
AIRES Toolkit Description

AIRES Group
RTCL/EECS, The University of Michigan

In the package:

The following items can be found in this package AIRES_Release_v2.0.zip:

1.A meta-model: AIRES_META_MODEL.xmp and AIRES_META_MODEL.xml
2.A directory contains all interpreters: AIRESComponents. In this directory, there are

3 .dll files: Composite.dll, Comp2Task.dll and Schedule.dll
3.An ETC example in Example directory. There are 4 files: etc_manager.mdl,

etc_monitor.mdl, etc_servo_control.mdl, and etc_ports.csv.
4.A Model_Example directory with a completed example constructed using AIRES:

ETC_example.mga is a completely constructed example; two .oil files,
Software4P1.oil and Software4P2.oil, are OSEKWorks configuration file
generated by AIRES tool with given ETC model.

5.A file contains all icons used by AIRES: icons.zip.
6.AIRES toolkit manual in both MS Word and PDF format: AIRES_Manual_v2.doc

and AIRES_Manual_v2.pdf.
Please check all files before starting the example. If there is anything missing in the
package, please contact Shige Wang, wangsg@eecs.umich.edu.

Tool components:

AIRES toolkit consists of one meta-model as both xml file and xmp file (used by GME)
and 3 interpreters as dynamic link library files. The meta-model defines the modeling
framework in which AIRES toolkit will work, especially for timing and resource
specification and schedulability analysis. Attributes of each entity used in AIRES toolkit
can be found in the AIRES meta-model. The details of each AIRES tool component are
listed below:

1.AIRES meta-model
a.Description: specifies all entities used for modeling and analysis. It needs to

be installed in GME 2000 environment.
b.Input: AIRES_META_MODEL.xmp, or AIRES_META_MODEL.xml
c.Output: A paradigm in GME, named AIRES
d.Strength: supports timing and platform modeling
e.Limitations: only works with AIRES algorithms and in GME environment

2.Component composition
a.Description: imports Simulink models into GME environment, supports new

model construction using these imported models, and performs signal
consistency checking. These functions are implemented in Composite.dll
interpreter.

b.Inputs:
i.mdl files from Simulink for importing models

ii.csv file for port information when signal checking is performed
iii.AIRES paradigm is presented in GME paradigm.

c.Outputs:
i.Components in Simulink model are stored in software directory

SWFolder after imported after signal checking.
ii.Inconsistent signals, their names, owner components, and values.

d.Strength:
i.Reuses components constructed in other modeling environments

ii.Signal properties can be specified/modified using a general-purpose
tool

iii.Supports semantic checking of signals
e.Limitation:

i.Only Simulink models in .mdl can be imported.
ii.Signals have to be manually specified, instead of automatically

extracting them from models.
3.Component-to-task mapping

a.Description: partitions components in a design model into different groups
that can be implemented as individual tasks. Such partitioning is based on
the communication cost among components. This is implemented in
Comp2Task.dll interpreter.

b.Inputs:
i.Target model in SWFolder

ii.Communication cost for each link
iii.Max number of components per task
iv.Max number of tasks in the system

c.Outputs:
i.Tasks

ii.Components in each task
iii.Task graph, if the Graphviz tool is installed

d.Strength:
i.Automatically generates a set of tasks from the design model

ii.Indicates which components should be part of which task
iii.Considers both task workload and system workload

e.Limitation:
i.Only communication cost is considered when constructing a task

graph.
ii.A task graph has to be manually generated based on our results.

4.Timing and scheduling analysis
a.Description:

Deadline distribution: distribute end-to-end timing constraints over a
given task graph (model), and assign the timing attributes to each task in
the graph, if the timing constraints for each individual task are not given.
The distribution is based on an equal distribution of slack:

where D is the end-to-end timing constraint, ei is the WCET of task i on
the longest path subject to the constraint; ck is the communication cost
between a pair of tasks along the longest path subject to the constraint; n is
the number of tasks along the longest path. The offset and deadline of a
task x in the task graph can be calculated:

Allocate the tasks in the graph to processors in a given platform model if
the tasks have not yet been allocated. The allocation is based on pair-wise
task clustering with clustering factor, CF. Clustering factor, CF, for a pair
of tasks, T1 and T2, is given by:

12

21)(
c

eeCF +
=

where are execution times of tasks T1 and T2 respectively and,
the communication cost between T1 and T2. Given a threshold of
cf, tasks with CF ≤ cf will be allocated on the same processor.

 For the current release, CF is not used. This is provided as a future
extension. Though this value can be derived from the values of execution
times, and communication costs between tasks, we have exposed this
factor to allow the user a finer grained control over clustering and hence
allocation of tasks to processors.

Perform schedulability analysis for each processor, and provide response
time and resource consumption for each task. The schedulability is
checked with the following equation:

where Wi(t) is the time demand function for task Ti, ej and Pj are execution
time and period of Tj, and bi is the blocking time of Ti during execution.
The blocking time bi can be calculated by

n

ceD
s

m

k
k

n

i
i ∑∑

==
−−

= 11

11 −− += xxx cdo

seod xxx ++=

01 =o

sed += 11

∑
=

+

=

i

j
i

j
ji b

P
tetW

1

)(

e1, e 2

c12

where j is for those non-preemptive tasks Tj with lower priority than Ti but
released before Ti, and sj is the execution time between rescheduling
points in Tj. Wi(t) only needs to be checked at times

The sufficient and necessary condition for a set of tasks to be schedulable
on a processor is given as follows:
i.Given a task set T={Ti| i=1,..,n} with periods Pi, priorities pi and

deadlines di are given, task i is schedulable if and only if there is exist
a time point t such that

ii.The whole task set is schedulable on a processor if and only if all tasks

satisfy the above equation.
iii.The whole system is schedulable if and only if task sets on all processors

are schedulable.
Generate OSEKWorks configuration file, OIL file, with parameters (including
task, scheduling option, system counter and alarm objects) result in the system
schedulable.
b.Inputs:

i.Task graph (model) in TaskFolder
ii.End-to-end timing constraints for deadline distribution. A value has

to be given for each constraint.
iii.For each task in the model, a value of WCET attribute is required. A

value of rate can be assigned as an option. No timing assignment
will be performed after deadline distribution if a rate value is
given. (Note the value for the rate should actually be the period
(1/rate).) Other options are not used in current algorithm
implementation.

iv.For each link between tasks, a task graph edge weight can be
specified as communication cost, and will be used for task
allocation. Other options are not used in current version of AIRES
tool.

v.Platform model in HWFolder. For an OS component, timer
overhead, context switch time and scheduling overhead can be
specified. If no value is given for any of these, zero overhead is
assumed.

vi.A CF value should be given for allocation.

=
scheduling premptive-mixedor preemptive-non if),(max

scheduling preemptive-full if ,0

jj
i s

b

},...,1;...1|{

==⋅=
j

i
ji P

Plijdlτ

i
i

it d
P
t

tW
i

⋅

≤∈)(min τ

vii.Scheduling policy for schedulability analysis (generalized RMA for
current version)

viii.OIL file location and name for OIL file generation.
c.Outputs:

i.Deadline distribution results: released offset, execution time and
deadline assigned to each task

ii.Task information: name, period, WCET
iii.For each task, cluster id, response time, resource consumption for

this task, and processor it is allocated are given
iv.Utilization of each processor
v.If not schedulable, a text of task set is not schedulable is given.

vi.For OIL file generation, files in given directory with given names.
d.Strength:

i.Automate the runtime design process, including timing attribute
assignments, task allocation, schedulability analysis and
configuration code generation

ii.Support analysis in a distributed environment with multiple
processors.

iii.Take underlying system overhead such as OS overhead into account
during analyses.

iv.Support timing analysis with implicit information, e.g., rate of a task
is not given

v.Generate OIL file
e.Limitation:

i.Only work for acyclic graph. Communications that will introduce
cycle in the graph are not taken into account in current analysis
algorithm.

ii.Consider only rate-monotonic scheduling policy
iii.Only the configuration file for OSEKWorks can be generated.
iv.A separate OIL file will be generated for every processor that has

some task allocated on it.

Obtaining metrics needed for analysis:

For each run-time platform, we need metrics like WCETs, periods for components and
tasks in the model. For scheduling analysis, we also need values for operating system
overheads like context switch overhead, timing overheads. The WCETs for components
and tasks can be estimated using any of the following methods:

1. Profiling the application.

Obtaining precise WCETs within short time is an extremely hard problem and instead of
that, we can usually get away with rough hueristics estimates. One possible method is to
instrument the application code. One can measure the timestamps (usually obtained
using real time clock on the processor) at the beginning and the end of software

component execution. The difference gives the execution time of the component. The
trial can be repeated several times to obtain an average execution time for a component.
The WCET for the component can be taken as some safety fudge factor times the average
execution time. The decision about the factor is done based on previous experience. This
would vary from one company to another. For example, GM engineers use 1.5 or 2.0 for
the fudge factor.

The alternative to this method is exhaustively find an input for which the software
component takes longest time to execute.

2. Using compiler analysis.

This method only works if the code is straight-line code, or code
with loops running fixed times. One can follow the longest execution
path in the code. Then, given the clock cycles for each instruction
executed, one can obtain the WCETs. For this we need to parse the code,
obtain a graph representation and then, derive WCETs. Currently we
dont plan to take this work as part of AIRES.

For workstations (unix, linux), we could use tools like gprof,prof
to obtain a call graph profile and get rough execution times from this.
We could use these values as WCETs. This can be done for nearly all
processors for which GNU's gcc exists. But for MPC555, or HC08, we aren’t sure how
this can be done.

Both the above methods require application code. For the operating
system profiling, we don’t need the OS code. We just need to
measure the end-to-end overheads (context switch overheads, timing
jitters) experienced by an application. We currently have a
methodology on how to obtain this without the source code of the OS.
We intend to release the results of profiling OSEK on MPC555 along
with the methodology to profile any other OS.

Other metrics like period of tasks, timing constraints on the task graphs can be obtained
from Simulink models.

3. Obtaining data for Component to task mapping

We need an estimation of the amount of communication involved between software
components. A rough estimation of this can be derived by multiplying the sizes of the
data types exchanged by the interface (both inputs and outputs) and the frequency of
exchange. This information can be obtained from the Simulink model or the code. The
communication data between tasks required for task-to-processor mapping can also be
similarly derived.

Number of tasks to map the components to depends on the designer. More granularity
(higher number of tasks) increases the operating system overheads, but can make a
system schedulable. Lesser granularity decreases the overheads but can result in
unschedulable system. This becomes a factor only when the system is large and
consisting of hundreds of components. For the ETC example, we don’t really have to do
Component-to-task mapping as this is already done for us.

Work-out Example:

A lot of tools are provided in AIRES, which help the designer in deriving timing
and task structuring information. Some of them are not really required in ETC example
as these information are available apriori. So for ETC, no deadline distribution
is required, nor is component to task mapping. The tasks structure for ETC can be
derived from the P-specs or C-specs ??? of Ford style guide. The software components
making up the ETC tasks can also be derived from the mdl files. Only the scheduling and
allocation information is not present and AIRES tools suite can be used to obtain this.
The other tools can be used when these information are not available or need to be
derived from a high level end-to-end timing specifications. The release v2.0 is intended
to demonstrate the full capabilities of AIRES, even though some of them are not really
necessary for ETC.

To learn and understand AIRES toolkit and its functionalities, we give an example
constructed step-by-step to show how AIRES toolkit can be used.

Example: Build ETC controller

1.Construct a ETC design model with components in Simulink/Stateflow diagram
given by OEP;

2.Construct a task graph from the design model using component-task mapping
3.Analyze timing and schedulability, and perform task allocation for the task graph
4.Generate OIL file for the example

Steps: Note that during model construction, you should frequently save the file in case
something goes wrong. We experienced GME crash occasionally during model
construction.
1.Install AIRES meta-model and interpreters (this can be found in the AIRES manual).

a.Start GME 2000 v2.0;
b.Choose File->Register Paradigms?;
c.Choose Add from File? in the popup window;
d.In the new popup window, point file directory to the working directory, and

make files of type to be Paradigm Files [*.xmp] (should be default);
e.Double click AIRES_META_MODEL.xmp in the file list, or click it once

and then click Open.
f.A new paradigm AIRES should appear in the Paradigm list.

g.Choose Component?;
h.In the new window, choose Install New?;
i.Point directory to AIRESComponents, and set files of type to be

Component File[*.dll,*.ocx];
j.Double click Composite.dll (Choose Composite.dll, then click Open). A

new interpreter Simulink should appear in the interpreter list;
k.Repeat step h - j to install Comp2Task.dll and Schedule.dll. After then, the

following interpreters should be present in the interpreter list:
ComponentMapping, scheduleAnalyzer.

l.Click close to return to previous window;
m.Click close again to return from popup window.

2.Install icons used by AIRES toolkit
a.Unzip icons.zip to an icon directory, e.g., C:C:C:C:\\\\AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0\\\\iconsiconsiconsicons;
b.In GME 2000, choose File->Settings?;
c.In GME properties window, choose Add? for User Icon Path;
d.Point the directory to the icon directory iconsiconsiconsicons, double click it;
e.Click open to return to the previous window;
f.Check the User Icon Path, the full icon path

C:C:C:C:\\\\AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0\\\\iconsiconsiconsicons should exist;
g.Click OK to return.

3.Create a new project for the ETC model
a.Create an example working directory for new project, e.g.,

C:C:C:C:\\\\AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0\\\\MyETCModelMyETCModelMyETCModelMyETCModel;
b.Choose File->New Project?;
c.Highlight AIRES paradigm, then click Create New?;
d.Use default option Create project file, then click Next>;
e.Enter to directory MyETCModelMyETCModelMyETCModelMyETCModel, and give a file name, e.g., ETCModelETCModelETCModelETCModel.

Files of type should be MGA File.
f.Click Open. ETCModelETCModelETCModelETCModel should appear in GME 2000 Browser window.

4.Import Simulink component models
a.Click Matlab icon located in the component icon list in toolbar;
b.Click Simulink Import button;
c.Point the directory to C:C:C:C:\\\\AIRES_ReleaseAIRES_ReleaseAIRES_ReleaseAIRES_Release----v2.0v2.0v2.0v2.0\\\\ExampleExampleExampleExample, and set files of

type to be Simulink [*.MDL];
d.Double click etc_manager.mdletc_manager.mdletc_manager.mdletc_manager.mdl in the file list. Wait until return to GME

2000. Now open ETCModel in the browser window, there should be a
SWFolder created. Inside it should be a Simulink model and a Target
model. Double click the Simulink model, the etc_manager component
with all ports should show up in the workspace;

e.Repeat step a - d for etc_monitor.mdletc_monitor.mdletc_monitor.mdletc_monitor.mdl and etc_servo_cetc_servo_cetc_servo_cetc_servo_control.mdlontrol.mdlontrol.mdlontrol.mdl. Now
there are 3 components in Simulink model: etc_manager, etc_monitor,
and etc_servo_control. These components now form a component
repository for a ETC controller construction.

5.Create ETC design model
a.Double click the Target model in SWFolder, and an empty workspace will

show up;

b.Right-click etc_manager components in Simulink, choose Edit->Copy;
c.Right-click in workspace, choose Paste Special->As Instance. An

etc_manager component will show up in the workspace.
d.Repeat step b and c to put instances of etc_monitor and etc_servo_control

in the workspace.
e.Connect corresponding ports: click GME 2000 connect mode icon at in the

toolbar at left-hand side to connect the following ports
•Etc_manager/out:which_model ---

etc_servo_contro/in:which_model
•Etc_manager/out:which_driving_cruise ---

etc_servo_contro/in:which_driving_cruise
•Etc_manager/out:which_limiting_rev ---

etc_servo_control/in:which_limiting_rev
•Etc_manager/out:which_limiting_traction ---

etc_servo_control/in:which_limiting_traction
•Etc_manager/out:task_manager_cntr ---

etc_monitor/in:manager_task_cntr
•Etc_monitor/out:which_faults --- etc_servo_control/in:which_faults
•Etc_monitor/out:which_faults --- etc_manager/in:which_faults
•Etc_servo_control/out:desired_current ---

etc_monitor/in:desired_current
•Etc_servo_control/out:task_servo_cntr ---

etc_monitor/in:servo_task_cntr
f.Option: click each line of link, and assign CommDataSize in the attribute

window. Default size is 1.
6.Composition signal checking

a.Click Matlab icon;
b.Click Signal Import button;
c.Point directory to C:C:C:C:\\\\AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0\\\\ExampleExampleExampleExample, and set files of type

to Port Info File [*.CSV];
d.Double click etc_ports.csvetc_ports.csvetc_ports.csvetc_ports.csv file in the file list;
e.Click Signal Check button. This will bring up a window showing all the

mismatch signals.
f.To fix the signal mismatch:

•Click OK to return to previous window;
•Click OK to return to GME;
•Open etc_ports.csvetc_ports.csvetc_ports.csvetc_ports.csv file in MS Excel, make the following changes:

•Line 21, etc_manager, which-faults, Col H (max): 5 -> 4;
•Line 29, etc_monitor, tps1, Col H (max): 1000 -> 2000;
•Line 38, etc_servo_control, tps1, Col D (data_type): int, Col E

(dimension): 1, Col G (min): 0, Col H (max):2000
•Line 59, etc_servo_control, which faults, Col D(data_type):

int, Col E (dimension): 1, Col G (min):0, Col H(max):4
•Save the modifications;
•Redo step a - e. A message with No error should show up.

7.Partition component graph to construct task graph (runtime model)
a.Click C->T icon in component list of GME toolbar
b.Give a value 2 to Max Comps/Task, and a value 2 to Number of Tasks;
c.Click Do Mapping (don't press Enter key instead);
d.The result will show up with: etc_manager and etc_servo_control in Task

0, and etc_monitor in Task 1. (You can repeat this with assign different
values of CommDataSize for each link in Target model, and see different
mappings.)

e.To match OEP example (3 tasks), change the value of Number of Tasks to
3, and click Do Mapping. The result will show 3 tasks with each contain
one component.

f.Construct task graph according to this output. This has to be a manual
process now, as described below.

g.Click OK to return to GME;
h.Right-click ETCModel in GME Browser window;
i.Choose Insert New Folder->TaskFolder;
j.Right-click TaskFolder, and choose Insert New Model->TaskSystem;
k.Highlight TaskSystem model by clicking it, and click it again to change the

model name to ETC_Task (Note it is not a double click in this step. You
can leave the model name as TaskSystem, or you can modify it through
right-click it, then choose Properties);

l.Double click ETC_Task model, and an empty workspace will show up.
m.Drag Task part in the part window into the workspace, double click it in the

workspace, change the name in attributes window to etc_manager. Check
the checkbox of WCET, and give a value of 200.

n.Drag 2 InputPorts into the workspace, and rename them to sensor_input
and which_faults;

o.Drag2 OutputPorts into the workspace, and rename them to which_output
and manager_cntr. Note in this case, we combine the input signals for
etc_manager component and output signals from it.

p.Go back to ETC_Task model by clicking Parent icon in toolbar;
q.Repeat step m - p for etc_monitor task and etc_servo_control task.

•Etc_monitor: WCET - 300; 3 input ports - desired_current,
manager_cntr, servo_cntr; 1 output port - which_faults;

•Etc_servo_control: WCET - 800; 3 input ports - sensor_input,
which_manager, which_faults; 2 output ports - desired_current,
servo_cntr;

r.Link the task to form a task graph:
•Etc_manager/out:which_output ---

etc_servo_control/in:which_manager
•Etc_manager/out:manager_cntr --- etc_monitor/in:manager_cntr
•Etc_monitor/out:which_faults --- etc_servo_control/in:which_faults
•A value of weight for each link can be assigned as an option

8.Timing and schedulability analysis

a.Drag and drop a Constraint in ETC_Task workspace, rename it as
ETC_cycle_constraint, give its value as 5000, and link it from
etc_manager -> ETC_cycle_constraint -> etc_servo_control.

b.Create a platform model as follow:
•Right-click ETCModel in browser window, choose Insert New

Folder -> HWFolder;
•Right-click HWFolder, and choose Insert New Model ->

HWSystem;
•Rename the new HWSystem to ETC_Platform;
•Double click the ETC_Platform model to open an empty

workspace;
•Drag and drop 2 CPU components, one CANBus component and

one OS component in the workspace. Rename the CPUs to
Processor 0 and Processor 1, and OS to OSEKWorks. Link
Processor 0 to CANBus and Processor 1 to CANBus, and link
Processor 0 to OSEKWorks, and Processor 1 to OSEKWorks.
(Note to link CPU and OS, the connection should always start
from CPU and end at OS. Otherwise, there will be a constraint
error.)

•Assign overhead values for OSEKWorks component: Timer
Overhead: 100, Context Switch Overhead: 54, Scheduling
Overhead: 21

c.Click DD/SA icon in component list of GME toolbar to invoke analysis
interpreter;

d.Click Deadline Distribution button in the popup window. The results will
show up, including task names, offset of each cycle that the task should
start, task's execution time, and its deadline.

e.Click OK to return to the previous window;
f.Click Allocation+Distribution button;
g.Turn on Scheduling Policy to RMA, and click Schedule;
h.The result will show up with:

•All three tasks running at period 5000;
•etc_manager: cluster 2, response time 300, resource consumption

0.04, allocated on Processor 0;
•etc_servo_control: cluster 0, response time 1658, resource

consumption: 0.16, allocated on Processor 0;
•etc_monitor: cluster 1, response time 729, resource consumption

0.06, allocated on Processor 0.
•Utilization of Processor 0 is 0.3374, and no task is running on

Processor 1.
•Note that the response time for etc_monitor is greater than the sum

of WCETs of etc_manager and etc_monitor. This is because
the OS overhead is taken into account. Same for the
etc_servo_control.

i.Click OK to return to previous window, and click OK again to return to
GME. We will redo the analysis with the OEP provide information next.

j.According to OEP example, etc_monitor should be running on a different
processor. Here we assume both processors run OSEKWorks, which is
different from what OEP give. To do so, follow the steps below:

•Open ETC_Task model by double clicking it in Browser window;
•Double click etc_manager in the workspace;
•Open ETC_Platform model tree in HWFolder, right-click

Processor 0 in the Browser, choose Edit -> Copy;
•Right-click the workspace, choose Paste Special -> As Reference.

A reference of Processor 0 will appear in the workspace.
•Return to ETC_task model by clicking Parent icon in toolbar
•Repeat above steps for etc_monitor and etc_servo_control. For

etc_monitor, copy Processor 1 in the
HWFolder/ETC_Platform, and paste as reference. For
etc_servo_control, copy Processor 0 and paste as reference.

k.The rate of each task is also given in OEP example. In ETC_Task model
workspace, click etc_manager, turn on the Rate checkbox, and assign a
value 10000 to it, then press Enter key. Do same to etc_monitor with a
value 10000, and etc_servo_control with a value 5000.

l.Click DD/SA icon to invoke the interpreter. A Warning will be displayed
saying that etc_manager has different rate than etc_servo_control. Click
OK to dismiss it.

m.Click Allocation+Distribution button. Deadline Distribution button will
still work, but show the result subject to constraint, which won't be used
any more in later analysis. The result will be overwritten by the user-
specified values in the model.

n.Turn on RMA and click Schedule.
o.Different results will show up, with tasks allocated on 2 processors, different

response times, and utilizations of both processors.
9.OIL file generation

a.After the scheduling analysis results are displayed, click the button Generate
OIL at the bottom of the analysis result window;

b.Provide a directory to store the OIL file, e.g., MyETCModelMyETCModelMyETCModelMyETCModel;
c.Provide a file name, e.g., Software4P0.oilSoftware4P0.oilSoftware4P0.oilSoftware4P0.oil;
d.Click Open. A message with the named file created will show up.
e.Repeat this for another processor, generate Software4P1.oilSoftware4P1.oilSoftware4P1.oilSoftware4P1.oil.
f.Go to C:C:C:C:\\\\AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0\\\\MyETCModelMyETCModelMyETCModelMyETCModel, check existence of the 2

OIL files.

There is a pre-constructed example with full models defined in the Model_Example
directory released with this software. Please contact us if there is any difficulty during the
construction.

	AIRES Toolkit Description

