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Abstract embedded controllers execute multiple concurrent computa-

. . tion tasks with strict time constraints (deadlines) that must
EMERA.LD.S (Extensible M|c.rokernel f(.)r Emb.edded, ReAL- he metina predictable manner. Furthermore, these tasks are
time, Distributed Systems) is a real-time microkernel de-

. : I licati h executed on systems with very minimal hardware — slow
signed for small-memory embedded applications. These apqcessors (15-25MHz) with small memories (tens of kilo-
plications must run on slow (15-25MHz) processors with

! : : bytes), often having the entire system on a single integrated
just 32-128 kbytes of memory, eitherkeep poduction @ircuit. Such restricted hardware is needed to keep produc-
costs down in mass-produced systems or to keep weight andi ¢osts down in mass-produced items, and to keep weight
power consumption low. To be feasible for such applica- ,nq hower consumption low in portable and hand-held de-
tions, the OS must not only be small in size (less than 20

- ““vices. The combined requirements of real-time computin
kbytes), but also have low-overhead kernel services. Unlike 9 puting

commercial embedded OSs which rely on carefully-crafted and low-cost, small-memory platforms has created a need for
. e . real-time operating systems (RTOSs) optimized specificall
code to achieve efficiency, EMERALDS takesapproach D g sy ( ) Op P y

i ; . ‘ for the small-memory computing devices.
of re-designing the basic OS services of task scheduling, syn- Unfortunately, most conventional RTOSs are not appli-

chronization, communication, and system call mechanism . pia to small-memory embedded controllers. Commer-

by using characteristics found in small-memory embedded i RTOSS like pSOS [31], QNX [9], and VxWorks [35],
systems, such as small code size argfiori knowledge of ~ 5q || as research RTOSs like HARTOS [27], the Spring
task execution and communication patterns. With these NeWy arnel [29], Harmony [7], and RT-Mach [33] collectively
schemes, the overheads of various OS services are reducegover a wicie range of pla{tforms, from stand-alone systems
20-40% without compromising any OS functionality. to multiprocessors and distributed systems. However, most
of these RTOSs were designed with relatively powerful sys-
1 Introduction tems in mind: processors with several megabytes of memory
i i . o and networks with at least tens of Mbit/s bandwidth. Even
Real-time computing today is no longer limited to large, windows CE, designed for small, hand-held machines, re-
high-powered, expensive apphcat.lons. Ing:reaSIngly, rea|- quires over 200KB ROM for a minimal kernel [23]. As a
time embedded controllers are being used in a wide variety resyt, most conventional RTOSs are not applicable to small-
of small control applications, from engine control in auto- memory embedded controllers.
mobiles, to voice compression in cellular phones and im- Some vendors have targeted small-memory embedded
age stabilization in camcorders. As real-time systems, theseapplications with products like RTXC [6], pSOS Select, and
*The work reported in this paper was supported in part by by & dozen other small, real-time kernels. These RTOSs not
the NSF under Grant MIP-9203895, and by the ONR under Grant Only provide predictable services, but also are efficient and
N00014-99-1-0465. Any opinions, findings, and conclusions or small in size, with kernel code size under 20 kbytes. Their
recommendations are those of the authors and do not necessarilapproach is to take a core set of OS services (task schedul-
reflect the views of the funding agencies. ing, semaphores, timers, interrupt handling, etc.), implement
"Khawar M. Zuberiis now with Microsoft Corporation. them using optimized, carefully-crafted code, and package
— — _ . them into an OS.
Permission to make digital or hard copies of all or part of this work EMERALDS is an RTOS designed specifically for small-
for personal or classroom use is granted without fee provided that memory embedded systems. Like the above-mentioned

copies are not made or distributed for profit or commercial advan- . )
tage, and that copies bear this notice and the full citation on the first commercial RTOSs, EMERALDS also provides a core set

page. To copy otherwise, to republish, to post on servers or to re-Of OS services in a small-sized kernel, but our approach
distribute to lists, requires prior specific permission and/or a fee.  for achieving efficiency in EMERALDS is to rely not on
SOSP-17 12/1999 Kiawah Island, SC carefully-crafted code, but on new OS schemes and al-
©1999 ACM 1-58113-140-2/99/0012 $5.00 gorithms. We focus primarily on real-time task schedul-
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ing, task synchronization through semaphores, and intra-
node message-passihgiVe use some basic characteristics

common to all small-memory embedded systems such as .~

small kernel and application code size amgriori knowl-
edge of task communication and execution patterns to lower
OS overheads without compromising OS functionality, thus
making more computational resources available for the ex-
ecution of application tasks. Some of these characteristics
are also found in other real-time applications, so some of the

schemes we present (such as the task scheduler) have appli-

cability beyond small-memory embedded systems.
In the next section, we describe the general characteris-

tics of small-memory embedded systems and the constraints

they place on RTOSs. We then provide a brief overview of
EMERALDS and show how it differs from other RTOSs.

Sections 5—7 describe and evaluate our real-time scheduling,
synchronization, and message-passing schemes, before con-

cluding in Section 8.

2 Application requirements

Our target embedded applications use single-chip micro-
controllers with relatively slow processing cores running at
15-25 MHz. Typical examples are the Motorola 68332, In-
tel 1960, and Hitachi SH-2 controllers. All ROM and RAM

are on-chip which limits memory size to 32—-128 kbytes, thus
limiting useful RTOS kernels to around 20 kbytes code-size.

These applications are either uniprocessor (such as cellular

phones and home electronics) or distributed, consisting of 5—
10 nodes interconnected by a low-speed (1-2 Mbit/s) field-
bus network (such as automotive and avionics control sys-
tems).

We expect a typical workload on these systems to consist
of 10-20 concurrent, periodigeal-time tasks, with a mix
of short 10ms), medium (10—100ms), and longlO0mMs)
period tasks. As with all embedded control applications,
interrupt and 1/O services must be provided by the RTOS.

Small-memory embedded systems do not use disks, so file

system support is not needed in the RTOS. Most other OS
services, including task synchronization, task communica-
tions, and clock services must be provided.

3 Overview of EMERALDS

EMERALDS is a microkernel RTOS written in the C++
language. Following are EMERALDS’ salient features as
shown in Figure 1.

o Multi-threaded processes:

— Full memory protection for threads.
— Threads are scheduled by the kernel.

Device
drivers

Multi-threaded
user processes

Processes/Threads |[Communication| Synchronization
Scheduling pr(_)tocol Semaphores
Memory management | & chitecture | condition Variables
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I1PC Timers | Interrupt Kernel
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Figure 1. EMERALDS' architecture.

e Semaphores and condition variables for synchroniza-
tion, with priority inheritance.

e Support communication protocol stacks [41].

¢ Highly optimized context switching and interrupt han-
dling.

o Support for user-level device drivers.

Of these basic services, the last two deal with hardware de-
vices such as the on-chip timer and the processor’s interrupt
handling mechanism, so their overhead is dictated primar-
ily by the hardware, and there is little that the OS designer
can do to reduce overhead. The remaining services, how-
ever, present opportunities for innovative optimizations. The
thrust of EMERALDS is to come up with new optimized so-
lutions for embedded systems for the well-known problems
of scheduling, synchronization, and communication.

To provide all these services in a small-size kernel, we
make use of certain characteristics of embedded applica-
tions. First of all, our target applications are in-memory.
Moreover, embedded application designers know which re-
sources (threads, mailboxes, etc.) reside at which node, so
naming services are not necessary, allowing considerable
savings in code size. Also, nodes in embedded applica-
tions typically exchange short, simple messages over field-
buses. Threads can do so by talking directly to network de-
vice drivers, so EMERALDS does not have a built-in pro-

e IPC based on message-passing, mailboxes, and sharedocol stack. Further details regarding protocol stacks, de-

memory.

!Inter-node networking issues are discussed in [37, 40] and are
not covered in this paper.

2Periodic tasks are the major workload of most real-time sys-
tems.

278

vice drivers, EMERALDS system calls, and other techniques
used to reduce code size in EMERALDS can be found in
[38]. With these techniques, EMERALDS provides a rich

set of OS services in just 13 kbytes of code (on Motorola
68040).



4 Howis EMERALDS different? minimizes run-time overhead, but introduces several prob-

. . . lems as follows:
Microkernel optimization has been an active area of research

in recent years, buittle effort has been made in addressing o Entire schedules must be calculated offline, often

the needs of real-time systems, let alone small-memory em- by hand, and are difficult and costly to modify as
bedded ones. In microkernels designed for general-purpose  task characteristics change through the design process.
computing such as Mach [1], L3 [20], and SPIN [3], re- Heuristics can be used [12], but result in non-optimal

searchers focused on optimizing kernel services such as solutions (i.e., feasible workloads may get rejected).
thread management [5, 2], IPC [19], and virtual memory

management [25]. Virtual memory is not a concern in our  * High-priority aperiodic tasks receivpoor response-

target applications. Thread management and &#a€im- time because their arrival timesrg#ot be anticipated
portant, but sources of overhead are different for embedded off-line.
real-time systems, necessitating different optimization tech-

¢ Workloads containing short and long period tasks (as
is common in control systems) or relatively prime pe-
riods, resultin very large time-slice schedules, wasting
scarce memory resources.

niques.

Thread management is a concern in typical microkernels
because either the kernel itself has a large number of threads
and switching overhead, and stack use by these threads must
be minimized [5], or, in case of user-level threads, the kernel
must export the correct interface to these threads [2]. Neithersets, cyclic schedulers are no longer suitable for task
of these apply here, since although EMERALDS has kernel- gcneqyiing.  The alternative is to turn to priority-driven
managed threads, the kernel itself uses no threads, and usel.hodulers likeate-monotonidRM) [17, 21] andearliest-
threads enter protected kernel mode to simply call kernel yeaqjine-first(EDF) [28, 21] which use task priorities to
procedures, simplifying interfaces. So, in EMERALDS, op- - aye run-time scheduling decisions. They do not require
timizing thread management takes the form of ensuring low- 5, costly off-line analysis, can easily handle changes in the
overhead transition between user and kernel modes and proy,qrkioad during the design process, and can handle aperi-

viding efficjent fea"“me schedgling of threads. . odic tasks as well. However, they do incur some overheads,
IPC is important in most microkernels because RPC is \,hich we seek to minimize in EMERALDS.

used to communicate with user-level servers. Frequently-  The task scheduler's overhead can be broken down

. Ynto two componentstun-time overheadndschedulability
are implemented as user-level servers. But embedded SySg, erhead The run-time overhead is the time consumed by
tems do not need these services. In EMERALDS, only inter- o execution of the scheduler code, and is primarily due

node networking is implemented at the user-level and even g managing the queues of tasks and selecting the highest-
this server is accessed only infrequently (becausties are  iority task to execute. Schedulability overhead refers to

Ioosely-c;)upled). Ir&ste_ad, IPCkis important in emzeﬂde_d the theoretical limits on task sets that are schedulable under
syhstems or Intra-node, inter-task communication and this Is 5 given scheduling algorithm, in the ideal case where run-
what WE addrer:]ss n EMERHA‘LDS' . h . time overheads are not considered. Together, these over-
_ Task synchronization has not received much attention pe4qs jimit the amount of useful real-time computation that
in the design of most microkernels, but it is of crucial im- can be run on a
; . . processor.

portance in embedded systems. The little research done in" \ye analyze the sources of these overheads in RM (which
th;ls area has focused p“fg?‘“'y on mult|pr0|cesks_ors [22, 34], statically assigns higher priority to shorter period tasks [17,
whereas we are intereste |fn UnIprocessor foc |r:cg. I 21]) and EDF (which dynamically changes priority, giving

In summary, design of an optimized OS for small- ighest priority to the earliest-deadline task [28, 21]), and

memory real-time embedded applications is a largely under- yeyise 4 hybrid scheduler that gives better performance than
explored area of research. With embedded systems quicklyy i

becoming part of everyday life, designing OSs targeted
specifically toward embedded applications has become im-

As embedded systems use increasingly-complex task

portant, and EMERALDS is a first step in this direction. 5.1 Run-time overhead
The run-time overhead\(t) has to do with parsing queues of
5 CSD scheduler tasks and adding/deleting tasks from these queues.

When a running task blocks, the OS must update some
a structures to identify the task as being blocked and then
pick a new task for execution. We call the overheads asso-
ciated with these two steps thwocking overhead\t, and
theselection overheadkt,, respectively. Similarly, when a
blocked task unblocks, the OS must again update some inter-
nal data structures, incurring tiwablocking overhead\t,, .

The OS must also pick a task to execute (since the newly-
unblocked task may have higher priority than the previously-
executing one), so the selection overhead is incurred as well.

Scheduling real-time tasks to ensure that all tasks meet their ;¢
deadlines is an important part of any RTOS. In small embed-
ded systems, the efficiency of this scheduling takes on great
importance, since processing resources are so limited. Until
recently, embedded application programmers have primar-
ily used cyclic time-slice scheduling techniques in which the
entire execution schedule is calculated off-line, and at run-
time, tasks are switched in and out according to the fixed
schedule. This eliminates run-time scheduling decisions and
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Each task blocks and unblocks at least oeaeh period
(unblocks at the beginning of the period, and blocks after
executinge; time), incurringAt, + At, + 2At, overhead
per period. Overhead is greater if blocking system calls are
used; although it is task-dependent, for simplicity, we as-
sume half the tasks use one blocking call per period, thus

incurring an average per-period scheduler run-time overhead

of At = 1.5(At, + At, + 2At,). The workload utilization
is now calculated a8 = 57", (¢; + At)/P,.

Now, we calculateAt for both EDF and RM policies.
In EMERALDS, we have implemented EDF as follows. All
blocked and unblocked tasks aregtd in a single, unsorted
queue® A task is blocked and unblocked by changing one
entry in the task control block (TCB), stat;, and A¢,, are

O(1). To select the next task to execute, the list is parsed and

the earliest-deadline ready task is pickedAsg is O(n).

RM schedulers usually have a queue of ready tasks,
sorted by task priority, and blocking/unblocking involves
deleting/inserting tasks into this sorted queue. In EMER-
ALDS, we use a different implementation that permits some
semaphore optimizations (Section 6), while maintaining
similar run-time costs. All (blocked and unblocked) tasks
are keptin a queue sorted by task priority. A poiritigrh-
estP points to the first (highest-priority) task on the queue
that is ready to execute, sit, is O(1). Blocking a task
requires modifying the TCB (as in EDF) and setthigh-
estP to the next ready task. The latter involves scanning
the list, so in the worst casat, is O(n). Unblocking, on
the other hand, only requires updating the TCB and com-
paring the task’s priority with that of the one pointed to by
highestP , changing the pointer if needed. Thus{, is
O(1).
For RM, At, = O(n) whereas for EDFAt; = O(n).
Aty is counted only once for every task block/unblock op-
eration whileAt; is counted twice, which is whAt =
1.5(Aty + At, + 2At;) is significantly less for RM than
itis for EDF, especially when is large (15 or more).

The EDF and RM run-time overheads for EMERALDS

measured on a 25MHz Motorola 68040 processor are shown

in Table 1. Also shown for comparison is an implementation
of RM using a sorted heap. Unlessis very large (58 in
this case), the total run-time overhead for a heap is more
than for a queue. As most real-time workloads do not have

| [|[EDF - queug RM - queue]  RM - sorted heap |

Aty 1.6 1.0 + 0.36n 0.4 + 2.8[log, (n + 1)]
At 1.2 1.4 1.9 4 0.7[log, (n + 1)]
At | 1.2 40.25n 0.6 0.6

Table 1. Run-time overheads for EDF and RM (values are
in us; n is the number of tasks). Also shows measurements
for RM when a heap is used instead of a linked list. Measure-
ments made using a 5MHz on-chip timer.

r5missesdeajline

Figure 2. RM scheduling of the workload in Table 2.

¢; (assume that a task’s relative deadline equals its period).
Then, this workload has a utilizatiéh= Y"""_, ¢;/P;. EDF
can schedule all workloads witlh < 1 (ignoring run-time
overheads)[21], s&/* = 1 for EDF. Thus, EDF has zero
schedulability overhead.

RM, on the other hand, can hav& < 1. Previous work
has shown that for RM{/* = 0.88 on average [17]. As
an illustration of nonzero schedulability overhead, consider
the workload shown in Table 2. Each tagkhas deadline
d; = P;.

1 2 3 4 5 6 7 8 9 10
4 5 6 7 8 20 30 50 100 13
1.0 1.0 1.0 1.0 05 05 05 05 05 Q.

P (ZITIS)
¢; (Ms)

Table 2. A typical task workload with U = 0.88. It is feasible
under EDF, but not under RM.

Figure 2 shows what happens if this workload is sched-
uled by RM. In the time intervel, 4), tasksr —r4 execute,
but beforer; can run,r is released again. Under RM,—r4
have higher priority thams (because of their shortét), so
the latter cannot run until all of the former execute for the

enough tasks, heap implementations are avoided in schedulesecond time, but by ther; has missed its deadline. This

structures.

5.2 Schedulability overhead

The schedulability overhead is definedlas U*, wherelU*
is theideal schedulable utilizatian For a given workload
and a given schedulet/* is the highest workload utiliza-

makes the workload infeasible under RM and illustrates why
RM has a non-zero schedulability overhead.

On the other hand, if EDF is used to schedule the same
workload, s will run beforer;—r4 run for the second time
(becausel; = 8 is earlier than the deadlines of second invo-
cations ofr;—r,) and the workload will be feasible.

tion that the scheduler can feasibly schedule under the |deal5_3 CSD: a balance between EDF and RM

conditions that the scheduler’s run-time overhead is ignored.
Consider a workload of tasks,{r; : i = 1,2,...,n},
where each task; has a period?; and an execution time

®Simple sorted queues had¥r) insert/delete times, and per-
form poorly as prioties change often due to septere use (Sec-
tion 6). Heaps have long run times due to code complexity despite
O(log n) insert/remove times sinaeis rarely very large.
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Going back to the workload in Table 2, notice thatis the
“troublesome” task, i.e.,drause of this task the workload is
infeasible under RM. Tasks;—r, have much longer peri-
ods, so they can be easily scheduled by any scheduler, be it
RM or EDF.



We used this observation as the basis of the combinedblock/unblock operation. For DP tasks, this becofiés) +
static/dynamic (CSD) scheduler. Under CSbxrs will be O(r) + O(1) + O(r) = 20(r), equivalent to an-long
scheduled by EDF so thag will not miss its deadline. The list parsed twice, whereas the overhead for FP tasks equals
remaining taskss—r o will use the low-overhead RM policy.  O(n — r) + O(1) + O(1) + O(r) = O(n) (n-long list
The run-time overhead is less than that of EDF (since the parse once). Therefore, overhead of CSD is significantly less
EDF queue’s length has been halved), and since in the worsthan that of EDF f-long list parsed twice) and only slightly
case, CSD simply reduces to EDF, schedulability overhead greater than that of RMn{long list parsed once), as is cor-
is same as for EDF (i.e., zero, hence much better than RM).roborated by performance measurements in Section 5.7.
Thus, the total scheduling overhead of CSD is significantly With lower total overheads, CSD can schedule some task
less than that of both EDF and RM. sets that are not schedulable under EDF or RM when run-

The CSD scheduler maintains two queues of tasks. Thetime overheads are included. A detailed analysis of workload
first queue is thelynamic-priority(DP) queue which con-  schedulability tests for CSD, EDF, and RM that take into
tains the tasks to be scheduled by EDF. The second queu&ccount run-time overheads is presented in [36].
is the fixed-priority (FP) queue which contains tasks to
be scheduled by RM (or any fixed-priority scheduler such
as deadline-monotoni§l8], but for simplicity, we assume

RM). The CSD’s main advantage is that even though it uses EDF
Given a workload{r; : 7 = 1,2,...,n} sorted by RM- to deliver good schedulable utilization, it reduces run-time

priority (shortest-period-first), let, be the “troublesome”  overhead by keeping the DP queue short. As the number of

task, the longest period task that cannot be scheduled by RMtasks in the workload increases, the DP queue length also in-

Then, tasks -, are placed in the DP queue whitg; ;- creases thus degrading CSD performance. We need to mod-

7, are in the FP queue. Priority is given to the DP queue, ify CSD to keep run-time overhead under control as the num-

since these tasks have higher RM-priority (shorter periods) ber of tasks: increases.

than those in the FP queue. A counter keeps track of the

number of ready tasks in the DP queue. When the sched- . .

uler is invoked, if the counter is non-zero, the DP queue is 5.5.1 Controlling DP queue run-time overhead

parsed to pick the earliest-deadline ready task. Otherwise,ynder CSD, the execution time of each task in the DP queue
the DP queue is skipped completely and the scheduler picksincreases by\¢(DP) which depends on length of the DP
the highest-priority ready task from the FP queue (pointed to queuer. At¢(DP) increases rapidly as increases, which

5.5 Reducing CSD run-time overhead

by highestP ). degrades performance of CSD.
Our solution is to split the DP queue into two queues
5.4 Run-time overhead of CSD DP1 and DP2. DP1 has tasks with higher RM-priority, so the

scheduler gives priority to DP1. Both DP1 and DP2 are ex-
The run-time overhead of CSD depends on whether the taskpected to be significantly shorter than the original DP queue
being blocked or unblocked is a DP or FP task. There are so that the run-time overhead of the modified scheme (called
four possible cases to consider: CSD-3 for its three queues) should be well below that of the

1. DP task blocksAt, is O(1) (same as for EDF). The original CSD scheme (henceforth called CSD-2).
worst caseAt, occurs when there are other ready tasks ]
in the DP queue, requiring a scan through the DP queue5.5.2  Run-time overhead of CSD-3

to select the next task. S, = O(r). The run-time overheads for CSD-3 can be derived using the
2. DP task unblocksAt, isO(1). Atleast one ready task ~ same reasoning as used for CSD-2 in_Section 5.4. Th.e over-
is in the DP queue (the one that was just unblocked), heads for different cases are shown in Table 3, wheise
always requiring a parse of thelong DP queue, so  the length of the DP1 queue andis the total number of
Aty = O(r). DP tasks (sa- — ¢ is the length of DP2 queue). The run-
. . time overhead associated with DP1 task®is), a signifi-
3. EP task blocksAt, is the same as for RM, but with  cant improvement ove®(2r) for CSD-2. Since DP1 tasks
a shorter queue, sai, = O(n — r). Since an FP  haye the shortest periods in the workload, they execute most
task was executing and all DP tasks have higher prior- frequently, and the reduction in their overheads greatly im-
ity, the DP queue cannot have any ready tasks at thisproves CSD-3 performance over CSD-2.
point. The scheduler just seledtgghestP  from the The run-time overhead of DP-2 tasks is reduced as well
FP queue, sit, = O(1) (same as for RM). from O(2r) in CSD-2 toO(2r — ¢). Similarly, the overhead

4. FP task unblocksAt, is O(1) (same as for RM). The for FP tasks is reduced frofd(n) t0 O(n — g).
DP queue may or may not have ready tasks, but for

the worst-case\{,, we must assume that it does, so 5.5.3 Allocating tasks to DP1 and DP2
Aty = O(r).

If all DP tasks had the same periods, we could split them
From this analysis, the total scheduler overhead for evenly between DP1 and DP2. Each queue’s length will be
CSD is Atb + Ats_block + Atu + Ats_unblock per task

281



| | | DP1 | DP2 | FP |
Task Aty O(1) O(1) O(n—r)
Blocks At, | O(r —q) O(r) O(1)
Task Aty O(1) O(1) O(1)
Unblocks| At. O(q) O(r—q) | O(r—q)

[ TotalOverhead | O(r) [O@2r—¢q) [O(n—q) |

Table 3. Run-time overheads for CSD-3. The values as-
sume that the DP2 queue is longer than the DP1 queue
(max(g,r — q) = r — q) which is typically the case.

half that of the original DP queue, cutting the run-time over-
head of scheduling DP tasks in h&lfVhen tasks have dif-

gueues. The two extreme cases (one queuenagdeues)
are both equivalent to RM while the intermediate cases give
a combination of RM and EDF.

We would expect CSD-4 to have slightly better perform-
ance than CSD-3 and so on (as confirmed by evaluation re-
sults in Section 5.7), although the performance gains are ex-
pected to taper off once the number of queues gets large and
the increase in schedulability overhead (from having multi-
ple EDF queues) starts exceeding the reduction in run-time
overhead.

For a given workload, the best number of queues and the
best number of tasks per queue can be found through an ex-
haustive search, but this is a computationally-intensive task
and is not discussed further in this paper. We demonstrated

ferent periods, two factors must be considered when dividing the usefulness of the general CSD scheduling framework and

tasks between DP1 and DP2:

e Tasks with the shortest periods are responsible for the
most scheduler run-time overhead. For example, sup-

poseAt = 0.1 ms. A task withP; = 1 ms will be
responsible for\t/P; = 10% CPU overhead, whereas
a task with”; = 5 ms will be responsible for only
2%. We should keep only a few tasks in DP1 to keep
At(DP1) small. DP2 will have more tasks making
At(DP2) > At(DP1), but since DP2 tasks execute
less frequentlyy . At/ P; for the two queues will be
approximately balanced.

Once the DP tasks are split into two queues, they no
longer incur zero schedulability overhead. Although
tasks within a DR queue are scheduled by EDF, the

gueues themselves are scheduled by RM (all DP1 tasks

have statically higher priorities than DP2 tasks), so

CSD-3 has non-zero schedulability overhead. Task al-

location should minimize theumof the run-time and

schedulability overheads. For example, consider the

workload in Table 2. Suppose the least run-time over-
head results by putting tasks—r, in DP1 and the rest
of the DP tasks in DP2, but this will causg to miss

its deadline (see Figure 2). Puttingin DP1 may lead

to slightly higher run-time overhead, but will lower
schedulability overhead so thaf will meet its dead-
line.

how it can be beneficial in real systems.

5.7 CSD performance

We evaluate the usefulness of CSD in scheduling a wide vari-
ety of workloads by comparing CSD to EDF and RM. In par-
ticular, we want to know which is the best scheduler when all
scheduling overheads (run-time and schedulability) are con-
sidered. Table 1 shows run-time overhead for EDF and RM
on a 25MHz Motorola 68040 processor; the same overheads
apply to CSD DP and FP queues respectively, though fewer
tasks are in these queues (onky r in FP queue, etc.). CSD-

z also requires an additional x 0.55us to parse the list of
gueues to find a queue with ready tasks.

Our test procedure involves generating random task
workloads, then for each workload, scaling the execution
times of tasks until the workload is no longer feasible for
a given scheduler. The utilization at which the workload be-
comes infeasible is called theeakdown utilizatiofil 3]. We
expect that with scheduling overheads considered, CSD will
have the highest breakdown utilization.

Because scheduling overheads are a function of the num-
ber of tasks+#) in the workload, we tested all schedulers for
workloads ranging froome = 5 ton = 50. For eachn, we
generate 500 workloads with random task periods and exe-
cution times. We scale the execution times until the work-
loads becomes infeasible to find the average breakdown uti-
lizations.

The run-time overhead of priority-based schedulers de-

At present, we use an off-line exhaustive search (using i
the schedulability test described in [36]) to find the best pos- P€Nds not only on the number of tasks, but on the periods
sible allocation of tasks to DP1, DP2, and FP queues. The©f tasks as well (since the schedult_ar is invoked every time a
search runs i (n?) time for three queues, taking 2-3 min- Fask blqcks or unblocks). Short period tasks lead to frequent
utes on a 167MHz Ultra-1 Sun workstation for a workload invocation of the scheduler, resulting in high run-time over-
with 100 tasks. head, whereas long-period tasks produce the opposite result.
In our tests, we vary not only the number of tasks, but the pe-
riods of tasks as well. For each base workload (with a fixed
n), we produce two additional workloads from it by divid-
ing the periods of tasks by a factor of 2 and 3. This allows
us to evaluate the impact of varying task periods on various
scheduling policies.

*Increasing the number of queues also increases the overhead of ~ To mimic the mix of short and long period tasks expected
parsing the prioritized list of queues, but our measurements showedin real-time embedded systems, we generate the base task
this increase to be negligible (less than a microsecond on Motorolaworkloads by randomly selecting task periods suchdhah
68040) when going from two to three queues. period has an equal probability of being single-digit (5-9ms),

5.6 Beyond CSD-3

The general scheduling framework of CSD is not limited to
just three queues. It can be extended to havg ..., n
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Figure 3. Average breakdown utilizations for CSD, EDF, and Figure 5. Average breakdown utilizations for CSD, EDF, and
RM for base workloads. RM when task periods are scaled down by a factor of 3.
1000 from CSD-3 to CSD-4. This is because evaough the run-
time overhead continues to decrease, the increase in schedul-

%00y ability overhead almost nullifies the reduction in run-time
& overhead.
5 a0 CSD-4 could be expected to give significantly better
8 breakdown utilization than CSD-3 only if workloads can
5 be easily partitioned into four queues without increasing

007 schedulability overhead, but this is rarely the case. DP1

tasks have statically higher priority than DP2 tasks, DP2
600, T e tasks have higher priority than DP3 tasks, and so on. As
Number of Tasks the number of queues increases, the schedulability overhead

starts increasing from that of EDF to that of RM. This is why
. o we would expect that as increases, performance of CSD-
E'&%\r]ﬁe‘:}'tﬁsvlfri%ﬁ)g;e::‘edg‘é‘g};&"c'fo%v“g%s fgrfgcstc?r’ cl)EszF, and « will quickly reach a maximum and then start decreasing
P y ' because of reduced schedul@pand increased overhead of
managinge queues (which increases bBy5us per queue).
double-digit (10-99ms), or triple-digit (100-999ms). Fig- Eventually, as: approaches:., performance of CSD-will
ures 3-5 show breakdown utilizations for base workloads degrade to that of RM. . o
and when task periods are divided by 2 and 3, respectively. _ The results presented here confirm the superiority of the
Each point represents the average breakdown utilization for CSD scheduling framework as compared to EDF and RM.
500 workloads with a fixedh. In Figure 3, task periods are ~ The results show that even though CSD-2 suffers from high
relatively long (5ms—1s). The run-time overheads are low fun-time overhead for large, CSD-3 overcomes this prob-
which allows EDF to perform close to its theoretical lim- 1em without any significant increase in schedulability over-
its. Even then, CSD performs better than EDF. CSD-4 has head. This way, CSD-3 delivers consistently good perform-
17% lower total scheduling overhead for= 15 and this ance over a wide range of task workload characteristics.
increases to more than 40% for= 40 as EDF’s strong de- ~ Increasing the number of queues gives some further im-
pendency om begins to degrade its performance. provement in performance, but the schedulability overhead
Figure 4 is for periods in the 2.5-500ms range. For these Starts increasing rapidly so that using more than three queues
moderate length periods, initially EDF is better than RM, Yields only a minimal improvement in performance.
but then EDF’s run-time overhead increases to the point that
RM becomes superior. For = 15, CSD-4 has 25% less g Efficient semaphore implementation
overhead than EDF, while far = 40, CSD-4 has 50% lower
overhead than RM (which in turn has lower overhead than Object-oriented (OO) programming is ideal for designing
EDF for this largen). real-time software, as it models nicely the real-world enti-
Figure 5 shows similar results. Task periods range from ties, such as sensors, actuators, and controllers, that real-time
1.67-333ms, and these short periods allow RM to quickly systems deal with: the object’s internal data represents the
overtake EDF. Nevertheless, CSD continues to be superiorphysical state (temperature, pressure, position, RPM, etc.)
to both. and the object’'s methods allow the state to be read or modi-
Figures 3-5 also show a comparison between three vari-fied. These notions of encapsulation and modularity greatly
eties of CSD. They show that even though a significant per- simplify the software design process reducing real-time soft-
formance improvement is seen from CSD-2 to CSD-3 (espe-ware to a collection of threads of execution, that invoke the
cially for largen), only a minimal improvement is observed methods of various objects [11].
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Conceptually, the OO paradigm is very appealing, but E

does incur some costs. Object methods must synchronize X N

access to object data and ensure mutual exclusion, typically T A U

done through semaphores [4, 8, 10]). As semaphore calls 1 \ c, //' N o

are made in every method invocation, semaphore operations Y / AN

are among the most heavily-used OS primitives when OO T, ﬂ ‘—t'

design is used. This calls for new and efficient schemes for 1me

implementing semaphore locking in EMERALDS. thread = = > context  L:Lock U: Unlock
execution switch semaphore semaphore

Previous work in lowering the overhead of semaphore
operations has focused on either relaxing the semaphore Ser, ure 6. A tvpical scenario showing thread T atternotin
mantics to g_et better performance. [3(.)] or coming up with togllock a seme%?lore already held by tghread 1. Z)Tm is arl?unq
new semantics and new synchronization policies [32]. The related thread which was executing while 7> was blocked.
problem with this approach is that such new/modified se-
mantics may be suitable for some particular applications, but
usually do not have wide applicability. unblockTs

We take an approach of providing full semaphore seman-  context switchC; (7 to 75)
tics (with priority inheritance [26]), but optimizing the im- (7> executes and calls acquisem())
plementation of these semaphores by exploiting certain fea- ~ do priority inheritance(> to 71)
tures of embedded applications. We note that the follow- ~ blockT>
ing discussion primarily deals with semaphores used as bi-,  contextswitchCs (7> to T1)
nary mutual-exclusion locks (mutexes), butis more generally ({1 €xecutes and calls releasem())

. . undo priority inheritance ofy
applicable to counting semaphores as well. unblockTs

context switchCs (77 to 7%)
6.1 Standard implementation

The standard procedure to lock a semaphore can be summaEigure 7. Operations involved in locking a semaphore for
rized as follows: the scenario shown in Figure 6

if (sem locked) {

do priority inheritance; must be removed and reinserted according to their new prior-
add caller thread to wait queue; ity. We have addressed both context switch elimination and
block;  /* wait for sem to be optimization of the Pl step in EMERALDS.
released */
f’ock sem: 6.2 Implementation in EMERALDS

Going back to Figure 7, we want to eliminate context switch
C5 [39]. We can do this by lettind@} execute, rather than
switching to7% immediately following the unblocking event
E. 17 willgo on to release the semaphore &@ndcan be acti-
vated at this point, saving. (Figure 8). This isimplemented

as follows. As part of the blocking call just precediag

quire _sem() , we instrumentthe code (using a code parser
described later) to add an extra parameter indicating which
semaphorés intends to lock. When everit occurs and’

is to be unblocked, the OS checkssifis available or not.

If S is unavailable, then priority inheritance fraf to the
current lock holdefl; occurs right hereTs is added to the
waiting queue fotS and it remains blocked. As a result, the
scheduler pickg} to execute — which eventually releases

— and75; is unblocked as part of thislease _sem() call

by 77. Comparing Figure 8 to Figure 6, we see that context
switchC’; is eliminated. The semaphore lock/unlock pair of
operations now incur only one context switch instead of two,
resulting in considerable savings in execution time overhead
(Section 6.4).

We also want to optimize the two PI steps for FP tasks,
each of which take€(n — r) time with normal queue ma-
nipulation. The first Pl stegl{ inherits7:’s priority) is eas-
ily optimized by using the observation that, accordin@ts

Priority inheritance [26] is needed in real-time systems
to avoid unbounded priority inversion [32]. Without it,
a medium-priority task may indefinitely block a higher-
priority task waiting for some low-priority task holding a
needed semaphore.

We are most interested in worst-case overheads, which
occur when some threatl, invokes theacquire _sem()
call on a semaphore already locked by some lower priority
thread7}. Figure 6 shows a typical scenario for this situa-
tion. Threadl, wakes up (after completing some unrelated
blocking system call) and then callsquire _sem() . This
results in priority inheritance and a context switctiig the
current lock holder. Aftefl} releases the semaphore, its pri-
ority returns to its original value and a context switch occurs
to 7. These steps are outlined in Figure 7.

Two context switche({,; andC'5) are directly due to the
acquire _sem() call. As context switches incur a signif-
icant overhead, eliminating some of these context switches
will greatly reduce run-time overhead. Another area of im-
provement is in the priority inheritance (PI) steps. For DP
tasks, the PI steps takg(1) time, since the DP tasks are
not kept sorted. However, for tasks in the FP queue, each
of the two PI steps will také& (n — r) time, since the tasks

284



E
TX P Cl
SN U
Tl
N\
B \CS
Switchto T1 \
T2 instead of T2 +’_
L time
thread — — » context L:Lock U: Unlock
execution switch semaphore semaphore
Figure 8. The new semaphore implementation scheme.

Context switch C5 is eliminated.

6.2.2 Analysis of new scheme

From the viewpoint of schedulability analysis, there can be
two concerns regarding the new semaphore scheme (refer
back to Figure 8):

1. What if threadl> does not block on the call preceding
acquire _sem() ? This can happen if evert has
already occurred when the call is made.

2. Is it safe to delay execution @ even though it may
have higher priority thafi} (by doing priority inheri-
tance earlier than would occur otherwise)?

Regarding the first concern, i, does not block on the

new priority, its position in the FP queue should be just ahead call precedingacquire _sem() , then a context switch has

of 73’s position. So, instead of parsing the FP queue to find
the correct position to inseff;, we insert/; directly ahead
of Ty, reducing overhead tO(1).

We want to reduce the overhead of the second PI §tep (
returns to its original priority) ta>(1) as well. In EMER-
ALDS, we accomplish this by switching the ptisns of 73
andT5 in the queue as part of the first Pl operation wfign
inherits7%’s priority. This puts/ in the correct position ac-
cording to its new priority whil&/%; acts as a “place-holder”
keeping track off}’s original position in the queue. Then
the question is: is it safe to pUt in a position lower than
what is dictated by its priority? The answer is yes. As long
as/y stays blocked, it can be in any positionin the quélie.
unblocks only wher/; releases the semaphore, and at that
time, we switch the positions &f; and7% again, restoring
each to their original pridgties. With this scheme, both PI
operations také (1) time.

One complication arises if; first inherits7s’s priority,
then a third threads attempts to lock this semaphore dhd
inherits73’s priority. For this case/s becomes/’s place-
holder andl; is simply put back to its original positionin the

already been saved. For such a situatiBnwill continue

to execute until it reacheacquire _sem() and a con-
text switch will occur there. What our scheme really pro-
vides is that a context switch will be saved either on the
acquire _sem() call or on the preceding blocking call.
Where the savings actually occur at run-time do not really
matter to the calculation of worst-case execution times for
schedulability analysis.

For the second concern, the answer is yes, it is safe to
let 77 execute earlier than it would otherwise. The concern
here is thaf/, may miss its deadline. But this cannot hap-
pen becausander all circumstanced; must wait for7} to
release the semaphore bef@kecan complete. So, from the
schedulability analysis point of view, all that really happens
is that chunks of execution time are swapped betviéesnd
T» without affecting the completion time Gf,.

6.3 Applicability of the new scheme

Going back to Figure 8, suppose the lock holderblocks
after event?”, but before releasing the semaphore. With stan-

queue. This involves one extra step compared to the simpledard semaphored, will then be able to execute (at least,
case described initially, but the overhead is il ). until it reachesacquire _sem() ), but under our scheme,

Note that these optimizations on the Pl operations were T, stays blocked. This gives rise to the concern that with
possible because our scheduler implementation keeps bothhis new semaphore schen®, may miss its deadline.
ready and blocked tasks in the same queue. Had the FP queue |n Figure 8,7, had priority lower than that of (call
contained only ready tasks, we could not have kept the place-this case). A different problem arises if; has higher pri-
holder task in the queue. ority than7h (call it caseB). Suppose semaphoreis free
when event? occurs. Then/: will become unblocked and
it will start execution (Figure 9). But befofg, can callac-
quire _sem() , 71 wakes up, preempts,, locks S, then
In EMERALDS, all blocking calls take an extra parameter blocks for some evenfl; resumes, callacquire _sem() ,
which is the identifier of the semaphore to be locked by the and blocks becausg is unavailable. The context switch
upcomingacquire _sem() call. This parameter is set to is not saved and no benefit comes out of our semaphore
—1 if the next blocking call is noacquire _sem() . scheme.

Semaphore identifiers are statically defined (at compile  Both of these problems occur when a thread blocks while
time) in EMERALDS as is commonly the case in OSs for holding a semaphore. These problems can be resolved
small-memory applications, so it is fairly straightforward as follows. First, by making a small modification to our
to write a parser which examines the application code and semaphore scheme, we can change the problem inigase
inserts the correct semaphore identifier into the argumentto be the same as the problem in calseThis leaves us with
list of blocking calls just precedingcquire _sem() calls. only one problem to address. By looking at the larger pic-
Hence, the application programmer does not have to maketure and considering threads other than jlisend 75, we
any manual modifications to the code. can then show that this problem is easily circumvented and

our semaphore scheme works for all blocking situations that
occur in practice, as discussed next.

6.2.1 Code parser
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Figure 9. If a higher priority thread 7) preempts T3, locks
the semaphore, and blocks, then T incurs the full overhead
of acquire _sem() and a context switch is not saved.

6.3.1 Modification to the semaphore scheme

The problemiillustrated in Figure ®nessitates a small mod-
ification to our scheme. We want to somehow bl@gkvhen
the higher-priority thread? locks S, and unblocki; when
T releasess. This will prevent; from executing whileS

Tx A
/ Ag
VA B U
T —X— " —x
1 L B\ A A
, AN ’ \
P ' / \
T, s Switchto T1 \‘—X \
instead of T2 S \
. \
T T2 stgys blocked; \
2 switchto Ts C
L time
— thread — — > context L:Lock U: Unlock B: Block S Signa
execution switch sem. sem.

Figure 10 . Situation when the lock holder 7; blocks for a
signal from another thread 7-.

Blocking for external events:This includes all triggers

not generated by executing code, such as interrupts and ex-
ternal hardware status. External events can be either periodic
or aperiodic. For periodic events, polling is usually used

is locked, which makes this the same as the situation in caseto interact with the environment and blocking does not oc-

A.

Recall that when event occurs (Figure 9), the OS first
checks ifS is available or not, before unblockirig. Now,
let's extend the scheme so that the OS adggo a spe-
cial queue associated with This queue holds the threads
which have completed their blocking call just precedacg
quire _sem() , but have not yet calledcquire _sem() .

ThreadT; will also get added to this queue as part of
its blocking call just precedingcquire _sem() . When
Ty callsacquire _sem() , the OS first removed; from

cur. Blocking callsare used to wait for aperiodic events,
but it does not make sense to have such calls inside an ob-
ject. There is always a possibility that an aperiodic event
may not occur for a long time. If a thread blocks waiting
for such an event while inside an object, it may keep that
object locked for a long time, preventing other threads from
making progress. This is why the usual practice is to not
have any semaphores locked when blocking for an aperiodic
event. In short, dealing with external events (whether pe-
riodic or aperiodic) does not affect the applicability of our

this queue, then puts all threads remaining in the queue in asemaphore scheme under the commonly-established ways of

blocked state. Then, whéer callsrelease
OS unblocks all threads in the queue.
With this modification, the only remaining concern (for
both casest andB) is: if execution off% is delayed like this
while other threads (of possibly lower priority) execute, then
T> may miss its deadline. This concern is addressed next.

_sem() , the

6.3.2 Applicability under various blocking situations
There can be two types of blocking:

o Wait for aninternal event, i.e., wait for a signal from
another thread after it reaches a certain point.

o Wait for anexternalevent from the environment. This
event can be periodic or aperiodic.

Blocking for internal events: This case includes waiting

on all events generated directly by some executing threads,
including releasing semaphores and messaging. The typicaP

scenario for this type of blocking is for thredd to enter
an object (and lock semaphoff then block waiting for a
signal from another thredfl,. Meanwhile, 75 stays blocked
(Figure 10). But it is perfectly safe to deldy like this (even

if 7 is lower in priority than73) becauseéls cannot lock
S until 73 releases it, and} will not release it until it re-
ceives the signal frorfi. Letting7; execute earlier leads to
T; releasingS earlier than it would otherwise, which leaves
enough time fofl; to complete by its deadline.
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handling external events.

6.4 Semaphore scheme performance

Our semaphore scheme eliminates one context switch and
optimizes the priority inheritance mechanism for FP tasks, so
the performance of our scheme depends on whether the rele-
vant tasks are in the DP or FP queue, as well as on the num-
ber of tasks in the queue. Figure 11 shows the semaphore
overheads for tasks in the DP queue as the number of tasks
inthe queue are varied from 3 to 30. Since the context switch
overhead is a linear function of the number of tasks in the DP
gueue (because akt;), the acquire/release times increase
linearly with the queue length. But the standard implementa-
tion’s overhead involves two context switches while our new
scheme incurs only one, so the measurements for the stan-
dard scheme have a slope twice that of our new scheme. For
a typical DP queue length of 15, our scheme gives savings
f 11us over the standard implementation (a 28% improve-
ment), and these savings grow even larger as the DP queue’s
length increases.

For the FP queue, the standard implementation has a lin-
early increasing overhead while with the new implementa-
tion, the overhead is constant (because both priority inheri-
tance and scheduler task selection overheaddi¢ time).

Also, one context switch is eliminated. As a result, the ac-
quire/release overhead stays constant at;29.4or an FP
gueue length of 15, this is an improvement of 1&4r 26%



60.0 ‘ ‘ Because of these disadvantages, application designers
«—+ Sandard implementation are typically forced to use global variables to exchange in-
= ---= New implementation formation between tasks. This is an unsound software de-
] sign practice because reading andting these variables is

not regulated in any way and can introduce subtle, hard-to-
trace bugs in the software.

The state messagparadigm [14] provides the perform-
ance of global variables while avoiding the pitfalls. State
messages use global variables to pass messages between
tasks, but these variables are managed by code generated

2000 100 200 300 automatically by a software tool, not by the application de-
Number of Threads signer. In fact, the application designer does not even know
that global variables are being used: the interface presented
Figure 11 . Worst-case performance measurements for DP to the programmer IS almost the same as the mailbox-based
tasks. The overhead for the standard implementation in- message-passing interface. .
creases twice as rapidly as for the new scheme. We have implemented state messages in EMERALDS,
optimizing the basic scheme to reduce execution overhead
and memory consumption. EMERALDS includes mailbox
based message passing as well, since state messages are not
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Acquire/ Release times (us)
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e——e Standard implementation iy .

=---= New implementation meant to replace traditional message-passing, but are meant
50.0 f ) as an efficient alternative in a wide range of situations.
400 | ] 7.1 State message semantics

State messages solve the single-writer, multiple-reader com-
munication problem. One can imagine that state message
“mailboxes” are associated with the senders, not with the re-
.0 00 200 200 ceivers: only one task can send a state message to a “mail-
Number of Threads box” (call this thewriter task), but many tasks can read
the “mailbox” (call these theeadertasks). This way, state
message mailboxes behave very differently from traditional
mailboxes, so we will henceforth call theBMmailboxes
The differences are summarized below.
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Acquire/ Release times (us)
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Figure 12 . Worst-case performance measurements for FP
tasks. The overhead for the standard implementation in-
creases linearly while new scheme has a constant overhead.

¢ SMmailboxes are associated with the writers. Only one
over the standard implementation. writer may send a message to an SMmailbox, but mul-

In general, our improved semaphore scheme gives per- tiple readers can receive this message.
the tasks involved in locking and unlocking the semaphore
are in the DP or FP queue and the length of the queue. ¢ Reads do not consume messages, unlike standard mail-
boxes for which each read operatipops one message

7 State messages for inter-task off the message queue.

communication ¢ Both reads and writes are non-blocking. This reduces
- . . . the number of context switches suffered by application
The traditional mechanism for exchange of information be- tasks.

tween tasks is message-passing using mailboxes. Under this
scheme, one task prepares a message, then invokes a syst
call to send that message to a mailbox, from which the mes-e?j'2 Usefulness
sage can be retrieved by the receiver task. While this scheme real-time systems, a piece of data such as a sensor reading
is suitable for certain purposes, it has two major disadvan- js valid only for a certain duration of time, after which a new
tages. reading must be made. Suppose tagkeads a sensor and
suppliesthereading totask If - sends two such messages
sor such as the Motorola 68040. Since tasks in em- 0 2. then the first message is useless because the second
bedded applications usually need to exchange severalMeSSage has a more recent and up-to-date sensor reading. |f
thousand messages per second, this overhead is unadraditional mailboxes with queues are used for communica-
ceptable. tion, thenm, must first read the old s.ensor.readlng before
it can get the new one. Moreover, if multiple tasks need
o If a task needs to send the same message to multiplethe same sensor reading, must send a separate message
tasks, it must send a separate message to each. to each.

¢ Passing one message may take 50-196n a proces-
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State messages streamline this entire process. An SM-or state messages including the calculatiotvdr the case
mailbox.S'M 1 will be associated with, and it will be known when both readers and writers are residing on the same CPU.
to all tasks thats M/ 1 contains the reading of a certain sen- Then, we describe a system call included in EMERALDS to
sor. Every timer; reads the sensor, it will send that value support state messages.
to SM 1. Tasks which want to receive the sensor value will

erform individual read operations @i/ 1 to receive the ; ;
Pnost up-to-date reading. pEven71'1f has sent more than one 7.4 State message implementation
message t&M 1 between two reads by a task, the reader Let B be the maximum number of bytes the CPU can read
task will always get the most recent messagehaiit hav- or write in one instruction. For most processofs, = 4
ing to process any outdated messages. More importantly, if abytes. The tooMessageGerproduces customized code for
reader does two or more reads between two writes pthe the implementation of state messages depending on whether
reader will get the same message each tivitaout block- the message lengthexceedss or not.
ing. This makes perfect sense in real-time systems because The case forl,. < B is simple. MessageGenassigns
the data being received by the readettii$\slid, up-to-date, oneL-byte global variable to the state message and provides
and useful for calculations. macros through which the writer can write to this variable

The single-writer, multiple-reader situation is quite com- and readers can read from it. Note that for this simple case,
mon in embedded real-time systems. Any time data is pro- it is perfectly safe to use global variables. The only com-
duced by one task (may it be a sensor reading or some calplication possible for a global variable of length B is to
culated value) and is to be sent to one or more other tasks,have one writer accidentally overwrite the valueitten to
state messages can be used. Butin some situations, blockinghe variable by another writer. But this problem cannot oc-
read operations are stilegessary such as when a task must cur with state messages because, by d&fin there is only
wait for an event to occur. Then, traditional message-passingone writer.
and/or semaphores must be used. Hence, state messages do For the case of > B, MessageGerassigns anV-deep
not replace traditional message-passing for all situations, butcircular buffer to each state message. Each slot in the buffer
they do replace it for most inter-task communication require- is I, bytes long. Moreovereach state message has a 1-byte

ments in embedded applications. index/ which is initialized to 0. Readers always read dlot
the writer always writes to slat + 1, and/ is incremented
7.3 Previous work on state messages only after the write is complete. In this way readers always

get the most recent consistent copy of the message.
Theoretical work on data sharing without synchronization

was first presented by Lamport [16]. State messages wereCa|culating buffer depttV: Now, we address the issue
first used in the MARS OS [14] and have also been imple- Gfhow 10 setiv, the depth of the buffer. It is possible that
mented in ERCOS [24]. The state message implementation, reader starts reading skoof the buffer, is preempted after
used in thgse systems as des_crlbed in [15] is as follows. Thereading only part of the message, and resumes only after the
problem with using global variables for passing messages is,yriter has done: number of write operations on this mes-

that a reader may read a half-written message since there i%age. Then)N must be greater than the largest vaiuean
no synchronization between readers and writers. This prob-;ye-

lem is solved by using atV-deep circular buffer for each
state message. An associated pointer is used by the writer N = max(2, Zpmae + 1).
to post messages, and used by readers to retrieve the latest
message. With a deep enough buffer, the scheme can guartet maxReadTime be the maximum timeyreader can take
antee that data will not be corrupted while it is being read by to execute the read operation (including time the reader may
a reader, but a larg®’ can make state messages infeasible stay preempted). Because all tasks must complete by their
for our limited-memory target applications. deadlines (ensured by the scheduler), the maximum time any
The solution presented in [15] limit§ by having read-  task can be preemptedds— ¢, whered is its deadline and
ers repeat the read operation until they get uncorrupted datac jts execution time. Ifc, is the time to execute the read
This saves memory at the cost of increasing the read timeoperation, then maxReadTimed — (c—cp).
by as much as several hundred microseconds, even under the  The largest number of write operations possible during
assumption that writers and readers run on separate procesmaxReadTime occur for the situation shown in Figure 13
sors with shared memory. With such an architecture, itis not when the first write occurs as late as possible (just before
possible for a reader to preempt a writer. But we want to the deadline of the writer) and the remaining writes occur
use state messages for communication between readers angs soon as possible after that (right at the beginning of the
writers on the same CPU without increasing the read over- writer’s period). Then,
heads. For this situation, depending on the relative deadlines
of readers and writersy may have to be in the hundreds to maxReadTime- (P, — du)
ensure correct operation. Tmar — 1= { P, J
Our solution to the problem is to provide OS support for
state messages to reduteo no more than 5-10for all pos-  where P,, andd,, are the writer's period and deadline, re-
sible cases. In what follows, we describe our implementation spectively. Then)V can be calculated using,,,. .
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maxReadTime 3 8 Conclusions

} 1 } } } } ., Small-memory embedded applications are not only be-

d, P time coming more commonplace (automotive, home electronics,
avionics, etc.), but the complexity of these applications is in-
creasing as well. As a result, embedded applications which

Figure 13. Calculation of #m.,. Write operations ; .
are denoted by X. Excluding the first write, there are previously managed the hardware resources directly now
|(maz ReadTime — (Py —dw))/Pu] = 4 Writes, S0 zmas = 5. need embedded RTOSs to handle the increased complex-
ity of the application. These RTOSs must be efficient and
| [State messagéMailboxes) smagl in size”to be feasiblel_onf the SI%W/cheap_plroceEschjrs
used in small-memory applications. Commercial embed-
f:gg:v(es b)(/étBelig/tes) 335 2 17%05 SS ded RTOSs rely on optimized code for achieving efficiency,
receive _slow (8 bytes 448 o but in the design of EMERALDS, we took a different ap-
proach. We identified key OS services which are respon-
sible for a large portion of the OS overhead seen by appli-
Table 4. Overheads for sending and receiving 8-byte mes- cations and re-designed these services using new schemes
sages. which exploit certain characteristics common to all embed-

ded applications. In the area of task scheduling, we pre-

sented the CSD scheduler which creates a balance between
Slow readers Ifitturns out that one or more readers have static and dynamic scheduling to deliver greater breakdown
long periods/deadlines (call thestow readers) and as are- utilization through a reduction in scheduling overhead of as
Sult, z 4. is too large (say, 10 or more) and too much mem- much as 40% compared to EDF and RM. For task synchro-
ory will be needed for the buffer, then EMERALDS provides nization, we presented a new implementation for semaphores
a system call which executes the same read operation as dewhich eliminates one context switch and reduces priority
scribed above, but disables interrupts so that copying theinheritance overhead to achieve 20-30% improvement in
message from the buffer becomes an atomic operation. Thissemaphore lock/unlock times. For message-passing, EMER-
call can be used by the slow readers while the faster readersALDS uses the state-message paradigm which intl#so
use the standard read operation. By doing thisdepends /5 the overhead of mailbox-based message passing for mes-
only on the faster readers and memory is saved. The disad-sage sizes typical in embedded applications. Unlike previous
vantage is that the system call takes longer than the standardchemes for state messages, our scheme bounds the RAM
read operation. But this system call is invoked only by slow overhead by providing OS support for state messages. All of
readers, so it is invoked infrequently and the extra overheadthis has been implemented within just 13 Kbytes of code.
per second is negligible. Note that the write operation is un- EMERALDS has been developed and evaluated primar-

changed no matter whether the readers are slow or fast. ily on the Motorola 68040 processor. We have also ported
it to the PowerPC 505, the Super Hitachi 2 (SH-2), and the
7.5 State message performance Motorola 68332 microcontroller, the last two of which are

popular in automotive control applications. EMERALDS is
Table 4 shows a comparison between the overheads foralso being evaluated by the Scientific Research Laboratory of
state messages and for mailbox-based message-passing dford Motor Company for use in automotive engine control.
a 25MHz Motorola 68040. The measurements are for mes- They are comparing EMERALDS and various commercial
sage sizes of 8 bytes which are enough to exchange sensoRTOSs, focusing on basic OS overheads related to interrupt
readings and actuator commands in embedded control appli-handling, context switching, event signaling, and timer ser-
cations. vices.

Most of the overhead for the state message operations  In the future, we plan to focus on networking issues. We
is due to copying the message to and from the SMmailbox, have already investigated fieldbus networking among a small
whereas mailbox-based IPC has many other overheads asiumber (5—10) of nodes [37, 40]. Next, we will investigate
well (allocation/deallocation of kernel data structures, ma- ways to efficiently and cheaply interconnect a large number
nipulation of message queues, etc.), which is why state (10—100) of clusters of embedded processors. Each cluster
messages clearly outperform mailboxes for small messagecan be a small number of nodes connected by a fieldbus. The
lengths typical in embedded applications. For example, if an clusters must be interconnected using cheap, off-the-shelf
application exchanges 5000 8-byte messages per second (astetworks and new protocols must be designed to allow ef-
sume 1000 of these areaeived by tasks with long periods, ficient, real-time communication among the clusters. This
i.e., they must useeceive _slow ), then mailboxes give type of networking is needed in aircraft, ships, and facto-
an overhead of 118ms/s or 11.8% whereas using state mesries to allow various semi-independent embedded controllers
sages results in an overhead of only 24ms/s or 2.4%. This(some of which may be small-memory while others may not
overhead decreases even further if one message has multibe) to coordinate their activities.
ple recipients: for mailboxes, a separand is needed for
each recipient while only orgend is enough for state mes-
sages.
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