results is presented.
is impacted by different placement of application tiers on
the consolidated servers. We evaluate the following two
configurations for consolidation. 5.1 Single-node

¢ Single-node: Both the Web and the DB tiers of In this configuration, both the Web and the DB tiers are
a single RUBIS application are hosted on a singlehosted on a single node, as shown in Figure 3(a). In
physical node (Figure 3(a)). both the Xen and the OpenVZ systems, the two tiers run

« Two-node: The Web and the DB tiers of a single in two separate virtual containers. To evaluate the per-
. o . formance of each system, we scale up the workload by
RUBIS application are distributed on two separate, ; )
nodes (Figure 3(b)). increasing the number of concurrent thread§ in thg RU-
BiS client from 500 to 800. Each workload is continu-

There are additional reasons why one configuratiorously run for 15 minutes, and both application-level and

may be chosen over the other in a practical scenario. Fosystem-level metrics are collected.
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base, Xen, and OpenVZ systems. In all three cases 25 | Openvz DB —O— 4

the throughput increases linearly as the the number of
threads increases, and there is little difference between
the three systems. However, we do see a marked dif-
ference in the response time between the Xen system
and the other two systems, indicating higher performance i
overhead in Xen compared to OpenVZ. As the workload . s
increases from 500 to 800 threads, the response time goes 500 550 600 650 700 750 800

up only slightly in the base and OpenVZ cases, whereas Number of Threads

in the Xen system, it grows from 18 ms up to 130 ms,

an increase of over 600%. For 800 threads, the response Figure 5: Single-node - average CPU consumptions
time for Xen is almost 4 times that for OpenVZ. There-

fore, in the single-node case, the observed performance )

overhead is minimum in OpenVZ but quite significant in N OPeNVZ, and should be related to the higher response
Xen. Moreover, the overhead in Xen grows quickly astimes we observe from the application.

the workload increases. As a result, the Xen system is

Ie_ss S(_:alable with the workload than OpenVZ or a non 4 Oprofile analysis

virtualized system.

Figure 5 shows the average CPU consumptions of thé&igures 6 shows the aggregate values of the selected
Web and the DB tiers as a function of workload in the hardware counters for the three systems when running
three systems. For both tiers in all the three cases, th800 threads. For OpenVZ, each of the counter values
CPU consumption goes up linearly with the number ofis for the whole system including the shared kernel and
threads in the workload. The database consumption reall the virtual containers. For Xen, Oprofile provides us
mains very low at about 1-4% of total CPU capacity, duewith a counter value for each of the domains, including
to the Web-intensive nature of the browsing mix work- Dom0. The DomuU value in the figure is the sum of the
load. A bigger difference can be seen in the Web tiervalues from the Web and DB domains. All counter val-
consumption from the three systems. For each workues are normalized with respect to the base case. While
load, the Web tier consumption in Xen is roughly twice all the counter values for OpenVZ are less than twice the
the consumption experienced by the base system, whileorresponding values for the base case, the total number
the OpenVZ consumption stays very close to the basef L2 cache misses in Xen (DomO0 + DomU) is more than
case. As the workload increases, the slope of increase mleven times the base number. We therefore speculate
higher in the case of Xen compared to the other two systhat L2 cache misses are the main cause of the observed
tems. This indicates higher CPU overhead in Xen tharresponse time differences between Xen and OpenVZ.
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9l en Lo s hyper vi sor _cal I back | 39.61
gL Xen DomU N evtchn_do_upcal | 7.53
- Opente m==| __do_IRQ 10.9|
3
6 _
é 5| | Table 3: Xen kernel - % of retired instructions
g 4t ]
< 3 Binary OpenVZ | Base
2 l'i bphp5.so | 0.85 0.63
1 % vnl i nux 3.13 2.85
OCPU UNHALT ‘L2 LI&N‘STR htt pldd 4.56 3'40
Hardware Event Type mysq 4.88 30
. 0 . . .
Figure 6: Single-node - Oprofile analysis Tabl_e 4: Base vs. OpenVZ - % cache misses/instruction
for binaries
Symbol Name OpenVZ | Base
do_anonynous_page 31.84 25.24 _ )
copy_to_user || 11.77 9.67 when an event occurs that needs hypervisor attention.
_Copy_f romuser |1 | 7.23 0.73 These events include various activities including cache

misses, page faults, and interrupt handling that usually
Table 1: Base vs OpenVZ - % of L2 cache misses happen in privileged mode in a normal kernel. Af-
ter some preliminary processing of stack frames, the
functionevt chn_do_upcal | is called to process the
This is consistent with the higher CPU overhead in Xenevent and to set up the domain to continue normally.
from Figure 5, because more L2 cache misses causekhese functions are the main source of overhead in Xen
more memory access overhead and puts higher pressugad reflect the cost of hypervisor-based virtualization.

on the processor. ) Looking at the number of retired instructions for the
Table 1 shows the percentage of L2 cache misses foJ’(en kernel (Table 3) for different functions, we see that

OpenVZ _and the base system for high overhead kery, addition to overheads in hypervisor callback and up-
nel functions. The functiomlo_anonymous_page . event handling, 10% of the instructions are executed
is used to allocate pages for a particular application b%o handle interrupts, which also is a major source of over-
the kernel. The functions_copy_to_user Il and  po 4 The higher percentage is due to increase in the in-

__copy_fromuser_I| I copy data back and forth ot caused by switching between the two domains.
from the user-mode to kernel-mode pages. The data in-

dicates that cache misses in OpenVZ result mainly from We also looked at the hardware counters for a par-
page re-mapping due to switching between virtual condicular binary (like htt pd, nysqgl d). As we com-
tainers. The increase in the number of L2 cache misseBare OpenVZ to the base system, we do not see a clear
causes the instructions to stall and reduces the total nuntlifference between the two in either the percentage of
ber of instructions executed. cache misses or the percentage of instructions executed
Because Xen uses a modified kernel, it is not possibld0" €ach binary. However, there is larger difference in
to directly compare calls within it with the numbers ob- the percentage of cache misses per instruction. Table
tained from the base system and OpenVZ. Table 2 showd shows this ratio for particular binaries that were run-
the highest cache miss functions identified using Oprofild!ing iN OpenVZ and the base system. The dynamic

for the Web domain in the Xen system. library | i bphp5. so is responsible for executing the
The function hyper vi sor_cal | back is called PHP scripts on the apache side. We can see that the

percentage of cache misses per instruction is higher in
OpenVZ for all four binaries. This indicates some degree

Symbol name L2 cache misses (% of overhead in OpenVZ, which contributes to small in-
hypervi sor_cal | back | 32.00 crease in response times (Figure 4(b)) and slightly higher
evt chn_do_upcal | 44.54 CPU consumption (Figure 5) compared to the base case.
__copy_to_user || 3.57 Unfortunately, we cannot directly compare the numbers
__do_IRQ 2.45 obtained from particular domains in Xen to the numbers
in the Table 4 as they do not include the associated work
Table 2: Xen Web tier - % of L2 cache misses done in DomO.



5.2 Two-node
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B;Zﬁ _|_>< RS 7 In this configuration, we run the Web and the DB tiers
25 ropenvz - 7 of a single RUBIS application on two different nodes, as

shown in Figure 3(b). The objective of the experiment is
p to compare this way of hosting a multi-tiered application
15 L A e K to the single-node case. Note that in the case of Xen and

""""" OpenVZ, there is only one container hosting each of the
application components (Web tier or DB tier).
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Figure 7: Two-node - average response time Figure 7 shows the average response time as a function
of workload for the three systems. The throughput graph
is not shown because it is similar to the single-node case,
where the throughput goes up linearly with the workload
and there is little difference between the virtualized sys-

crease in response time is significantly lower than that
experienced by using Xen in the single-node case (28 ms
vs. 130 ms for single-node with 800 threads).
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S 5 Ogenvz web --Il-- trast, as the worklaod increases from 500 to 800 threads,
g L Qe )

E penvz DB --O-- 4 the response time from the Xen system goes from 13 ms
g 1 to 28 ms with an increase of 115%. However, this in-
=

o

O

(]

g

g

<

Figures 8 shows the average CPU consumption as
500 550 600 650 700 750 800 a function of workload for both the Web and the DB
Number of Threads tiers. The trend here is similar to the single-node case,
where the DB tier consumption remains low and the Web
Figure 8: Two-node - average CPU consumption  tier consumption goes up linearly as the the number of
threads increases. The slope of increase in the Web tier
consumption is higher for Xen compared to OpenVZ and
the base system. More specifically, 100 more concurrent
threads consume roughly 3% more CPU capacity for Xen

T T T
Inode linst —+— and only 1% more for the other two systems.
2nodes linst --->¢---

Figure 9 shows the Dom0 CPU consumptions for both
the single-node and two-node configurations for Xen. In
the two-node case, we show the sum of the DomO con-
sumptions from both nodes. In both cases, the DomO
CPU consumption remains low (below 4% for all the
workloads tested), and it goes up linearly as the work-

Average CPU Consumption (% CPU)

1t g load increases. If the fixed CPU overhead of running
DomO were high, we would have expected the combined
0 L L L L L consumption in the two-node case to be roughly twice

500 550 600 650 700 750 800

that from the single-node case, since the former has two
Number of Threads

Dom0’s. But the figure suggests it is not the case. The
difference between the two cases is within 0.5% of to-
tal CPU capacity for all the worklaods. This implies that
DomO0 CPU consumption is mostly workload dependent,
and there is very little fixed cost.

Figure 9: Single-node vs. two-node - Xen Dom0 CPU
consumption
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7 : : : Symbol Name Single | Two
Base (S) — F
ol Xen Domo (3) £xx hypervi sor_cal | back | 6.10 | 4.15
XegDeonr{l/LZJ Egg B evt chn_do_upcal | 4421 | 42.42
= s| NP e s __do_IRQ 1.73 | 1.21
S Xen Dom0 =z=z2
S 4L Xen DomU &y | . .
@ OpenVz wzzzzz Table 8: Single-node vs. two-node - Xen Web tier % of
S 4L i L2 cache misses/instruction
g
< oL ) u
L " 5.2.2 Oprofile analysis
0 We now analyze the sources of overhead in the two-node

L2
Hardware Event Type

case using Oprofile. Figures 10(a) and 10(b) show the
values of the hardware counters for the two nodes host-
ing the Web tier and the DB tier, respectively, for a work-

Figure 11: Single-node vs. two-node - Oprofile analysisjpad of 800 threads. For both tiers, we see that the total

Symbol Name Single | Two
do_anonynous_page 25.25 | 24.33
__copy_to_user_|I 9.68 12.53
__copy_fromuser |1 | 0.73 1.11

number of L2 cache misses in Xen (DomO + DomU) is
between five to ten times those from the base case, and
the OpenVZ number is only twice that of the base case.
Figure 11 provides a comparison of these values be-
tween the single-node and two-node cases. Each counter

Table 5: Single-node vs. two-node - base system % 0»f/alue shown for the two-node case is the sum of the two

L2 cache misses

Symbol Name Single | Two
do_anonynous_page 31.84 | 33.10
__copy_to_user_|I 11.77 | 15.03
__copy_fromuser Il | 7.23 7.18

Table 6: Single-node vs. two-node - OpenVZ

cache misses

Symbol Name Single | Two
hypervi sor_cal | back | 32.00 | 43.00
evt chn_do_upcal | 44,53 | 36.31
__do_IRQ 250 | 273

values from the two nodes. All values are normalized
with respect to the base system in the two-node setup.
We observe that relative L2 cache misses are higher for
the single-node case as compared to the two-node case
for both OpenVZ and Xen. For example, for the total
number of L2 cahce misses, the ratio between the Xen
number (Dom0 + Domu) and the base number is 11 in

% of L2 the single-node case vs. 7.5 in the two-node case. This

is expected due to extra overhead caused by running two
virtual containers on the same node.

Table 5 shows the number of L2 cache misses in the
base kernel for both the single-node and two-node con-
figurations. For the two-node case, we add the aggregate
counters for each kernel function in both nodes and nor-

Table 7: Single-node vs. two-node - Xen Web tier % of malize them with respect to the total number of cache

L2 cache misses

misses from the two nodes. The same comparison is



shown in Table 6 for the OpenVZ system. The per- 12

centage of L2 cache misses for different kernel func- 2 A e e ;L
tions stay almost the same between the single-node an@ 10 2node dinst - 7
two-node cases (within 4% of each other), except for g P R oo ¥ |
the__copy_to_user _| | function where we see the ‘g X

two-node value being 28% higher. Comparing Table 6to 2 ¢ |- U >
Table 5, we see that all the values are higher in OpenVZ3 ST

than in the base case indicating higher page re—mappin@ ax 1
overhead in the OpenVZ system. o)

Table 7 shows a similar comparison for Xen-specific
kernel calls in the Xen system Web tier. If we add the 0 . . ! ! !
first two rows, we see that the total number of cache 500 550 600 650 700 750 800
misses for the functionfyper vi sor _cal | _back Number of Threads
andevt chn_do_upcal | is very similar in the single-
node and two-node cases. The values for the | RQ
call are similar too. However, the difference is larger
in the number of cache misses per instruction, which is

shown in Table 8. We see the sum of the first two rowsgng 200 ms, an increase of more than 600%, yet the av-
being 10% higher in the single-node case, and the pefarage response time in the OpenVZ case stays near or
centage of L2 cache misses/instruction for interrupt hanye|ow 30 ms in all cases.

dling being 43% higher. The reason is that more instruc- |, Figure 13(a), we compare the four consolidation
tions are executed in the two-node case because of leggnfigurations for a workload of 800 threads per applica-

stalling due to cache misses. tion, and show the mean response time averaged across
all the application instances in each configuration. In the
Xen system, the average response time per application
in the two-node case grows from 28 ms for one instance

. . . . ... to 158 ms for four instances, an over 400% increase. In
In this section, we investigate the scale of consolidation

L . o i
that can be achieved by different virtualization technolo—contraSt’ this increase is only about 100% in the Openvz

gies. We increase the number of RUBIS instances fromcase. This indicates much better scalability of OpenVz

one to two then to four in the two-node configuration, andW'U\]/rr]Z?pizcglgooaiz?élrcea;ﬁ]n_Iivigf?;oem;?‘nclgino de con-
compare the scalability of Xen and OpenVZ with respec 9 9

L . tfiguration (one-node one-inst in Figure 13(a)) results
to application performance and resource consumption. . . .
in worse application performance and worse scalabil-

ity than the two-node case using Xen. For example,
6.1 Response time if & maximum average response time of 160 ms is de-

sired, we can use the two-node option to host four in-
We omit figures for application througput. Even as thestances of RUBIS with 800 threads each, but would re-
number of RUBIS instances is increased to four, we stillquire four separate nodes for the same number of in-
observe linear increase in the throughput as a function ogtances and comparable performance if the single-node
workload, and approximately the same throughput fromgption is used.
both the OpenVZ and the Xen systems.

Figure 12(a) shows the average response time as
function of workload when running two instances of RU-
BiS on two nodes. For either Xen or OpenVZ, thereIn Figure 13(b), we compare the four consolidation con-
are two curves corresponding to the two instances | andigurations in terms of the average Web tier CPU con-
Il. The response time remains relatively constant forsumption seen by all the application instances with a
OpenVZ but goes up about 500% (15 ms to roughly 90workload of 800 threads each. We can see that the av-
ms) as the workload increases from 500 to 800 threads.erage consumption per application instance for Xen is

Figure 12(b) shows the same metric for the case ofoughly twice that for OpenVZ. Moreover, with four in-
running four instances of RUBIS, and we see an everstances of RUBIS, the Xen system is already becoming
greater increase in the average response time in the Xeoverloaded (with the sum of all four instances exceeding
case. As the workload increases from 500 to 800 thread<,00%), whereas the OpenVZ system has the total con-
the average response time experienced by each applicaumption below 60% and should be able to fit at least
tion instance goes from below 20 ms up to between 14@wo more instances of the RUBIS application.

Averag

Figure 14: two-node multiple instances - Xen DomO
CPU consumption

6 Scalability Evaluation

8.2 CPU consumption

10
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: : 6.3 Oprofile analysis
2node linst (apache) ——

2node linst (mysql)
25 2node 2inst (apache)
2node 2inst (mysql) m——"

We also perform overhead analysis using Oprofile for the
case of two instances, and compare it to the results from
the one instance case. Figures 15(a) and 15(b) show the
hardware counter values from the two nodes hosting the
Web and the DB tiers for both Xen and OpenVZ. All
values are normalized with respect to the Xen DomO val-
ues. As seen before, the L2 cache misses are consider-
ably higher in Xen user domains on both nodes and are

Aggregate Count
=
6]
T

<
4

KA
o St fﬁ the main source of overhead.
CPU UNHALT L2 INSTR We now compare the counter values with those from
Hardware Event Type the two-node one-instance case. Figures 16(a) and 16(b)

show the comparison of counter values from both nodes
Figure 17: Single instance vs. and two instances - Oproin the Xen system. We can see that the number of L2
file analysis for OpenVZ cache misses for both tiers is 25% higher with two in-

stances. It is also interesting to note that the number of

instructions and percentage of execution time do not dif-

Figure 14 shows the Xen DomO CPU consumption afer by much. We infer that the overhead is mainly due to
a function of workload in the two-node case. The dif- the cache misses caused by memory remapping etc.
ferent lines in the graph correspond to different num- Figure 17 shows the corresponding data for OpenVZ.
ber of RUBIS instances hosted. For each scenario, thgve observe similar patterns but the increase in the L2
DomO consumption goes up approximately linearly ascache misses is not as high as in Xen. Note that the L2
the workload increases from 500 to 800 threads. Thisache misses from both containers are included in the
is expected because Dom0O handles I/O operations on b@éwo instance case.
half of the domains causing its consumption to scale lin-  Turning our attention to the cause of this overhead, let
early with the workload. There is a slight increase in theys look into the hardware counters for particular binaries
slope as the number of RUBIS instances grows. Morein Xen. Table 9 shows the percentage of cache misses per
over, as the number of instances goes from one to foulinstruction for the Web tier with one and two instances of
the DomO consumption increases by a factor of 3 insteatRUBIS. The percentage of cache misses per instruction
of 4, showing certain degree of multiplexing in Dom0.  experienced in the kernel i i nux) is 30% lower with
To investigate how much more overhead is generatedgingle instance (5.20%) than with two instances (7.44%

in the Xen system, we ran the four instances on twoon average).
CPUs running the SMP kernel. We observed that the Table 10 shows the comparison of the percentage of
average CPU consumption by the Web domains is 25%.2 cache misses for different kernel functions in Xen.
and the average Dom0 consumption is 14%. The latter i§Ve see that there is not much difference in the percent-
higher than that obtained using the UP kernel. age of L2 cache misses for any function. However, the
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Binary One-inst | Two-inst | Two-inst Symbol name One-inst | Two-inst
| I I+ 11
|'i bphp5.so | 0.80 0.73 2.10 do_anonynous_page 33.10 33.31
vl i nux 5.20 7.35 7.53 __copy_to_user_|I 10.59 11.78
htt pd 3.01 3.13 4.80 __copy_fromuser_I1 | 7.18 7.73
Table 9: Web tier % L2 cache misses/instruction for bi- Table 12: Web tier % of L2 cache misses in OpenVZ
naries in Xen kernel
Symbol name One- Two- Two-
inst inst inst time can go up by over 600% in the single-node
I Il case, and between 115% and 600% in the two-node
hypervi sor_cal | back | 43.00 | 37.09 | 38.91 case depending on the number of applications.
evtchn_do_upcal | 36.31 | 42.09 | 34.32 e For all the cases tested, the virtualization overhead
__copy_to_user_|I 2.84 3.11 2.61 . S
do_| RQ 273 233 2 62 observed in OpenVZ is limited, and can be ne-

Table 10: Web tier % of L2 cache misses in Xen kernel

percentage of L2 cache misses per instruction is differ-
ent. We can conclude that the main reason of overhead
comes from the higher L2 cache misses caused by page
re-mapping, but the percentage of cache misses remains
the same.

We see similar patterns in the OpenVZ case shown in
Tables 11 and 12. Note that we cannot differentiate be-
tween the different containers in OpenVZ. It is interest-
ing to note that the addition of another instance does not
increase the overhead in OpenVZ that much.

7 Conclusions and Future Work

We summarize our key findings and provide answers to
the questions we raised in the introduction in terms of
how Xen and OpenVZ perform when used for consoli-
dating multi-tiered applications, and how performance is
impacted by different configurations for consolidation.

e For all the configurations and workloads we have
tested, Xen incurs higher virtualization overhead
than OpenVZ does, resulting in larger difference in
application performance when compared to the base
Linux case.

e Performance degradation in Xen increases as appli-
cation workloads increase. The average response

glected in many scenarios.

e For all configurations, the Web tier CPU consump-

Binary One-inst Two-inst | + 11
|'i bphp5.so | 0.60 0.78
v i nux 2.40 2.86
htt pd 2.94 4.73

Table 11: Web tier % L2 cache misses/instruction for

binaries in OpenVZ

13

tion for Xen is roughly twice that of the base sys-
tem or OpenVZ. CPU consumption of all systems
and all containers goes up linearly as the workload
increases. The slope of increase in the case of Xen
is higher than in OpenVZ and the base cases.

The main cause of performance overhead in Xen is
the number of L2 cache misses.

In the Xen system, relative L2 cache misses are
higher in the single-node case compared to the sum
of cache misses in the two-node case. Between the
base and OpenVZ systems, the difference is minor.

In the Xen system, the percentage of L2 cache
misses for a particular function in the kernel is sim-
ilar in the single-node and two-node cases. But the
percentage of misses per instruction is higher in the
single-node case.

The percentage increase in the number of L2 cache
misses for single and multiple instances of RUBIS
is higher in Xen than in OpenVZ. In other words,
as the number of applications increases, OpenVZ
scales with less overhead.

In the Xen system in a two-node setup, the per-
centage increase in response time from single appli-
cation instance to multiple instances is significant
(over 400% for 800 threads per application) while

in OpenVZ this increase is much smaller (100%).

With our system setup in the two-node case, the Xen
system becomes overloaded when hosting four in-
stances of RUBIS, while the OpenVZ system should
be able to host at least six without being overloaded.

Hosting multiple tiers of a single application on the
same node is not an efficient solution compared to



the case of hosting them on different nodes as far as
response time and CPU consumption are concerned.

In conclusion, there are many complex issues involved
in consolidating servers running enterprise applicationg10]
using virtual containers. In this paper, we evaluated dif-
ferent ways of consolidating multi-tiered systems using
Xen and OpenVZ as virtualization technologies and pro-
vided quantitative analysis to understand the differences

in performance overheads. [
More work can be done in extending this evaluation

for various other complex enterprise applications, in-
cluding applications with higher memory requirements[lz]

or database-intensive applications. We hope that systems
researchers can use these findings to develop optimiza-

tions in virtualization technologies in the future to make
them more suited for server consolidation.
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