
Real-Time Computing: A New Discipline 
of Computer Science and Engineering 

~~ ~ 

KANG G. SHIN, FELLOW, IEEE, AND PARAMESWARAN RAMANATHAN, MEMBER, IEEE 

Invited Paper 

This paper surveys the state of the art in real-time computing. 
It introduces basic concepts and identifies key issues in the design 
of real-time systems. Solutions proposed in literature for  tackling 
these issues are also briejy discussed. 

I. INTRODUCTION 
Real-time computing has emerged as an important disci- 

pline in computer science and engineering. Many of the key 
issues identified in [95] have received widespread attention 
(e.g., scheduling), but there are still many (some old and 
some new) issues that need to be resolved. The main 
objective of this paper is to survey the state of the art in 
real-time computing and identify issues that warrant further 
investigation. 

A .  W h a t  is Real-Time Computing? 

There are three major components and their interplay 
that characterize real-time systems. First, ‘lime” is the 
most precious resource to manage in real-time systems. 
Tasks must be assigned and scheduled to be completed 
before their deadlines. Messages are required to be sent and 
received in a timely manner between the interacting real- 
time tasks. The correctness of a computation depends not 
only on the logical correctness but also on the time at which 
the results are produced. Second, reliability is crucial, since 
failure of a real-time system could cause an economical 
disaster or loss of human lives. Third, the environment 
under which a computer operates is an active component 
of any real-time system. For example, for a drive-by-wire 

Manuscript received July 13, 1993. This work was supported in part 
by the Office of Naval Research under Grants N00014-92-5-1080 and 
N00014-91-J-1115, and by the National Science Foundation under Grants 
MIP-9203895 and MIP-9009154. Any opinions, findings, and conclusions 
or recommendations expressed in this paper are those of the authors and 
do not necessarily reflect the views of the funding agencies. 

K. G. Shin is with the Department of Electrical Engineering and 
Computer Science, University of Michigan-Ann Arbor, Ann Arbor, MI 
48 109-2122. 

P. Ramanathan is with the Department of Electrical and Computer 
Engineering, University of Wisconsin-Madison, Madison, WI 53706- 
1691. 

IEEE Log Number 9214151. 

system it is meaningless to consider on-board computers 
alone without the automobile itself. 

A real-time application is usually comprised of a set of 
cooperating tasks. The tasks are often invoked/activated at 
regular intervals and have deadlines by which they must 
complete their execution. In each invocation, a task senses 
the state of the system, performs certain computation (e.g., 
for derivation of a control law), and if necessary, sends 
commands to change and/or display the state of the system. 
For example, in an automobile application, a task may 
sense the pressure from the brake pedal and the speed of 
the individual wheels, perform computation to determine 
if a wheel is locked, and then activate antilock braking 
actions by changing the position of the valves in the 
system. Likewise, in an aircraft-control application, a task 
may monitor the current position of the throttle, perform 
computation based on the sensed position, and then change 
the thrust of an engine by altering the fuel injected to 
it. 

These tasks are referred to as periodic tasks. A common 
feature of periodic tasks is that they are time-critical in the 
sense that the system cannot function without completing 
them in time. For instance, in the automobile application, 
if the task does not activate antilock braking within a short 
interval after a wheel is locked, the vehicle is likely to enter 
a spin which, in tum, could result in an accident. Similarly, 
in the aircraft application, if the thrust is not regulated in 
time, the plane may crash and result in loss of human lives. 
It is, therefore, very important for the computer system 
to ensure that the deadlines of the critical tasks are met 
regardless of the other conditions in the system. 

Of course, not all tasks in a real-time application arrive 
at regular intervals. Some tasks are activated only when 
certain events occur, and they are commonly referred to 
as aperiodic tasks. For example, a system reconfiguration 
task may be activated only when an errodfault is detected 
by the system. Since the events may not always occur at 
regular intervals, the corresponding tasks also do not arrive 
at regular intervals. If the event is time-critical, then the 

6 

00 18-92 19/94$04.00 0 1994 IEEE 

PROCEEDINGS OF THE IEEE, VOL. 82, NO. I ,  JANUARY 1994 



corresponding aperiodic task will have a deadline by which 
it must complete its execution. On the other hand, if the 
event is not time-critical, then the corresponding aperiodic 
task will not have any deadline, but it must be serviced as 
soon as possible without jeopardizing the deadlines of the 
other tasks. 

Based on the above discussion, deadlines of real-time 
tasks can be classified as either hard, firm, or soft. A 
deadline is said to be hard if the consequences of not 
meeting it can be catastrophic. Periodic tasks usually have 
deadlines which belong to this category. A deadline is said 
to be firm if the results produced by the corresponding 
task cease to be useful as soon as the deadline expires, 
but consequences of not meeting the deadline are not very 
severe. The deadlines of many aperiodic tasks belong to 
this category, e.g., transactions in a database system 1331. 
A deadline which is neither hard nor firm is said to be soft. 
The utility of results produced by a task with a soft deadline 
decreases over time after the deadline expires. 

At this point, it is probably natural to ask where do the 
deadlines come from or how does one know whether a 
deadline is hard, firm, or soft. The deadlines come from the 
application. For example, consider an air-defense system 
that is monitoring the sky for incoming enemy missiles. 
Due to the nature of the application, the timing constraints 
are such that the incoming enemy missile must be destroyed 
within 15 s of detection [%I. This, in tum, imposes dead- 
lines on other tasks which either detect, identify, engage, 
or launch an intercept missile. For instance, an incoming 
missile must be identified with 0.2 s of detection, and if 
necessary, an intercept missile must be engaged within 5 
s after detection and launched within 0.5 s of engagement 
[58].  These task deadlines will in turn impose deadlines 
on their subtasks, which will then impose deadline on their 
subtasks, and so on. 

The above example also highlights another important 
characteristic of real-time applications. Since every incom- 
ing enemy missile must be destroyed without fail, the 
behavior of the controlling real-time computing system 
must be predictable. That is, it should be possible to show at 
design time that all the timing constraints of the application 
will be met as long as certain system assumptions are 
satisfied. For example, suppose the only assumption about 
the system is that the total number of faults at any given 
time is less than or equal to a threshold f .  Then, the system 
is predictable if one can demonstrate at design time that 
all the timing constraints will be satisfied as long as there 
are f or fewer faults. Since the need for predictability has 
significant impact on the design of real-time systems, it will 
be discussed at more length in Section I-B. 

In addition to timing and predictability constraints, tasks 
in a real-time application also have other constraints one 
normally sees in traditional non-real-time applications. For 
example, the tasks may have: 

resource constraints: a task may require access to 
certain resources other than the processor, such as 
I/O devices, communication networks, data structures, 
files, and databases; 

precedence constraints: a task may require results from 
one or more other tasks before it can start its execution; 
and 
dependability/performance constraints: a task may 
have to meet certain reliability, availability, and/or 
performance requirements. 

B .  What is Predictability? 
As indicated earlier, the notion of predictability is very 

important to real-time systems. However, the meaning of 
predictability may vary from one application to another 
or even from one task to another. In a simple system, 
predictability means that it is possible to demonstrate at 
design time that constraints of all tasks can be met with 
100% certainty. This, however, requires one to know the 
exact characteristics of all tasks a priori. For example, one 
would have to know a priori the total number of tasks as 
well as the computation and resource requirements of all 
tasks at all time. Furthermore, one would have to know 
the expected changes in the environment over time because 
the environment can significantly affect the behavior of the 
system. Needless to say, it is unlikely that one would have 
all this information at design time. 

For more complex systems, the semantics of predictabil- 
ity varies from one task to another. Some critical tasks 
may still require a 100% guarantee that their constraints 
will be satisfied. Periodic tasks with hard deadlines usually 
belong to this category. As discussed above, complete 
characteristics of these tasks would have to be known 
a priori. Other tasks may be satisfied with either prob- 
abilistic or run-time deterministic guarantees. The word 
“probabilistic guarantee” can also have multiple semantics. 
In some cases, it means that a certain fraction of tasks 
are guaranteed to meet their constraints. In other cases, it 
means that a given task has a certain probability of meeting 
its constraints. Note that, in some cases, these two notions 
are equivalent. 

In contrast, “run-time deterministic guarantee” means that 
when a task is activated the system determines whether or 
not the task’s constraints can be satisfied without jeopardiz- 
ing the guarantees provided to other tasks. If the constraints 
can be satisfied, then the task is accepted and the task 
is given a 100% guarantee of meeting the constraints. 
On the other hand, if the constraints cannot be satisfied, 
the task is not accepted by the system. Consequently, at 
design time, one cannot predict which task will meet all its 
constraints. However, while the system is in operation, each 
task knows whether its constraints can be satisfied. This 
type of guarantee is often used for dynamically arriving 
aperiodic tasks or dynamic load sharing. 

It is important to note that deadline guarantees are 
possible only if task characteristics like the execution and 
amval times of tasks are given a priori. It is difficult in 
practice to obtain exact information of task characteristics, 
so the worst case values are assumed or derived from 
extensive simulations, testing, or other means. These values 
may not be “true” worst case values and the actual values 
may exceed them on some rare occasions. However, the 

SHIN AND RAMANATHAN: REAL-TIME COMPUTING I 



15 21 0 5  

a d e 

Deadline 3 1 Deadline 16 

b a d 

Fig. 1. Example of a real-time application. 

e system designer will still use the assumed worst case values, 
since there is no other altemative. Chodrow et al. [ 161 called 
such an event a specification violation and proposed to use 
an on-line monitor to record violations. This record can 
later be used to modify the assumed worst case values. 

All aspects of the system must be appropriately designed 
to provide any of the above guarantees. The architecture 
of each node, the communication subsystem, the operating 
system, and the programming languages have to support the 
notion of guarantee at all levels of abstraction. The rest of 
this paper outlines how the notion of guarantee is supported 
by various components of a real-time system. 

11. SCHEDULING 
Given a set of real-time tasks and the resources in the 

system, task assignment and scheduling is the process of 
determining where and when each task will execute. For 
example, consider a real-time application with six tasks 
a. b ,  . . . , f with precedence and timing constraints as shown 
in Fig. 1. In this figure, the vertices represent the tasks 
and the directed arcs represent the precedence relation. For 
instance, tasks a and h must complete before task d can 
begin, because there are directed arcs from a to d and from 
b to d. Each vertex has a weight associated with it which 
represents the time required to execute the corresponding 
task. The timing constraints are such that tasks e and f 
must complete within 31 and 16 time units, respectively, 
assuming that all tasks are ready to execute at time 0 subject 
to their precedence constraints. 

Figure 2(a) and (b) shows two possible schedules for 
this application on a system with two processors. In Fig. 
2(a), tasks b, c, and f are assigned to one processor and 
the remaining tasks are assigned to the other processor. On 
the first processor, task h executes from time 0 to 5 ,  task 
c executes from time 5 to IS, and so on. Likewise, on the 
second processor. Since, in this schedule, task f does not 
complete its execution by its deadline of 16, a key timing 
constraint of the application is not satisfied. However, the 
schedule shown in Fig. 2(b) satisfies the precedence and 
timing constraints of all tasks, and therefore, it is better 
suited for real-time applications. The problem of scheduling 
is to identify schedules like the one in Fig. 2(b) given the 
application as in Fig. 1. 

Although the problem of scheduling occurs in many other 
areas including parallel processing, factory floor manage- 
ment, and high-level synthesis, there are several key con- 

I O  16 

(b) 
Fig. 2. Illustration of difference between real-time and 
non-real-time scheduling problems. (a) Infeasible schedule. (b) 
Feasible schedule. 

straints in real-time applications which make the problem 
substantially different. In most non-real-time applications, 
the main objective of scheduling is to minimize the total 
time required to execute all the tasks in the application; 
while in a real-time application, the objective is to meet 
the timing constraints of the individual tasks. For example, 
in Fig. 2(a), all tasks complete their execution by time 26 as 
compared to time 3 1 in Fig. 2(b). Hence, the first schedule is 
probably preferable in a non-real-time application, whereas 
only the second schedule is acceptable to the real-time 
application because some of the timing constraints are not 
satisfied in the first schedule. 

Scheduling algorithms for real-time applications can be 
classified along many dimensions. Some scheduling al- 
gorithms deal only with periodic tasks while others are 
intended only for aperiodic tasks. There are very few 
algorithms which deal with both types of tasks since the 
approach needed to deal with them differ considerably. 
Likewise, some scheduling algorithms can only handle 
preemptible tasks while others can handle nonpreemptible 
tasks. Criticality, independence, resource and placement 
constraints, and strictness of deadlines are examples of 
other characteristics of real-time tasks which affect the 
nature of the scheduling algorithm. 

Scheduling algorithms also vary significantly depending 
on the type of computer system they are intended for. 
Some algorithms are for uniprocessors while others are 
for multiprocessor systems. Among multiprocessor systems, 
the scheduling algorithms can depend on whether it is 
a shared-memory or a message-passing system. The type 
of interconnection network can also affect the scheduling 
algorithm. 

Finally, there can be difference in objectives of the 
scheduling algorithms. Most algorithms assume that tasks 
have either hard or firm deadlines. However, recently some 
algorithms have been proposed which assume that a task is 
composed of both a mandatory and an optional part [ 171. 
The mandatory part must be completed by the deadline 
while the optional part may or may not. 

8 PROCEEDINGS OF THE IEEE, VOL. 82, NO. I ,  JANUARY 1994 



A .  Scheduling for Uniprocessor Systems 
The most notable work-In this area was done by Liu 

and Layland [51]. They proposed a static priority algorithm 
called Rate Monotonic Scheduling (RMS) and a dynamic 
priority algorithm called Earliest Deadline First (EDF) 
for scheduling a set of independent, preemptive, periodic 
tasks with hard deadlines on a uniprocessor system. They 
presented a simple characterization of the set of tasks 
schedulable by these two algorithms. They showed that 
RMS is optimal among all static priority algorithms in 
the sense that any task set schedulable by a static priority 
algorithm is also schedulable by RMS. Similarly, EDF 
was shown to be optimal among all algorithms (static or 
dynamic) for uniprocessor scheduling of real-time tasks 
with the above characteristics. 

At first glance, it may seem that RMS and EDF operate 
on a fairly restrictive set of tasks. However, since the 
original work by Liu and Layland, these algorithms have 
been extended in various ways to deal with other constraints 
like dependency, periodicity, and deadline. For example, 
solutions have been proposed for controlled access to shared 
resources and also for handling aperiodic and sporadic 
tasks. It has been shown that the theory developed in 
the context of uniprocessor task scheduling is applicable 
in more general situations such as distributed scheduling 
of messages in a multiple access network like the FDDI. 
For a more detailed description of the extensions to deal 
with other constraints and the generalized theory of rate- 
monotonic scheduling refer to the articles by Sha et al. and 
by Ramamritham et al. in this issue. 

B .  Scheduling for Multiple-Processor Systems 
The issues in multiple-processor scheduling of real-time 

tasks are significantly different from that in uniprocessor 
scheduling. The problem in multiprocessor scheduling is 
not only to determine when a given task executes but also 
where it executes. That is, task assignment and scheduling 
must be dealt with. There are also issues related to availabil- 
ity of necessary resources at the processor at which a task is 
scheduled to execute, contention for communication across 
a network, etc. These issues make the problem substantially 
harder to solve. 

As in the case of uniprocessor systems, scheduling in a 
multiple-processor system can be either static or dynamic. 
In static algorithms, the assignment of tasks to processors 
and the times at which a task executes are determined a 
priori [65]. Unfortunately, even the problem of assignment 
of tasks to processors is difficult with or without timing 
constraints. The problem is NP-hard in most cases, e.g., 
finding optimal assignment of tasks with an arbitrary com- 
munication graph to four or more processors with different 
speeds is known to be NP-hard [lo]. Therefore, most 
existing approaches try to find suboptimal solutions using 
some heuristics. 

The most commonly used heuristics come under a cate- 
gory called list scheduling. A heuristic rule is used to first 
order all the tasks in the system. Tasks are considered 

for scheduling in this order and are often assigned and 
scheduled on a processor on which they can complete 
the earliest. For example, one can order the tasks in the 
increasing order of their laxities’ and use this order for 
scheduling. If the deadlines of some tasks are not met using 
this approach, then some solutions use backtracking and 
rescheduling to find a feasible schedule [65], [66], [104]. 
Other approaches for static scheduling use optimization 
techniques like branch-and-bound, simulated annealing, and 
genetic algorithms to find a feasible schedule [56], [loo]. 

In spite of the difficulties in finding an optimal solution, 
static algorithms are often used to schedule periodic tasks 
with hard deadlines [65]. The main advantage is that 
if a solution is found, then one can be sure that all 
the deadlines can be guaranteed. However, this approach 
is not applicable to aperiodic tasks whose amval times 
and deadlines are usually not known a priori. Scheduling 
such tasks in a multiprocessor system requires dynamic 
algorithms. Dynamic scheduling algorithms can be either 
centralized or distributed. In the centralized scheme, all 
tasks arrive at a central processor from where they are 
distributed to other processors in the system [57], [107], 
[106]. The main advantage of a centralized scheme is that 
only the central processor needs to be aware of the load on 
the other processors to determine whether the deadline of 
an incoming task can be guaranteed. 

In a distributed dynamic scheduling scheme, tasks arrive 
independently at each processor. When a task arrives at a 
processor, the local scheduler at that processor determines 
whether or not it can guarantee the constraints of the 
incoming task, which is termed the transfer policy. The 
task is accepted if the constraints can be guaranteed without 
jeopardizing the guarantees which have been provided 
earlier. If not, the local scheduler tries to find a processor 
which can guarantee the constraints of the task, which is 
called the location policy. The schemes in literature differ 
in the algorithms used to identify the processor to transfer 
a task [22], [37], [36], [67], [80], which is based on how to 
collect and maintain the state information of other nodes, 
termed the information policy. 

111. REAL-TIME ARCHITECTURES 
Design of a real-time architecture involves issues at two 

levels: node and system levels. At the node level, each 
processor must provide speed and predictability in exe- 
cuting real-time tasks, handling interrupts, and interacting 
with extemal world. This can be accomplished by making 
operations like instruction execution, memory accesses, and 
context switching more predictable. To make these “small” 
operations more predictable, real-time systems seldom use 
virtual memory because page faults cause unpredictable 
or very long delays in accessing memories. Similarly, 
real-time systems also try to avoid the use of caches 
because uncertainty of cache hit/miss causes unpredictable 
memory access delays. However, it may be very difficult 

’ The laxity of a task is the latest time the task must begin its execution 
to meet its deadline. 

SHIN A N D  RAMANATHAN REAL-TIME COMPUTING 9 



to avoid caches because real-time systems are often built 
using contemporary off-the-shelf microprocessors which 
come with multilevel on-chip caches to optimize average 
performance. In fact, multiple instruction and data pipelines 
and branch prediction strategies commonly available in 
today’s off-the-shelf microprocessors also make it very 
difficult to achieve predictability at the node level. 

At the system level, intemode communication and fault 
tolerance are two main issues which make it difficult 
to achieve predictability. However, these issues are also 
unavoidable because the high performance and high re- 
liability of distributed systems make them attractive for 
real-time applications. Therefore, presented below is a brief 
discussion on issues and solutions related to distributed 
real-time architectures. 

A. High-Level Architectural Issues 
At the highest level, a distributed system is comprised of 

a set of nodes communicating through an interconnection 
network. Each node may itself be a multiprocessor 
comprised of application, system, and network processors, 
shared memory segment, and I/O interfaces [191, [79], 
[96]. Although the application processor may be an 
off-the-shelf product, the system and network processors 
usually have to be custom-designed because they provide 
the specialized support necessary for real-time applications 
[79]. Memory subsystem may also have to be carefully 
designed to provide fast and reliable communication 
between the processors at a node. For example, the 
memory subsystem may support a mailbox facility to 
support efficient inter-processor communication within 
a node of a distributed system. 

The nodes of the system must be interconnected by 
a suitable communication network. For small and earlier 
systems, the network was a custom-designed broadcast bus 
with redundancy to meet the fault-tolerance requirements 
[ 191, [42], [92]. More recently, however, the interconnec- 
tion is either a high-speed token ring or a point-to-point 
network with a carefully chosen topology. For example, 
the Spring system at University of Massachusetts uses 
a high-speed optical interconnect called Scramnet 1941, 
whereas the HARTS project at University of Michigan uses 
a point-to-point interconnection network called C-wrapped 
hexagonal mesh topology [15], [791. 

Irrespective of the exact topology, the network should 
support scalability, ease of implementation, and reliability. 
It should also have support for efficient one-to-one as 
well as one-to-many communications. For instance, the C- 
wrapped hexagonal mesh topology used in HARTS has 
a d (1 )  algorithm for computing all the shortest paths 
between any two nodes in the system. The information 
about all shortest paths can also be easily encoded using 
three integers and included as part of each message so 
that the intermediate nodes need not do much computation. 
The routing algorithm can fully exploit advanced switching 
techniques like virtual cut-through and wormhole routing 
in which packets do not always have to be buffered at 
intermediate nodes before being forwarded to next node in 

the route. Broadcasting can also be done fairly efficiently 
and in a fault-tolerant manner using the multiple disjoint 
paths between any two nodes in the system [40]. Such 
capabilities are very important because reliable and timely 
exchange of information is crucial to distributed execution 
of any real-time application. 

B .  Low-Level Architectural Issues 
Low-level architectural issues involve packet processing, 

routing, and errodflow control. In a distributed real-time 
system, there are additional issues related to support for 
meeting deadlines, time management, and housekeeping. 
Since support of these low-level issues impedes the ex- 
ecution of application tasks, nodes in a distributed real- 
time system usually have a custom-designed processor for 
handling these chores. In the description below, this special 
processor is referred to as the network processor (NP). 

The main function of NP is to execute operations neces- 
sary to deliver a message from a source task to its intended 
recipient(s). In particular, when an application task wants 
to transmit a message, it provides the NP with information 
about the intended recipient(s) and the location of the 
message data and then relies on the NP to ensure that the 
information reaches the recipients in a reliable and timely 
fashion. The NP may also be responsible the functions in 
the transport, network, and the data link layers of the OS1 
reference model [991. 

More specifically, at the transport layer, the NP must 
establish connections between the source and destination 
nodes. It must also handle end-to-end error detection and 
message retransmission. At the network layer, the NP 
may have to select primary and alternate routes, allo- 
cate bandwidths necessary to guarantee timely delivery, 
packetize the information into smaller data blocks and 
segments, and reassembles packets at the destination node. 
In point-to-point interconnections, the NP must support 
and choose appropriate switching method like virtual cut- 
through wormhole routing, store-and-forward, and circuit 
switching [791. In token rings, the NP must select suitable 
protocol parameters to guarantee the deadlines of all mes- 
sages [2], [30], [112]. At the data link layer, the NP must 
provide access to the network for the messages. It must 
perform framing and synchronization, as well as packet 
sequencing. 

The NP must also have support for multiple levels of 
interrupts to manage messages with different priority levels. 
The hardware should provide the requisite number of levels 
of interrupts, so that urgent messages can be given higher 
priority over less urgent ones. The NP must implement 
buffer management policies that maximize utilization of 
buffer space, but guarantee the availability of buffers to the 
highest priority messages. Similarly, if noncritical messages 
hold other resources that are needed by more critical ones, 
NP must provide means for preemption of such resources 
for use by the critical messages. 

The NP may also have to monitor the state of the network 
in terms of traffic load and link failures. The traffic load 
affects the ability of the NP to send real-time messages 

I O  PROCEEDINGS OF THE IEEE, VOL R2, NO. I .  JANUARY 1994 



Q 

Fig. 3. I/O controller placement 

to other processors, while link failures affects the system 
reliability. It may also have to keep track of the processing 
load of its host (or hosts), and use the information for load 
balancing/sharing and task migration operations. 

C. I10  Architecture 
Most work on distributed computing systems has cen- 

tered on interconnection networks, programming and com- 
munications paradigms, and algorithms. However, little has 
been done specifically about the 1/0 subsystem in a real- 
time environment, despite its obvious importance. Clearly, 
a real-time computer can process data no faster than it can 
acquire the data from sensors and operators. Note that 1/0 
devices in a real-time environment are sensors, actuators, 
and displays, whereas they are magnetic disks and tapes 
for general-purpose systems. Due to the distinct timing and 
reliability requirements of the former, solutions to the latter 
are not usually applicable to the real-time environment. 

To avoid the accessibility problems of nondistributed 
I/O, 1/0 devices need to be distributed and managed by 
relatively simple, and reliable, controllers. Moreover, to im- 
prove both accessibility (reliability) and performance, there 
must be multiple access paths (called multiaccessibility or 
multiownership) to these I/O devices. 

One possible solution to provide multiaccessibility in 
HARTS is described in [82]. The I/O devices are clustered 
together and a controller is assigned to manage access to 
the devices in each cluster. The controller has a set of full- 
duplex links to certain nodes of the distributed system. In 
order to limit the number of links in each controller while 
providing multiaccessibility, a controller is connected to 
three nodes in the system as shown in the Fig. 3. Since 
each controller can be accessed by three nodes, different 
management protocols are proposed for handling the I/O 
requests. In a static scheme, one node is assigned the 
primary responsibility of managing the controller with the 
proviso that the other nodes can take over control if the 
primary node becomes faulty. In a dynamic scheme, all 
three nodes connected to a controller manage the controller 
using a more complicated protocol [82]. 

An alternative approach for connecting the I/O controllers 
to the nodes of the systems is described in [13], [69]. In this 
approach, an 1/0 controller is connected to only one node. 
However, the placement of the I/O controllers is done in 
such a way that a node is at most one hop away from a node 
which has an 1/0 controller connected to it. To achieve fault 
tolerance, schemes for placement of 1/0 controllers are also 
proposed in which a node is at most one hop away from j 
nodes with 1/0 controllers, where j is a design parameter. 

Although the above solutions have some headway in 
dealing with the I/O architectural issue, there is a lot of 
work which needs to be done. 

IV. REAL-TIME OPERATING SYSTEMS 
Unlike the traditional operating systems, predictability 

is one of the main requirements of a real-time operating 
system (RTOS). Therefore, many of the basic paradigms 
found in today’s general-purpose operating systems are not 
applicable to RTOS’s. For example, it is not very important 
in a real-time operating system to provide extensive support 
for file systems, virtual memory, and security. However, 
it is crucial to provide support for fast context switch- 
ing, quick and predictable handling of interrupts, and for 
scheduling with timing and dependability constraints. 

Operating systems which provide such support can 
broadly classified into three categories: proprietary kemels, 
commercial operating systems with real-time extensions, 
and research-oriented operating systems. Proprietary 
kernels are small and fast. They achieve predictability 
by supporting only those primitives which can be 
shown to have a bounded execution time. They are 
mainly intended for small embedded applications such as 
instrumentation, intelligent peripherals, and simple process 
control. Commercial operating systems with real-time 
extensions, on the other hand, offer familiar interfaces 
with moderate support for real-time systems. They are 
generally slower and less predictable than the proprietary 
kemels. However, due to the familiarity of the interfaces, 
it is well-suited for software development and for large 
applications in which the consequences of missing a few 
deadlines is not very severe. In contrast to the above two 
categories, research-oriented operating systems focus on 
specific real-time issues. They are often weak on support 
for the issues which are not their focus. However, they 
play a key role in developing future operating systems. For 
more details on the various real-time operating systems 
refer to the article by Ramamritham et al. in this issue. 

V. REAL-TIME COMMUNICATION 
Consider a real-time system with three cooperating tasks 

T I ,  T2, and T3. Suppose TI is responsible for reading a 
sensor and providing the sensed data to T2, T2 is responsible 
for performing the control law computation and sending the 
result to T3, and finally, T3 is responsible for controlling the 
actuator based on the results from T2. Further, suppose this 
entire operation has to be repeated once every R seconds. 
Since the sensor, the computation unit, and the actuator 

SHIN AND RAMANATHAN: REAL-TIME COMPUTING 11 



may not be physically close to each other, these three tasks 
may be executing on three different nodes of a distributed 
system. Therefore, TI and Tz have to send messages after 
they finish their execution. Also, T3 must complete its 
execution within a deadline D 5 R. 

This simple example highlights the importance of time- 
constrained communication in a real-time system. To ensure 
that T3 finishes its execution within D time units, not 
only must tasks TI and T2 complete their execution in 
time, but also the information exchange between TI and 
T2, and between T2 and T3 must be completed in time. 
Failure to complete the information exchange in time will 
delay the start (and hence the completion) of subsequent 
tasks and thus cause the application to miss its deadline. 
For instance, in the above example, an unacceptable delay 
in the delivery of information from TI to T2 will delay 
the start and completion of Tz and T3 and thus possibly 
result in T3 missing its deadline. Since the consequences 
of a task missing its deadline are severe in many of these 
applications, it is imperative to design the communication 
subsystem in such a way that all information exchange are 
completed within the deadline assigned to them. 

Due to its importance, real-time communication has re- 
ceived considerable attention in literature. Presented below 
is a brief survey of existing work in real-time communi- 
cation. 

A. Multiple-Access Networks 
In the traditional non-real-time Carrier Sense Multi- 

ple Access/Collision Detect (CSMA/CD) protocol, a node 
transmits its local messages using its own local scheduling 
policy. No effort is made to coordinate with other nodes 
to establish a network-wide policy. Even if all nodes use a 
First-In-First-Out (FIFO) policy for transmitting their local 
messages, the transmission on the network will not follow a 
network-wide FIFO policy due to collisions in the medium. 
To rectify this problem, Molle proposed a modification to 
the CSMA/CD protocol that implements a network-wide 
FIFO policy [59]. Each node has two clocks: real clock 
and a virtual clock. The real clock runs along the time axis 
and maintain elapsed time on each node. The virtual clock 
runs along the “amval time” axis. It runs only when the 
channel is idle and when it runs it does so at a faster rate 
than the real clock. When a message arrives it is time- 
stamped with its time of arrival according to the local real 
clock. A message is transmitted only when its timestamp 
equals the time on the virtual clock. Molle proves that this 
scheme implements a global FIFO policy except for ties in 
amval time. The discrete nature of clocks also causes some 
ties which would not have occurred otherwise. 

Zhao and Ramamritham extended Molle’s scheme 
to real-time systems [ 1051. Instead of timestamping a 
message with its arrival time, it is stamped with a value 
which depends on the scheduling policy. For example, to 
implement a network-wide Minimum-Laxity-First policy, 
each message is stamped with its laxity when it arrives at a 
node. The message is then transmitted on the network 
only when the virtual clock reads the value stamped 

on the message. The authors of [IO51 compared four 
different network-wide scheduling policies: First-In-First- 
Out, Earliest-Deadline-First, Minimum-Laxity-First, and 
Shortest-Length-First. Through simulation they conclude 
that the Earliest-Deadline-First and the Minimum-Laxity- 
First policies perform the best in terms of certain key 
metrics such as the percentage of missed deadlines and 
effective channel utilization. 

The main limitation of the virtual time protocols is that 
they do not account for the past history of the chan- 
nel in selecting a message for transmission. To alleviate 
this limitation, window-based protocols were proposed for 
CSMA/CD networks [47], [108]. As in the case of virtual 
time protocols, a message is stamped with a value when it 
arrives at a node. However, instead of linearly searching for 
a message to transmit when the channel is idle, the window- 
based protocols use a divide-and-conquer technique on the 
value axis to identify a message for transmission. That 
is, a message will be transmitted if its arrival time falls 
in the time window determined by the.divide-and-conquer 
technique. This greatly improves the performance of the 
scheduling policies. 

Note that, due to intrinsic problems in the CSMA/CD 
protocol, the above schemes cannot provide a deterministic 
guarantee to any message. Therefore, they cannot be used 
for guaranteeing the deadlines of periodic messages. Token 
rings and/or token buses are better suited for such messages. 
Strosnider and Marchok extended the Rate Monotonic 
Algorithm (RMA) to schedule transmission of periodic 
messages on an IEEE 802.5 token ring network [98]. They 
used the priority mechanism of the IEEE 802.5 standard 
to implement the priority scheme of the RMA. However, 
since IEEE 802.5 does not provide extensive support for 
priorities, this scheme is limited to a maximum of four or 
five periodic messages. 

Agrawal et al. [2] use the timed-token protocol to 
guarantee the deadlines of periodic messages in token 
ring networks. In a timed-token protocol, each node is 
guaranteed a certain duration for transmitting messages 
each time it receives the token. As a result, a node can 
predict the minimum bandwidth available to it and thus 
guarantee the deadlines of periodic messages. Agrawal 
et al. compare several schemes for allocating the time 
guaranteed to each node and they show that a scheme 
called the normalized proportional allocation can guarantee 
all periodic requests as long as their total utilization is 
less than 33%. Since then, that scheme has been extended 
in various ways: the scheme in [112] requires local 
optimization as opposed to global optimization and allows 
message deadlines to be arbitrary and the schemes in [l], 
[30] can guarantee much higher utilizations. 

The problem with multiple-access networks is that they 
are susceptible to single-point failures. For instance, a fail- 
ure in the shared medium can completely disrupt communi- 
cation between any two nodes in the system. This problem 
can be partly overcome using redundancy, as in the case of 
dual-token rings in FDDI [77]. However, the system incurs 
a severe performance penalty if one of these rings fails. 

12 PROCEEDINGS OF THE IEEE, VOL. 82.  NO. I ,  JANUARY 1994 



This is in direct contrast to point-to-point interconnection 
networks where there are multiple disjoint routes between 
any two nodes in the system. Furthermore, failure of a few 
links or nodes has often only little impact on the perfor- 
mance of a point-to-point network [14], [62]. Therefore, 
these networks have been receiving considerable attention. 

B. Point-to-Point Interconnection Networks 
Unlike in multiple-access networks, not all pairs of nodes 

in a point-to-point interconnection topology have a direct 
connection between them. As a result, messages may have 
to be relayed by one or more intermediate nodes before 
reaching their destinations. This complicates the problem 
of guaranteeing the deadlines of real-time messages. 

In point-to-point networks, Ferrari and his colleagues 
from the University of California at Berkeley proposed 
a communication abstraction called the real-time channel 
for guaranteeing the timely delivery of real-time messages 
[4], [5] ,  [23]. A real-time channel is a simplex (unidi- 
rectional) connection between a source and a destination 
with a guaranteed end-to-end delay. A real-time channel 
is represented by a three-tuple ( T ,  C,  D ) ,  where T repre- 
sents the minimum intermessage generation time, C the 
maximum transmission time per message (closely related 
to the maximum message length), and D the user-specified 
end-to-end delay bound. 

The concept of real-time channel uses two techniques to 
guarantee the end-to-end message delay bound: admission 
control via the channel establishment procedure and the 
deadline scheduling of message transmissions. So, real-time 
channels are realized with two protocols: a channel estab- 
lishment protocol, and a message transmission protocol. 

The channel establishment protocol handles requests for 
the establishment of real-time channels. The protocol first 
selects a route between the source and the destination 
according to the given criterion, e.g., traffic balancing [39] 
or use of minimum network resources [ 1 IO]. The protocol 
then checks whether the requested end-to-end message 
delivery delay bound D can be guaranteed for a real- 
time channel under the current network-load condition. 
The channel establishment request is granted only if the 
requested delay bound can be guaranteed and if there is 
enough space to buffer the messages of this channel. Note 
that the selection of a route affects the system in two ways. 
First, whether or not the given request can be established 
depends on the route, because it depends on the delays that 
each intermediate node can guarantee. Second, once a chan- 
nel is established through a particular route, it reduces the 
likelihood of establishing future channels through any nodes 
in the route. Therefore, one has to be careful in selecting the 
route. A solution to the first problem is discussed in [40]. 
Regarding the second problem, Ferrari and Verma derive a 
simple solution under the assumption that the sum of the 
message transmission times over all the channels passing 
through a link is not larger than the minimum message 
interarrival times of these channels [23]. Kandlur et al. [40] 
improved this solution significantly by deriving a necessary 
condition for channel schedulability, i.e., delay guarantees 

are calculated using a prioity-based message scheduling 
scheme but on-line message transmissions are scheduled 
according to a multiclass EDD policy. More recently, Zheng 
and Shin have made further improvements by deriving a 
necessary and sufficient condition for the schedulability of 
a set of real-time channels over a link [ 11 11. The same 
authors have also enhanced real-time channels to tolerate 
certain types of component faults while retaining their 
timeliness properties [ I  IO], [109]. 

The message transmission protocol implements the dead- 
line scheduling of message transmissions. It specifies how 
a message is divided into packets, and how deadlines of a 
packet over the links it traverses are calculated. These two 
parts are closely related. The calculation of the end-to-end 
message delivery delay bound depends on the transmis- 
sion protocol used, and the transmission protocol must 
be designed such that the requested delay bound can be 
guaranteed and easily verified. For more details on message 
transmission and channel establishment protocols in point- 
to-point interconnection networks refer to the article by 
Aras et al. in this issue. 

Unfortunately, the concept of real-time channel cannot be 
used to service those messages without information on T 
and C. Hence, it is very difficult to provide a run-time deter- 
ministic guarantee to these messages. Techniques designed 
to increase the probability of their timely delivery have 
been proposed [24], [72], 1731. These techniques are based 
on the existence of multiple disjoint paths between any two 
nodes in a point-to-point interconnection network. Garcia- 
Molina et al. proposed sending two copies of all critical 
messages along two disjoint paths [24]. They also consid- 
ered the possibility of splitting a large message into two 
and sending each half on different routes. In contrast to the 
above scheme, Ramanathan and Shin statically identified 
the optimal number of copies to send based on the criticality 
of the message, the number of hops it has to traverse, and 
the traffic intensity [72], [73]. They did not account for 
deadlines. An extension of this approach which dynamically 
accounts for the deadlines and also deals with networks 
which support more sophisticated switching schemes like 
virtual cut-through have been proposed in [31]. 

An additional issue in servicing messages in point-to- 
point interconnection topology is how to schedule the 
multiple random requests at a given node in order to max- 
imize the likelihood of timely delivery. In multiple access 
networks, scheduling policies such as Earliest-Deadline- 
First have been shown to work well. Unfortunately, these 
policies do not work well in point-to-point interconnection 
topologies [71]. A better scheduling policy that is based 
on the cost the system will incur if a message misses its 
deadline is proposed in [71]. 

VI. FAULT TOLERANCE IN REAL-TIME SYSTEMS 

A. Relationship Between Fault Tolerance 
and Real-Time Computing 

Fault tolerance is informally defined as the ability of 
a system to deliver the expected service even in the 

SHIN AND RAMANATHAN.  REAL-TIME COMPUTING 13 



presence of faults. A common misconception about real- 
time computing is that fault tolerance is orthogonal to real- 
time requirements. It is often assumed that the availability 
and reliability requirements of a system can be addressed 
independent of its timing constraints. This assumption, 
however, does not consider the distinguishing characteristic 
of real-time computing: the correctness of a system is 
dependent not only on the correctness of its result, but also 
on meeting stringent timing requirements. In other words, 
a real-time system may fail to function correctly either 
because of errors in its hardware and/or software or because 
of not responding in time to meet the timing requirements 
that are usually imposed by its “environment.” Hence, a 
real-time system can be viewed as one that must deliver the 
expected service in a timely manner even in the presence 
of faults. A missed deadline can be potentially as disastrous 
as a system crash or an incorrect behavior of a critical task, 
e.g., a digital control system may lose stability. 

In fact, if the logical correctness of a system may be 
dependent on the timing correctness of certain components, 
separating the functional specification from the timing 
specification is a very difficult task. Moreover, timeliness 
and fault tolerance could sometimes pull each other into 
opposite directions. For example, frequent extra checks and 
exotic error recovery routines will enhance fault tolerance 
but may increase the chance of missing the deadlines of 
application tasks. 

When a system specification requires certain service 
in a timely manner, then the inability of the system to 
meet the specified timing constraint can be viewed as a 
failure. However, a simple approach of applying existing 
fault-tolerant system design methods by treating a missed 
deadline as a timing fault does not fully address the needs 
of real-time applications. The fundamental difference is 
that real-time systems must be predictable, even in the 
presence of faults. Hence, fault tolerance and real-time 
requirements must be considered jointly and simultaneously 
when designing such systems. The challenge is to include 
the timing and the fault-tolerance requirements in the 
specification of the system at every level of abstraction 
and to adopt a design methodology that considers system 
predictability even during fault detection, isolation, system 
reconfiguration, and recovery phases. Formal specification 
of the reliability requirements and their impact on meeting 
timing constraints is an area which requires further research. 
Determining the timing constraints on a system from its 
availability requirements is a very difficult problem. 

B .  Space and Time Tradeoff 
The design methodologies for fault-tolerant systems have 

often been characterized by the tradeoff between time and 
space redundancy. In non-real-time systems, however, time 
is treated as a cheap resource and most methods concentrate 
on space optimization. In a real-time environment, the 
tendency would be to trade space for time since meeting the 
stringent timing constraints is essential in ensuring correct 
system behavior. Although time-space tradeoff forms the 
basis for most fault-tolerant system design methodologies, 

it is unclear whether it is an appropriate paradigm for 
characterizing fault tolerance in a real-time environment. 
In particular, redundancy must be considered in the context 
of achieving both predictability and dependability in a 
system. For example, tolerating transient faults by retrying 
a computation is an acceptable technique if the timing 
constraints can be met. The same assertion holds for 
techniques based on the notion of recovery blocks where a 
different version of the software module is used in the retry. 
However, altemative approaches must be considered when 
time is a scarce resource. In particular, the quality of the 
computation can become a third dimension in the design 
space. That is, in a new twist on the principle of graceful 
degradation, a fault in a real-time system could result in a 
(temporary) reduction in the quality of the services provided 
in order to allow the system to continue to meet critical 
task deadlines. Although general methods that delete or 
reduce the number of less critical tasks would certainly fall 
into this category, “quality” must ultimately be defined in 
terms of the detailed semantics of the application. Real- 
time control systems, for example, are characterized by 
continuous variables whose values can be approximated 
or estimated if time does not permit precise computation. 
The imprecise computation approach [52] is one technique 
that sacrifices accuracy for time in iteratively improving 
calculations. As discussed below, trading space for time 
also has potential limits since spatial redundancy introduces 
additional overhead (in time) for managing the redundancy 
(see [45] for an example). 

C. Predictable Redundancy Management 
Although advances in distributed and parallel systems 

provide the opportunities for achieving real-time perfor- 
mance while satisfying fault-tolerance requirements, using 
the inherent redundancy provided by these systems is not 
free. For example, the overhead associated with synchro- 
nization and the nondeterminism due to communication 
delay contribute to the complexity of building systems with 
predictable timing behavior. Predictable redundancy man- 
agement remains an open research problem. For example, a 
set of identical servers on multiple processors provide fault 
tolerance in a system with crash or performance failures. 
However, predictable redundancy management requires to 
solve such issues as synchronization of servers, agreement 
on the order of request messages, and the cost of failure de- 
tection and recovery [45]. In this case, redundancy in space 
incurs additional cost in time. The overhead associated 
with managing redundancy must be quantified precisely so 
that certain guarantees about the real-time behavior of the 
system can be made. 

Managing redundancy in a predictable fashion is related 
closely to the demands on real-time scheduling theory. 
Satisfying the timing requirements of a real-time system 
demands the scheduling of system resources such that 
the timing behavior of the system is “understandable, 
predictable, and maintainable.” Most existing scheduling 
algorithms consider one resource at a time and ignore fault 
tolerance. The requirement for meeting timing constraints 

14 PROCEEDINGS OF THE IEEE. VOL. 82. NO. I ,  JANUARY 1994 



in the presence of faults imposes additional demands on the 
scheduling algorithms. New resource-allocation techniques 
are necessary to address the predictability and reliability 
requirements of complex real-time systems. A simple case 
of this was treated in [44]. 

D. Run-Time Monitoring 
In designing real-time systems, we often make assump- 

tions about the behavior of the system and its environment. 
These assumptions take many forms: upper bounds on 
interprocess communication delay and task execution time, 
deadlines on the execution of tasks, or minimum separations 
between occurrences of two events. They are often made to 
deal with the unpredictability of the extemal environment 
or to simplify a problem that is otherwise intractable or 
very hard to solve. Such assumptions may be expressed 
as part of the formal specification of the system or as 
scheduling requirements on the real-time tasks. Despite 
the contribution of formal verification methods and recent 
advances in real-time scheduling, the need to perform run- 
time monitoring of these systems is not diminished for 
several reasons: the execution environment of most systems 
is imperfect and the interaction with the extemal world 
introduces additional unpredictability; design assumptions 
can be violated at run time due to unexpected conditions 
such as transient overload; application of formal techniques 
or scheduling algorithms in tum requires assumptions about 
the underlying system; and it may be infeasible (or impos- 
sible) to verify formally some properties at design time, 
thus further necessitating run-time checks [38], [ 161. 

Run-time monitoring of a system requires timestamping 
and recording of the relevant event occurrences, analyzing 
the past history as other events are recorded, and providing 
feedback to the rest of the system. The nonintrusiveness 
requirement of real-time monitoring often leads to use of 
special monitoring hardware [28], [ 1021. Many important 
issues must be addressed before run-time monitoring is fully 
utilized in real-time systems. Some of these issues are: 

Language support: What is an appropriate set of 
language constructs for the specification of run-time 
constraints? Should the specification language be tied 
closely to the underlying implementation language? 
Run-time system support: What level of support should 
be provided by the operating system? What intemal 
operating system events, such as task preemption, 
should be made visible to the monitoring facility? 
Scheduling support: How intrusive is run-time system 
monitoring on the critical tasks within a system? 
Is it possible to make the intrusiveness of run-time 
monitoring predictable? See [ lo l l  for more on this. 

In addition to detecting violation of design assumptions, 
run-time monitoring can be used to detect application- 
specific exception conditions. One can envision a system 
in which specification-based fault detection is done by 
a monitoring facility [38]. Furthermore, beside detecting 
exception conditions, a run-time monitoring facility can 
provide feedback to the rest of the system. The information 
collected by the monitoring facility can be used to provide 

I 

(b) 

Example of a Byzantine fault in clock synchronization. Fig. 4. 
(a )  All clocks nonfaulty. (b) Faulty clock at node B. 

feedback to the system operator, the application tasks, or 
the scheduler [28]. For example, exceeding the maximum 
computation time estimated for a task can be reported by 
the monitoring facility. The feedback to the scheduler can 
be used to build a robust system that is capable of adapting 
to the changes in the environment and the system load. 
Investigating the utilities of monitoring application tasks 
and operating system events as a way of providing feedback 
to the rest of the system is an area of ongoing research. A 
related topic is scheduling run-time monitoring tasks with 
the real-time application tasks in a system. 

VII. CLOCK SYNCHRONIZATION 
A global time base has been widely recognized as an 

important requirement in distributed systems. It can sim- 
plify the design of many fault-tolerant algorithms used 
for interprocess communication, checkpointing and rollback 
recovery, resource allocation, and transaction processing. It 
can also facilitate the use of deadlines and timeouts that are 
essential for correct operation of any distributed real-time 
system. 

A global time base can be established by synchronizing 
all the clocks in the system. This would not have been a 
serious problem had all the clocks including the faulty ones 
behaved consistently with one another. However, when 
some of the faulty clocks can behave in any arbitrary 
manner, synchronizing all the clocks can pose some serious 
problems. This problems is best illustrated by the example 
in Fig. 4. Figure 4 shows a three-node system in which each 
node has a clock of its own. Clocks are synchronized by 

SHIN AND RAMANATHAN: REAL-TIME COMPUTING 15 



adjusting each to the median of the three clock values. This 
“intuitively correct” algorithm works fine as long as all the 
clocks are consistent in their behavior as illustrated in Fig. 
4(a). However, if one of the clocks is faulty and lies to the 
other two clocks, then the two nonfaulty clocks cannot be 
synchronized. For example, in Fig. 4(b), the faulty clock 
B lies to clocks A and C. As a result, clocks A and C do 
not make any corrections because both think that each is 
the median clock. 

Lamport and Melliar-Smith were the first to study the 
three-clock synchronization problem in the presence of ar- 
bitrary fault behavior [49]. They coined the term Byzantine 
fault to refer to the fault model in which a faulty clock 
can exhibit arbitrary behavior including, but not limited to, 
intentionally and maliciously lying about its value to other 
clocks in the system. They showed that in the presence of 
Byzantine faults there is no algorithm that can guarantee 
synchronization of the nonfaulty clocks in a three-node 
system. They also showed that 3m+l clocks are sufficient 
to ensure synchronization of the nonfaulty clocks in the 
presence of m Byzantine faults. This condition was later 
proved to be necessary as well as sufficient to ensure 
synchronization in the presence of Byzantine faults [20]. 

Since the initial study by Lamport and Melliar-Smith, 
the problem of clock synchronization in the presence of 
Byzantine faults has been studied extensively by several 
researchers. A survey of these solutions can be found in 
[74]. The solutions proposed in literature can be categorized 
as either a software or a hardware approach. The software 
approach is flexible and economical but requires additional 
messages to be exchanged solely for synchronization [29], 
[49], [54], [93]. The basic idea of software synchronization 
algorithms is as follows. Each node has a logical clock that 
provides a time base for all the activities on that node. This 
logical clock is derived from the hardware clock on that 
node, but it usually has a much larger granularity (than 
the hardware clock). The nodes periodically exchange their 
clock value and adjust their local clock based on the values 
of the other clocks. The software synchronization algo- 
rithms differ in the manner in which the nodes exchange 
their clock values and in the way they readjust their clocks. 

In convergence-averaging algorithms, the nodes pre- 
agree on the times for resynchronization. When a node’s 
clock reaches one of these resynchronization times, it 
broadcasts its clock value and then waits for a pre-agreed 
duration to receive clock values from other nodes. At the 
end of the waiting period, the node estimates its clock 
skew with respect to each of the other nodes based on the 
times at which its receives their clock values. The node 
then computes a fault-tolerant average of the estimated 
skews and uses this average to correct the local clock. 
For example in [49], an arithmetic mean of the estimated 
skews is used to correct the clocks. To limit the impact 
of malicious clocks on the mean, the estimated skew with 
respect to each node is compared against a threshold and 
skews greater than the threshold are set to zero before 
computing the mean. In contrast, in [54], each node limits 
the impact of malicious clocks by first discarding the m 

highest and the m lowest estimated skews and then uses the 
midpoint of the remaining skews as its correction, where 
m is the maximum number of faulty clocks to be tolerated. 

On the other hand, a class of software synchronization 
algorithms called the convergence non-averaging do not 
use the principle of averaging to synchronize their clocks 
[29], [93]. Instead, the nodes pre-agree on the times for 
resynchronization. When a node’s local clock reaches one 
of these times, it tries to become the “synchronizer” of the 
entire system by sending a message to other nodes asking 
them to adjust their clocks. Upon receiving this message, 
other nodes check the validity of the message and then set 
their clocks to the pre-agreed resynchronization time if the 
message is deemed valid. The exact nature of the validity 
check depends on the algorithm. 

A third class of software algorithms are often called 
the consistency-based algorithms. These algorithms treat 
clock values as data and try to ensure agreement among 
the clock values using an interactive consistency algorithm 
[49]. Unlike the convergence averaging and convergence 
non-averaging algorithms, these algorithms do not need 
initial synchronization among clocks to maintain synchro- 
nization. This is a major advantage, but the overhead of the 
consistency-based algorithms is very high as compared to 
the other algorithms. 

The main problem with the software synchronization 
algorithms is that they rely on message exchanges for 
their synchronization. As a result, the worst case skews 
guaranteed by most of these algorithms are greater than the 
difference between the maximum and minimum message 
transit delay between any two nodes in the system [49], 
[70]. Since, in general, the difference between the maxi- 
mum and the minimum message transit delay can be very 
large, the corresponding worst case skews are also very 
large, i.e., the synchronization is not very tight. 

This problem is not present in hardware synchronization 
algorithms [41], [46], [91], [103]. These algorithms use 
special hardware at each node to achieve a very tight 
synchronization. The principle of hardware synchronization 
is that of a phase-locked loop. The hardware clock at 
each node is an output of a voltage-controlled oscillator. 
The voltage applied to the oscillator comes from a phase 
detector whose output is proportional to the phase error 
between the phase of its clock (i.e., the output of the voltage 
controlled oscillator it is controlling) and a reference signal 
generated by using the other clocks in the system. Thus 
by continuously adjusting the phase of each clock, all 
clocks are kept in lock-step. The key issue in hardware 
synchronization algorithms is the scheme used to select 
the reference signal. Care must be taken in selecting this 
reference signal because of the existence of faulty clocks. It 
can be shown that intuitive solutions like always selecting 
the median signal do not work in the presence of Byzantine 
faults. 

One of the first hardware synchronizations that is re- 
silient to Byzantine faults was proposed by Smith in [91]. 
The main problem with this scheme is that it can only 
synchronize a maximum of four clocks. This algorithm 

16 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 1, JANUARY 1994 



was later extended to any number of clocks by Krishna 
and Shin [46], Kessel [41], and also by Vasantavada and 
Marinos [103]. However, these algorithms had two major 
limitations. The first limitation is that they all assume a 
fully connected network of clocks, i.e., each clock sends 
its hardware clock signal to all other clocks. This is not 
a major problem in small systems. However, as systems 
get large, the total number of interconnections in a fully 
connected network will be so large that the reliability of 
synchronization will be determined by the failure rates of 
these interconnections rather than the failure rate of the 
clocks. Furthermore, there will be problems of fan-in and 
fan-out caused by the large number of interconnections. To 
alleviate this limitation Shin and Ramanathan proposed a 
clustering scheme which requires substantially fewer num- 
ber of interconnections as compared to a fully connected 
network. The second limitation with the above mentioned 
hardware synchronization algorithms is that they assume 
negligible propagation delay in sending a clock signal from 
one node to the other. This can again be major problem in 
a large system where the physical separation between two 
clocks can be considerable enough to result in nonnegligible 
propagation delays. This limitation can be eliminated using 
the scheme proposed in [87]. When combined with the 
solutions in [86], [87], hardware synchronization algorithms 
can achieve a very tight synchronization even in large 
distributed system with very little overhead. However, 
the cost of additional hardware at each node precludes 
their use in large distributed systems unless a very tight 
synchronization is absolutely essential. 

To overcome the cost limitation, a hybrid approach 
was proposed in [70]. This approach strikes a balance 
between the tightness of synchronization and the hardware 
requirement at each node. The basic idea is to augment 
the software algorithms with some hardware assistance. 
The hardware assist is used to estimate the message transit 
delays, which are then used to correct the estimate of skews 
made in the software algorithm. When the corrected skews 
are used in adjusting the local clock, reasonably tight skews 
can be achieved. In particular, the worst case skew achieved 
by the hybrid approach is much smaller than the difference 
between the maximum and minimum message transit delays 
between any two nodes. 

Another approach for achieving a balance between tight- 
ness of synchronization and the cost of synchronization 
is referred to as probabilistic synchronization [ 181, [63]. 
Basically, this approach is to assume that the probability 
distribution function of message transit delay is known and 
let each node make several attempts to read the other clocks. 
At the end of each attempt, a node calculates the maximum 
error that might occur if the clock value obtained in that 
attempt is used to determine the correction. If the estimated 
maximum error is greater than a specified threshold, then 
the node makes another attempt to read the other node’s 
clock. If one limits the maximum number of tries a node 
can make (to limit the message and the time overhead of 
synchronization), then there is a nonzero probability that 
a node cannot obtain another node’s clock to a specified 

precision. This can lead to loss of synchronization. That 
is, unlike other schemes discussed above, in this approach, 
the worst case skews can be made as small as desired. 
However, depending on the desired worst case skew, there 
is a nonzero probability of loss of synchronization. Neither 
does it deal with fault tolerance as directly as the others. 

VIII. APPLICATIONS 
There are numerous real-time applications including al- 

most all of defense systems, automated factories, industrial 
process control, life-support systems, utility distribution and 
monitoring, and so on. These applications can often require 
the computer system to close feedback control loops, be 
intelligent, and provide real-time access to databases. In 
this section, we will briefly sketch some of the impor- 
tant application-related subjects: real-time control, real-time 
artificial intelligence, and real-time databases. 

A .  Real-Time Control Systems 
Digital computers are commonly used in real-time control 

systems due mainly to their improved performance and 
reliability in dealing with increasingly complex controlled 
processes. A digital computer in the feedback loop of 
such a control system calculates the control input by 
executing a sequence of instructions, thereby introducing an 
unavoidable delay-called the computation-time delay-to 
the controlled process. This is an extra delay in addition to 
the system delay commonly seen in the control literature. 
The computation-time delay is an important part of the 
delay in the feedback loop, which also includes the other 
parts of delay related to measurement or sensing, A/D and 
D/A conversion, and actuation. However, these other parts 
of delay are usually constant, and thus easy to deal with. 

Due to data-dependent loops and conditional branches, 
and unpredictable delays in sharing resources during the 
execution of control programs (that implement control 
algorithms), the computation-time delay is a continuous 
random variable which is usually much smaller than one 
sampling period T, if no failure occurs in the controller 
computer. When a component failure or environmental 
disruption such as an electromagnetic interference (EMI) 
occurs, the time taken for error detection, fault location, 
and recovery must be added to the execution time of 
a control program, thus increasing the computation-time 
delay significantly. This in tum seriously degrades the 
system performance and may even lead to catastrophe, or 
a dynamicfailure if the delay exceeds a certain limit called 
the hard deadline [85].  

Several researchers attempted to analyze the effects of 
computation-time delay on the performance or stability 
of a control system. The sufficient (necessary) conditions 
of stability with a feedback delay and the delay effects on 
quadratic performance indices were presented for a linear 
control system [26] (for a nonlinear robot control system 
[Sl]). In [76], a more detailed analysis of the stability of 
a digital control system with a feedback delay was carried 
out by modifying the state difference equation. However, 
all these analyses are based on the assumption that the 

SHIN AND RAMANATHAN. REAL-TIME COMPUTING 17 



feedback delay is fixed or constant. Although the stability 
problem with a variable-feedback delay was investigated 
in [34], it was still based on a regular and periodic (i.e., 
thus deterministic) pattem of delay. In [8], a control 
system with a random time-varying delay in the feedback 
loop was modeled with a stochastic-delay differential 
equation, and sufficient conditions were derived for the 
almost-sure sample stability under which almost every 
possible differential equation in an ensemble of stochastic 
systems has a stable solution. However, this result did 
not give any explicit relation between the performance (or 
stability) and the magnitude of delay, but, instead, gave 
a condition of the coefficients of the state equations and 
the average rate-of-change of delay for sample stability. 
Furthermore, this work assumed a delay to be bounded 
by the “worst case” intersample period. In [85], the hard 
deadline in controlling the elevator deflection of the 
aircraft landing problem was obtained numerically by 
using the concept of allowed state space. 

Shin and Kim [84] proposed a method for analyzing 
computation-time delay effects on system stability and 
state constraints for linear, time-invariant control systems. 
Specifically, they derived the hard deadline for such con- 
trol systems-the critical value of computation-time delay 
beyond which a dynamic failure occurs-under the as- 
sumption that the computation-time delay is stochastically 
stationary. This assumption corresponds to the characteris- 
tics of transient computer failures caused by, for example, 
electromagnetic interferences. The system dynamics are 
modified first according to the assumed maximum delay 
N T ,  and the probability distribution of delays whose oc- 
currence periods 5 NT, ,  where N is changed from 1 to the 
actual maximum delay (or hard deadline), denoted by DT,.  
The pole positions of the modified state equation will then 
be tested to derive necessary conditions for (asymptotic) 
system stability. Moreover, the state and input constraints 
are used to derive the allowed state space from which the 
hard deadline is derived as a function of time and the system 
state. This analysis is useful for the one-shot delay model 
in [84], where a single event-a long-lasting failure-may 
cause a dynamic failure. The authors of [84] used this 
approach to derive deadlines for numerous example control 
systems and then applied the knowledge of hard deadline to 
the design of error recovery in a triple-modular-redundant 
(TMR) controller computer [83]. 

B. Real-Time Artificial Intelligence 
As Artificial Intelligence (AI) techniques become mature, 

there has been growing interest in applying these techniques 
to controlling complex real-world systems which involve 
hard deadlines. In such systems, the controller is required to 
respond to certain inputs within rigid deadlines, or the sys- 
tem may fail catastrophically. Since the number of possible 
domain situations is too large to be fully enumerated, and 
the consequences of failure are so severe, testing alone is 
insufficient to guarantee the required real-time performance 
[48], [97]. These control problems require systems which 
can be proven to meet the hard deadlines imposed by 

the environment. Unfortunately, many AI techniques and 
heuristics are not suited to analyses that would provide 
guaranteed response times [21]. Even when AI techniques 
can be shown to have predictable response times, the 
variance in these response times is typically so large that 
providing timeliness guarantees based on the worst case 
performance would result in severe underutilization of the 
computational resources during normal operations [64]. 

Thus there is an apparent conflict between the nature of 
AI and the needs of real-world, real-time control systems. 
While AI methods are characterized by unpredictable or 
high-variance performance, real-time control systems re- 
quire constant, predictable performance. Most research on 
“real-time AI” focuses either on restricted AI techniques 
that have predictable performance characteristics [9], [35], 
[43] or on reactive systems that retain little of the power of 
traditional AI [3], [ 111. Several researchers are investigating 
systems which combine reactive and traditional AI methods 
[6], [32], [ S I ,  1881. These approaches have concentrated on 
retaining both reactive and unpredictable mechanisms, but 
do not address the guarantees required by hard real-time 
tasks. 

To combine unrestricted AI techniques with the ability 
to make hard performance guarantees, Musliner et al. 
[60] proposed a Cooperative Intelligent Real-time Control 
Architecture (CIRCA) (see Fig. 5) .  In this architecture, an 
AI subsystem reasons about task-level problems that require 
its powerful but unpredictable reasoning methods, while 
a separate real-time subsyste:,i uses its predictable perfor- 
mance characteristics to deal with control-level problems 
that require guaranteed response times. The key difficulty 
with this approach is allowing the subsystems to interact 
without compromising their respective performance goals. 
CIRCA is based on a scheduling module and a structured 
interface that allow the unconstrained AI subsystem to asyn- 
chronously direct the real-time subsystem without violating 
any response-time guarantees. 
I )  Performance Tradeoffs and Bounded Reactivity: The re- 
sponses of an intelligent control system can be rated along 
four dimensions: completeness, precision, confidence, and 
timeliness [50]. Completeness means that responses are 
produced for all possible inputs; timeliness means that the 
responses are produced before any associated deadlines. 
Precision and confidence together determine the “quality” 
of a solution, or how accurate the output is, to the best of 
the system’s knowledge. An ideal intelligent control system 
could guarantee that any possible sequence of inputs would 
elicit optimal responses from the system, within all timing 
requirements. 

Some systems strive for this ideal by assuming they 
have unlimited processing resources. For example, the 
subsumption architecture [ 1 11 assigns each reactive element 
to a separate processor. Such assumptions limit scalability: 
it would be highly impractical to build a subsumption 
system to control an oil drilling platform, which can make 
up to 20000 signals available to its operators [7], [48]. 

Other systems recognize that processor limitations make 
realistic control systems subject to the same “bounded 

18 PROCEEDINGS OF THE IEEE. VOL. 82, NO. I ,  JANUARY 1994 



Environment 

Sensors Actuators 

signals 

I Real-Time Subsvstem I TAP I AISubsvstem I I TAPSchedule 2 7 ( Inference . Engine ) I 
Limited World Model < WoridModel 1 

Fig. 5. The Cooperative Intelligent Real-Time Control Architecture 

rationality” [89] as humans, pushing ideal performance out 
of reach. To deal with bounded rationality, these systems 
provide differing levels of guarantees for the four perfor- 
mance dimensions. The guarantees that a system provides 
are often defined by the conditions that determine when 
its control algorithm retums a result. We call methods that 
halt when they reach a certain threshold along a dimension 
“any-<dimension>” algorithms [6 11. For example, “any- 
time” algc: l:hns can be terminated at any time, yielding 
some result, possibly with reduced precision, confidence, 
or completeness [9], [ 177. [35]. If “any-time’’ algorithms 
are intenupted before the deadline for every response, 
they guarantee timeliness and completeness. Many iterative 
numcrical methods [ 121 are “any-precision” algorithms that 
terminate when a result with a certain precision has been 
achieved. Similarly, algorithms that halt when the confi- 
dence in a solution rises above a threshold are examples of 
“any-confidence’’ algorithms. 

These types of systems are inappropriate for hard real- 
time control tasks because they cannot guarantee acceptable 
results within a deadline. Even “any-time” systems are 
inappropriate, because they have no control over the degree 
of response quality degradation which may occur. A hard 
real-time control system might only guarantee a subset 
of tasks, but that subset requires guaranteed timeliness, 
precision, and confidence to ensure that the system does not 
fail catastrophically. Realistic systems must also recognize 
that, in addition to processor limitations, sensor and actuator 
limitations constrain intelligent control systems. Even if 
a system’s processors are fast enough, its sensors and 
actuators might not be able to provide ideal performance. 
Thus a system must recognize its “bounded reactivity” as 
well as its bounded rationality. 

CIRCA [60] was designed to meet these demands by 
guaranteeing that it will produce a precise, high-confidence 
response in a timely fashion to a limited set of inputs. In 
other words, the architecture can sacrifice completeness 
in order to achieve precision, confidence, and timeliness. 
CIRCA reasons about its bounded reactivity within the 
AI subsystem (AIS) and the Scheduler, which cooperate 
to decide which responses the real-time subsystem (RTS) 

can and should guarantee. The AIS and the Scheduler form 
an “any-completeness’’ system, searching for a subset of 
guaranteed responses that will cover the inputs which are 
expected to occur in the domain at each moment. If the 
AIS can move the subset of guaranteed responses over 
the complete response set properly, CIRCA will provide 
guaranteed ideal performance. 

2) Making Performance Guarantees: How can a real- 
time AI system provide any performance guarantees when 
its AIS uses high-variance or unpredictable computations? 
CIRCA answered this question based on the distinction 
we draw between task-level goals and control-level goals. 
This distinction is largely a functional one: in CIRCA, 
the RTS uses predictable methods to achieve control-level 
goals, while the AIS has unpredictable AI techniques to 
decompose task-level goals into control-level goals. CIRCA 
is designed to reason about guaranteeing its control-level 
goals, but not necessarily its task-level goals. 

The choice of which specific goals are assigned to 
which category is largely up to the system designer: the 
“control-level’’ and the “task-level’’ are somewhat arbitrary 
divisions along a continuous range of problem complexities. 
However, since CIRCA’S guarantees are based on worst 
case performance assumptions, assigning goals which need 
high-variance algorithms to the RTS results in a decreased 
capacity to guarantee other control-level goals. Thus the 
system designer must decide which types of goals will 
require guarantees, and which can be left less predictable. 
Given that separation, the AIS and Scheduler attempt to 
guarantee the control-level goals. 

Figure 5 illustrates the CIRCA. The RTS is responsible 
for implementing the actual guaranteed responses; the AIS 
and the Scheduler cooperate to adjust the subset of re- 
sponses that the RTS is supporting, attempting to ensure that 
the overall system meets hard deadlines and also achieves 
system goals as closely as possible. 

The RTS executes a cyclic schedule of simple test- 
action pairs (TAP’S) with known worst case execution 
times. Since the RTS performs no other functions, it can 
guarantee that the scheduled tests and actions are performed 
within predictable time bounds. The AIS reasons about 

SHIN AND RAMANATHAN: REAL-TIME COMPUTING 19 



the RTS’s bounded reactivity, attempting to find a subset 
of TAP’s which can be guaranteed to meet the control- 
level goals and make progress towards the task-level goals. 
In cooperation with the AIS, the Scheduler reasons about 
the limited execution resources available to the RTS, and 
builds the schedule of TAP’s. Since the AIS and RTS run 
asynchronously, the AIS need not conform to the rigid 
performance restrictions which the RTS uses to guarantee 
meeting hard deadlines. Thus the AIS can utilize unpre- 
dictable, high-variance heuristics without compromising the 
overall system’s ability to meet real-time deadlines. 

C. Real-Time Databases 
There are many real-time applications requiring database 

systems that support stringent timing constraints. Such 
database systems would facilitate the implementation of 
extensible and open software architectures for real-time 
systems and would help real-time applications manage large 
volumes of data and information sharing between tasks. 
These issues are fundamental to the goals of next generation 
real-time systems. Therefore, it is critical that databases 
capable of supporting real-time applications be developed. 

The chief difficulty in applying database technology to 
real-time systems is that conventional database architectures 
are not designed to provide the performance levels or 
response time guarantees needed by real-time systems. 
Most conventional database systems are disk-based and 
use transaction logging and two-phase locking protocols 
to ensure transaction atomicity and serializability. These 
characteristics preserve data integrity, but they also result 
in relatively slow and unpredictable response times. Thus it 
is not feasible to simply connect a conventional multiuser 
database system, such as Oracle or Sybase, to a real-time 
manufacturing machine controller. The relatively slow and 
unpredictable database response times would cause time- 
critical tasks to miss deadlines [78], [90]. 

The inadequacy of conventional database systems for 
real-time applications has spawned the field of real-time 
database systems (RTDBS’s) [25] ,  [27], [531, [681, [751. 
For more detailed information on these and on other work 
in the area of real-time databases refer to the article by Yu 
et al. in this issue. 

IX. CONCLUSION 
The growing use of digital computers in a great number 

of applications has driven real-time computing to become 
one of important disciplines of computer science and en- 
gineering. We have thus far highlighted the various issues 
in this new area of real-time computing. Existing solutions 
to many of the issues were also discussed. In this section, 
we identify important research issues which warrant further 
investigation and present a few possible directions for the 
future. 

Experimental prototyping: Although basic research has 
produced many significant results, not much work has been 
done to validate those results on a real application. Existing 

real-time applications may need to be re-engineered with 
state-of-the-art results to validate the underlying assump- 
tions and feed back ideas and problems to basic research. 
The prototypes will enable researchers to compare differ- 
ent solutions in a “real” environment and identify truly 
promising solutions. 

Formal specijication and venpcation: Specification and 
verification are other areas of research which need further 
investigation. At present, most of this work is still in 
preliminary stages. A few formal languages capable of 
dealing with timing constraints have been developed. These 
languages have been used to specify and verify small toy 
problems. There is, however, a serious need for better 
understanding of the fundamental problems in this area and 
their scalability. Such an understanding will lead to better 
specification languages. These languages must then be used 
to specify and verify real applications, not just a few toy 
problems. 

Assignment of task and message deadlines: Although 
deadlines are crucial to most real-time systems, not much 
work has been done to formalize the assignment of dead- 
lines to tasks and messages in a real-time application. 
Most task and message scheduling algorithms assume that 
the deadlines are given and they usually do not wony 
about how these deadlines were arrived at in the first 
place. However, in practice, task and message deadlines 
must be derived from the application under consideration. 
For example, an automotive company may set a goal to 
complete the assembly of a car in 20 h based on various 
reasons. Based on this deadline, one must derive individual 
station deadlines, operation deadlines, interstation transfer 
deadlines, etc. These subdeadlines may have to be further 
divided into task and message deadlines based on the capa- 
bilities of the stations in the system. Currently, derivation 
of such deadlines is done in an ad hoc fashion. It is 
essential to develop a systematic approach to the derivation 
of these deadlines in conjunction with specification of the 
application. 

Characterization of task execution times: Similar to task 
and message deadlines, scheduling algorithms in real-time 
systems often assume knowledge of the task execution 
times. However, very little has been reported on how to de- 
termine the task execution times. There are several factors 
that make this problem very difficult: data-dependent loops, 
workload-dependent resource-sharing delays, conditional 
branches, and system dependency on hardware, operating 
systems, languages, and/or compilers. There is a need for 
tools which analyze the task description and determine the 
task execution times under different conditions. 

Integration of fault-tolerance andlor security: Current 
real-time systems often treat fault-tolerance and security 
constraints in isolation. However, due to growing com- 
plexity of real-time systems, it is no longer possible to 
separate and treat timing, fault tolerance, and security 
as independent constraints. Therefore, there is a need to 
develop integrated approaches which systematically address 
the impact of fault-tolerance and security techniques on the 
timing constraints in a real-time system. Predictable error 

20 PROCEEDINGS OF THE IEEE, VOL. 82. NO. I ,  JANUARY 1994 



detection, location, and reconfiguration techniques need to 
be developed. 

Real-time architectures: As discussed earlier, there are 
two levels of architecture that need to be considered for 
enhancing predictability: processor and system levels. At 
the single processor level, we need research into making in- 
terrupt handling and memory access predictable. However, 
contemporary processors are designed for high average 
performance using multiple pipelines and multilevel cache. 
At the system level, research is needed to make interproces- 
sor communication predictable, help making multiprocessor 
scheduling feasible, and tolerate component failures using 
the component multiplicity as redundancy. 

Real-time databases: This area is an important subdisci- 
pline of real-time computing. One of the problems with RT 
databases is that databases by their very nature exhibit un- 
predictable response times. This arises from many sources 
like disk I/O, resource contention (blocking/aborts), and the 
inability to know exactly how many data objects a query 
will access. Important issues include transaction scheduling 
to meet deadlines, explicit semantics for specifying con- 
straints (especially timing constraints), and checking the 
database system’s ability of meeting transaction deadlines 
during application initialization. 

Real-time communications: Gigabit networking technol- 
ogy is currently beginning to be embraced by industry 
in ATM switches. Real-time scheduling of packet/message 
transmissions for gigabit switches will allow us to dynami- 
cally select and correlate distributed sensor information on 
demand. Users of these systems can virtually visit different 
geographical locations, and get a “first-hand view” of the 
situation. Global assessment can be facilitated by gathering 
information from different points at a single decision point. 
Such capabilities can greatly enhance the functionality and 
flexibility of C31 systems, air-traffic control systems, mod- 
em mass-transportation systems, and automated factories. 
However, in order to fully utilize this potential, rapid 
strides need to made in the area of real-time communi- 
cation. 

Integration and scheduling of 110: A real-time system 
contains not only disks but also a large number of sensors, 
actuators, and display devices. These devices must be 
integrated and scheduled with the processors to meet all 
timing constraints. 

Real-time artijicial intelligence: There is an inherent 
conflict between real-time computing and AI requirements. 
The former requires predictability and the latter requires 
“intelligence” by handling as much uncertainties as possi- 
ble. Research is needed to integrate both RTC and AI by 
resolving this conflict. 

In recent years, considerable research efforts have been 
directed towards real-time computing, especially because of 
the growing number of applications and the Office of Naval 
Research’s five-year initiative on time-critical computing 
(which began in 1988). These efforts have resulted in 
significant progress in many of the subareas of real-time 
computing, yet the area is still young, exciting, and growing 
rapidly. 

REFERENCES 

G. Agrawal, B. Chen, and W. Zhao, “Optimal synchronous 
capacity allocation for hard real-time communication with the 
timed-token protocol,” in Proc. Real-Time Systems Symp., Dec. 

G. Agrawal, B. Chen, W. Zhao, and S. Davari, “Guaranteeing 
synchronous message deadlines with the timed token proto- 
col,” in Proc. Distributed Computing Systems, June 1992, pp. 
468-475. 
P. E. Agre and D. Chapman, “Pengi: An implementation of a 
theory of activity,” in Proc. Nut. Conf. on Artificial Intelligence. 
Morgan Kaufmann: 1987, pp. 268-272. 
D. P. Anderson, “The DASH project: An overview,” Tech. 
Rep. UCB/CSD, Dept. of Elec. Eng. Comput. Sci., Univ. of 
California, Berkeley, Feb. 1988. 
__ , “A software architecture for network communication,” in 
Proc. Distributed Computing Systems, June 1988, pp. 376-383. 
R. C. Arkin, “Integrating behavioral, perceptual, and world 
knowledge in reactive navigation,” in Robotics and Autonomous 
Systems 6 ,  1990, pp. 105-122. 
J. E. Amold, “Experiences with the subsumption architec- 
ture,” in Conf. on Artificial Intelligence Applications, 1989, pp. 

A. Belleisle, “Stability of systems with nonlinear feedback 
through randomly time-varying delays,” IEEE Trans. Auromat. 
Contr., vol. AC-20, no. I ,  pp. 67-75, Feb. 1975. 
M. Boddy and T. Dean, “Solving time-dependent planning 
problems,” in Proc. Int. Joint Conf on Artificial Intelligence, 

S. H. Bokhari, “A shortest tree algorithm for optimal assign- 
ments across space and time in a distributed processor system,” 
IEEE Trans. Software Eng., vol. 7, no. 6, pp. 583-589, 1981. 
R. A. Brooks, “A robust layered control system for a mobile 
robot,” IEEE J .  Robotics Automat., vol. RA-2, no. 1, pp. 14-22, 
Mar. 1986. 
R. L. Burden and J. D. Fakes, Numerical Analysis. PWS- 
KENT Pub., 1989. 
H.-L. Chen and N.-F. Tzeng, “Fault-tolerant resource place- 
ment in hypercube computers,” in Proc. Int. Conf on Parallel 
Processing, Aug. 1991, pp. 517-524. 
M.-S. Chen and K. G. Shin, “Depth-first search approach 
for fault-tolerant routing in hypercube multicomputers,” IEEE 
Trans. Parallel Distributed Syst., vol. 1, no. 2, pp. 152-159, 
Apr. 1990. 
M.-S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, 
routing and broadcasting in hexagonal mesh multiprocessors,” 
IEEE Trans. Comput., vol. 39, no. 1, pp. 10-18, Jan. 1990. 
S. Chodrow, F. Jahanian, and M. Donner, “Run-time monitoring 
of real-time systems,” in Proc. Real-Time Systems Symp., Dec. 
1991, pp. 74-83. 
J.-Y. Chung, J. W. Liu, and K.-J. Lin, “Scheduling periodic 
jobs that allow imprecise results,” IEEE Trans. Comput., vol. 
39, no. 9, pp. 1156-1174, Sept. 1990. 
F. Cristian, “Probabilistic clock synchronization,” Tech. Rep. 
RJ 6432 (62550), IBM Almaden Research Center, Sept. 1988. 
A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz, “The real- 
time operating system of MARS,” ACM Operating Syst. Rev., 
vol. 23, no. 3, pp. 141-157, July 1989. 
D. Dolev and J. Halpern, “On the possibility and impossibility 
of achieving clock synchronization,” in Proc. Symp. on Theory 
of Computing, Apr. 1984, pp. 504-511. 
E. H. Durfee, “A cooperative approach to planning for real- 
time control,” in Proc. Workshop on Innovative Approaches to 
Planning, Scheduling and Control, Nov. 1990, pp. 277-283. 
D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive 
load sharing in homogeneous distributed systems,” IEEE Trans. 
Software Eng., vol. SE-12, no. 5, pp. 662475,  May 1986. 
D. Ferrari and D. C. Verma, “A scheme for real-time channel 
establishment in wide-area networks,” IEEE J.  Selected Areas 
Commun., vol. 8, no. 3, pp. 368-379, Apr. 1990. 
H. Garcia-Molina, B. Kao, and D. Barbara, “Aggressive trans- 
missions over redundant paths,” in Proc. Distributed Computing 
Systems, 1991. pp. 198-207, 
GDX, sales literature of Firmware Associates, Inc., West 
Chester, PA, 1992. 
A. Gosiewski and A. Olbrot, “The effect of feedback delays on 
the performance of multivariable linear control systems,” IEEE 

1992, pp. 198-207. 

93-100. 

Aug. 1989, pp. 979-984. 

SHIN AND RAMANATHAN: REAL-TIME COMPUTING 21 



Trans. Automat. Contr., vol. AC-25, no. 4, pp. 729-734, Aug. 
1980. 

[27] M. H. Graham, “Issues in real-time data management,” J .  Real- 
fime Sysr., vol. 4, no. 3, pp. 185-202, Sept. 1992. 

[28] D. Haban and K. G. Shin, “Application of real-time monitoring 
for scheduling tasks with random execution times,” IEEE Trans. 
Software Eng., vol. 16, no. 12, pp. 1374-1389, Dec. 1990. 

[29] J. Y. Halpem, B. Simons, R. Strong, and D. Dolev, “Fault- 
tolerant clock synchronization,” in Proc. Principles of Dis- 
tributed Computing, 1984, pp. 89-102. 

[30] M. Hamdaoui and P. Ramanathan, “Selection of timed token 
protocol parameters to guarantee message deadlines,” Tech. 
Rep. ECE-92-10, Univ.of Wisconsin-Madison, Nov. 1992. 

[31] -, “A dynamic multiple copy approach for message pass- 
ing in virtual cut-through environment,” in Proc. Int. Parallel 
Processing Symp., Apr. 1993, pp. 757-761. 

[32] S. Hanks and R. J. Firby, “Issues and architectures for planning 
and execution,” in Proc. Workshop on Innovative Approaches to 
Planning, Scheduling and Control, Nov. 1990, pp. 59-70. 

[33] J. R. Haritsa, M. J. Carey, and M. Livny, “Data access schedul- 
ing in firm real-time database systems,” J. Real-Time Syst., vol. 
4, no. 3, pp. 203-241, Sept. 1992. 

[34] K. Hirai and Y. Satoh, “Stability of a system with variable time 
delay,” IEEE Trans. Automat. Contr., vol. AC-25, no. 3, pp. 
552-554, June 1980. 

[35] E. J. Horvitz, “Reasoning about beliefs and actions under 
computational resource constraints,” in Proc. Workshop on 
Uncertainty in AI, 1987. 

[36] C.-J. Hou and K. G. Shin, “Load sharing with consideration 
of future task arrivals in heterogeneous distributed real-time 
systems,” in Proc. Real-Time Systems Symp., Dec. 1991, pp. 
9L103. 

[37] __,“Incorporation of optimal timeouts into distributed real- 
time load sharing,” in Proc. Hawaii Int. Conf. on System 
Sciences, Jan. 1993, pp. 603-612 

[38] F. Jahanian and A. Goyal, “A formalism for monitoring real- 
time constraints at run-time,” in Proc. Fault-Tolerant Comput- 
ing Symp. (FTCS-20), June 1990, pp. 148-155. 

[39] D. D. Kandlur and K. G. Shin, “Traffic routing for multicom- 
puter networks with virtual cut-through,” IEEE Trans. Comput., 
vol. 41, no. 10, pp. 1257-1270, Oct. 1992. 

[40] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communi- 
cation in multi-hop networks,” in Proc. Distributed Computing 
Systems, May I99 1, pp. 300-307. 

[41] J. L. W. Kessels, “Two designs of a fault-tolerant clocking 
system,” IEEE Trans. Comput., vol. C-33, no. 10, pp. 912-919, 
Oct. 1984. 

[42] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. 
Thambidurai, “The MAFT architecture for distributed fault 
tolerance,” IEEE Trans. ComDut., vol. 37, no. 4, pp. 398405,  

1 .  

Apr. 1988. 
1431 R. E. Korf. “Real-time search for dvnamic Dlanning.” in Proc. 
~~ 

AAA1 Spring Symp. on Planning i i  Uncertkn, Un&edictable. 
or Changing Environments, 1990. 

[44] C. M. Krishna and K. G. Shin, “On scheduling tasks with a 
quick recovery from failure,” IEEE Trans. Comput., vol. C-35, 
no. 5 ,  pp. 448455, May 1986. 

[45] C. M. Krishna, K. G. Shin, and R. W. Butler, “Synchronization 
and fault-masking in redundant real-time systems,” in Dig. 
Papers, FTCS-14, June 1984, pp. 152-157. 

[46] __,“Ensuring fault tolerance of phase-locked clocks,” IEEE 
Trans. Comput., vol. C-34, no. 8, pp. 752-756, Aug. 1985. 

1471 J. F. Kurose, M. Schwartz, and Y. Yemini, “Controlling win- 
dow protocols for time-constrained communication in multiple 
access networks,” IEEE Trans. Commun., vol. 36, no. 1, pp. 
4 1 4 9 ,  Jan. 1988. 

[48] T. J. Laffey, P. A. Cox, J.  L. Schmidt, S. M. Kao, and J. Y. 
Read, “Real-time knowledge-based systems,” Al Mag., vol. 9, 
no. 1, pp. 2 7 4 5 ,  1988. 

[49] L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in 
the presence of faults,” J. Assoc. Comput. Mach., vol. 32, no. 
1, pp. 52-78, Jan. 1985. 

[50] V. R. Lesser, J. Pavlin, and E. Durfee, “Approximate processing 
in real-time problem solving,” AI Mag., vol. 9, no. 1, pp. 49-61, 
1988. 

[51] C. L. Liu and J. W. Layland, “Scheduling algorithms for 
multiprogramming in a hard real-time environment,” J .  Assoc. 
Comput. Mach., vol. 20, no. 1, pp. 4 6 4 1 ,  Jan. 1973. 

22 

[52] J. Liu, K.-J. Lin, W.-K. Shih, A. Yu, A.-Y. Chung, and W. 
Zhao, “Algorithms for scheduling imprecise computations,” 
Computer, vol. 24, no. 5,  pp. 5 8 4 9 ,  May 1991. 

[53] V. B. Lortz and K. G. Shin, “MDARTS: A multiprocessor 
database architecture for real-time systems,” Tech. Rep. CSE- 
TR-155-93, CSE Div., Dep. Elec. Eng. Comput. Sci., Univ. of 
Michigan, Ann Arbor, MI, Mar. 1993. 

[54] J .  Lundelius-Welch and N. Lynch, “A new fault-tolerant algo- 
rithm for clock synchronization,” Informat. and Computat., vol. 
77, no. 1, pp. 1-36, 1988. 

[55] D. P. Miller and E. Gat, “Exploiting known topologies to 
navigate with low-computation sensing,” in Proc. SPIE Sensor 
Fusion Conf., Nov. 1990. 

[56] H. Mitra and P. Ramanathan, “A genetic approach for sched- 
uling non-preemptive tasks with precedence and deadline con- 
straints,” in Proc. Hawaii Int. Conf on System Sciences, Jan. 
1993. 

[57] A. K. Mok and M. L. Dertouzos, “Multiprocessor scheduling 
in a hard real-time environment,” in Proc. Texax Conf. on 
Computing Systems, Nov. 1978. 

[58] J. J. Molini, S. K. Maimon, and P. H. Watson, “Real-time 
system scenarios,” in Proc. Real-Time Systems Symp., Dec. 
1990, pp. 214-225. 

[59] M. L. Molle and L. Kleinrock, “Virtual time CSMA: Why 
two clocks are better than one,” IEEE Trans. Commun., vol. 
COM-33, no. 9, pp. 919-933, Sept. 1985. 

[60] D. J. Musliner, E. H. Durfee, and K. G. Shin, “CIRCA: A 
cooperative intelligent real-time control architecture,” IEEE 
Trans. Systems, Man, Cybern., vol. 23, no. 6, Nov./Dec. 1993 
(in press). 

[61] D. J. Musliner, E. H. Durfee, and K. G. Shin, “Any dimension 
algorithms and real-time AI,” Tech. Rep. CSE-151-92, CSE 
Div., Dep. Elec. Eng. Comput. Sci., Univ. of Michigan, Ann 
Arbor, MI, Dec. 1992. 

[62] A. Olson and K. G. Shin, “Message routing in HARTS with 
faulty components,” in Proc. Fault-Tolerant Computing Symp., 
June 1989, pp. 331-338. 

[63] __, “Probabilistic clock synchronization in large distributed 
systems,” in Proc. I Ith Int. Cot$ on Distributed Computer 
Systems, May 1991, pp. 290-297. 

[64] C. J. Paul, A. Acharya, B. Black, and J. K. Strosnider, “Re- 
ducing problem-solving variance to improve predictability,” 
Commun. ACM, vol. 34, no. 8, pp. 81-93, Aug. 1991. 

[65] D. Peng and K. G. Shin, “Static allocation of periodic tasks 
with precedence constraints in distributed real-time systems,” 
in Proc. 9th Int. Conf. on Distributed Computer Systems, June 
1989, pp. 19G198. 

[66] K. Ramamritham, ‘‘Allocation and scheduling of complex pe- 
riodic tasks,” in Proc. lnt. Conf on Distributed Computing 
Systems, May 1990, pp. 108-1 15. 

[67] K. Ramamritham and J. A. Stankovic, “Distributed scheduling 
of tasks with deadlines and resource requirements,” IEEE Trans. 
Comput., vol. 38, no. 8, pp. 11 10-1 123, Aug.1989. 

[68] K. Ramamritham, “Real-time databases” (Invited Paper)Jnt. J .  
Distributed and Parallel Databases, to be published, 1992. 

[69] P. Ramanathan and S .  Chalasani, “Resource placement in k-ary 
71-cubes,” in Proc. Int. Parallel Processing Symp., pp. 11-133-11- 
140, Aug. 1992. 

[70] P. Ramanathan, D. D. Kandlur, and K. G. Shin, “Hardware 
assisted software clock synchronization for homogeneous dis- 
tributed systems,” IEEE Trans. Comput., vol. 39, no. 4, pp. 
514-524, Apr. 1990. 

[71] P. Ramanathan and G. M. Rupnick, “Deadline constrained 
message scheduling in point-to-point interconnection,” in Proc. 
Systems Design Synthesis Technology Workshop( Silver Spring, 
MD, Naval Surface Warfare Center, Sept. 1991), pp. 183-192. 

[72] P. Ramanathan and K. G. Shin, “A multiple copy approach 
for delivering messages under deadline constraints,” in Proc. 
Fault-Tolerant Computing Symp., June 1991, pp. 300-307. 

[73] -, “Delivery of time-critical messages using a multiple 
copy approach,” ACM Trans. Comput. Syst., vol. IO, no. 2, pp. 
144166,  May 1992. 

[74] P. Ramanathan, K. G. Shin, and R. W. Butler, “Fault-tolerant 
clock synchronization in distributed systems,” IEEE Comput., 
vol. 23, no. 10, pp. 3 3 4 2 .  Oct. 1990. 

1751 RTA Introduction & Overview, Real Time Computer software 
GmbH, 1992. 

[76] Z. V. Rekasius, “Stability of digital control with computer 

PROCEEDINGS OF THE IEEE, VOL. 82, NO. 1, JANUARY 1994 



interruption,” IEEE Trans. Automaf. Contr., vol. AC-31, no. 4, 
pp. 356359,  Apr. 1986. 

(771 F. E. Ross, “FDDI-A tutorial,” IEEE Commun. Mag., vol. 24, 
pp. 4 6 6 1 ,  May 1986. 

[78] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Concurrency control 
for distributed real-time databases,” SIGMOD Rec., vol. 17. no. 
1, pp. 82-98, Mar. 1988. 

1791 K. G.  Shin, “HARTS: A distributed real-time architecture,” - -  
IEEE Comput., vol. 24, no. 5,  pp. 25-35, May 1991. 

[80] K. G.  Shin and Y.-C. Chang, “Load sharing in distributed 
real-time systems with state-change broadcasts,” IEEE Trans. 
Comput., vol. 38, no. 8, pp. 1124-1142, Aug. 1989. 

[81] K. G .  Shin and X. Cui, “Effects of computing time delay on 
real-time control systems,’’ in Proc. 1988 American Control 
Conf., 1988, pp. 1071-1076. 

[82] K. G .  Shin and G.  L. Dykema, “Distributed (I/O} architec- 
ture for (HARTS],” in Proc. 17th Int. Symp. on Computer 
Architectures, June 1990, pp. 332-342. 

[83] K. G. Shin and H. Kim, “A time redundancy approach to tmr 
failures using fault-state likelihoods,” IEEE Trans. Comput. (in 
press). 

[84] -, “Derivation and application of hard deadlines for real- 
time control systems,” IEEE Trans. System, Man, Cybern., vol. 
22, no. 6, pp. 1403-1413, Nov./Dec. 1992. 

[85] K. G.  Shin, C. M. Krishna, and Y.-H. Lee, “A unified method 
for evaliating real-time computer controller and its application,” 
IEEE Trans. Automat. Contr., vol. AC-30, no. 4, pp. 357-366, 
Apr. 1985. 

[86] K. G .  Shin and P. Ramanathan, “Clock synchronization of a 
large multiprocessor system in the presence of malicious faults,” 
IEEE Trans. Comput., vol. C-36, no. 1, pp. 2-12, Jan. 1987. 

[87] __ , “Transmission delays in hardware clock synchroniza- 
tion,” IEEE Trans. Comput., vol. 37, no. 11, pp. 1465-1467, 
Nov. 1988. 

[88] R. Simmons, “An architecture for coordinating planning, sens- 
ing, and action,” in Proc. Workshop on Innovative Approaches 
to Planning, Scheduling and Control, Nov. 1990, pp. 292-297. 

[89] H. A. Simon, Models of Bounded Rationality. Boston, MA: 
M.I.T. Press, 1982. 

[90] M. Singhal, “Issues and approaches to design of real-time 
database systems,” SIGMOD Rec., vol. 17, no. 1, pp. 19-33, 
Mar. 1988. 

[91] T. B. Smith, “Fault-tolerant clocking system,” in Proc. Fault- 
Tolerant Computing Symp., 198 1, pp. 262-264. 

[92] T. B. Smith and J. H. Lala, “Development and evaluation of 
a fault-tolerant multiprocessor (lTMP) computer: l T M P  prin- 
ciples of operation,” Contractor Rep. 166071, NASA, Langley 
Res. Ctr., May 1983. 

[93] T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” 
J .  Assoc. Comput. Mach., vol. 34, no. 3, pp. 626-645, July 1987. 

[94] J. Stankovic, “SpringNet: A scalable architecture for high per- 
formance, predictable, distributed, real-time computing,” Tech. 
Rep.91-74, Univ. of Massachusetts, Oct. 1991. 

[95] J. A. Stankovic, “Misconceptions about real-time computing: A 
serious problem for next generation systems,” IEEE Comput., 
vol. 21, no. 10, pp. 10-19, Oct. 1988. 

[96] J. A. Stankovic and K. Ramamritham, “The design of Spring 
kemel,” in Proc. Real-Time Systems Symp., Dec. 1987, pp. 
146157. 

[97] J. A. Stankovic, “Misconceptions about real-time computing: A 
serious problem for next-generation systems,” IEEE Comput., 
vol. 21, no. 10, pp. 10-19, Oct. 1988. 

[98] J. K. Strosnider, T. Marchok, and J. P. Lehoczky, “Advanced 
,real-time scheduling using the IEEE 802.5 token ring,” in Proc. 
Real-Time Systems Symp., Dec. 1988, pp. 42-52. 

[99] A. L. Tannenbaum, Computer Networks Englewood Cliffs, 
NJ: Prentice-Hall, 198 1. 

[lo01 K. W. Tindell, A. Bums, and A. J. Wellings, “Allocating hard 
real-time tasks: An NP-hard problem made easy,” Real-Time 
Sysr., vol. 4, no. 2, pp. 145-165, June 1992. 

[IO11 H. Tokuda, M. Koreta, and C. Mercer, “A real-time monitor for 
a distributed real-time os.,” ACM SIGPlan Notices, vol. 24, no. 

[lo21 J. P. Tsai, K.-Y. Fang, and H.-Y. Chen, “A noninvasive archi- 
tecture to monitor real-time distributed systems,” Comput., vol. 
23, no. 3, pp. 1 1-23, Mar. 1990. 

[lo31 N. Vasanthavada and P. N. Marinos, “Synchronization of fault- 
tolerant clocks in the presence of malicious failures,” IEEE 
Trans. Comput., vol. 37, no. 4, pp. 4 4 M 8 ,  Apr. 1988. 

1, pp. 68-77, Jan. 1989. 

(1041 J. P. C. Verhoosel, E. J. Luit, and D. K. Hammer, “A static 
scheduling algorithm for distributed hard real-time systems,” 
Real-Time Syst., vol. 3, no. 3, pp. 227-246, Sept. 1991. 

[lo51 W. Zhao and K. Ramamritham, “Virtual time {CSMA] proto- 
cols for hard real-time communications,” IEEE Trans. Sofrware 
Eng., vol. SE-13, no. 8, pp. 938-952, Aug. 1987. 

[lo61 W. Zhao, K. Ramamritham, and J. A. Stankovic, “Preemptive 
scheduling under time and resource constraints,” IEEE Trans. 
Comput., vol. C-36, no. 8, pp. 949-960, Aug. 1987. 

[lo71 -, “Scheduling tasks with resource requirements in hard 
real-time systems,” IEEE Trans. Sofmare Eng., vol. SE-13, no. 
5, pp. 564-577, May 1987. 

[ 1081 W. Zhao, J. A. Stankovic, and K. Ramamritham, “A window 
protocol for transmission of time constrained messages,” IEEE 
Trans. Comput., vol. 39, no. 9, pp. 11861203, Sept. 1990. 

[ 1091 Q. Zheng and K. G.  Shin, “Establishment of isolated failure 
immune real-time channels in harts,” IEEE Trans. Parallel 
Distrih. Syst. (in press). 

[ 1101 -, “Fault-tolerant real-time communication in distributed 
computing systems,” in Proc. FTCS-22, July 1992, pp. 86-93. 

[ I  111 -, “On the ability of establishing real-time channels in 
Doint-to-Doint Dacket-switched networks,” IEEE Trans. Com- 
t u n .  (in’pressj, 1993. 

[112] -, “Synchronous bandwidth allocation in { FDDI} net- 
works,” in Proc. ACM Multimedia’93 1993, pp. 31-38. 

Kang G. Shin (Fellow, IEEE) received the 
B.S degree in electncal engineenng from Seoul 
National university, Seoul, Korea, in 1970, and 
both M S and Ph D degrees in electncal engi- 
neenng from Cornell University, Ithaka, NY, in 
1976 and 1978, respectively 

From 1978 to 1982 he was on the faculty 
of Rensselaer Polytechnic Institute, Troy, NY 
He has held visiting positions at the U.S. Air- 
force Flight Dynamics Laboratory, AT&T Bell 
Laboratones, Computer Science Division within 

the Department of Electncal Engineenng and Computer Science at the 
University of California at Berkeley, and the Intemational Computer 
Science Institute, Berkeley, CA He is Professor and Associate Chair of 
Electncal Engineenng and Computer Science for the Computer Science 
and Engineenng Division, The University of Michigan, AM Arbor. In 
1985, he funded the Real Time Computing Laboratory, where he and his 
colleagues are currently building a 19-node hexagonal mesh multicom- 
puter, called HARTS, to validate vanous architectures and analytic results 
in the area of distnbuted real-time computing He has also been applying 
the basic research results of real-time computing to manufactunng-related 
applications, ranging from the control of robots and machine tools to 
the development of open architectures for manufactunng equipment and 
processes Recently, he has initiated research on the open-architecture 
Information Base for machine tool controllers. He has authoredkoauthored 
over 200 technical papers (about 110 of these in archival journals) and 
several book chapters in the areas of distnbuted real-time computing 
and control, fault-tolerant computing, computer architecture, robotics and 
automation, and intelligent manufactunng. In 1987, he received the 
Outstanding IEEE TRANSACTIONS ON AUTOMATIC CONTROL Paper 
Award for a paper on robot trajectory planning In 1989, he received 
the Research Excellence Award from the University of Michigan. 

Dr Shin was the Program Chairman of the 1986 IEEE Real-Time 
Systems Symposium (RTSS), the General Chairman of the 1987 RTSS, 
the Guest Editor of the August 1987 Special Inssue on Real-Time Systems 
for the IEEE TRANSACTIONS ON COMPUTERS, a program Co-chair for 
the 1992 Intemational Conference on Parallel Processing, and served 
on numerous technical program committees He also chaired the IEEE 
Technical Committee on Real-Time Systems dunng 1991-1993, is a 
Distinguished Visitor of the Computer Society of the IEEE, an Associate 
Editor of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED 
COMPUTING SYSTEMS, and an Area Editor of Internarronal Journal of 
fime-Critic a1 Computing Systems 

SHIN AND RAMANATHAN: REAL-TIME COMPUTING 23 



Parameswaran Ramanathan (Member, IEEE) 
received the B Tech degree from the Indian 
Institute of Technology, Bombay, India, in 1984, 
and the M S E. and Ph D degrees from the 
University of Michigan, Ann Arbor, in 1986 and 
1989, respectively. 

From 1984 to 1989 he was a Research As- 
sociate in the Department of Electncal Engi- 
neering and Computer Science at the university 
of Michigan At present, he is an Assistant 
Professor in the Department of Electrical and 

Computer Engineering dnd in the Department of Computer Sciences at 
the University of Wisconsin-Madison His research interests include the 
areas of real-time systems, fault-tolerant computing, distnbuted systems, 
and parallel algonthms 

24 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 1. JANUARY 1994 


