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Abstract— The current IEEE 802.11 Wireless LAN (WLAN) sys-
tems are unable to support real-time applications because the un-
derlying contention-based MAC (Medium Access Control) protocol
causes unpredictable delays. In this paper, we present the imple-
mentation details of a new RT-WLAN device driver module, which
extends the original Linux device driver for the popular Agere
ORiNOCO cards to support soft real-time communications. To our
best knowledge, this is the first effort in providing real-time support
in the WLAN environment at the device driver level. By shifting the
design focus from the MAC layer, which is normally hard-coded in
the NIC (Network Interface Card), to the device driver level, which is
between the system kernel and the MAC layer, our scheme has a clear
advantage. Users can simply replace the original ORiNOCO driver
with RT-WLAN, and then enjoy the benefits of real-time communi-
cations without having to change the NIC firmware or re-compile the
Linux kernel.

RT-WLAN uses two separate queues for real-time and non-real-
time traffic. The real-time queue is served according to the EDF
(Earliest-Deadline-First) policy, while the non-real-time queue is
served in a FIFO (First-In-First-Out) manner. Besides, an adap-
tive traffic smoother is implemented in RT-WLAN to regulate bursty
non-real-time traffic before they are injected into the network, thus
giving higher priority to in-progress real-time transmissions. Exper-
imental results show that the desired real-time support and service
differentiation among multiple real-time sessions are achieved by us-
ing RT-WLAN.

I. I NTRODUCTION

In recent years, the number of laptop and palmtop users has
been increasing drastically, and more and more people are rely-
ing on various wireless networks to communicate with each other
and exchange information. WLAN (Wireless Local-Area Net-
work) is the one that has received the most significant attention,
because it provides higher bandwidth than wide-area cellular sys-
tems and can support multimedia services in addition to the usual
data service. The IEEE 802.11 [1] is the first international stan-
dard for WLANs, and has been widely used in most commer-
cial WLAN products available in the market, e.g., the popular
Agere ORiNOCO (or formerly Lucent WaveLAN) devices [2].
The IEEE 802.11 standard specifies two different MAC (Medium
Access Control) schemes: the contention-based DCF (Distributed
Coordination Function) and the polling-based PCF (Point Coor-
dination Function). At present, only the mandatory DCF is im-
plemented in the 802.11-compliant products, and due to the con-
tention nature of DCF, the current 802.11 systems yield unpre-
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dictable delay characteristics and do not support prioritized trans-
mission of real-time traffic. The IEEE Task Group E has been
working on the new 802.11e standard [3][4], which defines en-
hancements to the current 802.11 MAC to support applications
with QoS (Quality of Service) requirements. One of the new
mechanisms is called the EDCF (Enhanced Distributed Coordi-
nation Function), which realizes the QoS support by introducing
the concept of TCs (Traffic Categories). A single station may im-
plement up to eight transmission queues whose service priorities
are determined by different queue management parameters. Each
queue corresponds to a certain TC. Before the new 802.11e stan-
dard is finalized by the IEEE standardization committee and in-
troduced to the market, the DCF-mode 802.11-compliant WLAN
devices are expected to continue their dominance of the market.
Actually, even after the new 802.11e devices are introduced to
the market, there will still be many legacy 802.11 WLAN devices
deployed in various sectors. In order to support real-time appli-
cations within the current 802.11 systems, appropriate real-time
extensions are essential.

A number of approaches have been proposed to support pri-
oritized transmission of real-time traffic. The authors of [5] pro-
posed a prioritized MAC scheme, by modifying the current 802.11
standard, which allows the real-time control traffic to co-exist
with the multimedia and batch traffic. In [6], the authors pre-
sented a distributed priority scheduling technique that piggybacks
the priority tag of a station’s head-of-line packet onto handshake
and data packets. By monitoring transmitted packets, each sta-
tion maintains a scheduling table which is used to assess the sta-
tion’s priority level relative to other stations. The existing 802.11
backoff scheme is then modified to incorporate this scheduling
table, so as to approximate the ideal schedule. However, both
approaches require changes in the actual NIC (Network Inter-
face Card) firmware, since the MAC functions are normally hard-
coded in a WLAN card. In [7], an adaptive traffic smoothing
scheme was proposed to support real-time traffic in the Ethernet
environment. The key idea is to smooth the non-real-time traffic
and give priority to real-time transmissions. The evaluation results
in [7] show that adaptive traffic smoothing is very effective in pro-
viding soft real-time guarantees over Ethernet. However, the au-
thors implemented this idea in the OS kernel, and thus, users have
to re-compile the OS kernel before the adaptive traffic smoothing
scheme takes effect.

We address this problem at the device driver level; in partic-
ular, we implement an enhanced Linux device driver — called
RT-WLAN — for ORiNOCO cards, which extends the original
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ORiNOCO driver to support soft real-time applications. In con-
trast to the approaches of changing the OS kernel or modifying
the NIC firmware, our scheme has a significant advantage: it can
be used along with the existing OS kernel and protocol stack as
well as the off-the-shelf ORiNOCO devices, so users can sim-
ply replace the original ORiNOCO driver with RT-WLAN and
enjoy the significantly better real-time support. In RT-WLAN,
two separate queues are used for real-time and non-real-time traf-
fic, respectively. The real-time queue is served according to the
EDF (Earliest-Deadline-First) policy [8], while the non-real-time
queue is served in a FIFO (First-In-First-Out) manner. Besides, in
order to have real-time traffic access the shared wireless medium
with higher priority than non-real-time traffic, we borrow the idea
of adaptive traffic smoothing from [7] and implement it as part
of our new device driver. In addition, being close to the actual
physical layer enables us to get more timely feedback about the
transmission results, thus making our approach more responsive.

The rest of this paper is organized as follows. Section II in-
troduces the DCF of the IEEE 802.11 MAC as well as the IEEE
802.11b physical layer (PHY). The implementation details of RT-
WLAN are presented in Section III. Section VI presents and eval-
uates the experimental results, and finally, the paper concludes
with Section V.

II. SYSTEM OVERVIEW

A. DCF of IEEE 802.11 MAC

The DCF, as the basic access mechanism of the IEEE 802.11
MAC, achieves automatic medium sharing among compatible sta-
tions through the use of CSMA/CA (Carrier-Sense Multiple Ac-
cess with Collision Avoidance). A wireless station is allowed to
transmit only if its carrier-sense mechanism determines that the
medium has been idle for at least DIFS (Distributed Inter-Frame
Space) time. Besides, in order to reduce the collision probability
among multiple stations accessing the medium, a station is re-
quired to select a random backoff interval after deferral, or prior
to attempting to transmit another frame after a successful trans-
mission.

The SIFS (Short Inter-Frame Space), which is smaller than
DIFS, is the time interval used between reception of a data frame
and transmission of its Ack frame. Using this small gap between
transmissions within the frame exchange sequence prevents other
stations — which are required to wait for the medium to be idle for
a longer gap (e.g., at least DIFS time) — from attempting to use
the medium, thus giving priority to completion of the in-progress
frame exchange. The timing of successful frame exchanges is
shown in Fig. 1. On the other hand, if no Ack frame is received
within a SIFS interval due possibly to a collision on the wireless
channel, as shown in Fig. 2, the transmitter will contend again for
the medium to re-transmit the frame after an Ack timeout. Ac-
cording to theSpecification and Description Languageformal de-
scription of the IEEE 802.11 MAC operation [1], an Ack timeout
is equal to a SIFS time, plus the Ack transmission time, and plus a
Slot time. Note that the crossed block in Fig. 2 represents a frame
collision.

Moreover, the DCF defines an optional mechanism, which re-
quires the transmitter and receiver exchange short RTS (Request-
To-Send) and CTS (Clear-To-Send) control frames prior to the
actual data frame transmission.
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Fig. 2. Frame re-transmission due to collision

B. Backoff Behavior of IEEE 802.11 DCF

The random backoff interval is in the unit oftSlotTime, and
this random number is drawn from a uniform distribution over
the interval [0,CW], whereCW is the contention window size
and its initial value isaCWmin. In the case of an unsuccess-
ful transmission,CW is updated to [2×(CW+1)−1]. OnceCW
reachesaCWmax, it will remain at this value until it is reset to
aCWmin. In the case of a successful transmission, theCWvalue
is reset toaCWminbefore the random backoff interval is selected.
The average backoff interval before theith transmission attempt,
or equivalently, the (i−1)th re-transmission attempt, denoted by
T bkoff (i), can be calculated by

T bkoff (i) = (1)

min
[
2i−1 · (aCWmin+ 1)− 1, aCWmax

]

2
· tSlotTime.

For the Agere ORiNOCO silver cards used in our experiment,
if the RTS/CTS option is turned off and fragmentation is dis-
abled, the number of frame transmission attempts is limited to 4
(1 ≤ i ≤ 4) before the frame is eventually discarded by the NIC
and a delivery failure indication is sent back to the device driver.

Each station decrements its backoff counter everytSlotTimein-
terval after the wireless medium is sensed to be idle for DIFS time.
If the counter has not reached zero and the medium becomes busy
again, the station freezes its counter. When the counter finally
reaches zero, the station starts its transmission. Fig. 3 illustrates
such an operation of decrementing the backoff counter.
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Fig. 3. An example of data frame transmissions and backoff decrements

C. IEEE 802.11b PHY

The Agere ORiNOCO silver card is designed based on the
IEEE 802.11b PHY [9], which is one of the high-speed extensions
to the IEEE 802.11 and is referred to as HR/DSSS (High Rate Di-
rect Sequence Spread Spectrum). It extends the data transmission
rate to 5.5 Mbps and 11 Mbps using the advanced CCK (Com-
plimentary Code Keying) modulation technique. The frame ex-
change between MAC and PHY is under the control of the PLCP
(Physical Layer Convergence Procedure) sublayer. Table I lists
the related characteristics for the IEEE 802.11b PHY.
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TABLE I
IEEE 802.11B PHY CHARACTERISTICS

Characteristics Value Comments

tSlotTime 20µs Slot time
tSIFSTime 10µs SIFS time
tDIFSTime 50µs DIFS = SIFS + 2× Slot
aCWmin 31 min contention window size
aCWmax 1023 max contention window size
tPLCPOverhead 192µs PLCP overhead

D. MAC/PHY Layer Overheads

In the IEEE 802.11 MAC, each MAC data frame, or MPDU
(MAC Protocol Data Unit), consists of the following components:
MAC header, frame bodyof variable length, andFCS (Frame
Check Sequence). The MAC overheads due to the MAC header
and the FCS are 28 octets in total. Besides, the size of an Ack
frame is 14 octets. During the transmission, a PLCP preamble
and a PLCP header are added to an MPDU to create a PPDU
(PLCP Protocol Data Unit). In the IEEE 802.11b PHY, the PLCP
preamble is 144 bits and the PLCP header is 48 bits, and both are
transmitted at 1 Mbps. So, the PLCP overhead is 192µs.

Therefore, the time for a frame with̀octets data payload to be
transmitted over the IEEE 802.11b PHY at rater (Mbps) is

Tdata(`, r) = tPLCPOverhead+
(` + 28) · 8

r

= 192 +
(` + 28) · 8

r
(µs). (2)

Similarly, the Ack transmission time at rater (Mbps) is

Tack(r) = tPLCPOverhead+
14 · 8

r

= 192 +
112
r

(µs). (3)

III. RT-WLAN

RT-WLAN is implemented by modifying the original Linux
device driver for Agere ORiNOCO cards (orinoco.c and
orinoco cs.c, version 0.08 [10]). The versions of the Linux ker-
nel and the PCMCIA package, which RT-WLAN is based on, are
2.4.12 and 3.1.31, respectively. The key modification is to add
soft real-time extensions to the original driver so that the deadline
requirements of the real-time applications can be better guaran-
teed.

As shown in Fig. 4(a), the original ORiNOCO driver simply
serves the packets in a FIFO (First-In-First-Out) manner with-
out differentiation between RT (Real-Time) and NRT (Non-Real-
Time) traffic. In contrast, RT-WLAN provides separate queues for
RT and NRT traffic, and the service preference is given to the RT
queue. Besides, in order to have most real-time packets meet their
deadlines, we apply the EDF (Earliest-Deadline-First) policy to
the RT queue in RT-WLAN, so that the real-time packets with the
closest deadlines are served first in the RT queue.

Note that the above extension only provides the service differ-
entiation between RT and NRT traffic, as well as among the RT
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Fig. 4. Comparison of two device driver architectures

packets, within the same station. Hence, RT traffic may still suf-
fer high latency due to the potential collisions with other traffic
on the shared wireless medium and the consequent backoff oper-
ations according to the IEEE 802.11 standard. A large burst of
NRT traffic at one station makes it very hard to provide bounded
transmission delays for the RT traffic at another station. To deal
with this problem, we apply adaptive traffic smoothing [7] to NRT
traffic in RT-WLAN. The key idea is to regulate bursty NRT traf-
fic before they are injected into the network, thus giving higher
priority to in-progress real-time transmissions. Since RT traffic
(e.g., multimedia or real-time control applications) usually arrives
pseudo-periodically, it need not be smoothed [7]. The RT-WLAN
architecture is illustrated in Fig. 4(b).

A. User Interface

We have provided well-formulated APIs that are easily usable
by application programmers. An application can indicate whether
the packet it creates is a real-time packet, and specify the corre-
sponding deadline information, if necessary, by using the function
call: setpriority(int packettype, double relativedeadline). The
packettypeparameter can take the value of 0 (for non-real-time
packets) or 1 (for real-time packets). Therelative deadlinepa-
rameter specifies the relative deadline that each real-time packet
should try to meet after it is generated. If a packet is specified
as a non-real-time packet, the value ofrelative deadlineis simply
ignored.

Thesetpriority() function call is implemented by using theset-
sockopt()system call. The real-time and non-real-time packets
are differentiated by setting the TOS (Type-Of-Service) field in
the IP header. The absolute deadline of each real-time packet is
obtained by adding the relative deadline to the current time at the
instant of packet generation, and this deadline value is carried in
the IPOPTIONS field of the IP header. Besides, we extend the
ioctl() system call by which the application programmer can re-
vert back easily to the original ORiNOCO driver.

B. RT Queue and EDF Policy

In RT-WLAN, the real-time packets are served according to the
EDF policy. A packet with a smaller absolute deadline receives
priority over other packets with larger deadlines. Therefore, the
RT queue is maintained by keeping the real-time packets in the
increasing order of their absolute deadlines, and the packet with
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the earliest deadline is always positioned at the head of the RT
queue. Whenever a new real-time packet arrives from the upper
layer, an appropriate position will be found for this new packet so
as to maintain the sorted order.

C. NRT Queue and Adaptive Traffic Smoother

In RT-WLAN, the NRT queue is maintained in a FIFO man-
ner: all the non-real-time packets are served in the order that
they were en-queued. Besides, RT-WLAN requires each packet
to pass through an additional traffic smoother before it is actually
de-queued. This traffic smoother decides whether a non-real-time
packet should be sent directly to the NIC or returned to the NRT
queue for a deferred transmission.

A traffic smoother regulates bursty NRT traffic to reduce the
chance of packet collisions and keeps the network utilization un-
der a certain limit. More specifically, a traffic smoother regulates
the NRT packet stream using a credit bucket, which is the same
as the well-known leaky-bucket regulator [11]. The credit bucket
has two parameters: CBD (Credit Bucket Depth) and RP (Refresh
Period). A credit of CBD bytes are replenished into the bucket
every RP seconds, so the station input limit is given by CBD/RP.
The traffic smoother used in RT-WLAN is adaptive in the sense
that the station input limit may vary according to the current net-
work utilization. It uses a simple adaptation mechanism called the
HIMD (Harmonic-Increase and Multiplicative-Decrease) adapta-
tion as follows. HIMD decreases RP by a fixed constantδ every
τ seconds when the network utilization is low, thus increasing the
station input limit harmonically. The station input limit may be
increased as long as the overall network utilization does not cause
real-time packets to experience larger delays. On the other hand,
whenever a non-real-time packet reaches the traffic smoother, the
traffic smoother will check the time instant when the network uti-
lization was last indicated high and compare it with the current
time. If this time difference falls within a certain boundα, the
traffic smoother assumes that another station is trying to transmit
a real-time packet. In this case, it abstains from transmission by
depleting the current credits and doubling the RP, thus decreasing
the station input limit multiplicatively. The values of CBD, RP,
δ, τ , andα may be modified through the extendedioctl() system
call. The procedural description of the adaptive traffic smoother
is shown in Fig. 5.

Adaptive Traffic Smoother(){
if (Last High Network Utilization Indication.Time
≥ (CurrentTime− α)) {
sendpacketback to queue;
Numberof Credits= 0;
RP= min(RPmax, 2*RP);

}
else if(Numberof Credits> 0) {

return NRTpacket;
}
elsesendpacketback to queue;
return NULL;

}
Fig. 5. Procedural description of the adaptive traffic smoother

Note that, in order to implement such an adaptive traffic
smoother, it is very important to detect a change in the network
utilization. At the device driver level, the estimation of the net-
work utilization can be indirectly obtained either from the colli-
sion status report by the NIC after it detects the packet collisions,
or by measuring the clearing time of the NIC buffer. The latter
one is used in RT-WLAN. The rationale behind it and the related
analysis will be presented next.

D. NIC Buffer Clearing Time: Network Utilization Indicator

An adaptive traffic smoother in the Ethernet environment — for
example, the one presented in [7] — may use the collision status
report as the network utilization indicator, since most Ethernet de-
vice drivers can easily collect the collision status information by
querying the NIC. However, we are dealing with the WLAN envi-
ronment, and the original ORiNOCO driver does not support the
collision status report. Besides, the register details of the Hermes
chip-set used in the ORiNOCO silver cards are not available to
public. In RT-WLAN, we get around this problem by measuring
the NIC buffer clearing time as the transmission delay of a packet,
and also, as the indication of the current network utilization. The
NIC buffer clearing time is measured as the time interval between
when a packet is copied to the NIC buffer and when a success-
ful packet delivery is reported by the NIC to the device driver.
Clearly, our scheme works correctly only if the packets are served
one at a time, i.e., the NIC buffer holds at most one packet at any
time. This is also the way the NIC buffer is used by the original
ORiNOCO driver.

Obviously, when a packet is successfully delivered without
encountering any contention and/or collision on the wireless
medium, the corresponding NIC buffer clearing time is small.
Otherwise, the packet has to wait in the NIC buffer for a longer
time until the wireless medium is cleared. To show how our
scheme works, we ran two experiments, and the results are plot-
ted in Fig. 6. The circle points represent the benchmark case
when only one station is transmitting continuously. The cross
points represent the case when two stations are contending for
the wireless medium. In both cases, the packets are transmitted
at 11 Mbps, the packet size is fixed at 1300 octets, the RTS/CTS
option is turned off, and fragmentation is disabled. We have two
observations. First, the NIC buffer clearing time in the benchmark
case varies in a small range and the average value is less than
1000µs. Second, in the contention case, although some packets
still show small transmission delays that are comparable to the
benchmark case, most of them present much higher transmission
delays than the benchmark case, and there are significant gaps in
between. Reasons for such phenomenon can be explained as fol-
lows.

In the benchmark case, there are no contentions on the wireless
medium, so all the packets are successfully transmitted in their
first attempts. The random backoff interval before the transmis-
sion is in the unit oftSlotTime(20µs) and this random number is
uniformly selected from the minimum contention window [0, 31].
Therefore, the difference between the maximum transmission de-
lay and the minimum transmission delay is 620µs, which is ex-
actly what we observed from Fig. 6. By referring to Fig. 1, the
average packet transmission delay in the benchmark case can be
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calculated by1

T benchmark = tDIFSTime+ T bkoff (1) + Tdata(1300, 11)
+ tSIFSTime+ Tack(1), (4)

whereT bkoff (·), Tdata(·), andTack(·) are given by Eqs. (1), (2),
and (3), respectively. In the contention case, there are three possi-
ble scenarios resulting in extra delay of a packet transmission.

In the first scenario, the wireless channel is busy due to an in-
progress transmission when the packet arrives at the NIC buffer.
The extra waiting time (∆busy) could be any value from 0 to a
full packet transmission time, so it is difficult to distinguish this
scenario from the benchmark case.

In the second scenario, the wireless station freezes its backoff
counter since the other station starts transmitting first. By refer-
ring to Fig. 3, the extra waiting time is given by

∆freeze = Tdata(1300, 11) + tSIFSTime+ Tack(1)
+ tDIFSTime

= 1424 µs. (5)

In the third scenario, the transmitted packet collides on the wire-
less medium and the wireless station has to re-contend for the
channel to re-transmit the packet. By referring to Fig. 2, the aver-
age extra waiting time is given by

∆collision = Tdata(1300, 11) + Ack timeout+ T bkoff (2)
= Tdata(1300, 11) + T bkoff (2)

+ [tSIFSTime+ Tack(1) + tSlotTime]
= 2024 µs. (6)

The cross points between 2000µs and 3500µs in Fig. 6 can be
explained by these two scenarios.

Note that a packet transmission may experience multiple back-
off freezes and/or collisions, thus resulting in even larger extra
delays — for example, the cross points above 3500µs.

Based on the above analysis, in RT-WLAN, we select 2000µs
as the threshold: any NIC buffer clearing time larger than 2000µs
indicates that the current network utilization is high. Actually,

1Based on our calculation, the average transmission delay in the benchmark
case should be around 1800µs. However, it is quite different from our experimen-
tal results (less than 1000µs). This may be due to our mis-interpretation of the
HREG EV TX event [12], which we use as the indication of a successful packet
delivery. Fortunately, the observed delay difference between the benchmark case
and the contention case is still consistent with our analysis. Besides, we assume
that the Ack frames are transmitted at the most conservative rate of 1 Mbps.

using the NIC buffer clearing time as the network utilization indi-
cator is more accurate than using the collision status report, since
packet collision is only one of the above three scenarios that may
cause extra delay of a packet transmission.

E. Packet Scheduler

The procedural description of the packet scheduler is shown
in Fig. 7. It monitors both the RT and NRT queues and gives
priority to the RT queue over the NRT queue. Only NRT traffic is
smoothed in order to keep the station traffic arrival rate — which
includes both RT and NRT traffic — under the station input limit.

Packet Scheduler(){
if (RT Queue.size> 0) {

removethe packetfrom headof RT queue;
sendpacketto NIC;
Numberof Credits= Numberof Credits

− RT Packet.size;
}
else if(NRT Queue.size> 0) {

NRT packet= AdaptiveTraffic Smoother();
if (NRT packet6= NULL) {

sendpacketto NIC;
Numberof Credits= Numberof Credits

− NRT Packet.size;
}

}
}

Fig. 7. Procedural description of the packet scheduler

If the RT queue is not empty, the real-time packet at the head
of the RT queue is immediately transferred to the NIC, regardless
of the number of available credits, and as many credits as the size
of the packet are removed from the credit bucket. So the balance
of credits can be negative. On the other hand, for a non-real-
time packet, the adaptive traffic smoother is called upon to decide
whether it should be transferred to the NIC.

IV. PERFORMANCEEVALUATION

In this section, we experimentally evaluate the effectiveness of
our RT-WLAN device driver. The Agere ORiNOCO silver cards
are used for wireless communications between laptops and are
running in the IBSS (Independent Basic Service Set) ad hoc mode.

For all the traffic sources used in the experiments, packets are
generated in succession and transmitted at 11 Mbps. The packet
size is fixed at 1300 octets, the RTS/CTS option is turned off,
and fragmentation is disabled.2 Moreover, for a real-time packet,
we measure the time interval between when it is generated and
when it is successfully delivered by the NIC. This time interval is
referred to as the latency the real-time packet experiences, which
includes the queuing delay as well as the transmission delay. The
duration of each experiment run is 45 seconds.

2Experimental results, when the RTS/CTS option is turned on and/or fragmen-
tation is enabled, yield very similar observations to what we will present in this
section, and hence, are not included in the paper.
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A. Peer-to-Peer Real-Time Streaming

In this experiment, only two laptops are communicating with
each other. The transmitter has two real-time traffic sources,
namely RT1 and RT2. The purpose is to show the benefit of ap-
plying the EDF policy to the RT queue.

First, we investigate the behavior of the original ORiNOCO
driver. Figs. 8(a) and (b) represent the benchmark case when only
RT1 is activated and the case when both sources are activated, re-
spectively. We can see that RT1 latency in the benchmark case is
always less than 100 ms, and when both traffic sources are acti-
vated, the latency performances of both RT1 and RT2 are equally
affected and deviate significantly from the benchmark case. Based
on this observation, in the following experiments, we set the rel-
ative deadline for RT1 traffic to 140 ms such that all the RT1
packets in the benchmark case will meet the deadline requirement,
while a significant amount of RT1 packets will miss the deadline
when both traffic sources are activated. Then, we vary the relative
deadline for RT2 traffic to see the benefit of applying EDF.
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Fig. 8. Latency comparison for RT traffic with a FIFO queue

Now, we replace the original ORiNOCO driver with RT-
WLAN. Fig. 9 shows the results when the relative deadline for
RT2 traffic is set to 200 ms. The thick solid lines represent the
relative deadlines for both traffic. Due to the less stringent dead-
line requirement of RT2 traffic, a higher transmission priority is
given to RT1 traffic. As a result, less RT1 packets miss their dead-
lines at the expense of RT2 packets experiencing larger latencies.
In Fig. 9, the integer number along the X-axis represents the or-
der of the transmitted packets, which may belong to either RT1
or RT2. We can see that both sub-figures show certain degrees
of data sparseness and the empty positions actually correspond
to the packet transmissions from the other source. Clearly, more
RT1 packets are transmitted. Similar observations can be found in
Fig. 10, where the relative deadline for RT2 traffic is increased to
400 ms, and as expected, even less RT1 packets miss their dead-
lines and more transmission opportunities are offered to RT1.

In order to evaluate the benefit of using an EDF RT queue quan-
titatively, we calculate the deadline miss ratio for RT1 traffic and
show the results in Fig. 11(a). We also count the number of pack-
ets transmitted from either source, from RT1 only, and from RT2
only during the 45-second experiment run, and the results are
shown in Fig. 11(b). The X-axis represents the difference of the
relative deadlines of RT1 and RT2 traffic. Note that, when the
deadline difference is zero, all the packets are actually served in a
FIFO manner, so RT1 and RT2 are equally competing for the ser-
vice. As a result, almost an equal number of RT1 and RT2 packets
are transmitted, and RT1 traffic presents a large deadline miss ra-
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Fig. 9. Latency comparison for RT traffic with an EDF queue
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Fig. 10. Latency comparison for RT traffic with an EDF queue

tio (>0.06). As the deadline difference increases, RT1 is assigned
a higher transmission priority, thus resulting in a smaller dead-
line miss ratio and more shares of bandwidth. On the other hand,
the total number of transmitted packets remains the same regard-
less of the deadline difference. Based on the above observations,
we draw the following conclusion: by applying the simple EDF
policy to the RT queue, we are able to achieve service differen-
tiation among multiple real-time sessions with different deadline
requirements without sacrificing the total throughput.
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Fig. 11. More experimental results for RT traffic with an EDF queue

B. Real-Time Streaming in the Presence of Third-Party Non-Real-
Time Traffic

In this experiment, three laptops are used. Two of them gener-
ate RT and NRT traffic, respectively, and the third laptop serves
as the common receiver to both. RT and NRT traffic are contend-
ing for the shared wireless medium. The purpose is to show the
benefit of applying adaptive traffic smoothing to NRT traffic.

We create two different scenarios in our experiment and com-
pare their latency performances. First, NRT traffic is injected into
the network through the original ORiNOCO driver, and contends
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with RT traffic for the wireless medium without adaptive traffic
smoothing. Second, the original ORiNOCO driver is replaced by
RT-WLAN, and thus, NRT traffic is smoothed before contending
for the wireless medium. The parameters of our adaptive traf-
fic smoother are:α = 10 ms,δ = 100 µs, CBD = 1500 octets,
RPmax = 50 ms,RPmin = 3 ms, andτ = 10 ms. The corre-
sponding results are plotted in Figs. 12(a) and (b), respectively.
We can see that, without adaptive traffic smoothing, RT traffic
experiences much higher latency due to the NRT contention. In
contrast, with adaptive traffic smoothing, the latency performance
of RT traffic is only slightly affected compared to the benchmark
scenario, which is shown in Fig. 8(a). This is because the traf-
fic smoother stops sending non-real-time packets and lowers its
station input limit as soon as it finds out that its on-going packet
transmission experiences contention and/or collision on the wire-
less medium.
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Fig. 12. Latency comparison for adaptive traffic smoothing

We also compare the throughput performances for these two
scenarios, and the results are shown in Fig. 13. We have three ob-
servations. First, without adaptive traffic smoothing, equal num-
bers of real-time and non-real-time packets are transmitted, be-
cause RT and NRT traffic are contending equally for the wireless
medium. Second, with adaptive traffic smoothing, more real-time
packets are transmitted, while still a reasonable number of non-
real-time packets are served when the wireless medium is avail-
able. Third, there is about a 5% drop in the total throughput when
adaptive traffic smoothing is applied. The rationale behind the
drop is that the cautious nature of the adaptive traffic smoother
results in a conservative transmission strategy for non-real-time
packets. Therefore, the wireless medium may not be fully-utilized
under our experimental setup.
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Fig. 13. Throughput comparison for adaptive traffic smoothing

V. CONCLUSION AND FUTURE WORK

In this paper, we present the implementation details of RT-
WLAN, a soft real-time extension to the original ORiNOCO
Linux device driver, which supports the IEEE 802.11b-compliant
ORiNOCO silver cards under the Linux operating system. RT-
WLAN is implemented as a loadable device driver module and
is very easy to deploy. Users can simply replace the original
ORiNOCO driver with RT-WLAN, and then realize soft real-time
communications without having to change the NIC firmware or
re-compile the Linux kernel.

RT-WLAN uses two separate queues for RT and NRT traffic.
The high-priority RT queue is served according to the EDF policy,
while the low-priority NRT queue is served in a FIFO manner. Be-
sides, an adaptive traffic smoother is implemented in RT-WLAN
to regulate bursty NRT traffic before they are injected into the
network, thus giving higher priority to in-progress real-time trans-
missions. Experimental results show that the latency of RT traffic
is only slightly affected even when a significant amount of NRT
network traffic is present, and the service differentiation among
multiple real-time sessions is also achieved.

We plan to extend our work in the following directions. First,
since the focus of RT-WLAN is to give transmission priority to
real-time traffic, so when there is only non-real-time traffic in the
network, the bandwidth utilization may be low because the adap-
tive traffic smoother results in conservative transmission attempts
of non-real-time packets. We are working on the enhancement of
the current traffic smoother to deal with this situation. Second, we
will add multiple non-real-time queues to RT-WLAN, and each
non-real-time queue is followed by a different traffic smoother. In
this way, we may achieve service differentiation among non-real-
time traffic as well, by mimicking the IEEE 802.11e EDCF at the
device driver level.
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