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ABSTRACT

Energy is becoming a critical resource to not only small battery-powered de-
vices but also large server systems, where high energy consumption trans-
lates to excessive heat dissipation, which, in turn, increases cooling costs
and causes servers to become more prone to failure. Main memory is one
of the most energy-consuming components in many systems. In this paper,
we propose and evaluate a novel power management technique, in which
the system software provides the memory controller with a small amount
of information about the current state of the system, which is used by the
memory controller to significantly reduce power. Our technique enables the
memory controller to more intelligently react to the changing state in the
system, and therefore, be able to make more accurate and more aggressive
power management decisions. The proposed technique is evaluated against
previously-implemented power management techniques running synthetic,
SPECjbb2000 [35] and various SPECcpu2000 [36] benchmarks. Using
SPEC benchmarks, we are able to show that the cooperative technique con-
sumes 14.2-17.3% less energy than the previously-proposed hardware-only
technique, 16.0-25.8% less than the software-only technique, and 71.6—
75.8% less than no power management.
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1. INTRODUCTION

With semiconductor fabrication technology continuously im-
proving and with workloads scaling at a similar, if not a faster, pace,
hardware components are becoming faster, denser, and more highly
integrated. Unfortunately, they also consume more energy. To alle-
viate this growing energy demand, more components are designed
with power management capabilities, which enable them to operate
at lower power states when not being actively used. Previous re-
search has demonstrated that by judiciously managing power states
for each of the components subject to the workload, a significant
amount of energy can be saved. The reason for such findings is
that many systems are designed to be capable of providing contin-
uous service even when they are being stressed at their predeter-
mined peak load. This is usually accomplished by over-allocating
resources to these systems. However, when the system is operat-
ing at a typical load, some system resources will be under-utilized,
thus creating opportunities to put certain components in low-power
states, or even power them down. Subsequently, when the workload
increases at a later time, any relevant system components will be
switched back to higher-performance/power levels. Effectively, this
provides performance on-demand while conserving energy during
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non-peak periods. However, due to non-negligible delays in tran-
sitioning between an energy-saving state and an operational state,
both the system performance and energy efficiency may degrade if
these transitions are not controlled properly.

This paper focuses on reducing power dissipated by the main
memory system (consists of DRAM). This is motivated by a con-
tinuous increase in the power budget allocated to the memory. For
example, as much as 40% of the system energy is consumed by
the memory system in a mid-range IBM eServer machine [22].
Power dissipated by the DRAM is largely dependent on its capacity
and bus frequency. Therefore, as applications become increasingly
data-centric, for the performance of the system to continue to scale,
we would need more power to sustain a larger-capacity and higher-
performance memory system, which can easily dominate the total
system energy budget.

The main contributions of this paper are summarized as follows.

e Design of a novel power management technique that enables
the system software to cooperate with the memory controller
hardware by providing it with critical system-state informa-
tion which was previously unavailable at the hardware level.
This allows the memory controller to more intelligently re-
act to the changing state in the system, and therefore, signif-
icantly improve the energy-performance efficiency of main
memory.

e Use of a full system simulator (Mambo [9]) and a systematic
evaluation methodology to accurately simulate the behavior
of the proposed power management unit in the memory con-
troller and its performance and energy effects on the system.
Using a modified 2.6.5 Linux kernel, it enables us to precisely
identify problems and benefits associated with the proposed
cooperative management technique running various types of
workload.

e Evaluation of registered DRAM (server-grade), which has
been mostly under-explored in the past, but it is now becom-
ing increasingly important as it is almost always used in to-
day’s server systems. Using registered DRAM, we demon-
strate that our cooperative technique can save 14.2—17.3%
more energy than previously-proposed hardware-only tech-
niques, 16.0—-25.8% more than software-only techniques, and
71.6—75.8% more than no power management.

The rest of the paper is organized as follows. Section 2 provides
background information on the current state of DRAM technology
and various DRAM architectures. Section 3 describes the detail
in the proposed cooperative technique which consists of (i) Power
Aware Virtual Memory (PAVM) implemented in the OS, (ii) a thin
power management layer in the memory controller hardware, and
(iii) a software-hardware interface. Experimental setup and detailed



le@\

Top View

Ranl/l(
8 bits Module Dewce

Side View rfﬂ

Bank3

Bank2

Bank1

Bank0
N N N X N N A
1 64 bits \

Figure 1: A memory module, or a DIMM, that is composed of 2 ranks,
8 devices per rank, and each of which is quad-banked.

evaluation are given in Section 4, demonstrating a significant bene-
fit in using this new approach in terms of energy and performance.
Section 5 discusses related work, and Section 6 highlights some
future research directions and finally concludes the paper.

2. MEMORY SYSTEM MODEL

In this section, we discuss performance and energy implications
when power is managed for the main memory. Since 1980, the
performance gap between the memory and the processor has been
widening continuously — DRAM speed has been only improving
at an annual rate of 7% while processor speed has been improving
at an annual rate of 40% [39]. Furthermore, frequent interaction be-
tween memory and other I/O components makes it a crucial compo-
nent in the overall performance of the system. Unfortunately, power
reduction is only possible when memory is operating at lower per-
formance states, and therefore, it is important to ensure that either
this performance degradation can be hidden or that the energy saved
in the memory justifies any performance degradation that it causes.
Before illustrating the tradeoffs between performance and energy,
we will first briefly describe the basics in DRAM technology.

21 DRAM

A DRAM core consists of a large arrays of cells, each of which
is a transistor-capacitor pair. To counter current leakage, each ca-
pacitor must be periodically refreshed to retain its state, making
memory a continuous energy consumer. In reality, however, energy
consumed by periodic refresh is actually very small, and most of
the energy is consumed by row and column decoders, sense am-
plifiers, and external bus drivers due to large arrays with very long
and high capacitance internal bus lines. To reduce power, one or
more of these subcomponents are disabled by switching a device to
one of several pre-defined low-power states when it is not being ac-
tively accessed. However, when the device is to be accessed again,
a certain performance penalty, called a re-synchronization cost, is
incurred to transition from the current low-power state to an active
state before it can be accessed. This non-negligible delay is the
cause of performance degradation when power management is not
done carefully.

The above holds true for all Synchronous DRAM (SDRAM)
architectures including single-data-rate (SDR), double-data-rate
(DDR), and Rambus (RDRAM) architectures. In this paper, we
mainly concentrate on DDR as it is becoming the most-widely
used memory type. Nevertheless, our technique is architecture-
independent and can be easily applied to other memory types as
we will discuss in Section 4.3.2.

2.2 Double-Data Rate DRAM Model

DDR memory is usually packaged as modules, or DIMMs, each
of which usually contains either 1, 2 or 4 ranks, which are com-

monly composed of 4, 8 or 16 number of physical devices (shown
in Figure 1). Each time a DIMM is accessed, 64 bits of data is
read or written. Since each device, depending on design, can sup-
ply either 4, 8, or 16 bits at a time, multiple devices are needed to
act simultaneously to satisfy a 64-bit DIMM access, and these de-
vices constitute a rank. A rank is then divided into multiple banks
(logical devices, usually 4 or 8), each of which may be accessed in-
dividually, but cannot be power managed separately. The smallest
physical unit for which we can independently manage power is a
single rank.

DDR architecture has many power states defined and even
more possible transitions between them [30, 18]. For simplicity
of presentation, we only consider four of these power states —
Read/Write, Standby, Powerdown, and Self Refresh — listed in a
decreasing order of power dissipation. The power dissipation in
each state and the transitional delays between them are shown in
Figure 2(a). Note that the power numbers shown here are for a sin-
gle device. Therefore, to calculate the total power dissipated by a
rank, we need to multiply this power by the number of devices used
per rank. For a 512MB registered DIMM consisting of 8 devices
in a rank, the expected power draw values are 4.2 W, 2.2 W, 1.2 W,
and 0.167 W, respectively, for the four power states considered here.
The details of these power states are as follows:

393.5mW + PLL/REG high
138 9mW + PLL/REG high
Standby PLL
Low-power | 0.046 mW
High—power | 810 mW
Register
Powerdown Self-refresh Cow_power | 92.6 mW
9.3mW + PLL/REG high ~ 9.3mW + PLL/REG low |High—power | 286.6 mw
@ (b)

Figure 2: (a) Power dissipated in each power state and the delays to
transition between these states for a single 512-Mbit DDR device. (b)
Power dissipation of a TI CDCVF857 PLL device (one per DIMM) and
a Tl SN74SSTV32867 register.

e Read/Write: Dissipates the most power, and it is only briefly
entered when a read/write operation is in progress.

e Standby: When a rank is neither reading nor writing,
Standby is the highest power state, or the most-ready state,
in which read and write operations can be initiated immedi-
ately at the next clock edge.

e Powerdown: When this state is entered, the input clock sig-
nal is gated except for the refresh signal. 1/O buffers, sense
amplifiers and row/column decoders are all deactivated in
this state.

e Sdf refresh: In addition to all the components on a
DIMM that are deactivated in Powerdown, the phase-lock
loop (PLL) device and registers are also put to the low-power
state to maximize energy savings as the PLL and the regis-
ters (Figure 2(b)) can consume a significant portion of the
total energy on each DIMM. However, when exiting Self Re-
fresh, a 1 psec delay is needed to re-synchronize both the
PLL and the registers.?

1Registered memory is almost always used in server systems to
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Figure 3: Architectural overview of cooperative power management
system.

Due to having a large power differential between Standby and
Powerdown / Self Refresh, we want to minimize the time a rank
stays in Standby and maximize the time it spends in either Power-
down or Self Refresh. However, at the same time, we also want to
minimize performance degradation caused by accessing ranks that
were previously put to one of the low-power states. Therefore, de-
termining which ranks to power down, when to power down, and
into which low-power state to transition are critically important
to both energy and performance. For the time-being, we refer to
Standby as the high-power state, and both Powerdown and Self Re-
fresh as low-power states. We make the distinction between these
two low-power states in Section 4 and illustrate how to best utilize
each to maximize energy savings while minimizing performance
impact.

3. DESIGN

This section details the design of the cooperative power man-
agement technique. It begins with a brief design overview in Sec-
tion 3.1. Hardware and software-side control mechanisms are de-
scribed in Section 3.2 and Section 3.3, respectively.

3.1 Overview

Proposals to manage power in the memory system have tradi-
tionally operated solely in the hardware domain [7, 10] or in the
software domain [11, 16], but not in both. In our work, we discov-
ered that a small amount of cooperation between these two domains
can lead to a significant energy benefit. In the hardware-controlled
power management approach, memory traffic is monitored by the
memory controller which permits implementation of a very fine-
grained and highly-adaptive control mechanism, which ideally can
be used to glean all possible energy-saving opportunities. However,
the effectiveness of this approach is usually limited by how well the
hardware can predict future references from the past access behav-
ior. Accurate prediction is very difficult to accomplish at such a
low level, especially in a complex multitasking system, where the
memory access patterns constantly change due to interleaved exe-
cution of many different processes. Any incorrect prediction will
translate into both performance and energy penalties. On the other
hand, in the software-controlled, or more precisely OS-controlled,
approach, system and process state information (e.g., which mem-
ory regions are used by which process) can be easily tracked by the

better meet timing needs and provide higher data integrity, and the
PLL and registers are critical components to take into account when
evaluating registered memory in terms of performance and energy.

system software. This information then enables the OS to avoid
performance penalty when managing the power for the memory as
it can keep all ranks that may be used by the current running pro-
cess in a high-power ready state while having all other ranks in
low-power states. However, system software alone is not capable
of achieving fine-grained power control, as the OS is not generally
aware of which ranks a process is accessing at run-time, or how
actively it is accessing a rank, or whether or not there are any mem-
ory access patterns that can be exploited. It only knows about the
active ranks of the running process. However, since some of the
active ranks are infrequently used, and due to its inability of ex-
ploiting such knowledge, many energy-saving opportunities will be
lost in using this software-only approach.

Based on this observation and our discovery of a complemen-
tary relationship between these two types of approaches, we pro-
pose a cooperative power management approach that exploits the
unique features available in each domain that can be used to aid
the other. For example, fine-grained control mechanisms available
in the hardware level can be used to aid the system software to re-
capture some of the missed energy-saving opportunities described
earlier. Conversely, the system software can export useful system
and process state information down to the memory controller, so
that the observed memory traffic can be better interpreted at the
hardware level, thus allowing the hardware to make more accurate
power management decisions. Figure 3 depicts the system architec-
ture of this cooperative power management approach showing both
the software and hardware components. In the next section, we first
describe the architecture of the power management unit (PMU) in
the memory controller. It is the hardware component responsible
for monitoring memory traffic and controlling power in the DRAM.
We then describe how to minimally modify this PMU so it can effi-
ciently communicate with the system software to gain information
about the current state of the system, and thus allowing it to more
intelligently manage power. In Section 3.3, we describe what sys-
tem and process state information are useful to the PMU and how
does the system software convey this information to the PMU.
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Figure 4: Architecture of a per-rank PMU implemented in the mem-
ory controller.

3.2 Context-Aware PMU

Memory-controller-based power management [7, 12, 13] has
been previously proposed to provide fine-grained monitoring and
power control, which is usually performed by a separate power
management unit (PMU) implemented within the memory con-
troller. This PMU is typically implemented as a set of simple logic
devices that (i) monitor main memory accesses, (ii) predict thresh-
old values to determine when to power down, and (iii) instruct the
memory controller to perform power-down operations when certain
conditions are met.

A schematic diagram of a simple PMU is shown in Figure 4. It
monitors memory accesses by snooping the address lines and keeps
track of the past access behavior in an internal register file, where
the number of registers is dependent on how accurate we need the



prediction logic to be. Based on the history, a threshold value is de-
rived to determine how much idle time should elapse before putting
a rank into a low-power state. When multiple energy-saving states
are implemented, one can derive multiple thresholds, each used to
transition the rank to a different low-power state.

Separate monitor/predictor logic is often kept for each of the
ranks so the PMU can individually monitor memory accesses, keep
history and control power state for each. The reason for keeping a
separate set of logics is because each rank may be accessed very dif-
ferently from all other ranks. To give an example, Figure 5 shows a
histogram (in log scale) of inter-arrival times (in log scale) between
consecutive memory accesses observed on two different ranks. It is
apparent from this figure that the access characteristics observed on
these two ranks are very different. On rank 0, we can observe that
with most inter-arrival times being very short, nearly every mem-
ory access comes within 1 msec after the previous one. On rank
1, however, there are many larger gaps (indicated by a heavier-
tailed distribution) between memory accesses, suggesting that we
have more energy-saving opportunities and also the fact that dif-
ferent thresholds should be used on these two ranks to maximize
energy savings on each. However, this per-rank implementation in
the PMU would require additional circuitry which not only adds
manufacturing costs but also additional energy costs. Later, we will
show how to use the process state information exported by the sys-
tem software to reduce this additional cost.
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Figure 5: Inter-arrival time observed on two different ranks (or
nodes).

3.2.1 Per-Process Power Management

In the previous section, we illustrated the mechanism to moni-
tor memory traffic and manage power on a per-rank basis. Now, to
take this concept a step further in enabling the controller to better
interpret the monitored memory traffic, we further partition the ob-
served per-rank memory traffic on a per-process basis. The reason
why this is important is that different processes can exhibit vastly
different memory access behaviors. Even for processes with simi-
lar access behaviors, how they access each individual rank can be
quite different (Figure 6(a)) given that the virtual-to-physical page
mapping is controlled arbitrarily by the OS. So, if the PMU has no
understanding of processes, the observed per-rank memory traffic is
essentially “polluted” by all processes that access this rank in rapid
successions (at a 10 msec or even an 1 msec quantum) as scheduled
by the task scheduler. Therefore, the PMU will likely make ineffi-
cient power management decisions based on this “average” access
behavior observed from all the concurrent processes. We illustrate
this by an example shown in Figure 7. In this example (top portion
of the graph), Process 1 rarely accesses rank 0, whereas Process 2
accesses this rank very frequently. If the controller monitors the

memory traffic on this rank without differentiating between the two
processes, it will conclude that this rank is accessed “moderately”,
and thus, might make less-than-optimal power management deci-
sions. However, by making the memory controller context-aware
(bottom portion of the graph), the PMU can easily detect that Pro-
cess 1(2) rarely(frequently) accesses this rank, and therefore, can
select more suitable thresholds depending on which process is cur-
rently executing. The problem, however, is that unlike in the case
of per-rank management, the memory controller is totally oblivious
to the concept of a process, which ironically strongly impacts how
the memory is being accessed and how it should be controlled.

The improvement to make the PMU context-aware can actually
be very easily augmented with a small amount of hardware modifi-
cations in the PMU and some minor changes to the system software.
On the software side, in addition to saving the processor context
(i.e., CPU registers) onto the stack of the switched-out process at
each context switch, in parallel, we would also need to save the
values of the history-keeping registers used by the PMU as shown
in Figure 6(b) (Ignore the PAVM | i ne for now). Subsequently,
when this process is switched back at a later time, both the pro-
cessor context and the PMU context associated with this process
are restored. The PMU context saving/restoring operations can ei-
ther be done synchronously by the processor, or asynchronously by
the PMU itself when the processor sends it a context-switching sig-
nal and gives it a physical memory region for saving/restoring the
PMU context. On the hardware side, only a simple 1/O interface
needs to be implemented for saving and restoring the PMU context.
Essentially, this allows the memory controller to more efficiently
manage power for the main memory tailored to the memory access
behavior specific to each process because the PMU can now make
power management decisions solely based upon each process’s past
memory access behavior.

3.3 PAVM

Power Aware Virtual Memory (PAVM) was first proposed and
implemented by Huang et al. in [16]. It leverages OS-level in-
formation and can make very accurate power management deci-
sions, thus only negligibly affecting performance when perform-
ing power management. We discovered that the information col-
lected by PAVM in the operating system can be used by the PMU
to make more accurate power management decisions and to deter-
mine which monitor/predictor circuits in the PMU are unnecessary
S0 it can turn them off to further reduce power. The HW-SW in-
terface is described in Section 3.3.2, but first we will give a brief
overview of PAVM in the next section.

3.3.1 PAVM Basics

Since all page allocation/deallocation and mapping/demapping
operations are handled by the OS, where PAVM resides, PAVM
knows precisely when and which ranks may be accessed by a pro-
cess. This is accomplished by keeping track of a set of ranks, called

process 1's process 2's

ory
access context  access context context
switch switch switch

1 af | 11

Rank O Process 1 Virtual Time
212121212] 2] 12]2[2] |2]2]2

Process 2 Virtual Time

Figure 7: An example that gives some intuition on why it is beneficial
to make the memory controller context-aware.
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Figure6: (a) Inter-arrival time incurred by two different processes observed on the same memory rank. (b) Architecture of the Process-Aware PMU

in the memory controller.

the active ranks [16], for each individual process. An active rank
of a process is defined to have at least one page mapped from this
process’s address space. Since the total number of ranks in a sys-
tem is usually small, ranging from a few in small embedded sys-
tems to a couple hundred in large server systems, time and space
overheads of keeping track of this information is shown to be neg-
ligible. To save energy, at each context switch, PAVM puts all inac-
tive ranks of the newly-scheduled process in a low-power state. As
a process can only access memory regions residing within its ac-
tive ranks, powering down all other ranks will not incur any perfor-
mance penalty as these ranks will not be accessed by this process.
To avoid performance penalty when accessing active ranks, these
ranks are put to the most-ready state at the earliest possible time
during each context switch. Furthermore, an energy efficient page
allocator is implemented to effectively group allocated memory re-
sources so that they are aggregated within a minimum number of
ranks, allowing more ranks to be in low-power states without af-
fecting performance.

In this work, with the availability of a full-system simulator, we
are able to run real workloads under PAVM-enabled Linux kernel
and observe the memory access behavior at run-time. This allows
us to find several problems with the original PAVM implementa-
tion. We found that a small but a non-negligible number of mem-
ory accesses did not go to the active ranks of the current running
process. These were later found to be memory accesses incurred by
the kernel (i.e., through system call, interrupt, exception) while in
user process’s context. This was resolved by tagging all pages that
are used only by the kernel and aggregating them onto the first rank
in the system and always keeping this rank in the most-ready state
to reduce performance impact. In our experiment, a single 64MB
memory rank seems to have more than enough capacity for such
purpose.

3.3.2 PAVM-to-Hardware Interface

As indicated in Section 3.2, even though only a small amount of
modifications is needed to implement the aforementioned energy-
conserving mechanisms in the hardware, but the additional hard-
ware does not come for free — a small but a non-negligible addi-
tional power is dissipated. To amortize this cost, PAVM can inform
the PMU which ranks are used by the running process so that the
PMU can completely gate off all the monitor/predictor circuits and
history-keeping registers for those inactive ranks without affecting
the effectiveness of the power management mechanism. This in-
formation is passed down from the PAVM cont r ol line shown in
Figure 6(b).

Cooperations with PAVM also have certain performance benefits.
So far, we have only discussed policies and mechanisms to power
down ranks but not to power them up. As premature power-ups
waste energy, we currently do not consider any power-up heuristics
in the hardware. Instead, we rely on a simple but accurate power-up
mechanism implemented in PAVM. Since many memory accesses
occur immediately after a context switch due to cold cache misses,
if PAVM can instruct the memory controller to power up the ac-
tive ranks of the to-be-run process as early as possible, some re-
synchronization penalties can be avoided.

3.4 Summary

Through the new PMU design and with the cooperation from
the system software, we can partition the observed memory traffic
— both spatially (by rank) and temporally (by process) — so that
the observed memory traffic can be translated more easily and ac-
curately by the PMU into more power-efficient management deci-
sions. This requires only small changes in the PMU hardware and
a minimal collaboration from the system software. Additionally,
we also proposed techniques that allow PAVM to pass information
down to the PMU for the purpose of (i) amortizing the energy cost
of the additional hardware in the PMU and (ii) reducing wake-up
latency due to cold cache misses, thus allowing more efficient use
of the energy.

4. EVALUATION

We now evaluate the effectiveness of the proposed cooperative
HW-SW power management technique and compare it against
some previously-proposed techniques. Section 4.1 describes the
simulation environment and the methodology that we have used to
collect and analyze results. Section 4.2 and Section 4.3 provide
detailed simulation results using synthetic and SPEC benchmarks
(SPECjbb2000 and SPECcpu2000), respectively.

4.1 Simulation Setup

To the best of our knowledge, the proposed PMU architecture
is not available in any commercial systems to date. Therefore, the
best one can do is to use a machine simulator; we choose to use
Mambo [32] in this project. Mambo is a full-system simulator for
PowerPC® machine architectures and is in active use by multiple
research and development efforts at IBM. It emulates both 32-bit
and 64-bit PowerPC® processors and also supports many system
architectures and components, including a multi-tiered cache hier-
archy, SLBs, TLBs, disks, Ethernet controllers, UART devices, etc.
The simulated system is easily configurable, and very different sys-



[ Component | Parameter |

Processor 64-bit 1.6GHz PowerPC®
DCache 64KB 2-way Set-Associative
ICache 32KB 4-way Set-Associative
L2-Cache 1.5MB 4-way Set-Associative
DTLB 512 entries 2-way Set-Associative
ITLB 512 entries 2-way Set-Associative
DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries
Memory DDR-400 768MB (64Mbx8)
[ Linux Kernel ] 2.6.5-rc3 w/ PAVM patch |

Table 1: System parameters used in Mambo. All cache lines are 128
Bytes long.

tems can be quickly set up and simulated by simply changing a few
parameters. We used a modified 2.6.5-rc3 Linux kernel, running
on top of a Mambo simulated machine (parameterized as shown in
Table 1) to run all our workloads.

To evaluate various power-management techniques, we first use
Mambo to record all the main memory traffic (i.e., filtered by the L1
and L2 caches) into a trace file, and then feed it into a trace-driven
main memory simulator to simulate various power-management de-
cisions that could have been made by the memory controller at
runtime. This memory simulator is written using CSIM [28] li-
brary, and it can simulate detailed activities in memory devices,
controllers, synchronous memory interfaces (SMIs) and on vari-
ous buses. Instantaneous power is calculated using the method de-
scribed in [29]. We keep track of state information for each bank
on a per-cycle basis, which gives us power and performance infor-
mation.

4.2 Synthetic Benchmark

We first use a synthetic benchmark consisting of two streaming
processes. The first process’s memory accesses all miss in the cache
and go to the main memory, and the second process’s all hit in the
cache. This synthetic benchmark is not meant to be realistic, but
through this simple example, we can illustrate the potential bene-
fit in making the memory controller context-aware. Furthermore,
using this simple scenario, we can also see more clearly what are
the energy and performance implications in using various power
management techniques. In the following section, we evaluate and
compare these power management techniques with more realistic
workloads — SPECjbb2000 and SPECcpu2000.

4.2.1 Power Management Technigues

The machine configuration used for this benchmark is the same
as that shown in Table 1, except that the memory capacity is reduced
to a single 64MB rank. The two streaming processes are sched-
uled in an interleaved-manner by the Linux task scheduler. Without
any power management, the instantaneous power dissipated by the
memory is shown in Figure 8(al), where one can clearly see when
each process is scheduled. In Figure 8(a2), we break the average
power dissipated for this benchmark down to various components.
Power used by activation, read, write operations and data queues
are due to DRAM devices doing useful work and cannot be reduced
by using power management. Here, we look for ways and oppor-
tunities to reduce the idle power that is wasted when no work is
done. Most of this idle power is dissipated in the Precharge Standby
mode, Active Standby mode, and by the PLL and the registers.

First, we consider the simplest static hardware techniques, which
try to put the rank to either Power Down or Self Refresh mode im-
mediately at the end of each memory request. We call them Imme-
diate Power Down and Immediate Self Refresh, respectively, and
the results are shown in Figures 8(b1-b2) and Figures 8(c1-c2). As
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Figure 8: The first column gives the instantaneous power for a
zoomed-in portion of the synthetic workload under (a) no power man-
agement (b) Immediate Power Down (c) Immediate Self Refresh (d)
HW-only and (e) HW-SW techniques. The second column shows the
breakdown of the average power dissipated.



Total Simulated Cycles 3,442,155,784 cycles
Number of Read 10,906,196
Number of Writes 11,055
No Power Immediate Immediate Self
Management Power Down Refresh Hw-only Hw-sw
Energy Consumption 10.34J 7.83J 6.04J 7357 6.18J
Average Power 6.01W 455W 351w 427 W 3.59W
Average Response Time 96.92 cycles 105.04 cycles | 894.01cycles | 107.20cycles | 106.81 cycles
Delayed Accesses Due to PD 0 10,486,433 0 10,391,535 10,531,756
Delayed Accesses Dueto SR 0 0 603,389 16,340 8,044

Table 2: Summary of the synthetic benchmark. All cycles are in unit of processor cycles.

we can see, power reduction opportunity arises when the low mem-
ory referencing process starts to execute. Immediate Power Down
(IPD) can significantly reduce power dissipated in Standby mode,
whereas Immediate Self Refresh (ISR) can achieve additional en-
ergy benefit by also powering down the PLL and the registers, al-
though at a severe performance penalty. We will look at their per-
formance implications in detail shortly.

Next, Figure 8(d1l) shows the results when power management
decisions is dynamically made by the hardware (e.g., PMU in the
memory controller). We assume IPD is implemented in the memory
controller by default as it has a significant energy benefit and with
only a very small performance impact (shown later). The PMU
keeps history information on past accesses in its internal registers
which are used to dynamically predict threshold values to determine
after how long of an idle period before Self Refresh mode should
be entered. It uses a moving window size of 500 psec, which is rea-
sonable because it can avoid over-compensation and provide good
adaptability to realistic workloads. However, the result shows that
it only outperforms the IPD strategy by approximately 6% in power
because when the hardware tries to make power management de-
cisions based on its observation on the past memory access behav-
ior, it gets confused when two processes with very different access
behaviors are accessing the same rank in an interleaved-manner.
One can argue that if the window size is reduced to 100 psec or
even 10 psec, we can adapt more quickly. However, shrinking the
window size is a double-edged sword, having this better adaptabil-
ity runs at a higher chance to over-aggressively predict threshold
values from observing transient behaviors at run-time. Shrinking
the window size can benefit this synthetic workload, but for real-
istic workloads, it can cause more harm than benefits. As we will
show in the next section, mistakingly entering Self Refresh mode
can be very expensive. Furthermore, as more and more systems
are switching to smaller scheduling quanta (e.g., from 10 msec to
1 msec or even smaller) to increase responsiveness in the system,
higher context switching rate will make the hardware predictor’s
job even more difficult.

Finally, in Figure 8(e1) we show that if the system software can
inform the PMU in the memory controller of which process is cur-
rently running, more aggressive and accurate power management
decisions can be made. The PMU used here is exactly the same
as that described above, but with additional capabilities to keep the
past access history specific to each process and to save/restore the
history-keeping registers at each context switch. In this figure, we
can see that immediately after the low memory referencing process
starts to run, the PMU is able to instantaneously put the rank to Self
Refresh, thus saving more energy. Additionally, unlike in the case
of the HW-only technique, the cooperative technique will not be
affected when the task scheduling quantum becomes increasingly
smaller over time.

4.2.2 Results

The effect on energy can be easily obtained in our simulator. Per-
formance implication is more difficult to quantify though, as it is

limited by the trace-driven nature of this study. From a memory
trace, we can identify exactly which memory reference is delayed
and by how long due to power management. However, the de-
pendency information among memory requests is not retained in
a trace-based approach. Therefore, there is no way for us to know
whether a delayed memory transaction will also delay a memory
request that goes to an independent rank. To measure performance
implication, instead, we use the average response time (service
time) for each memory reference. This is shown in Table 2. In
this table, we also summarized all other results for the synthetic
workload.

From this table, we can see that using IPD is clearly benefi-
cial. Compared to no power management, which has an average
response time of 96.92 cycles per memory reference and consumes
10.34 J, IPD has an average response time of 105.04 cycles (+8.4%)
and consumes only 7.83 J (-24.3%). A few percent increase in the
average response time is usually not a big problem for server-type
workloads as most are typically bandwidth-limited. On the other
hand, when using Immediate Self Refresh, even though we can get
an additional energy benefit (6.04 J, -41.6%), but it comes at a pro-
hibitively high average response time (894.01 cycles, +822.42%).
Compared to these static techniques, the dynamic ones perform
much better. They consume almost as little energy as ISR but
without ISR’s hefty performance penalty, and they consume much
less energy than IPD but pays almost as little performance penalty
as IPD. Among the dynamic techniques, the HW-SW cooperative
technique shows clear energy benefits over the HW-only approach.
Specifically, it consumes 15.9% less energy than HW-only and also
has a slightly better average response time. In Table 2, we also show
the number of delayed requests due to exiting Power Down (PD)
and Self Refresh (SR). Exiting PD is only 1 memory clock cycle,
whereas exiting SR is much more expensive — 200 memory clock
cycles. One of the reasons why HW-SW consumes less energy and
has lower response time than the HW-only approach is that it can
more accurately predict threshold for entering Self Refresh, and this
is apparent from observing that HW—SW has far fewer number of
delayed requests due to exiting from SR.

4.3 SPEC Benchmarks

One of the benchmarks we used in our evaluation is
SPEC]jbb2000 [35]. It is implemented as a Java program emulating
a 3-tier server system with an emphasis on the middle tier. The tiers
simulate a typical business application, where users in Tier 1 gener-
ate inputs that result in the execution of business logic in the middle
tier (Tier 2), which calls a database on the third tier. In a benchmark
run, one can instantiate multiple warehouses, each with a 3-tier sys-
tem. Each warehouse executes as a separate Java thread within the
JVM, and is mapped to a different Linux process. However, since
all warehouses are essentially running the same type of workload
and they all share the same memory address space within the JVM,
we will only observe a small amount of variation in how memory
is accessed between context switches among these SPECjbb pro-
cesses. In such systems, the benefit of using the HW-SW power



Total Runtime % of Read % of All Write % of All | Context
Benchmarks (processor cycles) | Total Runtime | Operations ‘ Reads ‘ Operations | Writes | Switches
L ow memory-intensive workload
SPECjbb process 1 470,662,157 4.5% 495,849 5.95% 148,964 4.67% 283
SPEC]jhb process 2 430,865,647 4.1% 463,402 5.56% 150,847 4.73% 233
SPEC]jhb process 3 614,658,695 5.9% 500,704 6.01% 151,581 4.75% 350
SPECjbb process 4 389,326,169 3.7% 499,898 6.00% 146,077 4.58% 218
SPECjbb process 5 544,571,120 5.2% 511,707 6.14% 141,688 4.44% 309
SPEC]jhb process 6 330,170,302 3.2% 421,781 5.06% 110,106 3.45% 197
SPEC]jhb process 7 1,694,958,880 16.3% 1,281,690 15.39% 212,097 6.65% 921
SPEC]jhb process 8 396,145,352 3.8% 333,236 4.00% 100,222 3.14% 255
256.bzip2 2,591,125,601 24.9% 2,899,595 38.81% 1,467,012 46.00% 1,258
186.crafty 2,714,572,432 26.1% 692,731 8.32% 293,069 9.19% 1,259
Total (benchmarks) 10,177,056,355 97.7% 8,100,593 97.24% 2,921,633 91.61% 5,283
Total (all observed) 10,416,416,544 100.0% 8,330,756 100.00% 3,189,337 100% 10,148
High memory-intensive workload
SPECjbb process 1 510,607,464 4.6% 704,477 1.29% 194,867 1.31% 734
SPECjbb process 2 535,188,637 4.8% 772,954 1.41% 223,225 1.51% 478
SPEC]jhb process 3 510,438,599 4.6% 581,688 1.06% 186,979 1.26% 465
SPEC]jhb process 4 529,700,398 4.7% 768,019 1.40% 221,891 1.50% 420
SPEC]jhb process 5 941,338,844 8.5% 1,167,305 2.13% 303,557 2.05% 550
SPECjbb process 6 473,391,039 4.2% 776,669 1.42% 309,628 2.09% 715
SPECjbb process 7 808,101,475 7.3% 1,041,908 1.90% 277,971 1.88% 508
SPEC]jhb process 8 1,716,733,458 15.5% 2,092,407 3.82% 1,016,140 6.86% 1,379
181.mcf 2,853,500,163 25.8% 13,953,894 25.50% 7,004,631 47.26% 1,089
179.art 2,163,757,139 19.6% 32,453,738 59.31% 5,012,884 33.82% 1,089
Total (benchmarks) 11,042,757,216 99.8% 54,313,059 99.25% 14,751,773 99.53% 7,427
Total (all observed) 11,065,594,944 100% 54,721,075 | 100.00% | 14,820,760 | 100.00% 12,342

Table 3: Summary of the low memory-intensive and high memory-intensive workloads. SPECjbb is ran with 8 warehouses, each spawned as a

separate Java thread.

management technique is limited. However, in real server systems,
where the processor time is shared among multiple users and their
applications, multiple server processes, and various daemon pro-
cesses, We can expect memory access behavior to change constantly
when context switching between these processes at a fine granular-
ity. To emulate such a system, we decided to run a few SPEC-
cpu2000 benchmarks with well known execution behavior in paral-
lel with the SPECjbb workload. We classified these workloads as
either “high memory-intensive” or “low memory-intensive”, based
on L2 miss rates [8]. For the low memory-intensive workload, we
run SPECjbb having 8 warehouses in parallel with 256.bzip2 and
186.crafty, and for the high memory-intensive workload, we run
SPEC]jbb in parallel with 181.mcf and 179.art. Reference input sets
are used for these SPECcpu2000 benchmarks.

4.3.1 Results

The run-time statistics of the two workloads are shown in Table 3.
For each process in our benchmark, we keep track of the amount of
CPU time it consumed, the number of read and write operations,
and the number of times it was scheduled by the Linux task sched-
uler. In our experiment, we keep the system idle at the start of each
run. To verify that the non-benchmark processes in the system, e.g.,
shell, background daemons and interrupt service routines, did not
interfere with our runs and results, we compare the total CPU time,
the total number of read and write operations and the total number
of context switches incurred by our benchmark with the total num-
ber that was observed during the entire experimental run. For the
low memory-intensive workload, benchmark processes used 97.7%
of the total CPU time, and are responsible for 97.2% of all read
requests and 91.6% of all write requests in the system. For the
high memory-intensive workload, benchmark processes consumed
99.8% of the total CPU time, and are responsible for 99.2% of all
read requests, 99.5% of all write requests in the system. More-
over, the reasons that the total number of context switches into the
benchmark processes is significantly smaller than the total number
that was observed in the entire run is due to a polling keyboard
device driver, which periodically wakes up and then goes back to
sleep. The run-time information gives us more confidence in our

results as these benchmark processes are minimally affected by the
system’s background noise. From these run-time statistics, we can
also see that SPECjbb benchmark is more memory intensive than
bzip2 and crafty, but much less than mcf and art.

In Figures 9(a) and 9(b), we show the instantaneous power dis-
sipation throughout the entire run of the low memory-intensive and
high memory-intensive workloads, respectively, for various power
management techniques. IPD is assumed to be implemented in
the memory controller to complement all other power manage-
ment techniques (except for ISR) that we will evaluate. Here, we
compare five techniques against each other — IPD, ISR, SW-only
(PAVM), HW-only, and HW-SW. The resulting power, energy, and
average response time are summarized in Table 4 and Table 5.

First we look at the static techniques. IPD by itself uses much
more power than the other techniques, and it has only a slightly
better average response time than SW-only, HW-only, and HW-
SW approaches, and therefore, is not useful by itself. ISR’s
prohibitively-high average responsive time makes it not practical
to use either by itself. Dynamic techniques perform much better
than these static techniques. Among the three dynamic techniques,
PAVM performs the worst, and HW-SW performs the best in terms
of power savings. For the low memory-intensive workload, HW-—
SW consumes 16.7% less energy than HW-only, and 23.6% less en-
ergy than SW-only. It also has a comparable average response time
(130.47 cycles) to SW-only (128.74 cycles) and HW-only (128.96
cycles). For the high memory-intensive workload, HW-SW con-
sumes 14.1% less energy than HW-only, and 14.7% less energy than
SW-only, and it has only a slightly higher response time (148.64
cycles) than both SW-only (144.45 cycles) and HW-only (145.94
cycles) approaches.

4.3.2 RDRAM

RDRAM is a new memory architecture that has emerged in the
recent years. It has some interesting power-management features.
A question one might ask is how would the result differ if RDRAM
is used instead of DDR in this study. We believe that similar results
can be achieved, as RDRAM has a similar set of power states with
varying transition times, and is organized with multiple entities that
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No Power SW-onl
Management IPD ISR ‘ (PAVM ‘ HW-only ‘ HW-Sw
Energy Consumption 35311J 194.04J 56.73J 114.927 105.33J 87.79J
Average Power 53.24 W 29.81W 8.71W 17.65 W 16.18 W 13.48 W
Average Response Time 114.77 cycles | 126.06 cycles | 1121.73cycles | 128.74 cycles | 128.96 cycles | 130.47 cycles
Delayed Accesses Due to PD 0 6,790,058 0 5,871,024 6,771,680 5,863,568
Delayed Accesses Dueto SR 0 0 2,704,257 1,155 10,111 4,925

(=)

Table 4: Summary of low memory-intensive workload.

may be independently power managed. In fact, RDRAM power
states can be controlled at the device-level, rather than rank, pro-
viding a finer level of control than DDR. This finer-grained level
of control gives RDRAM a significant advantage over DDR and
SDR in embedded and PC systems, where the number of power-
controllable memory units (i.e., DDR ranks or RDRAM devices) is
small, but as we increase the number of power-controllable mem-
ory entities in a system (as in the case of large server systems),
there is a diminishing return. The proposed techniques are directly
applicable to RDRAM memory architecture, but with a slightly
adjusted threshold predictor to suite RDRAM?’s power and perfor-
mance characteristics.

5. RELATED WORK

Recent research has demonstrated that a significant amount of en-
ergy can be saved in computing systems by exploiting power man-
agement capabilities built into modern hardware components. In
particular, a large body of the existing work has focused on reduc-
ing processor energy consumption. Weiser et al. [38] first demon-
strated the effectiveness of using Dynamic Voltage Scaling (DVS)
to reduce power dissipation in processors. Later work [3, 14, 25,
31] further explored the effectiveness of DVS techniques in both
real-time and general-purpose systems.

There is also a large body of work that focused on reducing
power in other system components, including wireless communi-
cation [37, 17, 20], disk drives [23, 5, 21], flash devices [4, 27],
caches [1, 19], and main memory [7, 12, 13, 10, 11, 16], while
others [15, 40, 26, 34] explored system-level approaches to ex-
tend/target the battery lifetime of the system, as opposed to simply
save energy for individual components.

Among power management techniques for main memory, there
are two main types of approaches — hardware and software-
controlled. Among the hardware-controlled approaches, Lebeck et
al. [7, 12] studied the effects of various static and dynamic mem-
ory controller policies to reduce power with extensive simulation
in a single-process environment. In another paper [13], they used
stochastic Petri Nets to explore more complex policies. Delaluz

et al. took a similar approach in [10], where they studied various
flavors of threshold predictors and evaluated their energy implica-
tions. The techniques proposed in this paper are orthogonal to the
works described above and can be used to improve the prediction
accuracy in some of these previously-proposed threshold prediction
mechanisms. However, unlike these previous works, the techniques
proposed in this paper are specifically designed and optimized for a
multitasking environment, as are most of today’s systems. Further-
more, we have also taken into account of various OS effects, which
were shown to be also important in practice [16].

Among the software-controlled approaches, Delaluz et al.[11]
demonstrated a simple scheduler-based power management policy.
Huang et al. [16] later implemented Power-Aware Virtual Memory
(PAVM) to improve upon this work. PAVM modifies the underlying
physical page allocator to make it more energy-efficient by collabo-
rating with the virtual memory through a NUMA management layer
so that the energy footprint of each process is reduced. To cope with
various dynamics in real systems, PAVM leverages advanced tech-
niques, such as library aggregation and page migration. Delaluz
et al.[10] have also proposed a compiler-directed approach, where
power management decisions are statically determined. Due to its
static nature, this approach is not very appropriate for most complex
systems, but may be applicable in some embedded systems where
workloads are more deterministic.

There are advantages and disadvantages in the two types of ap-
proaches. The cooperative technique that we proposed in this paper
offers the best features in both. With minimal help from the system
software, we are able to show that the PMU in the memory con-
troller can more accurately monitor memory traffic and thus more
efficiently managing power. In other research contexts, using soft-
ware and hardware collaboration [33, 2, 6, 24] has also been shown
to be beneficial in terms of improving performance and security,
and providing new functionalities.

6. CONCLUSION

In this paper, we proposed a novel power management technique
that makes use of cooperation between the system software and the



Menagatmont IPD ISR ‘ %\PAA'\?{\‘,', ‘ HW-only HW-sw
Energy Consumption 390.18J 225213 105.31J 130.25J 129.40J 111113
Average Power 56.42 W 3256 W 15.23W 18.83W 18.71W 16.07 W
Average Response Time 134.08 cycles | 144.11 cycles | 909.73cycles | 144.45cycles | 145.94 cycles | 148.64 cycles
Delayed Accesses Dueto PD 0 20,688,949 0 16,242.587 20,641,111 16,228,517
Delayed Accesses Dueto SR 0 0 4,944,750 476 17,357 5,999

Table5: Summary of high memory-intensive workload.

memory controller hardware. It is shown to make a significant im-
provement in the accuracy of the PMU’s threshold prediction logic.
Using a full-system simulator, our HW—SW cooperative approach is
shown to consume 14.2—17.3% less energy than the HW-only tech-
nique and 16.0—25.8% less energy than the SW-only technique. We
used a uni-processor system to explore the feasibility of using this
technique and quantified its benefits. We are planning to extend this
work to multi-processor systems, where a combination of running
processes, instead of a single running process, must be considered.

Furthermore, alternative to this software-assisted hardware
power management technique proposed here, we can also imagine
scenarios where the hardware can also provide feedback to the sys-
tem software to create additional energy saving opportunities. For
example, the hardware can inform the OS how “hot” each of the
physical pages are being accessed, and the OS can use this infor-
mation to re-arrange memory pages within each process’s address
space. This allows us to either (1) run hot ranks hotter and cold
ranks colder to create more energy saving opportunities in the cold
ranks, or (2) balance power dissipation on each rank and remove
hot spots. Additionally, we would also like to explore direct coop-
eration between applications and the PMU. As applications them-
selves know more about their future memory access behavior than
the OS, such information can prove to be beneficial to the memory
controller in its prediction logic, and thus, can be used to further
enhance the proposed power management system.
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